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Abstract

Several theoretical models for the determination of kinetic phase diagrams for solid solution growth from the liquid phase are presented
compared to each other. These models include a Monte Carlo simulation model, used as a reference model, a previously defined analytical m
based on linear non-equilibrium thermodynamics, anda new model, rooted in the kinetics at kink sites.

All models have in common that the composition of the growing solid phase tends to the liquid phase composition for increasing undercooling
enhancing mixing even for systems with a strong tendency to phase separation. However, depending on the system parameters c
quantitative differences can occur between the results from the model based on non-equilibriumthermodynamics and the MC model. Instead,
new model follows very well the trends of the MC simulations, both for well-mixing systems and for phase separating systems.

For phase separating systems the analytical models predict kinetic phase separation domains, zones in the kinetic phase diagram yie
state growth of more than one solid phase with different compositions. According to MC simulations such domains in phase space cor
domain formation in real space. Also in this case the new model is consistent with the MC results.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In certain cases it can take a very long time for a sys
to reach its equilibrium state, the state with minimal Gib
free energy, represented graphically in the equilibrium pha
diagram. This holds particularly for mixed solid phases, h
meant as solid solutions, due to the very low diffusion rate in
solids, which makes built-in inhomogeneities persist for ver
long times. The extent of these deviations from equilibrium
depend on the history of the system, especially onthe kinetics
during the growth, which depend on the growth conditi
and also on the scale of the system. The occurrence of
deviations is well known and has also been demonstr
experimentally [1–3]. Theoretically, the extent of the deviation
was investigated on the basis of a kinetic crystallizati
model [4,5], both for well-mixing systems [4] and for systems
showing phase separation [5].
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The mentioned non-equilibrium states, or metastable state
complicate the determination of equilibrium phase diagra
requiring efforts to prepare mixtures with a high degree
homogeneity [6,7]. It has also led to the method implemente
in the software program LIQFIT for the determination
excess parameters by fitting experimental data, which
based on fitting only the liquidus points and not the solid
points which are considered unreliable [8]. In Ref. [3] the
complications due to non-equilibrium states are tackled
a different way for slow crystallization processes perform
in an adiabatic calorimeter by dropping the assumption
total equilibrium and replacing it by assuming equilibriu
between the liquid phase and only the surface of the s
phase during growth. In this way both enthalpy and entro
excess parameters were successfully derived from experim
cooling curves. However, this method can only be app
for slow crystallization, typical for adiabatic calorimetry, and
cannot be applied for conditions away from near-equilibriu
which often occur in e.g. differential scanning calorimetry
(DSC). An appropriate interpretation at such condition

http://www.elsevier.com/locate/calphad
mailto:j.los@science.ru.nl
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Fig. 1. Schematic illustration of the Kossel model for crystal growth. Reac
particles at the surface may have one, two, three, four or five bonds. A pa
with three bonds is called a kink particle. Kink sites play an important rol
the growth process.

requires akinetic modelling of the crystallization process, wi
first of all knowledge of the kinetic phase diagrams (KPDs)
the issued mixture. KPDs, or non-equilibrium phase diagrams
provide the composition of a growing solid phase as a func
of the liquid composition and of the undercooling at t
solidification front.

Experimentally, the determination of KPDs is a complica
task, mostly due to the difficulty of measuring the prec
conditions at the surface, in particular the temperature an
the liquid composition. This difficulty mainly originate
from diffusion limitation, i.e. the finiteness in the speed
transport of mass and heat which makes the conditions a
surface different from the bulk properties and change in tim
particularly for fast crystal growth. Here theory can play
important role to bridge the gap between what can be measu
with reasonable effort and the desired data.

In the past, binary crystal growth has been modelled
Monte Carlo (MC) simulations [10,11] based on the Kosse
model [12,13] (seeFig. 1). These simulation models have als
been the inspiration for the formulation of models consisting
of kinetic equations [14,15], describing the growth kinetics
and segregation within certain approximations. Other work
kinetic segregation [16–20] were inspired by the observed hig
doping concentration in semiconductor materials after ra
crystallisation [21–23]. In the analytical models proposed
these works the kinetic segregation coefficientk is expressed
as a function of the known equilibrium segregation coefficie
keq and the observed crystal growth velocity, such thak
becomes equal tokeq when the growth rate tends to zer
i.e. at equilibrium. These models take into account the diffusio
limitation in the liquid phase, but they do not include the det
of the surface kinetics. Recently, new models for the interf
kinetics and segregation for the growth of binary crystals, a
based on the Kossel model, have appeared [24–26]. These
models distinguish between the segregation for different ty
of sites (i.e. kink, step, terrace and bulk sites), but are restri
to systems with ideal mixing properties.

In previous work we have shown examples of KPDs5,
27], calculated using a rather simple analytical model ba
on linear non-equilibrium thermodynamics, the so-called linea
kinetic segregation (LKS) model. This model is defined
terms of the thermodynamic properties of the system, includ
the pure component properties and the mixing propert
and is not restricted to the ideal mixing case. In fact,
mixed systems with a sufficiently strong tendency to ph
separation it can predict kineticphase separation, indicating th
le
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possibility of the simultaneous growth of more than one so
phase with different compositions from the same liquid pha
This property gives rise to so-called kinetic phase separa
domains KPSDs, zones in a kinetic phase diagram w
kinetic phase separation occurs.

In this work we will test the LKS model by comparing i
predictions with the results of MC simulations based on t
Kossel model,both for well-mixing systems and for pha
separating systems. We also introduce a second analy
model, which is also compared with the MC results. Thereb
we will concentrate on the kinetic segregation for a given
liquid phase composition and isothermal conditions at
surface. Thus, here we will not consider the effects of trans
limitations in the liquid phase, involving relations between
liquid phase properties at the surface and those in the
This coupling of the interface segregation with mass and
transport has recently been treated elsewhere [9].

In the next section, we describe the binary Kossel mo
Section 3contains a description of the analytical models.
first briefly describe the previously presented LKS model a
then present the new model. InSection 4we present kinetic
phase diagrams (KPDs) for several model systems, comp
the predictions of the analytical models with the results fr
MC simulations.Section 5deals with phase separation system
giving rise to kinetic phase separation domains (KPS
according to the analytical models. Calculated KPSDs a
presented and a comparison with MC simulations is made.

2. Binary Kossel model

The Kossel model is a Monte Carlo simulation model
crystal growth on a simple cubic lattice, originally develop
for pure crystals [12]. An illustration of a Kossel surface i
given inFig. 1. Particles, represented as cubes, can attach
detach at the surface with certain probabilities, derived fr
thermodynamic considerations.

In principle the extension of the Kossel model to
binary system is straightforward, but requires a link w
the thermodynamic pure component properties and mix
properties. Such a link can beestablished as follows.

In this work, we will assume systems where the differenc
the excess mixing energy between the liquid and the solid p
is described by one single parameter,�Uexc

0 ≡ U l ,exc
0 − Us,exc

0 .
Hence, we assume that the difference in internal energy of th
liquid, Ul , and the solid phase,Us, of equal mole fractions
xl

i = xs
i (i = 1, 2), is given by:

�U = Ul − Us = xs
1�U1 + xs

2�U2 + xs
1xs

2�Uexc
0 (1)

where �U1 and �U2 are the melting energies of the pu
components 1 and 2 respectively. Furthermore, we will ass
regular solutions, i.e. the excess entropy is zero in both
liquid and the solidphase. Such ‘simple’ systems show
the relevant phenomena for the present study, including pha
separation. For convenience, without further loss of generality
the mixing in the liquid phase is taken to be ideal, implyi
�Uexc

0 = −Us,exc
0 , and theliquid energy level is chosen to b

zero for any composition so that�U = −Us.
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The exact bulk energy of the binary Kossel crystal (BK
per particle can be written as:

Us
BKM = − Z

2

(
xs

11φ11 + xs
22φ22 + xs

12φ12
)

(2)

where Z = 6 is the coordination,φi j is the bond energy
between particles of typei and j (i , j = 1, 2) andxi j is the
fraction of i j -bonds in the bulk crystal. A relation betwee
these bond energies and the thermodynamic parameters�Ui

and �Uexc
0 can be derived applying a mean field (M

approximation. Within the MF approximation it holds:

xs
ii = (xs

i )
2 (i = 1, 2) and xs

12 = 2xs
1xs

2 (3)

wherexs
i is the bulk mole fraction of componenti . Substitution

of Eq. (3) into Eq. (2) and usingxs
1 = 1 − xs

2 leads to the
following mean field expression for the energy:

Us
MF = − Z

2

(
xs

1φ11 + xs
2φ22 + 2xs

1xs
2φ

exc) (4)

whereφexc is the excess bond energy defined by:

φexc = φ12 − 1

2
(φ11 + φ22) . (5)

Then, combining Eqs.(4) and(1) leads to:

φi i = 2�Ui

Z
(i = 1, 2) and φ12 = �U1+ �U2− Us,exc

0

Z
.

(6)

The Monte Carlo algorithm consists of a large num
of events, each event being either the attachment or
detachment of a particle at the surface, respecting the sol
solid (SOS) condition [12]. The change in the free energyF̃ , not
including the ideal mixing entropy term, for a selected eve
being the attachment or the detachment of a particle of typei at
a given surface site, is given by:

�F̃ev,i = �Uev,i − T�S̃ev,i (7)

where�Uev,i and�S̃ev,i are the changes in the internal ener
and the vibrational entropy respectively, andT the absolute
temperature. For the detachment of a particle of typei with
n1 neighbours of type 1 andn2 neighbours of type 2,�Uev is
taken equal to the energy of the broken bonds:

�Uev,i = n1φi1 + n2φi2 (8)

whereas the entropy change�S̃ev,i is taken to be the pure
component dissolution entropy,�Si , of componenti :

�S̃ev,i = �Si = �Ui

Ti
= 3φi i

Ti
(9)

where Ti the melting temperature of the pure componeni .
According to the detailed balance principle, which is suppo
to hold for the individual microscopic events in (non-extrem
non-equilibrium situations aswell, the ratio between th
detachment and attachment rates of a selected event,K −

ev,i and

K +
ev,i respectively, is given by:

K −
ev,i

K +
ev,i

= exp

(
−�F̃ev,i

RT

)
(10)
r
e

on

,

d
)

with R the gas constant. After substitution of Eqs.(7)–(9)we
obtain:

K −
ev,i = K +

ev,i exp
(
−β�F̃ev

)
= K +

ev,i exp

(
αi i

θi
− n1αi1 + n2αi2

3θ

)
(11)

where we have defined the dimensionless energies:

αi j = 3φi j

RT2
(i , j = 1, 2) (12)

and temperatures:

θ = T

T2
and θi = Ti

T2
(13)

implying Θ2 = 1. Component 2 is taken to be the compon
with the highest melting temperature, so thatΘ1 ≤ 1.
Commonly it is assumed that the attachment rateK +

ev,i is a
liquid phase property, and is independent of the type of
as characterized by the number of bonds formed. We will ad
this assumption definingK +

ev,i = K +
i . So the attachment rate

for particles of typei is given byK +
i xl

i for any type of surface
site, wherexl

i is the mole fraction of componenti in the liquid
phase.

Summarizing, the MC model parameters areαi i =
�Ui /RT2 (i = 1, 2), αexc = Us,exc

0 /(RT2), Θ1, the liquid
compositionxl

2 = 1 − xl
1 and the relative temperatureθ .

Actually, in the following we will rather use the undercoolin
�Θ = Θ − Θeq to fix the temperature, whereΘeq =
Teq/T2 is the dimensionless equilibrium temperature, wh
can be calculated for the given thermodynamic propertie
the system.

In the MC simulations each configuration is represented b
a 3D integer matrix H (i x, iy, i z) for integer argumentsi x ,
iy and i z. For each site(i x, iy, i z), with 0 < i x ≤ Nx ,
0 < iy ≤ Ny and 0< i z ≤ Nz, H (i x, iy, i z) has the value 0, 1
and 2 indicating a site not occupied by a solid particle and s
occupied by a solid particle 1 and 2 respectively. For a given
of input parameters many cycles of moves are performed.
cycle is Nx Ny moves. One move is characterized by selec
randomly a surface position(i x, iy), followed by either the
removal of the particle at the selected position, adding a
particle of type 1 or 2 on top of it, or no change at all accord
to the appropriately normalized probabilities for these eve
and decided by pulling a random number between 0 and 1.

For our MC simulations presented below a surface
dimensionsNx × Ny = 50× 50 was used, containing a sing
step realized by an appropriate shift in the periodic bound
conditions. The step was employed to avoid the very l
simulation times required for 2-dimensional nucleation in th
non-roughened limit, i.e. for large interaction parametersαi i .

3. Analytical models

3.1. Linear kinetic segregation model

The linear kinetic segregation (LKS) model is bas
on linear non-equilibrium thermodynamics applied to
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difference in bulk chemical potentials, i.e. neglecting the detai
of the growth kinetics at the surface. It assumes that the flu
each componenti (=1, 2) from the liquid to the solid phase,J+

i ,
and the reverse flux,J−

i , arerelatedby:

J+
i

J−
i

= exp

(
�µi

RT

)
(14)

where�µi = µl
i − µs

i is the difference between the chemic
potential of componenti in the liquid phase,µl

i , and thatof the
growing solid phase,µs

i . As derived previously [27], this gives
rise to a net flux of componenti , Ri = J+

i − J−
i , of theform:

Ri = Nk K +
i

(
xl

i − xl
i,eq

)
= Nk Ki σi (15)

where σi = xl
i − xl

i,eq is the absolute supersaturatio
of component i and where we included an addition
proportionality constantNk, defined as the average number o
kink sites per unit surface area, and wherexl

i,eq is specified
below. Kink sites (seeFig. 1) play a crucial role in crystal
growth. Referring tothe Kossel model, particles at a kink s
have three bonds and start to become well bonded to the cr
unlike the sites with 1 or 2 bonds, from which an alrea
adsorbed particle can easily dissolve again. The concept
meaning of kink sites is transferable to other lattices as well
has been shown that the growth rate is in good approxima
proportional toNk [28]. According to Eq.(15) the composition
of the growing solid phase,xs

2(=1−xs
1), is determined through

xs
1

xs
2

= R1

R2
= K +

1 σ1

K +
2 σ2

=
K +

1

(
xl

1 − xl
1,eq

)
K +

2

(
xl

2 − xl
2,eq

) . (16)

In Eqs.(15) and(16), xl
i,eq is the equilibrium mole fraction o

componenti in the liquid phase with respect to the growi
solid phase of compositionxs

2 to be determined. For the system
specified in the previous section,xl

i,eq is given by:

xl
i,eq = γ s

i xs
i exp

[
�Ui �Ti

RTi T

]
(17)

where �T = T − Ti and γ s
i is the activity coefficient

of componenti in the growing solid phase. The activi
coefficients, are related to the excess free energy by:

γ s
1 = exp

(
(xs

2)
2Us,exc

0

RT

)
and γ s

2 = exp

(
(xs

1)
2Us,exc

0

RT

)
.

(18)

We note that equilibrium according to the LKS model
occurring at the temperature yieldingR1 = R2 = 0, is
equivalent to thermodynamic equilibrium.

For systemswith a tendency to phase separation the soluti
of Eq. (16), including Eqs.(17) and(18), can have more tha
one solution. In Ref. [4] it was shown that Eq. (16) can be
derived as the steady state solution of a first order differentia
equation and that the physically relevant solution has to fu
of

tal,

nd
t
n

ll

the stability criterion for a stable steady state solution, bein

d

dxs
2

(
R2 − xs

2R
)

< 0 (19)

whereR = R1 + R2 is the total growth rate. In addition, th
individual growth rates have to be positive, i.e.R1 ≥ 0 and
R2 ≥ 0.

Writing �Ui = αiRT2, Us,exc
0 = αexcRT2, and using

Eq.(13), the expressions(17)and(18)are readily expressed i
terms of the dimensionless parametersαi i (i = 1, 2), αexc, Θ1
andΘ , allowing a direct comparison with the MC simulatio
model.

3.2. Mean field kink site kinetic segregation model

The mean field kink site kinetic segregation (MFKK
model is more kinetic than the LKS model, by including
some extent the growth kinetics at the surface. Actually, i
based on the kinetic incorporation rates of the componen
kink sites permitting the composition at the kink site to
different from that of the bulk solid phase.

Thinking of the Monte Carlo model, we approximate the
incorporation rate of componenti by:

Ri = Nk(K +
i xl

i − K̃ −
i xsk

i ) (20)

wherexsk
i is the average mole fraction of componenti at kink

sites and wherẽK −
i is the average detachment rate of a part

i at a kink site. Then, similar to the LKS model, the grow
composition follows from:

xs
1

xs
2

= K +
1 xl

1 − K̃ −
1 xsk

1

K +
2 xl

2 − K̃ −
2 xsk

2

. (21)

In the MFKKS model we assume a mean field distribution
neighbours for the particle at the kink site, implying:

K̃ −
i =

2∑
j ,k,l=1

xs
j x

s
kxs

l K −
i j kl (22)

whereK −
i j kl is the detachment rate of a particlei from a kink

site with neighbours of typej , k and l along the step, on th
terrace and down in the bulk respectively. So the composit
at each of these three neighbour sites are assumed to be
to the bulk composition. Instead, the time average compos
at the kink site itself,xsk

i , is permitted to be different. Along
a straight step, removal of a kink site particle will generally
generate another kink site particle. This consideration bring
to the following expression for the variation in time ofxsk

1 :

dxsk
1

dt
= K +

1 xl
1xsk

2 − K +
2 xl

2xsk
1 + K̃ −

21xsk
2 xs

1 − K̃ −
12xsk

1 xs
2 (23)

whereK̃ −
i j (i �= j ) is the average detachment probability fo

kink particle of typei with a neighbour of typej along the step
which is assumed to become a kink particle itself after remo
of its neighbour at the kink site. Within the MF approximati
it reads:

K̃ −
i j =

2∑
k,l=1

xs
kxs

l K −
i j kl . (24)
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An equation similar to Eq.(23) holds for component 2 but i
not independent due to stoichiometry. Assuming steady s
growthxsk

i is constant, i.e. dxsk
i /dt = 0, and Eq.(23) leads to:

xsk
1 = K +

1 xl
1 + K̃ −

21xs
1

K +
1 xl

1 + K +
2 xl

2 + K̃ −
21xs

1 + K̃ −
12xs

2

(25)

while xsk
2 = 1 − xsk

1 . Eq. (25), including Eq.(24), expresses
the kink composition as a function of the bulk composition
the growing solid phase, i.e.xsk

i = xsk
i (xs

2), so that Eq. (21),
after substitution of Eqs.(22) and(25), andusingxs

1 = 1 − xs
2

becomes an equation with only one variable,xs
2, which can

be solved numerically without problems. We note that, in
above derivation of the kink site composition, surface diffus
has been neglected, which is reasonable for growth from
liquid phase.

We note that the equilibrium temperature according to th
MFKKS model, i.e. the temperature at which the growth r
in Eq. (20) vanishes fori = 1, 2, can be different from the
thermodynamic equilibrium temperature.

4. Kinetic phase diagrams

4.1. Confrontation

Each of the models described in the previous sections en
the determination of kinetic phase diagrams KPDs, giving
composition of the growing solid phase for liquid compositio
along a liquidus line at a given undercooling�Θ . In this section
we will compare the KPDs according to the analytical model
with those from the MC simulations for systems with zero
relatively small excess energy. For all the calculations prese
here and inSection 5, thekinetic constants are taken equal
each other, i.e.K +

1 = K +
2 , as a reasonable assumption fo

isomorphous components.
Fig. 2 shows KPDs, and also the equilibrium pha

diagrams, for two systems and different undercoolings.
the system corresponding to the graphs on the left the sys
parameters areα11 = α22 = 6.5, αexc = 0.5 andΘ1 = 0.9,
while for the system corresponding to the graphs on the r
they areα11 = 6.0, α22 = 7.0, αexc = 0.5 andΘ1 = 0.9. The
here used values for the pure component parametersαi i (i =
1, 2) are typical for e.g. single aromatic molecular syste
The indicated undercoolings�Θ are with respect to the
thermodynamic temperature ofthe thermodynamic equilibrium
temperatureΘeq, which is equal to that of the LKS mode
For the first system the KPDs according to the LKS mo
and the MFKKS model are almostequal and agree very we
with the results of the MC simulation model. For the seco
system the LKS model gives good agreement with the M
model near equilibrium while the MFKKS model gives
better agreement at larger undercooling. The MFKKS mo
is not consistent with the equilibrium phase diagram. Inste
the MC simulations reproduce the equilibrium phase diagram
quite well, with a vanishing growth rate for�Θ → 0.
The equilibrium phase diagram according to the MFK
model (dotted lines in graph (d)) yields a lower equilibriu
te

e
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e
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l

l
,

Fig. 2. Kinetic phase diagrams according to the LKS model (full line)
the MFKKS model (dotted–dashed lines), compared with the results from
simulations (symbols) based on the isotropic binary Kossel model for th
relative undercoolings�Θ as indicated in the graphs. The graphs on the
side are the results for system parameters equal toα11 = α22 = 6.5,αexc = 0.5
andΘ1 = 0.9, those on the right side are forα11 = 6.0, α22 = 7.0, αexc = 0.5
andΘ1 = 0.9. The equilibrium phase diagrams is given by the dashed li
The dotted lines in graph (d) give the equilibrium phase diagram accordin
the MFKKS model.

temperature and a too large solid phase mixing. We check
that these differences also occur for systems with zero exce
energy. Due to them, the KPD for�Θ = 0.005 according to
the MFKKS model isnot given in graph (d), sinceΘeq−�Θ is
slightly larger than the equilibrium temperature of the MFKK
model for a certain range of liquid compositions, implying
negative growth rate.

The mentioned difference in the results for the two syste
appears to be typical in the sense that when the bond ene
betweenlike particles are equal (or very similar), i.e. wh
α11 � α22, then the LKS model agrees well with the MC
model, both near equilibrium, approaching the equilibriu
phase diagram, and at large undercooling, as long as the e
energy is not ‘large’, e.g. not so large that phase separa
starts tooccur. For the caseα11 = α22 and zero excess energ
the results of the LKS model and the MFKKS model are
exactly the same, which can be shown rigorously, and ag
perfectly with the MC simulation results. In that case the ki
composition is equal to the bulk composition. Instead whenα11
is different fromα22, the LKS gives a good description ne
equilibrium, but deviations from the MC results start to oc
at large undercooling, while the performance of the MFF
model is the opposite.

For systems with larger melting entropies, i.e. largerαi i ,
such as n-alkanes, fats, multiple aromatic molecular syst
etc., and a relatively large difference betweenα11 andα22 the
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Fig. 3. Confrontation of the kinetic phase diagrams according to the
model (full lines) and the combined LKS-MFKKS model (dashed lines) w
the results from MC simulations for two model systems and two rela
undercoolings�Θ . The model parameters are indicated at the top for
left and right graphs respectively. The dotted lines give the equilibrium p
diagrams.

discrepancy between the LKS model and the MC simulat
becomes much more significant. This is illustrated in the gra
at the right side ofFig. 3 for a system withα11 = 20.0, α22 =
25.0 andαexc = 0. For a system with smallαi j -parameters
such as metal systems, the differences remain small, e
for relatively large excess parameters, as demonstrated i
graphs on the left side ofFig. 3. In this figure the dashed
lines, showing a good overall agreement with the MC res
represent the results of a model which is a combination of
LKS model and the MFKKS model, as described hereafter.

4.2. Combined analytical model

The results in the previous section prompt us to
construction of an analytical model which tends to the L
model for small undercooling and smoothly switches to
MFKKS for increasing undercooling. Therefore we propose
following combined LKS-MFKKS model.

For the combined model we write the growth rate o
an individual component as a linear combination of th
according to the LKS model and that according to the MFK
model as:

Ri = (1 − S)RLKS
i + SRMF

i

= Nk(K +
i xl

i − (1 − S)K +
i xl

i,eq − SK̃ −
i xsk

i ) (26)

where S = S(�Θ) is a smooth switch function depending
on �Θ , described below,RLKS

i and RMF
i are the growth rate

according to the LKS model (Eq.(15)) respectively and the
MFKKS model (Eq.(20)). Similar to the other models th
composition of the growing solid phase follows then from:

xs
1

xs
2

= (K +
1 xl

1 − (1 − S)K +
1 xl

1,eq − SK̃ −
1 xsk

1 )

(K +
2 xl

2 − (1 − S)K +
2 xl

2,eq − SK̃ −
2 xsk

2 )
. (27)
S

e

s
s

n
he

s,
e

e

e
e

e

The switch functionS is defined as:

S= �Θ2

�Θ2 + q2 + ε
(28)

where:

q = (q0�Θeq − �Θ)2Θ(q0�Θeq − �Θ) (29)

where q0 and ε are two parameters,Θ(x) is the Heaviside
step function, and�Θeq is the difference in the equilibrium
temperature according to the LKS model,ΘLKS

eq , and the

MFKKS model,ΘMF
eq , i.e.:

�Θeq = ΘLKS
eq − ΘMF

eq . (30)

Clearly, for�Θ = 0, S = 0 and the combined model become
equal to the LKS model, whereas for large�Θ , S tends to
one and the MFKKS model becomes dominant. The termq2

in the denominator of Eq. (28) is added to make sure tha
the combined model yields a solution with a positive grow
rate for any temperature below the thermodynamic equilibrium
temperatureΘeq = ΘLKS

eq . We note that usuallyΘMF
eq <

ΘLKS
eq , so that a too fast switch to the MFKKS model may

lead to a situation where the actual temperature is above
equilibrium temperature of the combined model. The value
the parameters areq0 = 4/3 andε = 2.5× 10−5. These values
were chosen such that the switch is smooth and that a r
switch to the MFKKS model is achieved below the tempera
ΘLKS

eq − q0�Θeq. Basically, these parameters imply a rap
switch to the MFKKS in most cases, since�Θeq is usually
rather small. This rapid switch was inspired by the MC resul
which are well predicted by the MFKKS model already at rat
small undercooling, especially for large interaction parame
αi i . This is demonstrated by the KPDs graphs at the right
Fig. 3. At �T = 0.025 the LKS-MFKKS model is in good
agreement with the MC results. We checked that in this cas
the LKS-MFKKS model is already very close to the MFKK
model.

5. Kinetic phase separation domains

For large interaction parametersαi i (i = 1, 2) and large
excess energy, yielding eutectic or peritectic equilibrium ph
diagrams, the analytical kinetic models ofSection 3can give
two stable steady state solutions. The KPDs for such sys
then have two branches, corresponding to growing solid ph
rich in component 1 and 2, respectively. For the LKS model
was shown in [5]. Qualitatively, the MFKKS shows the sam
behaviour. Typically, this so-called kinetic phase separa
occurs in a certain domain of the phase diagrams below
equilibrium liquidus. We will denote such a domain as
kinetic phase separation domain (KPSD). Examples of KPS
calculated according to the various analytical models, ar
shown inFig. 4 for α11 = α22 = 20 and for two different
values ofthe excess energy parameter, namelyαexc = 4 and
αexc = 6, both yielding eutectic equilibrium phase diagram
The KPSDs are indicated by the shaded areas. As expe
for small undercooling, kinetic phase separation only occ
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Fig. 4. Kinetic phase separation domains (KPSDs) according to the LKS m
(graphs on the left, light-shaded areas), the combined LKS-MFKKS mode
(graphs on the left, dark-shaded areas) and the MFKKS model (graphs on the
right, dark-shaded areas) for model systems withΘ1 = 0.94,α11 = α22 = 20
and for excess valuesαexc = 4 (upper graphs) andαexc = 6 (lower graphs).

near the eutectic liquid phase composition. For increa
undercooling the range of liquid compositions yielding kinetic
phase separation first becomes larger but then it starts t
decrease and finally vanishes. The larger the excess en
the lower is the temperature where kinetic phase separa
vanishes, and the larger is the KPSD. This holds for all mode
but the KPSDs for the MFKKS and the combined LKS
MFKKS are much smaller than those according to the L
model, due the enhanced tendency to mixing according to
MFFKS model. We note that also here the equilibrium liquid
according to the MFKKS model lies below that of the LK
model and the combined LKS-MFKKS model, for which t
equilibrium temperatures are equal by construction.

Fig. 5 shows a comparison between the analytical mod
and the results from MC simulations for the systems
Fig. 4. Simulations were done for aset of liquid compositions
at constant�Θ below the equilibrium temperature, fo
�Θ = 0.025 and 0.05.Fig. 5 shows the resulting averag
compositions (symbols) of the solid phase as a function of
liquid composition. Depending on the liquid composition t
analytical models yield one or two steady state solutions.
range of liquid compositions withtwo steady state solution
is marked by two vertical lines. Within this range there
two solid phase composition branches. In the regions w
only one steady state, the LKS-MFKKS model (dashed lin
agrees rather well with MC results. Within the two stea
state regions of the LKS-MFKKS model the MC results switc
from 1-rich to a 2-rich solid phase for liquid compositio
from the left tothe right vertical dashed line, hence within t
phase separation domain according to the LKS-MFKKS mo
Takinginto consideration that the solid phase composition fr
the MC simulations is an average composition, this is preci
what one would expect. In one case, namely forαexc = 4
and�T = 0.05, the LKS-MFKKS model predicts no pha
separation, again in agreement with the MC results. Th
el
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Fig. 5. The solid phase composition(s)xs
2 as a function of the liquid

compositionxl
1 according to the LKS model (full lines) and the LKS-MFKK

model (dashed lines) for two eutectic systems, parametrized byΘ1 = 0.94
andα11 = α22 = 20, and excess parametersαexc = 4.0 (graphs on the left)
andαexc = 6.0 (graphs on the right). Within the range of liquid compositio
marked by the two vertical lines, the models predict kinetic phase separat
hence two solid phase compositions, except for the case withαexc = 4.0 and
�Θ = 0.05, where the LKS-MFKKS predict one growing solid phase for
liquid compositions. The symbols, accompanied by a dotted line for guiding
eye, give the average solid phase compositions resulting from MC simulat

also for a strongly phase separating system the LKS-MFK
reproduces quite well the trends in the segregation. Inst
the LKS model starts to deviate considerably from the M
results for such systems. It predicts a too strong segregatio
of the components and the phase separation domains ar
large.

In order to get a better understanding of the connec
between the results from the analytical models and the M
simulations at conditions withinthephase separation domai
for the system ofFig. 5, we inspected the grown Kossel crysta
with solid phase mole fraction close to 0.5. InFig. 6, cross-
sections parallel to the growth direction of three differe
simulated crystals, with solid phase compositions around 0.
specified in the figure caption, are shown.Fig. 6(a) shows the
crystal cross-section forαexc = 4 and�Θ = 0.025. According
to both models phase separation should occur, but the p
separationdomain for the MFKKS model is rather narrow
this case and the corresponding point of the MC simulation
Fig. 5 actually lies on the boundary of it.Fig. 6(b) highlights
a point for αexc = 4 and�Θ = 0.05, where the MFKKS
does not predict phase separation, in contrast to the LKS mode
One can see that in this case the crystal is more mixed
that in Fig. 6(a). In the case ofFig. 6(a) one could speak o
domain formation, but with small domain size. Thus, the M
results are more or less in agreement with the predict
of the LKS-MFKKS model, and not with those of the LK
model which predicts phase separation in the case ofFig. 6(b).
Fig. 6(c), corresponding to a point forαexc = 6, �Θ = 0.025,
shows phase separation, but with much larger domains. Here t
observed phase separation is in agreement with both mo
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Fig. 6. Cross sections parallel to the growth direction of binary Kossel crystals grown by MC simulation. The pictures are from simulations for (a)αexc = 4,
�Θ = 0.025 andxl

2 = 0.26 giving xs
2 = 0.50, for (b)αexc = 4, �Θ = 0.05 andxl

2 = 0.33 giving xs
2 = 0.49; and for (c)αexc = 6, �Θ = 0.025 andxl

2 = 0.24
giving xs

2 = 0.52, indicated by the arrows inFig. 5.
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However, again, the MC results for larger undercooling for th
system are in contrast with the LKS model, while the LK
MFKKS model remains in agreement with MC simulations.

6. Conclusions and perspectives

We have investigated kinetic segregation occurring during
crystallization of binary mixtures from the liquid phase
isothermal conditions on the basis of a Monte Carlo (M
simulation model and analyticalmodels. One of the analytica
models, the linear kinetic segregation (LKS) model, w
presented previously [4,27], and has hereby been tested
comparing it with the results from the MC model, which w
have taken as reference. Close to equilibrium, the LKS mo
reproduces well the MC results, as could be expected s
it is based on linear non-equilibrium thermodynamics, wh
should be a good approximation nearequilibrium. Equilibrium
according to the LKS model coincides with thermodynam
equilibrium. This is an intrinsic property of the LKS mode
At larger undercooling the LKS model still gives a reasona
approximation in certain cases, namely when the bond ene
are small (e.g. for metal systems), or when the bond ene
between like particles are not ‘too’ different and the exc
energy is ‘small’, e.g. for well mixing systems. For oth
cases the LKS model can deviate considerably from
MC results. Instead, another, new analytical model, whic
based on the growth kinetics at kink sites, assuming a m
field environment for the particle at the kink site, gives
good agreement with the MC results at moderate and l
undercooling for arbitrary system parameters (or at least
a much wider domain in the parameter space). We den
the new model as the mean field kink site kinetic segregat
(MFKKS) model. The good agreement of the MFKKS mod
with the MC results at moderate and large undercooling a
holds for phase separating systems. However, it generally
l
ce

es
es
s

e
s
n

e
r

te

l
o
es

not reproduce the equilibriumphase diagram for condition
close to equilibrium. Therefore, we have constructed a t
model which is a combination of the LKS model and MFKK
model, the LKS-MFKKS model. Close to equilibrium th
LKS-MFKKS is (almost equal to) the LKS model, but fo
increasing undercooling the LKS-MFKKS model becom
rapidly equivalent with the MFKKS model. Thus, the LK
MFKKS model provides a good description for the ent
range of undercoolings, and matches with thermodyna
equilibrium for zero undercooling. This makes it a suita
model to be incorporated in continuum models for
crystallisation of mixtures, like phase field models.

Here we havenot included the effects of mass and h
transport in the liquid phase, which are both coupled to
segregation at the growth interface and which can be expect
to play an important role at large undercooling. Previously,
have developed an effective segregation model based o
LKS model, including the coupling with liquid phase diffusio
of both mass and heat [9]. This extension can be applie
straightforwardly to the LKS-MFKKS model as well.

Currently we are extending the binary Kossel model
the case with anisotropic binding energies, which would b
an important step forward towards reality for many syste
in particular molecular systems. It remains to be seen whe
such an anisotropy will change the MC results for equ
total melting energies and excess energy. One could ex
dependence on the orientation of the growth surface in
case. The LKS model cannot deal with anisotropy, but the L
MFKKS model can be extended to the anisotropic case. T
another step forward towards reality we planned is to extend
MC model to more realistic crystal structures, as characterize
by the topology of the bonds. This would be a binary or a multi
component extension of the pure component crystal growth
program MONTY [29].
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