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Abstract

Several theoretical models for the determination of kinetic phaseadiagfor solid solution growth from the liquid phase are presented and
compared to each other. These models include a Monte Carlo simulatioh, meekd as a reference model, a previously defined analytical model,
based on linear non-equilibrium thermodynamics, amdw model, rooted in theiketics at kink sites.

All models have in common that the composition of the growing soligphands to the liquid phase compias for increasing undercooling,
enhancing mixing even for systems with a strong tendency to phase separation. However, depending on the system parameters considera
guantitative differences can occur between #mits from the model based on non-equilibrithermodynamics and the MC model. Instead, the
new model follows very well the trends of the MC simulations, both for well-mixing systems and for phase separating systems.

For phase separating systems the analytical models predict kinetic phase separation domains, zones in the kinetic phase diagram yielding ste:
state growth of more than one solid phase with different compositions. According to MC simulations such domains in phase space correspond t
domain formation in real space. Also in this case the new model is consistent with the MC results.

(© 2005 Elsevier Ltd. All rights reserved.

1. Introduction The mentioned non-equilibriumages, or metastable states,
complicate the determination of equilibrium phase diagrams,
In certain cases it can take a very long time for a systemequiring efforts to prepare mixtures with a high degree of
to reach its eqUilibriUm state, the state with minimal GibbShomogeneity@?]_ It has also ¢d to the method imp|emented
free energy, represented graphically in the equilibrium phasein the software program LIQFIT for the determination of
diagram. This holds particularly for mixed solid phases, herexcess parameters by fitting experimental data, which is
meant as solid dotions, due to the veryolv diffusion rate in  pased on fitting only the liquidus points and not the solidus
SdidS, which makes built-in inhom‘geneities persist for very points which are considered unre"abl@]_[m Ref. [3] the
Iong times. The extent of these deviations from equilibrium Wi”comp”caﬂons due to non_equi“brium states are tackled in
depend on the history of the systeespecially orthe kinetics g different way for slow crystallization processes performed
during the growth, which depend on the growth conditionsin an adiabatic calorimeter by dropping the assumption of
and also on the scale of the system. The occurrence of sugbtal equilibrium and replacing it by assuming equilibrium
deviations is well known and has also been demOﬂStrateﬂetween the ||qu|d phase and on|y the surface of the solid
experimentally [-3. Theoretcally, the extent of the deviations phase during growth. In this way both enthalpy and entropy
was invetigated on the basis of a kinetic crystallization excess parameters were successfully derived from experimental
model [4,5], both for well-mixing systems4] and for systems  cooling curves. However, this method can only be applied

showing phase separatiofj | for slow crystdlization, typical for adiabatic calorimetry, and
cannot be applied for conditions away from near-equilibrium,

* Corresponding author. Tel.: +31 243652363; fax: +31 243653067. which often occur in e.g. diffential scanning calorimetry

E-mail addressj.los@science.ru.nJ.H. Los). (DSC). An approprige interpretation at such conditions

0364-5916/%$ - see front matt@ 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.calphad.2005.12.002


http://www.elsevier.com/locate/calphad
mailto:j.los@science.ru.nl
http://dx.doi.org/10.1016/j.calphad.2005.12.002

JH. Los et al. / Computer Coupling of Phase Diagrams and Thermochemistry 30 (2006) 216-224 217

possibility of the simultaneous growth of more than one solid
phase with different compositions from the same liquid phase.
This property gives rise to so-called kinetic phase separation
domains KPSDs, zones in a kinetic phase diagram where
kinetic phase separation occurs.

In this work we will test the LKS model by comparing its
predictions vith the results of MC simulations based on the
Fig. 1. Schematic illustration of the Kossel model for crystal growth. Reactive0Ssel model,both for well-mixing systems and for phase
particles at the surface may have one, two, three, four or five bonds. A particlégparating systems. We also introduce a second analytical
with three bonds is called a kink particle. Kink sites play an important role inmodel, which is also compadenith the MC results. Thereby
the growh pracess. we will concentrate on the Retic segregion for a given
liquid phase composition and isothermal conditions at the

first of all knowledge of the kinetic phase diagrams (KPDs) ofSUtace. Thus, here we will not consider the effects of transport
the issued mixture. KPDs, or nawuilibrium phase diagrams, limitations in the liquid phase, involving relations between the

provide the composition of a growing solid phase as a functiorl d4id phase properties at the surface and those in the bulk.
of the liquid composition and of the undercooling at theThls coupling of the interface segregation with mass and heat
solidification front. transport has recentlyelen treated elsewherg][

Experimentally, the determination of KPDs is a complicated_ N the next section, we describe the binary Kossel model.
task, mostly due to the difficulty of measuring the preciseSectlon 3contains a description of the analytical models. We

conditions at the surface, in giular the temperature and first briefly descibe the previously presented LKS model end
the liquid composition. This difficulty mainly originates then presentrie new model. InSection 4we present kinetic
from diffusion limitation, i.e. the finiteness in the speed of Phase diagrams (KPDs) for several model systems, comparing

transport of mass and heat which makes the conditions at tH8€ Predictions of the analytical models with the results from
surface different from the bulk properties and change in time MC simulationsSection eals with phase separation systems,
particularly for fast crystal growth. Here theory can play an9iVing rise to kinetic phase separation domains (KPSDs)
important role to bridge theap between what can be measured@ccording to the analytical odels. Calculated KPSDs are
with reasonhble effort and the desired data. presented and a comparison with MC simulations is made.

In the past, binary crystal growth has been modelled by, .
Monte Carlo (MC) simulations10,11] baed on the Kossel 2. Binary Kossel model

model [12,13] (seeFig. 1). These sirlation models have also

been the inspiration for the fowulaion of models consisting . . : I
of Kinetic equations T415], describing the gwth kinetics crystal growth on a simple cubic lattice, originally developed
q = 9 @ for pure crystals 12). An illustration of a Kossel surface is

and segregation within certain approximations. Other works on . - ;
kinetic segregatiori[6—2Q were ingired by the observed high given inFig. 1 Paticles, represented as cubes, can attach and

. S ; ; .detach at the surface with certain probabilities, derived from
doping concentration in semiconductor materials after rapi ; . .
hermodynamic considerations.

crystallisation 1-23. In the analytical models proposed in s .
S . I In principle the extension of the Kossel model to a
these works the kinetic segregation coefficikns expressed . : ) : : .
binary system is straightforward, but requires a link with

as a function of the known equilibrium segregation coefficientsthe fhermodynamic pure component properties and mixing
keq and the observed crystal growth velocity, such that properties. Such a link can lestablished as follows.

becomes equal t when the growth rate tends to zero, . . . .
q Beq 9 In this work, we will assume systems where the difference in

i.e. at equilibrium. These motitake into account the diffusion the ex mixing eneray between the liauid and th lid ph
limitation in the liquid phase, but they do notinclude the details. ¢ cxc€SS MiXIng energy between the liquid and the Solid phase

of the surface kinetics. Recently, new models for the interfacé descibed by one single parametext(;>© = U™ — U™
kinetics and segregation for the growth of binary crystals, alsg'c"c®: We assume that the drﬁege in internal energy of the
based on the Kossel model, have appeat-2§. These Illqwd,sU., and the. Sd!d phase,U®, of equal mole fractions
models distinguish between the segregation for different type& = X ( =1.2), is given by:

of sites (i.e. k.ink_, step, terrace and bylk sites), but are restrictegU —Uu' —ys= XSAUL + XSAU; + XEXSAUEC (1)

to systems with ideal mixing properties.

In previous work we have shown examples of KPBs [ where AU; and AU are the melting energies of the pure
27], calculated using a rather simple analytical model basedomponents 1 and 2 respectively. Furthermore, we will assume
on linear non-equilibrium therodynamics, the so-called linear regular solutions, i.e. the excess entropy is zero in both the
kinetic segregation (LKS) model. This model is defined inliquid and the solidphase. Such ‘simple’ systems show all
terms of the thermodynamic properties of the system, includindhe relevant pheomena for the present study, including phase
the pure component properties and the mixing propertiessgaration. For convenience, \Witut further loss of generality,
and is not restricted to the ideal mixing case. In fact, forthe mixing in the liquid phase is taken to be ideal, implying
mixed systems with a sufficiently strong tendency to phaseA\{§*° = —L{S’exc, and theliquid energy level is chosen to be
separation it can predict kinethase separation, indicating the zero for any composition so thatl = —US,

|~ L S S
VS
V- T

requires akinetic modelling of the crystallization process, with

The Kossel model is a Monte Carlo simulation model for
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The exact bulk energy of the binary Kossel crystal (BKM) with R the gas constant. After substitution of E¢g)—(9) we

per particle can be written as: obtain:
Z - _ Kkt _BAF
Ugkm = ) (X$1611 + X502 + XTp12) @  Kei = Keuj exp( ﬂAFe”)
a1 4 Noon
where Z = 6 is the coordination,¢ij is the bond energy = K;’i exp(oé—'.I - W) (11)
between pdicles of typei andj (i, j = 1,2) andx;;j is the !
fraction of ij-bonds in the bulk crystal. A relation between where we have definedie dimensionless energies:
these bond energies and the thermodynamic paramatdrs 3¢
and AU can be derived applying a mean field (MF) ajj = R—'II'J (i,j=12 (12)
approximation. Within the MF approximation it holds: 2
and temperatures:
=02 (=12 and x5,=2x5 ©) peratures
T T
wherex? is the kulk mole fraction of componeiiit Subsitution ¢ = — and 6 = T_I (13)
of Eq. (3) into Eq.(2) and usingx; = 1 — x5 leads to the _2 2 _
following mean field expression for the energy: implying ©2 = 1. Component 2 is taken to be the component
7 with the highest melting temperature, so th@y < 1.
UI\S/IF = —e (xf¢11+ x§¢22+ 2x§x§¢exc) (4) Comnonly it is assumed that the attachment ratg)i is a
2 liquid phase property, and is independent of the type of site,
whereg®*Cis the excess bond energy defined by: as characterized by the number of bonds formed. We will adopt
o 1 this assumption defining, ; = K;". So the atichment rate
o7 =12 - > ($11+ $22) . ®)  for patticles of typei is given byKieriI for any type of surface
Then, combining Eqg4) and(1) leads to: sirt]e, Where<i' is the mole fraction of componeritin the liquid
phase.
b = 2AU; (=12 and ¢ro= AU+ AU — Uy ™ Summarizing, the MC model parameters agg =
' Z ’ Z : AU /RT2 (i = 1,2), a®¢ = U3¥/(RT), 61, the liquid
(6)  compositionx, = 1 — x| and the relative temperatute
The Monte Carlo algorithm consists of a large numbelAcéua"j’ gthe f@oIIO\;vm? W?hw'ltl rather lthe thehunc‘j;rcoilmg
of events, each event being either the attachment or th - — Oeq 10 Tix the temperaturé, wher®eq =

detachment of a particle at the surface, respecting the solid o ¢/ T2 is the dimensionless equilibrium temperature, which

solid (SOS) condition]2]. The change in the free energy not can be calculated for the given thermodynamic properties of
including the ideal mixing entropy term, for a selected event,the system. . T
In the MC simulations each cogfiration is represented by

being the attachment or the detachment of a patrticle ofitgpe : X T . )
a 3D integr matrix H(ix, iy, iz) for integer argumentsx,

agiven surdce site, Is given by: iy andiz. For each site(ix.iy,iz), with 0 < ix < N,
AFei = AUgi — TASy i (7)  0<iy <NyandO<iz < Nz H(ix,iy,iz) has the value 0, 1
and 2 indicating a site not occupied by a solid particle and sites
occupied by a solid particle 1 and 2 respectively. For a given set
of input parameters many cycles of moves are performed. One
cycle is Nx Ny moves. One move is characterized by selecting
randomly a surface positiotix,iy), followed by either the
removal of the particle at the selected position, adding a new
AUgy i = N1di1 + N2¢i2 (8)  particle of type 1 or 2 on top of it, or no change at all according
to the appropriately normalized probabilities for these events
and decided by pulling a random number between 0 and 1.

For our MC simulations presented below a surface of
A&, = Ag = AU _ 3 (9) dimensionsNy x Ny = 50 x 50 was used, containing a single

' Ti Ti step realized by an appropriate shift in the periodic boundary

where T; the melting temperature of the pure component conditions. The step was employed to avoid the very long
According to the detailed balance principle, which is suppose§imulation times required for @imensional nucleation in the
to hold for the individual microscopic events in (non-extreme)non-roughened limit, i.e. for large interaction paramedgrs
non-equilibrium situations asvell, the ratio between the
detachment and attachment rates of a selected ekgnt,and

Ke,.i respectively, is given by: 3.1. Linear kinetic segregation model

whereAUe, andAiv,i are the changes in the internal energy
and the vibrational entropy respectively, afdthe abslute
temperature. For the dethment of a particle of type with

n1 neighbours of type 1 anah neighbours of type 2AUg, is
taken equal to the energy of the broken bonds:

whereas the entropy changeS,, i is taken to le the pure
component dissolution entropk,S, of component:

3. Analytical models

Kev.i =exp(—A|Ee”’i) (10) The linear kinetic segregation (LKS) model is based

;_i RT on linear non-equilibrium thermodynamics applied to the
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difference in bulk chemical potéals, i.e. neglecting the details the stability criterion for a stable steady state solution, being:
of the growth kinetics at the surface. It assumes that the flux of 4

each component=1, 2) from the liquid to the solid phasg;”, s (Re—x5R) <0 (19)
and the reverse flux]~, arerelaedby: 2

whereR = R; + Ry is the total growth rate. In addition, the
Ji+ A individual growth rates have to be positive, iR, > 0 and
Ji RT > > 0.

writing AU; = o RT2, Uy™® = a®C°RT,, and using
whereApuj = M! — 1 is the difference between the chemical Eq. (13), the xpressiong17)and(18) are readily expressed in
potential of componeritin the liquid phasey!, and thabfthe ~ terms of the dimensionless paramet@rs(i = 1, 2), «®, 61
growing solid phasey?. As derived previously 27, this gives and O, dlowing a direct comparison with the MC simulation
rise to a net flux of componeitR = J* — J~, of theform: model.

3.2. Mean field kink site kinetic segregation model
R = NeKi* (4 = X eq) = NeKior (15)

The mean field kink site kinetic segregation (MFKKS)
where si = xI — xl . is the absalte supersaturation model is more kinetic than the LKS model, by including to
of componenti and where we included an additional SOMe extent the_: grpvv_th klnetlcs_ at the surface. Actually, it is
proportionality constanNy, defined ashe average number of b_ased_on the kl_ne_t|c |ncorporat|or_| _rates of the_components at
kink sites per unit surface area, and whexf%q is specified k|_nk sites permitting the compqsmon at the kink site to be
below. Kink sites (seeFig. 1) play a crudal role in crystal different from that of the bulk solid phase. ,
growth. Referring tdhe Kossel model, particles at a kink site . Thmkmg of the Monte Carlq model, we approximate the net
have three bonds and start to become well bonded to the crystérll,corporat'on rate of componenby:
unlike the sites with 1 or 2 bonds, from which an alreadyR, = Nk(KifoiI - Ki‘xfk) (20)
adsorbed particle can easily dissolve again. The concept and ok i ) )
meaning of ink sites is transferable to other lattices as well. ItWhereXi IS the~a/erage mole fraction of component kink
has been shown that the growth rate is in good approximatiofités and wher&;™ is the average detachment rate of a particle
proportional toN [28]. According to Eq(15)the composition ! at a kl_n_k site. Then, similar to the LKS model, the growth
of the growing solid phase(=1—x), is determined through:  €OmMposition follows from:
. ) X3 _ K — Koxgh

+ |
X3 Ri Kfcrl Ky (Xl ~Xleq (21)

s | _ R —ySk’
SR TR T T o (6) X2 Kip—Kpx
X2 R Kyoe ki (Xz - Xz,eq) In the MFKKS model ve assume a mean field distribution of

neighbours for the particle at the kink site, implying:
In Egs.(15) and(16), xi"eq is the equilibrium mole fraction of )
component in the liquid phase with respect to the growing ;- _ SySySK —
- i - K= Y XKy (22)
solid phase of compositiot to be determined. For the systems ot J ]
specified in the previous sectioR; ., is given by: o - .
’ whereK;;,, is the detachment rate of a particlérom a kink

AU; AT; site with neighbours of typg, k andl along the step, on the

RTT (17) " terrace and down in the bulk respectively. So the compositions

Xi eq = ySx® exp[
at each of these three neighbour sites are assumed to be equal

where AT = T — T and ) is the activity coefficient 1o the bulk composition. Instead, the time average composition
of componenti in the growing solid phase. The activity at the kink site itselfx®X, is permitted to be different. Along
coefficients, are related to the excess free energy by: a straght step, removal of a kinkite particle will generally

s.exc s.exc generate another kink site particle. This consideration brings us
ys = exp((x§)2 7021_ > and yS = exp((xf)z 7021_ > . to the following expression for the variation in timexj:

dxSk ;- -
(18 =L = K — K+ Rypxss — Kipxhs (29)

whereKi? (i # j) is the average detachment probability for a

We note tha equilibrium according to the LKS model,

occgrrilng at tr?e ten;peratgre yiﬁ.lg".ﬁl = R = 01s kink particle of type with a neighbour of typgj along the step,
equivalentto t grmo ynamic equilibrium. ] _which is assumed to become a kink particle itself after removal

For systemsvith a tendecy to phase separation the solution of its neighbour at the kink site. Within the MF approximation
of Eq. (16), including Egs(17) and(18), can have more than i reads:

one solution. In Ref.4] it was show tha Eg. (16) can be 2
derived as the steadyage solution of a first order differential - _ Z XSXSK T (24)
equation and that the physically relevant solution has to fulfill ¥ 4= N
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An equation similar to Eq(23) holds for component 2 but is 0} =0,=6.5, 055=0.5 0,=6.0,05,=7.0, 08%=0.5
not independent due to stoichiometry. Assuming steady state 1Fa) | ' ‘ @ I '
growthxSKis constat, i.e. &&¥/dt = 0, and Eq(23)leads to:

o A0=0.005
ol L RS 95 .
sk KIx) + Kyxg (25) 0.95 _
L7 e+l + 3| $— xS L K—xS
KiX; + KX, + Kyyxg + Kiox5

AB=0.005

while x§K = 1 — x$K. Eq. (25), including Eq.(24), expresses
the kink composition as a function of the bulk composition of 0.95 = ()
the growing solid phase, i.e® = x5(x3), so tha Eq. (21),

after substitution of Eq§22) and(25), andusingx; = 1 — x3 0 GishaaEe

becomes an equation with only one variabt§, which can '

be solved numerically without problems. We note that, in the I 46005
above derivation of the kink site composition, surface diffusion  0.s54 . | .
has been neglected, which is reasonable for growth from the —— |

liquid phase. e

AB=0.1

We note tha the equilibrium temperature according to the  © r
MFKKS model, i.e. the temperature at which the growth rate 0.85
in Eqg. (20) vanishes foii = 1,2, can be different from the
thermodynamic equilibrium temperature.

4. Kinetic phase diagrams X3

4.1. Confrontation Fig. 2. Kinetic phase diagrams according to the LKS model (full line) and
the MFKKS model (dotted—dashed lines), compared with the results from MC

. . . . jimulaions (symbols) based on the isotropic binary Kossel model for three
Each of the models described in the previous sections enab Sative undercooling® © as indicated in the graphs. The graphs on the left

the determination of kinetic phase diagrams KPDS, glvmg th%ide arehie results for system parameters equaktp= aoy = 6.5,a8%¢ =05
composition of the growing solid phase for liquid compositionsand ©; = 0.9, those on the right side are fey; = 6.0, app = 7.0,a%*¢= 05
alonga quuidus line at a given undercooling. In this sction and 01 = 0_.9. The equilibrium phase dia_g‘rarns is given t_)y the dashed .Iines.
we will compare the KPDs accardy to the analytical models The dotted lines in graph (d) give the equilibrium phase diagram according to
. . . . the MFKKS model.

with those from the MC simulations for systems with zero or
relaively small excess energy. For all the calculations presentetémperature and @0 large solid phase mixing. We checked
here and inSection 5 thekinetic constants are taken equal to that these differences alsaaur for systems with zero excess
each other, i.eK;” = KJ, as a easonable assumption for energy. Due to them, the KPD fax® = 0.005 according to
isomorphous components. the MFKKS model$ not given in graph (d), sinc@eq— A O is

Fig. 2 shows KPDs, and also the equilibrium phaseslightly larger than the equilibrium temperature of the MFKKS
diagrams, for two systems and different undercoolings. Fomodel for a certain range of liquid compositions, implying a
the g/stem corresponding to the graphs on the left the systemegative growth rate.
parameters areq; = apy = 6.5, ¢ = 0.5 and©; = 0.9, The mentioned difference in the results for the two systems
while for the system corresponding to the graphs on the righappears to be typical in the sense that when the bond energies
they arex11 = 6.0, 022 = 7.0,¢%*¢ = 0.5 and®; = 0.9. The  betweenlike particles are equal (or very similar), i.e. when
here used values for the pure component parametfer§ =  «11 >~ a2, then he LKS model agrees well with the MC
1,2) are typical for e.g. single aromatic molecular systemsmodd, both near equilibrium, approaching the equilibrium
The indicated undercoolinga © are with respect to the phase diagram, and at large undercooling, as long as the excess
thermodynamic temperature thfe thermodynamic equilibrium energy is not ‘large’, e.g. not so large that phase separation
temperaturefeq, Which is equal to that of the LKS model. starts tooccur. For the casei1 = a22 and zero excess energy
For the first system the KPDs according to the LKS modelthe results of the LKS modeand the MEKKS model are
and the MFKKS model are almosfjual and agree very well exadly the same, which can be shown rigorously, and agree
with the results of the MC simulation model. For the secondperfedly with the MC simulation results. In that case the kink
system the LKS model gives good agreement with the MCcomposition is equal to the bulk composition. Instead wign
modd near equilibrium while the MFKKS model gives a is different fromasz,, the LKS gives a good description near
better agreement at larger undercooling. The MFKKS modeéquilibrium, but deviations from the MC results start to occur
is not consistent with the equilibrium phase diagram. Insteadat large undercooling, while the performance of the MFFKS
the MC simulations reproducéé equilibrium phase diagram model is the opposite.
quite well, with a vanishing growth rate foA® — 0. For systems with larger melting entropies, i.e. larger,
The equilibrium phase diagram according to the MFKKSsuch as n-alkanes, fats, multiple aromatic molecular systems,
modd (dotted lines in graph (d)) yields a lower equilibrium etc., and a relatively large difference betwean anday; the
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oy, =10 0,,=1.2 , aree=0) 88 00, =20, 01,,=25, 0exe=() The switch functiorSis defined as:
I . ; — | —
I 7 AG?
09l AB=0.025 . S= AOZ 1 q2te (28)
1 09s
where:
0.9 q= (C]OA Qeq - AQ)ZQ(QOA Qeq - AQ) (29)

whereqp and ¢ are two parameters9(x) is the Heaviside
step finction, andA Ggq is the difference in the equilibrium
temperature according to the LKS modedLXS, and the

eq
ERR MFKKS model,@%’z, ie:
09"~
ABeq= Ok — O (30)

Clearly, forA©® = 0, S = 0 and the ombined model becomes
equal to the LKS model, whereas for large®, S tends to
one and the MFKKS model becomes dominant. The tgfm

Fig. 3. Confrontation of the kinetic phase diagrams according to the LKSin the denomiator of Eq.(28) is aided to make sure that
mgdel (full lines) and the combined LpKS-MFKKgS model (dashe% lines) with the combined model yields a solution with a pOSItI\/_9 g_rowth
the results from MC simulations for two model systems and two relativerate for any temperature tost the thermodynamic equmbrlum

undercoolingsA ©. The nodel parameters are indicated at the top for the temperatureGeq = Qle‘(lfs- We note that USU&”)@%F <
left and right graphs respectively. The dotted lines give the equilibrium phasqgé_(};s so that a to fast svitch to the MFKKS model may
diagrams. !

lead to a situation where the actual temperature is above the

discrepancy between the LKS model and the MC simulation&duilibrium temperature of the combined model. The values of

_ _ 5
becomes much more significant. This is illustrated in the graphd1€ Parameters agp = 4/3 ande = 2.5 x 107°. These values
at the right side ofig. 3for a system witha1, = 20.0,azp =  Were chosen such that the switch is smooth and that a rapid

250 anda®C = 0. For a sptem with smalky; -parameters, switch to the MFKKS model is achieved below the temperature

LKS - i i
such as metal systems, the differences remain small, eveffeq  — oA Oeq. Bastally, these parameters imply a rapid

for relatively large excess parameters, as demonstrated in tf¥/itch to the MFKKS in most cases, sin@eOeq is usually
graphs on the left side oFig. 3 In this figure the dashed rather smH. This rapid switch was inspired by the MC results,

lines, showing a good overall agreement with the MC results‘,NhiCh are well predicted by the MFKKS model already at rather

represent the results of a model which is a combination of théMll undercooling, especially for large interaction parameters

LKS model and the MFKKS model, as described hereafter.  %ii- This is demonstrated by the KPDs graphs at the right of
Fig. 3 At AT = 0.025 the LKS-MFKKS model is in good

4.2. Combined analytical model agreement with the K2 resuts. We checked that in this case
the LKS-MFKKS model is already very close to the MFKKS

The results in the previous section prompt us to theModel.
construction of an analytical model which tends to the LKS
model for small undercooling and smoothly switches to the

MFKKS for increasing undercooling. Therefore we propose the _ _ _
following combined LKS-MFKKS model. For large irteraction parameterg; (i = 1,2) and large

For the combied model we write the growth rate of excess energy, yielding eutectic or peritectic equilibrium phase

an individual component as a linear combination of thoséli2grams, the analytical kinetic models $éction 3can give

according to the LKS model and that according to the MEKKSWO stable steady state solutions. The KPDs fc_)r such systems
then have two branches, corresponding to growing solid phases

. Kinetic phase separ ation domains

model as:
rich in component 1 and 2, respectively. For the LKS model this
R = (1—-9RKS L sRIF was shown in§]. Qualitatively, the MFKKS shows the same
_ Nk(Ki+Xi| —1- S)Ki+xi|,eq_ SKi—Xisk) (26) behaviour. Typically, this so-called kinetic phase separation

occurs in a certain domain of the phase diagrams below the
whereS = S(A©) is a smooth switchunction depending equilibrium liquidus. We will denote such a domain as a
on A6, desribed below,RHS and RMF are the growth rates  kinetic phase separation domain (KPSD). Examples of KPSDs,
according to the LKS model (Eq15)) respectively and the calculated according to the maus analytical models, are
MFKKS model (Eqg.(20)). Similar to the other models the shown inFig. 4 for @11 = a2 = 20 and for two different
composition of the growing solid phase follows then from: values ofthe excess energy parameter, namely. = 4 and

_ aexc = 6, both yielding eutectic equilibrium phase diagrams.
X_f _ (foll -1- S)foll,eq — SKy Xik) (27) The KPSDs are indicated by the shaded areas. As expected,
X5 (Kfxh—(1- S)Kgfx'z’eq — SKyx$H for small undercooling, kinetic phase separation only occurs
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Fig. 4. Kinetic phase separation domains (KPSDs) according to the LKS model

(graphs on the left, light-shadedeas), the combined LKS-MFKKS model Fig. 5. The solid phase composition(x)z as a function of the liquid

(graphs on the left, dark-shaded ajeasd the MIKKS model (graphs on the  compositionx| according to the LKS model (full lines) and the LKS-MFKKS

right, dark-shaded areas) for model systems w@th= 0.94,a11 = 022 =20  model (dashed lines) for two eutectic systems, parametrize®py= 0.94

and for excess valugg™® = 4 (upper graphs) and®*® = 6 (lower gaphs). andayy = agp = 20, and excess parameter®€ = 4.0 (grphs on the left)
anda®*¢ = 6.0 (grgphs on the right). Within the range of liquid compositions

near the eutectic liquid phase composition. For increasingnarked by the two weical lines, the models predict kinetic phase separation,

undercooling the range of |iquid)mpositions yialing kinetic hence two solid phase compositions, except for the caseafith= 4.0 and
phase separation first becomexgler but then it starts to A@ = 0.05, vyhere the LKS-MFKKS predict'one growing so.lid phase'f_or all
decrease and finally vanishes. The larger the excess ener liquid _composmons. The_symbols, accomp_a_nled bya(_iotted I|neforgmd|ng the
: . . . , give the average solid phase compositions resulting from MC simulations.
the lower is the temperature where kinetic phase separation
vanishes, ad the larger is the KPSD. This holds for all models, also for a strongly phase separating system the LKS-MFKKS
but the KPSDs for the MFKKS and the combined LKS- reproduces quite well the trends in the segregation. Instead,
MFKKS are much smaller than those according to the LKSthe LKS model starts to deviate considerably from the MC
model, due the enhanced tendency to mixing according to theesults for such systems. It pliets a too strong segregation
MFFKS model. We note that also here the equilibrium liquidusof the components and the phase separation domains are too
according to the MFKKS model lies below that of the LKS Jarge.
model and the combined LKS-MFKKS model, for which the  In order to get a better understanding of the connection
equilibrium temperatures are equal by construction. between the rests from the analytical models and the MC
Fig. 5 shows a comparison between the analytical modelsimulations at conditions withithe phase separation domains
and the results from MC simulations for the systems offor the system ofFig. 5 we inpected the grown Kossel crystals
Fig. 4 Simulations were done for st of liquid compositions  with solid phase mole fraction close to 0.5. Fig. 6, cross-
at constantA® bdow the equilibrium temperature, for sections parallel to the growth direction of three different
A6 = 0.025 and 0.05Fig. 5 shows the resulting average simulated crystals, with solid phase compositions around 0.5 as
compositions (symbols) of the solid phase as a function of thepecified in the figure caption, are showfig. a) shows the
liquid composition. Depending on the liquid composition the crystal cross-section far®*¢ = 4 andA © = 0.025. According
analytical models yield one or two steady state solutions. Thé both models phase separation should occur, but the phase
range of liquid compositions withwo steady state solutions separatiordomain for the MFKKS model is rather narrow in
is marked by two vertical lines. Within this range there arethis case and the corresponding point of the MC simulation in
two solid phase composition branches. In the regions witlFig. 5 actually lies on the boundary of iEig. ) highlights
only one steady state, the LKS-MFKKS model (dashed linespa point for «®*¢ = 4 andA® = 0.05, where the MFKKS
agrees rather well with MC results. Within the two steadydoes not predict phase sepawatiin contrast to the LKS model.
state regins of the LKS-MFKKS model the MC results switch One can see that in this case the crystal is more mixed than
from 1-rich to a 2-rich solid phase for liquid compositions that in Fig. §a). In the case oFig. 6(@) one could speak of
from the left tothe right vertical dashed line, hence within the domain formation, but with small domain size. Thus, the MC
phase separation domain according to the LKS-MFKKS modelcesults are more or less in agreement with the predictions
Takinginto consideration that the solid phase composition fromof the LKS-MFKKS model, and not with those of the LKS
the MC simulations is an average composition, this is preciselynodel which predicts phase separation in the casémfe(b).
what one would expect. In one case, namely é*° = 4  Fig. 6(c), corresponding to a point fa®*® = 6, A©@ = 0.025,
and AT = 0.05, the LKS-MFKKS model predicts no phase shows phase separati, but with much larger domains. Here the
separatin, again in agreement with the MC results. Thus,observed phase separation is in agreement with both models.
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(c)

Fig. 6. Cross sections parallel to the growth direction of binary Kosystals grown by MC simulation. The pictures are from simulations fowf&f = 4,
A6 = 0.025 andx}, = 0.26 giving x5 = 0.50, for (b)a® = 4, A© = 0.05 andx}, = 0.33 giving x5 = 0.49; and for (™ = 6, A© = 0.025 andx, = 0.24
giving x5 = 0.52, indicated by the arrows ig. 5.

However, again, the MC results for larger undercooling for this not reproduce the equilibriurphase diagram for conditions
system are in contrast with the LKS model, while the LKS-close to equilibrium. Therefore, we have constructed a third
MFKKS model remains in agreement with MC simulations. model which is a combination of the LKS model and MFKKS
modd, the LKS-MFKKS model. Close to equilibrium the
6. Conclusions and per spectives LKS-MFKKS is (almost equal to) the LKS model, but for
increasing undercooling the LKS-MFKKS model becomes
We have iredigated kinetic segregion occurring during  rapidly equivalent with the MFKKS model. Thus, the LKS-
crystallization of binary mixtures from the liquid phase at MFKKS model provides a good description for the entire
isothermal conditions on the basis of a Monte Carlo (MC)range of undercoolings, and matches with thermodynamic
simulation model and analyticatodels. One of the analytical equilibrium for zero undercooling. This makes it a suitable
models, the linear kinetic segregation (LKS) model, wasmodel to be incorporated in continuum models for the
presented previously4[27], and has hereby been tested by crystallisation of mixtures, like phase field models.
comparing it with the results from the MC model, which we Here we havenot included the effects of mass and heat
have taken as reference. Close to equilibrium, the LKS mOdetransport in the liquid phase, which are both coupled to the

re_produces we!l the MC resqllts,_ as could be expepted S,'ncgegregation at the growth imface and which can be expected

it is based on linear non_-eqqlhbrlum th_err_nodynan_][csz Wh'Chto play an important role at large undercooling. Previously, we
should _be a good approximation T‘e’i““"'b”!*m- Equilibrium ._have developed an effective segregation model based on the
according to the LKS model coincides with thermodynamic, g, qe| including the coupling with liquid phase diffusion

e s P0E, 1 11 LK Mol b mass and head This exension can be appled
9 9 9 straghtforwardly to the LKS-MFKKS model as well.

approximation in certain cases, namely when the bond energiés ) _
Currently we are extending the binary Kossel model for

are small (e.g. for metal systems), or when the bond energie . ) S ) )
between like particles are not ‘too’ different and the exces§ﬁe case with anisotropic bimfj energies, which would be

energy is ‘small’, e.g. for well mixing systems. For other & important step forward towards reality for many systems,
cases the LKS model can deviate considerably from thdn particular molecular systems. It remains to be seen whether
MC results. Instead, another, new analytical model, which i$uch an anisotropy will change the MC results for equal
based on the growth kinetics at kink sites, assuming a med@tal melting energies and excess energy. One could expect
field environment for the particle at the kink site, gives adependence on the orientation of _the g_rowth surface in that
good agreement with the MC results at moderate and |arg§ase.The LKS model cannot deal with am;otropy_, but the LKS-
undercooling for arbitrary system parameters (or at least foMFKKS model can be extended to the anisotropic case. Then,
a much wider domain in the parameter space). We denot@nother step forward towards reality we planned is to extend the
the new nodel as the mean field kink site kinetic segregationMC model to more realistic crysitatrudures, as characterized
(MFKKS) model. The good agreement of the MFKKS model PY the topology of the bonds. Téiwould be a binary or a multi-
with the MC results at moderate and large undercooling als¢component extension of the pure component crystal growth MC
holds for phase separating systems. However, it generally do@ogram MONTY P9.
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