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Phase diagram of colloidal spheres in a biaxial electric or magnetic field
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Colloidal particles with a dielectric constant mismatch with the surrounding solvent in an external
biaxial magnetic or electric field experience an “inverted” dipolar interaction. We determine the
phase behavior of such a system using Helmholtz free energy calculations in Monte Carlo
simulations for colloidal hard spheres as well as for charged hard spheres interacting with a
repulsive Yukawa potential. The phase diagram of colloidal hard spheres with inverted dipolar
interactions shows a gas-liquid transition, a hexagonal ABC stacked crystal phase, and a stretched
hexagonal-close-packed crystal. The phase diagram for charged spheres is very similar, but displays
an additional layered-fluid phase. We compare our results with recent experimental observations.
© 2010 American Institute of Physics. [doi:10.1063/1.3425734]

I. INTRODUCTION

The phase behavior of colloidal particles in a suspension
can be influenced by applying an oscillating external mag-
netic or electric field. If the magnetic susceptibility or dielec-
tric constant of the colloidal particles differs from that of the
solvent, the particles will acquire a dipole moment along an
external uniaxial field, leading to dipolar interactions be-
tween the particles. In this way, the colloidal interactions can
be tuned reversibly without having to modify the chemistry
of the colloidal particles or the solvents involved. Hence, an
external uniaxial electric or magnetic field leads to a greater
control over the macroscopic phase behavior and structure of
the colloidal system. The phase behavior of both hard and
charged colloids with aligned dipolar interactions obtained
by applying an external uniaxial field has been studied
theoreticallyl’2 and experimentally}6 extensively. In addi-
tion, the phase diagram of charged and uncharged dipolar
hard spheres has been determined by free energy calculations
using Monte Carlo simulations.” In this work, it was shown
that three new crystal structures, i.e., hexagonal-close-packed
(hcp),  body-centered-tetragonal, and  body-centered-
orthorhombic phases, can be stabilized by applying an exter-
nal uniaxial field. For completeness, we mention that the
behavior of colloidal particles with permanent dipole mo-
ments in external fields*'® and in confinement'"'? has been
widely investigated as well.

By applying multiaxial fields, more complicated aniso-
tropic interactions can be induced, leading to the formation
of more complex particle structures.'® In this paper, we de-
termine the phase diagram of colloidal particles in an exter-
nal biaxial electric or magnetic field, which can be obtained
by rotating or randomly changing the field direction. Effec-
tively, the particles have a rotating dipole moment in the
plane of the rotating field. If the frequency of the rotating
field is sufficiently high, the particles experience a rotation-
ally or time averaged dipolar interaction, leading to a net
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attraction in the plane of the biaxial field, and a repulsion
perpendicular to the field. The time-averaged dipolar interac-
tion that the particles experience in a uniaxial field rotating
in the xy-plane is just —1/2 times the dipolar interaction in a
uniaxial field oriented in the z-direction, and can be regarded
as a negative or “inverted” dipolar interaction. In contrast to
the relatively simple dipolar interaction, the inverted dipolar
interactions between the colloids give rise to a gas-liquid
coexistence at low field strengths. At higher field strengths,
large hexagonal sheets of particles form, eventually merging
into a crystal phase.

Simulations of particles in various biaxial and multiaxial
fields have been performed by Martin et al.,"* ™' with a focus
on kinetics and nonequilibrium structures, as well as mag-
netic properties of the structures formed. The magnetic prop-
erties have also been compared to experimental results mea-
sured in systems of magnetic field-structured composites,
formed by polymerizing the solvent while the particles are in
the external field."” In a study of freely rotating permanent
dipoles in a rotating field, Murashov and Patey18 showed the
formation of sheetlike and layered structures for a range of
angular velocities of the external field, using molecular dy-
namics and Brownian dynamics simulations. In these sys-
tems, the formation of layers highly depends on the moment
of inertia of the dipoles and the frequency of the rotating
field. More recently, colloidal systems in an external biaxial
electric field have been investigated using confocal
microscopy,19 showing the formation of large hexagonal
sheetlike structures, which were made permanent by thermal
annealing. The formation of these sheets in two-dimensional
systems has also been studied experimentally20 with the par-
ticles confined to an interface. In this paper, we investigate
using Monte Carlo simulations the equilibrium phase behav-
ior of charged and uncharged colloidal hard spheres interact-
ing with an inverted dipolar interaction. Additionally, we
map out the phase diagrams for both systems using free en-
ergy calculations.

© 2010 American Institute of Physics
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Il. METHODS

We perform Monte Carlo simulations in the canonical
(NVT) and isothermal-isobaric (NPT) ensemble, where we
fix the volume V and pressure P, respectively. In addition,
we keep the number of particles N in the system fixed and
the temperature 7. We perform simulations of N=384-432
particles. Larger systems were used for the layered-fluid
phase and the low-density crystals to reduce finite-size ef-
fects. Finite size effects were checked by performing the
same free energy calculation in a larger system (N=900) at
one point in each phase diagram. This caused the fluid-solid
coexistence packing fractions to shift by less than 0.005 in
both the charged and uncharged system, which remains
within our statistical error bars.

Cluster moves were introduced to move or rotate clusters
of particles at once in order to speed up equilibration of the
layered-fluid phase. In the initial step of a cluster move, a
random particle in the system is selected and taken as the
center of the cluster. We construct a cylindrical volume
around this particle with its symmetry axis aligned along the
z-axis. The radius r, and height & are selected randomly from
a uniform distribution. For our simulations, we use 0<r,
<min(L,,L,) and 0<h<o. All particles positioned with
their center of mass in the cylinder are considered to be part
of the cluster and are moved collectively. In the case of a
rotation move, the particles are rotated around the central
particle in the plane of the external field. In the case of a
translation move, the particles are given the same random
displacement dr. The number of particles in the cluster vol-
ume is counted before and after the cluster move. If any new
particles are present in the cluster volume after the move,
moving the same cluster in reverse would also move these
extra particles. As this would break detailed balance, any
cluster moves where the number of particles in the chose
cylinder around the central particle changes are rejected.
Eventually, the translation or rotation is accepted or rejected
based on the Boltzmann factor exp(—B(Upew—Ugia))-

In our model, we assume an external rotating electric or
magnetic field in the xy-plane of our system. The colloidal
particles experience an inverted dipolar interaction given by

3
Bitiny (1)) == g(f) (1-3 cos 6;), (1)

ij

where r;; is the center-of-mass distance vector between par-
ticles i and j, 6;; denotes the angle that r;; forms with the
z-axis, o is the diameter of the particle, and B=1/kzT with
kg Boltzmann’s constant. In the case of an external electric
field E, the dimensionless prefactor vy in Eq. (1) is given by

mae,o”|E? 2
T 8kzT
where a=(¢€,-€,)/(€,+2¢,) is the dielectric contrast factor
with €, ; the dielectric constants of the particles and the sol-
vent, respectively. Similarly, in the case of an external mag-
netic field H, vy is written as
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where a=(w,—u,)/ (1,+2u,) and w, is the magnetic sus-
ceptibilities of the particles and the solvent, respectively. We
note that for y=1, the maximum value of the pair potential,
i.e., 0.5kpT, is reached, when two adjacent particles are
aligned along the z-axis. The minimum value (-0.25kz7T) is
obtained when both adjacent particles are in the xy-plane. In
addition, the colloidal hard spheres interact with a hard-
sphere potential given by

0, =0

Buhs(rij) = (4)

oo, rij <o
while we use a repulsive hard-core Yukawa potential in the
case of charged spheres
€ exp[— (r;;— 0)]
N rij =0
r ij/ o s (5)

o0, rij< o

BMY(rij) =

where
72 g
e=—5—
(1+ko/2)? o

(6)

is a constant prefactor depending on the colloidal charge
number Z, Debye screening length «~!, and Bjerrum length
Np=e?/ kpT with e the elementary charge. Equation (5) is
the pair potential given by the Derjaguin-Landau—Verwey—
Overbeek theory for charged colloids.”' We have neglected
the van der Waals attraction in Eq. (5) as we are interested in
refractive index matched systems. The repulsion increases
the distance between the layers of the crystal phase, and
causes part of the liquid phase to form fluidlike layers.

The Ewald summation is employed to calculate the long-
range dipolar interactions.”*? The calculation of the inverted
dipolar interactions using the Ewald summation method is
largely identical to the method used for normal dipolar sys-
tems, with the exception of the term related to the boundary
conditions. In this case, we assume conducting boundary
conditions. We first note that the inverted dipolar interaction,
which is formed by a time-averaged rotating dipolar interac-
tion in the xy-plane, is identical to the averaged interaction
induced by two perpendicular external uniaxial fields in the
xy-plane. Hence, the total potential energy of the system is
the average of two energy calculations. The correction factor
can be derived by summing the effect of the boundary con-
ditions on both of these calculations.

For nonconducting boundary conditions, the total poten-
tial energy of a specific configuration {r"} of the inverted
dipolar system Uj, equals the average of the total potential
energy of two dipolar systems with uniaxial fields in the x
and y directions

Ur+uy 1
Upy= === U (7)

For normal dipolar interactions the difference between non-

conducting and conducting boundary conditions is given
2

by
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where U™ is the interaction with conducting boundary con-
dition and M is the square of the total dipole moment of the
system, with M-M=yN?/2. Combining the difference in po-
tential energy between conducting and nonconducting
boundary conditions for the two dipolar systems with per-
pendicular uniaxial fields, yields
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As a result, we can calculate the potential energy of a biaxial
system with conducting boundary conditions U™ from the
energy of the same configuration in a system with normal
dipolar interactions by multiplying the energy by —1/2 and
adding the above correction term —myN?/2V.

The Helmholtz free energies of the ABC stacked crystals
were calculated using the Einstein integration method.”*** In
addition, we calculate the Helmholtz free energy as a func-
tion of density by integrating the equation of state. We de-
termine the coexisting densities with the fluid phase by em-
ploying the common tangent construction. At high densities,
a coexistence between face-centered-cubic (fcc) and hep
crystal phases occurs. The free energy difference between
these structures is on the order of 1073k,T, and therefore
hard to measure with sufficient statistical accuracy using this
method. Instead, we use the hard-sphere crystal as a refer-
ence state for both structures, and calculate the free energy as
a function of the interaction strength by using a thermody-
namic integration path consisting of a gradual increase in the
field strength. For these crystals, only the free energy differ-
ence between hcp and fcc stacking is needed, which was
linearly interpolated from literature values for this difference
at coexistence and close packing.25 Due to the narrow coex-
istence region, and a large estimated error in the free energy
calculations, we only show one coexistence line between
these high-density crystal phases. The estimated error in the
coexistence field strength y is on the order of 0.5. For the
fluid phase, the hard-sphere fluid (using the equation of state
by Speedy26) and ideal gas were used as reference states for
the liquid and the gas, respectively.

For the free energy of the layered-fluid phase in the case
of charged spheres, we use a method similar to the one em-
ployed by Bolhuis and Frenkel”’ for the smectic phase of
hard spherocylinders. Via a thermodynamic integration path,
we relate the free energy of the layered fluid in the system of
charged spheres with inverted dipolar interactions to the free
energy of a hard sphere fluid. This integration is done in two
steps. We first couple the particles to their layers by applying
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an external sinusoidal potential while turning off the interac-
tions. The resulting potential in the system depends on a
switching coefficient \

UN) =AUy + (1 = N) Uiy, (10)
N

=Na, sin(2mnz/L.) + (1 = N)Upys (11)
i=0

with U, and U, the total energy in the system due to the
external potential and the particle interactions, respectively.
The factor « is the strength of the sinusoidal potential and is
chosen such that the particles in the layer remain disordered
for all 0<A<1. The number of layers n; and the height of
the box L, are chosen such that they match the equilibrium
layer spacing measured from independent NPT simulations.
The free energy difference between Fj,,—F, the system
with inverted dipolar interactions and the system with the
sinusoidal potential is given by

0
B(Finv - Fsin) = f d}\<Usin - Uint>)\ -InV. (12)
1

The resulting system consists of hard spheres confined to
layers by the external potential. To allow equilibration of the
density within the layers throughout the whole system, we
use shifted boundary conditions, such that the fluid layers are
interconnected at the edges of the simulation box. In our
simulation, a particle that leaves the simulation box in the
x-direction does not only enter the simulation box at the
opposite face, but is also shifted in the z-direction by one
fluid layer, i.e., by L,/n;. The direction of the shift is deter-
mined by the direction in which the particle leaves the simu-
lation box. In this way, the particles can diffuse throughout
the whole system, as there is effectively one single layer,
which allows for the relaxation of the density within each
fluid layer. Of course, the energy calculations should also
incorporate this shift. For the Yukawa interaction and the real
space contribution of the Ewald sums, this can be done by
simply calculating the energy from the relevant image par-
ticles. For the reciprocal space contribution of the Ewald
summation, we use the fact that the system is still periodic
along x, but with a period n; times larger and with n; times
more particles. Since the contributions from these extra par-
ticles are the same as those in the original box, but multiplied
by a complex factor, the energy calculation does not require
significant extra computer time.

The free energy of the system of pure hard spheres in an
external sinusoidal potential can be calculated in two ways.
Turning off the potential, the system transforms gradually
into an isotropic hard-sphere fluid, which can be used as a
reference state. The free energy difference between the hard
sphere fluid and hard spheres in an external sinusoidal po-
tential can be calculated similar to Eq. (12), but without in-
verted dipolar interactions. Combining the two steps, the free
energy of the layered fluid can then be calculated as
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FIG. 1. Phase diagram for hard spheres in an external biaxial electric or
magnetic field in the dipole moment strength 7y vs packing fraction #» rep-
resentation. The black circles denote the points where the phase boundaries
were determined, while the gray areas denote the coexistence regions. The
tielines that connect the coexisting phases are vertical. The hexagonal ABC
stacked crystal phase can be regarded as a fcc crystal, which is stretched in
the direction perpendicular to the field and is oriented with the hexagonal
planes parallel to the plane of the biaxial field, as illustrated by the two
perpendicular arrows indicating the plane of the field in the schematic pic-
ture. The stretched hcp is oriented with the hexagonal planes perpendicular
to the biaxial field, as illustrated by the ® and arrow in the picture, with ®
indicating the axis perpendicular to the page, and is slightly stretched in the
direction perpendicular to the field. The top axis shows the electric field
strength corresponding to the dipole moment strength vy, using the experi-
mental values @=-0.22, €,=5.8¢;, =2 um, and T=300 K (Ref. 19). The
crosses denote the points where the snapshots in Fig. 2 were taken.

1 0
IBFinv = BFHS + f d)\<Usin>I):Is + f d)\< Usin - Uim))\
0 1

with Fyg the free energy of a hard sphere fluid at the same
density as the layered fluid, and with the first integral evalu-
ated without inverted dipolar interactions. Alternatively, if
the strength of the external sinusoidal potential is sufficiently
high, the particles are strongly constrained to their layer and
the system behaves effectively as a two-dimensional hard-
disk fluid with additional harmonic vibrations perpendicular
to the plane, for which one can calculate the free energy
analytically. We checked that the free energies using both
methods are equal within our statistical error bars. However,
since integrating to a hard sphere fluid uses a shorter integra-
tion path, the numerical errors in this method are smaller.
Note that two integration paths are needed: In the first path,
we switch off the inverted dipolar interactions, but we have
to switch on an external sinusoidal potential to keep the sym-
metry of the fluid. In the second path, we turn off the sinu-
soidal potential to obtain a homogeneous fluid phase.

lll. HARD SPHERES IN A BIAXIAL FIELD

We plot the calculated phase diagram for hard spheres in
a biaxial field in Fig. 1. In Fig. 2, we show snapshots of the
system in various phases, as denoted by the crosses in the
phase diagram (Fig. 1). At y=0, the well-known hard-sphere
fluid-fcc (hexagonal ABC stacked) phase behavior is recov-
ered. As opposed to the normal dipolar hard spheres,7 we
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FIG. 2. Snapshots of typical simulation configurations for hard spheres with
inverted dipolar interactions. The arrows indicate the two field directions,
with ® indicating the axis perpendicular to the page. (a) A low-density fluid
at y=2, 7=0.11. (b) A higher density fluid, with y=8 and %=0.43. (c)
Crystalline ABC-stacked hexagonal layers of spheres at 7=0.58 and y=8.
(d) The stretched hep crystal at y=9, 7=0.71. Note that the stretched hex-
agonal planes are perpendicular to the field plane.

find at y=6 a gas-liquid coexistence for this system. We
note that well-inside the gas-liquid coexistence region,
system-size spanning slabs of liquid and gas are formed,
which are aligned in the plane of the rotating field. More-
over, the system can phase separate and/or change phase
very easily. It is tempting to speculate that these observations
are due to a strongly anisotropic gas-liquid interfacial ten-
sion, which is much lower for the plane parallel to the biaxial
field than the orthogonal planes.

Additionally, we find two stable crystal structures in the
phase diagram. At maximum packing the fcc crystal is fa-
vored for low field strengths due to the small free energy
difference between fcc and hep, where fcc is the most stable
phase in the case of hard spheres (y=0). The orientation of
the crystal phase with respect to the field has no effect on its
energy when the crystal is not deformed, however, at non-
zero field strengths, the crystal is compressed in the plane of
the field and stretched in the perpendicular direction, leading
to a difference in free energy between the possible orienta-
tions for the crystal. As a result, the stable structure consists
of hexagonal sheets parallel to the field plane.

The lowest-energy structure of this system is a close-
packed hcp crystal, with the hexagonal planes perpendicular
to the plane of the rotating field. The energy per particle for
this orientation [—1.481 38(1)ykT] is slightly lower than that
of hcp with sheets oriented parallel to the field
[—1.480 12(1)ykT] or that of fcc [—1.480 96(1)ykT, for any
orientation]. Evidently, the free energy difference between
fcc and hep is very small for the different orientations, and
hep is only stable in a small pocket at very high densities. At
lower densities, the stable structure is fcc. We wish to remark
here that the fcc and the hep phases are not entirely symmet-
ric, but are slightly stretched in the z-direction. Hence, the
fcc phase is an ABC-stacked crystal of hexagonal sheets,
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FIG. 3. Equations of state for hard spheres with inverted dipolar interactions
at field strengths y=6,8,18. The lines are fits through the data, using dashed
lines for the crystals and solid lines for the fluids. The green horizontal lines
show the coexistences. For y=8 and 18 the coexistences with a gas at
near-zero pressure have been omitted.

oriented along the xy-plane, while in the hcp phase the hex-
agonal planes themselves are stretched. Stacking defects are
likely to occur, since the free energy loss is only on the order
of 1073kTy per particle at close packing, and becomes even
lower at lower densities.

Solitary sheets or rafts can appear at high field strengths
whenever there are insufficient particles in the simulation
box to form a box-spanning sheet. However, if the fields are
strong enough to form these structures, and there are mul-
tiple sheets in the box, they will join into a crystal if their
orientation matches, showing that these structures are not
stable on their own. Our phase diagram explains these find-
ings as it displays indeed an enormous widening of the solid-
gas transition for increasing y. We note that the tielines that
connect the coexisting phases are vertical in Fig. 1. Hence,
the coexisting gas and solid phases becomes progressively
more dilute and dense, respectively, upon increasing vy, yield-
ing coexistence of a dense solid phase with a gas phase,
which is extremely dilute.

Equations of state for the fluid and fcc phases at field
strengths y=6,8,18 are shown in Fig. 3. For y=6, a gas,
liquid, and solid branch are shown, with the coexistences
denoted by horizontal lines. For y=8, only the liquid and
solid branch are shown, as the liquid coexists with a gas at
near zero density. At y=18, we show only the fcc branch,
which again coexists with an extremely dilute gas.

IV. CHARGED SPHERES IN A BIAXIAL FIELD

The colloidal particles that are used in experimental sys-
tems are often charged, due to ionizable groups on their sur-
faces, which dissociate when suspended in a solvent. The
bare Coulombic repulsions between the colloidal particles
are then screened by the ions in the solvent, leading to a
Yukawa or screened-Coulombic interaction.?' In our simula-
tions, we choose an inverse screening length of ko=10, and
surface charge Z>\ 3/ 0=450. The phase diagram for charged
spheres in an external biaxial field is shown in Fig. 4. Figure
5 shows snapshots of the system at the points denoted by
crosses in the phase diagram. In Fig. 6 we show the equa-
tions of state for three field strengths. For y=10, the fluid
and crystal branch are shown. At y=16, the liquid and solid
branch are shown, omitting the coexistence with a gas at near
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FIG. 4. Same as Fig. 1, but for a system of charged spheres interacting with
a Yukawa interaction. The inverse screening length k=10, and \gZ*/ o
=450 (€=12.5). The layered-fluid phase consists of system-spanning slabs
of fluid aligned in the plane of the biaxial field. The crosses indicate the
positions in the phase diagram where the snapshots in Fig. 5 were taken.

zero pressure. For y=24, we again show only the crystal
branch, which also coexists with a gas at extremely low pres-
sures.

At y=0, we find a fluid-fcc (hexagonal ABC) coexist-
ence with coexisting packing fractions 7,q=0.31 and 7,
=0.32. Additionally, we again find a gas-liquid coexistence,
which is shifted to much lower densities compared to that of
hard spheres. Moreover, the coexisting liquid becomes inho-
mogeneous for field strengths y> 16, and system-size span-
ning fluidlike layers are formed with their orientations
aligned in the plane of the rotating field. Figure 5(c) shows a
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FIG. 5. Snapshots of typical simulation configurations for charged spheres
with inverted dipolar interactions. The arrows indicate the two field direc-
tions, with ® indicating the axis perpendicular to the page. (a) A low-density
fluid at y=6, 7=0.05. (b) A higher density fluid, just above the line in the
phase diagram marking the crossover between the homogeneous and layered
fluids (y=16, 7=0.26). (c) Layered fluid at y=18, %=0.20. (d) Crystal-
line ABC-stacked hexagonal layers of charged spheres at 7=0.32 and vy
=28.
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FIG. 6. Equations of state for charged spheres with inverted dipolar inter-
actions at field strengths y=10,16,24. The lines are fits through the data,
using dashed lines for the crystals and solid lines for the fluids. The green
horizontal lines show the coexistences. Both the crystal at y=24 and the
liquid at y=16 also coexist with an extremely dilute gas at near-zero density.

typical configuration of a layered-fluid phase. The inhomo-
geneous structure of the fluid phase can be explained by the
Yukawa repulsion between the particles, which not only in-
creases the distances between the particles within each sheet,
but also induces a repulsion between neighboring sheets.
Particles can diffuse from one layer to another, but close to
the triple point, this process slows down significantly. In ad-
dition, we also observe large fluctuations in the distances
between adjacent sheets at low pressures, indicating a low
free energy cost to create an interface between the gas and
the layered-fluid phase. Consequently, at low densities the
system can easily form small numbers of fluid layers, which
are separated by a dilute gas phase. It is likely that the same
would happen in experiments at low packing fractions, espe-
cially when the sheets are too large to move easily. At low
field strengths, a stable homogeneous liquid exists in be-
tween the layered-fluid phase and the stable crystal phase,
but disappears when y>19. The transition between the
layered-fluid phase and the isotropic liquid appears to be
continuous as no hysteresis can be seen in the equation of
state, and the amplitude in the density profile of the layers
changes continuously with field strength and density. Exem-
plarily, Fig. 7 displays the pair correlation function that mea-
sures the positional order in the direction perpendicular to
the field for varying packing fractions. We indeed observe
clearly that the amplitude decreases continuously with in-
creasing packing fraction.

The lowest energy state of the system now depends on
the field strength: At close packing and y>5.9168(2), the

—» n=0.16
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)
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[ en=0.19 |]
0.5 =020
n =026 n= 022
«n= 026
00 1 1 1 |
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FIG. 7. Pair correlation function in the z-direction (perpendicular to the
biaxial field) of the layered-fluid phase with dipole moment strength y=17
for varying packing fractions. The amplitude decreases with increasing 7, as
denoted by the labels.
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FIG. 8. Difference in potential energy per particle ABU between a perfect
crystal of ABC stacked hexagonal sheets and differently stacked sheets, at
y=30 as a function of the center-to-center distance between the sheets Az.
From left to right, the red, blue, and black solid lines denote the comparison
with AB hollow-site stacking, AB bridge-site stacking, and AA stacking,
respectively. The dashed lines represent the contributions from the Yukawa
interactions to the total potential energy difference. The inset shows the
sheet distance as a function of the packing fraction at y=30.

dipolar interactions dominate the Yukawa interactions, and
hcp is the ground state. At lower field strengths, the Yukawa
interactions cause the system to favor the fcc phase. Due to
the entropy difference for hard spheres between fcc and hcp
[0.0011(1)KT per particle at close packing®], the phase tran-
sition between the two structures appears at slightly higher
field strength than y=5.9168, i.e., y=8.4(4). We again note
that the hexagonal planes of the fcc and hcp phase are par-
allel and perpendicular, respectively to the plane of the biax-
ial field (xy-plane) and that both structures are stretched in
the z-direction. Hence, the fcc phase is a hexagonal ABC
stacked crystal phase, and the hcp is a slightly stretched hcp
phase.

We also find that the coexistence region between a dilute
gas phase and the ABC stacked crystal becomes wider upon
increasing y. However, the density of the crystal at coexist-
ence is much lower than in the hard sphere case, mainly due
to a larger distance between adjacent sheets [as shown in Fig.
5(d)]. As the distance between the sheets increases, the effect
of the relative position and orientation between neighboring
sheets on the potential energy reduces significantly, leading
to a large amount of disorder in the position and orientation
of the sheets. We observe that the distance between the
sheets can fluctuate significantly during our simulations at
low densities. However, the crystal is still the stable phase. In
the bulk limit, the entropy gain from detaching a sheet from
the crystal would be dominated by the energy cost to detach
an infinite sheet of particles. Consequently, the fcc crystal
will be the thermodynamically stable phase in the bulk limit.
In finite systems, however, the sheets will be translationally
and rotationally disordered. The translational disorder can be
clearly seen to appear in simulations: When a crystal phase is
used as the initial configuration, the layers of the crystal
become disordered during simulations at low density. Rota-
tional disorder does not emerge in crystals in a rectangular
periodic box, but is expected to appear in experimental set-
ups. At low pressures, the separations between the hexagonal
sheets fluctuate substantially, resulting in large density fluc-
tuations. It is likely that these fluctuations contribute to the
disorder of the sheets as well.

In Fig. 8, we plot the difference in potential energy per
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particle BAU of various stackings of the hexagonal crystal-
line sheets in the crystal phase with ABC stacking, as a func-
tion of sheet distance Az for y=30. In addition, we plot the
contribution of the Yukawa interaction to this potential en-
ergy difference, denoted by the dashed lines, and we observe
that the contribution from the dipolar interaction dominates
that of the Yukawa interaction close to coexistence. We find
that the total difference in potential energy decreases expo-
nentially with sheet distance. The potential differences are
dominated by the dipolar repulsions from nearby particles in
the adjacent layer. Hence, hollow-site stackings have the
lowest potential energy, while the AA stacking corresponds
to the highest one. In the inset, we plot typical sheet separa-
tions Az for equilibrium ABC stacked crystals close to the
coexistence density. In the inset, we plot typical sheet sepa-
rations Az for equilibrium ABC stacked crystals close to the
coexistence density. We find that at a sheet distance of Az
=2.00, the difference in potential energy per particle be-
tween ABC and AA stacking is only 0.002kzT per particle,
while the difference compared with other stackings is even
smaller. As a result, we expect large amounts of stacking
disorder in any low-density crystal.

V. COMPARISON WITH EXPERIMENTS

Recently, colloidal systems in an external biaxial field
have been studied experimentally by Leunissen et al.” In
these experiments, a biaxial field was applied by using two
perpendicular uniaxial electric fields and randomly changing
the field direction. A system of colloids in suspension with
large amounts of salt was used in order to approach the un-
charged case. Field strengths were varied in a range approxi-
mately corresponding to 31 <<y<<170, and the packing frac-
tion was 7=0.2. The particles were seen to organize into
large hexagonal sheets, with multiple domains, which gener-
ally did not merge into three-dimensional structures due to
orientational disorder. However, close to the edge of the
sample, where the orientation of the hexagonal structure was
fixed by the wall, they observed an AB bridge-site stacking
of the sheets, which is in contradiction with our bulk simu-
lations. Even in the case of charged particles, where we find
substantial disorder between the sheets, there is a clear pref-
erence for hollow-site stacking of the particles, as can be
seen in Fig. 8. As our simulations do not take into account
the effect of the walls, it seems likely that the walls in the
experiments impose an orientation on the hexagonal planes.
If the walls attract the particles, they will also cause the
layers to be translationally aligned in the direction perpen-
dicular to the wall. This would mean the sheets can only
move relative to their neighbors along the direction parallel
to both the wall and one of the field directions. In this case,
an AB bridge-site stacking would indeed be the lowest-
energy state (Fig. 8 illustrates the potential energy difference
between AB bridge-site stacking and AA stacking). Further
from the wall, no stacking preference was clearly visible,
which indeed agrees with the disorder seen in the simula-
tions. In the experimental setup, the sheets are much larger
than in the simulations, which slows down their motion con-
siderably. In addition, the sheets can have multiple domains
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with different orientations, and can be attached to the walls
or other sheets, further preventing equilibration.

VI. CONCLUSIONS

In conclusion, we have calculated the phase diagrams for
uncharged and charged hard spheres in an external biaxial
electric or magnetic field. In both systems, the interaction
included a hard-core interaction and an inverted dipolar in-
teraction with its strength determined by the field strength 7.
In the charged sphere case, a Yukawa repulsion was included
as well, using ko=10.0 and \zZ%/ 0=450. The phase behav-
ior as a function of the field strength and particle density
shows a gas-liquid coexistence for both systems, as well as a
number of crystal structures. All crystal structures found are
distortions of the close-packed structures hcp and fcc, where
the distortions are caused by a stretching of the crystal in the
direction perpendicular to the plane of the biaxial field. Es-
pecially in the case of charged spheres, these deformation
can be very strong, resulting in separations between layers of
particles on the order of 20. While free energy consider-
ations show that even at low densities the stable crystal
structure is that of fcc, we expect a huge number of planar
defects present in the crystal as the potential energy differ-
ences are small. In addition to these structures, the system of
charged spheres exhibits a layered-fluid phase close to the
triple point. These layers are internally disordered, but the
density profiles show strong periodicity perpendicular to the
plane of the rotating field.
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