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CONFORMATIONAL COMPLEXITY OF 

COMPLEMENT COMPONENT C3

Bert J.C. Janssen and Piet Gros 

1.  INTRODUCTION 

The complement system is an important component of the humoral immune 
response in vertebrates. The complement system consists of 30–40 soluble 
plasma proteins and cell-surface receptors that form a complex set of regulatory 
pathways (reviewed by Walport1). It enables the host to recognize invading mi-
croorganisms. Activation of the complement system may result in a range of 
effector functions: bacterial lysis, initiation of inflammatory responses, phagocy-
tosis, and stimulation of B-cell response (reviewed by Carroll2). Regulation of 
this defense system in blood plasma is of critical importance for the homeostasis 
of the host, as indicated by a wide range of (auto-)immune disorders that are 
associated with uncontrolled complement response. 

The molecule C3 plays a central role in the complement activation path-
ways (reviewed by Sahu and Lambris3). Three pathways of complement activa-
tion exist: (i) the antibody-mediated classical pathway, (ii) the lectin-mediated 
pathway and (iii) the alternative pathway. These pathways are characterized by 
protein–protein complex formation and proteolytic activation of the large multi-
domain complement proteins. The first two pathways involve antibodies or 
lectins that bind to the surface of microorganisms. The third pathway, the alter-
native pathway, reacts intrinsically onto any, host or foreign, surface. All three 
pathways converge in the proteolytic activation of C3, which generates the bio-
logically active fragments C3a and C3b. The small fragment C3a functions as an 
anaphylatoxin, initiating inflammatory responses. The large fragment, C3b, 
plays a central role in localization and amplification of complement response 
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and initiation of the terminal phase of complement activation. Localization is 
achieved by covalent attachment through a highly reactive thioester moiety in 
C3b. Surface-bound C3b serves multiple purposes. It acts as an opsonin provid-
ing a strong signal for phagocytosis by macrophages, and it provides a molecu-
lar platform for formation of the convertases of the complement system. The 
convertases induce amplification of the response and initiate the terminal com-
plement phase. The level of complement response is primarily determined by the 
lifetime of the convertase complexes, which are inherently instable with half-life 
times of 90 seconds4. One complement protein has been identified that enhances 
the lifetime of the convertases, i.e. properdin, whereas various “decay-
accelarating and cofactor activity” regulators are known that induce dissociation 
of the convertases and proteolytic degradation of C3b by factor I. The cleavage 
products iC3b, C3dg, and C3d have important signaling roles. iC3b acts as an 
opsonin-facilitating phagocytosis of foreign material by leukocytes. Next to that, 
iC3b, C3dg, and C3d amplify B-cell responses and thereby provide a key inter-
face between innate and adaptive immunity. 

Structural data are instrumental in understanding the molecular mechanisms 
of complex formation and activation of the large multi-domain complement pro-
teins. Resolving these structural details, however, is technically challenging. The 
proteins involved are typically large, multi-domain, and flexible molecules, and 
they associate into large and, in some cases inherently, unstable complexes. 
Moreover, due to size and post-translation modifications, these proteins are of-
ten hard to produce by recombinant protein expression techniques. Nonetheless, 
in the last decade significant advances have been made in the structure determi-
nation of complement proteins and protein domains (see Table 1). Most re-
cently, we published the structures of native C3 and its major proteolytic frag-
ment C3c5. These structures provide insight into the domain organization, 
structure, and dynamics of the central C3 protein of the complement system. 
Here, we present an overview of these new structural insights and discuss the 
implications for complement convertase formation, decay acceleration, and co-
factor activity, and the signaling roles of the proteolytic fragments iC3b, C3dg, 
and C3d. 

2.  STRUCTURAL ORGANIZATION OF C3 

The protein molecule C3 is the most abundant complement protein in human 
blood plasma with levels of 1–1.5 g/l in healthy individuals. It is synthesized as 
a single poly-peptide chain of 1641 amino-acid residues and secreted into the 
blood as a glycosylated two-chain protein. Residues 1–645 form the β-chain and 
residues 650–1641 form the α-chain with N-linked glycans on positions Asn-63 
and on Asn-917 of the β- and α-chain, respectively42,43. Residues Arg-646–Arg-
649 are proteolytically removed during post-translational processing. A remark-
able aspect of its post-translational modifications is the formation of a thioester 
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Table 1. Solved Structures in the Complement System 

bond in the protein. The side chains of residues Cys-988 and Gln-991 form a 
Cα–Cβ–Sγ–(Cδ=Oε)–Cγ–Cβ–Cα thioester linkage44. The length of the polypeptide 
chain and the extensive post-translational modifications (twofold glycosylation, 
formation of thirteen disulfide bridges11,45, removal of the tetra arginine (646–
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649), and formation of a thioester moiety) indicate a complicate folding process 
of this intricate protein molecule (Figure 1). 

Figure 1. Structures of C3 and C3c. (a,b) Ribbon representation of C3 and C3c, respectively. Disul-
fide bonds and the thioester are shown as black spheres. Glycan moieties are shown as black sticks. 

We recently published the crystal structure of native C3 and its major pro-
teolytic fragment C3c5. Both proteins were purified from human blood plasma: 
native C3 was purified from fresh plasma46; whereas C3c was purified from out-
dated plasma stored at 4°C. First we determined the crystal structure of C3c, 
which is a proteolytic fragment representing the core structure of C3 and is con-
ceivably less flexible and hence possibly easier to crystallize. Indeed, in our 
hands C3c crystallizes more readily than C3. C3c crystals typically diffracted to 
approx. 3-Å resolution and best diffraction data was collected up to 2.4-Å reso-
lution. Since the protein was isolated from a natural source and no significant 
structural models were a priori available, we obtained phase information through 
the classical method of multiple-isomorphous replacement using heavy-atom 
compounds. Overall, the process involved many crystals of varying diffraction 
quality (mostly 3–3.5 Å resolution) in three different space groups. An interpret-
able electron-density map was obtained after multi-crystal averaging, combining 
data from multiple crystal forms after extensive optimization of the operators 
and masks for mapping corresponding structural fragments in the various crystal 
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forms. This experimental electron-density map was used to build an atomic 
model of C3c. The structure of C3c consisting of ten domains was instrumental 
in solving the structure of native C3. Diffraction data of C3 was collected from a 
single crystal diffracting to 3.3-Å resolution. The structure was solved by maxi-
mum-likelihood molecular replacement placing known structures of domains 
(derived from the structures of C3c and C3d12) into the unit cell. After success-
fully placing 10 domains, the model was completed by model building and re-
finement. The resulting final model of C3 consisted of a total of 13 domains. 
The thioester is intact in the crystals, as indicated by the electron density at the 
thioester linkage, and is occluded in the structure of C3 as expected for the na-
tive conformation of C3. 

The structure of C3 is characterized by an intricate arrangement of 13 do-
mains (see Figure 1; domain names and secondary structure labeling as defined 
in [5]). The core of the structure is formed by eight homologous domains from 
both the β- and α-chains with an additional five domains appearing as inserts 
and a C-terminal extension. We named the core domains macroglobulin (MG) 
domains 1 through 8 (referring to the α2-macroglobulin protein family). The 
MG domains display a fibronection type-III like fold that is part of the super-
family of immunoglobulin folds. Domains MG1–MG5 are formed by residues 
of the β-chain, whereas domains MG7 and MG8 are formed by the α-chain. 
Surprisingly, domain MG6 is formed by residues of both the β-chain (res. 535–
577) and the α-chain (res. 746–806). This reflects that C3 is a single gene prod-
uct that should not be considered a gene fusion of a β- and α-part. C3 is rich in 
disulfide linkages. One disulfide bridge covalently links the β- and α-chains in 
domain MG6 (537-794), one disulfide bridge is inter-domain (from MG7 to the 
anchor region; 851–1491), and the eleven remaining are intra-domain disulfide 
bonds. C3 has two N-linked glycosylation sites — on Asn-63 and Asn-917. At 
both positions electron density confirms the presence of glycan moieties. The 
glycan on Asn-917 has been implicated in folding and correctly predicted to be 
concealed47. The base of the glycan, i.e., the first two N-acetylglucosamines is 
well protected in C3 by the CUB, TED, and MG8 domains. This glycan is close 
to the factor I cleavage sites (it is 13 Å away from cleavage site, 1298–1299); 
proteolysis at these sites induce conversion of C3b into iC3b that is accompa-
nied by conformational changes exposing the glycan at Asn-917 for conglutinin 
binding48. A central feature of the C3 molecule is the reactive thioester moiety. 
In native C3 the thioester is protected from the surrounding solvent by close 
packing of the TED domain, which harbours the thioester, against domain MG8. 
This arrangement appears to be stabilized by the overall domain—domain ar-
rangement in native C3, where the ANA domain plays a decisive role by holding 
MG8 in place with respect to domain MG3 of the β-ring. Residues Phe-1047 
from the TED domain and Met-1378, Tyr-1425, and Tyr-1460 from the MG8 
domain form a shield around the thioester, limiting access of small amino and 
hydroxyl nucleophiles. High reactivity toward hydroxyl nucleophiles requires a 
transformation of the thioester (Cys-988–Gln-991) to a free thiolate anion (Cys-
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988) and an acylimidazole (Gln-991–His-1104)49-51. Comparison of the native C3 
and C3d12 structures shows significant structural differences that can be corre-
lated with this transformation from thioester to thiolate anion and acylimidazole 
intermediates. The fact that the structures of C3d12,52 and C4d13 correlates best 
with the thiolate/acylimidazole form indicates that this is the most stable con-
formation. Consequently, the domain–domain interactions observed in native C3 
function to maintain the thioester state of the protein. Activation of C3 induces 
large conformational changes. Comparison of the structures of C3 and C3c 
shows that the arrangements of domains in the β-chain are structurally relatively 
stable and that the domains of the α-chain (as exemplified by MG7 and MG8) 
undergo large rearrangements. 

3.  CONVERTASE FORMATION 

C3 undergoes profound conformational changes53 upon proteolytic activation 
generating C3a and C3b. C3b, the activated form of C3, exposes various pro-
tein-binding sites54 among which is that for factor B. Factor B binding to C3b 
results in formation of the bimolecular complex C3bB, followed by cleavage of 
factor B by factor D and formation of the C3 convertase C3bBb. C3b is a large 
1560-residue protein fragment (with MW = 176 kDa) for which its 12-domain 
organization may be inferred from the structure of full-length C3 and C3c. Fac-
tor B consists of 739 residues (MW 90 kDa) that form five domains: three N-
terminal short complement-control-protein (CCP1-3) domains consisting of 
approx. 60 residues each, a Von Willebrand-factor type A (VWA) domain of 
215 residues, and a C-terminal trypsin-like serine protease (SP) domain of 297 
residues. Factor B shows no proteolytic activity toward its substrate C3 in solu-
tion. It requires complex formation with C3b and proteolytic activation for its 
activity. First, factor B associates with C3b. Factor B then becomes sensitive to 
proteolysis by factor D, which cleaves the Arg-234–Lys-235 peptide bond gen-
erating fragments Ba (consisting of the three N-terminal CCP domains) and Bb 
(consisting of the VWA and SP domains). Ba then dissociates from the complex. 
This yields the active (and short-lived) convertase complex of the alternative 
pathway C3bBb that will amplify the complement response by cleaving addi-
tional C3 into C3a and C3b. Binding sites for C3b on factor B have been re-
viewed previously55. The proposed C3b-binding sites include peptide stretches 
on CCP2 and CCP356, the MIDAS site on VWA57-61, and a possible binding site 
on the SP domain62. The resulting complexes, C3bB and C3bBb, are labile. 
When dissociated, factor B may re-associate with C3b, yielding a new complex; 
whereas fragment Bb cannot re-associate. This would suggest that dissociated 
Bb has undergone conformational changes, making it unsuitable for re-
association. However, conformational changes in C3b induced by binding of 
factor B, and not by fragment Bb, cannot be excluded at this moment. In the 
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following section we discuss the putative binding sites for factor B onto C3b in 
the formation of the C3 convertase. 

Four separate sites have been identified that either present putative binding 
sites for factor B or are indirectly involved in binding factor B, possibly through 
conformational changes. One site of importance has been identified by peptide-
binding and mutagenesis studies. Peptide binding studies63 have shown that resi-
dues 727–745, which form the N-terminal region of the α′ chain (α′NT) in C3b, 
are involved in the interaction of C3b with factor B. Mutation studies in this 
region have pinpointed four acidic residues, i.e., Asp-730, Glu-731, Glu-736, 
and Glu-737, to be involved in the convertase formation64. Another study65

showed that cleavage fragment C3o of C3 was able to form a C3 convertase 
complex with factor B. In contrast, fragment C3c, which resembles C3o, cannot 
form a convertase complex. C3o and C3c differ by the presence of residues 933–
942 in C3o. Thus, the binding data suggest that this residue stretch (forming 
strand β5 and its flanking loops5 in the CUB domain in C3) is involved in factor 
B binding. One possible binding site for factor B located on the β-chain of C3 
has been suggested based on sequence homology. Complement C2 receptor in-
hibitor trispanning (CRIT) binds C266. The C2 binding site was shown to reside 
in a short segment of the extracellular domain of CRIT. This segment has high 
sequence homology with a segment of C4. It was concluded that this segment in 
C4 may be directly involved in binding C266,67. The analogous site in C3 is 
formed by residues 200–220 of the β-chain. They are located on the last β-strand 
(βG) of MG2, the first strand (βA) of MG3, and the connecting loop. Recently, 
it has been shown that the C-terminal C345C domain of C3 is also involved in 
the binding of factor B68,69. In these studies various parts of the C terminus of C3 
have been replaced by the corresponding parts of the snake venom homolog 
cobra-venom factor. The resulting chimaeras yielded enhanced lifetimes of the 
convertase complex, suggesting that there is at least one binding site for factor B 
on the C345C domain of C3. As shown in Figure 2, these data indicate four 
separate regions located in the top half, primarily α-chain, of the C3 molecule. 

To date, structures have been published of C3, C3c, and of a disulfide-
bridge engineered construct of fragment Bb19. Structures of C3b and B, are not 
available yet. Discussions on structural implications of the putative factor B 
binding sites must consider the possibility of conformational changes. The 
C345C domain is surface exposed in both C3 and C3c. Its outward position in 
the molecule suggests it will be exposed in C3b as well and accessible for factor 
B binding. The “C3o segment” formed by residues 933–942 is surface exposed 
in C3 and is absent in C3c due to proteolytic processing by factor I. This seg-
ment is structurally close to the C345C domain, suggesting that, possibly even 
after conformational changes, factor B might bind both regions simultaneously. 
The “CRIT segment” (formed by residues 200–220), however, is exposed to the 
solvent but inaccessible to proteins in both the C3 and C3c structures. Direct 
involvement in factor B binding here would imply large conformational changes 
of the β-ring in the conversion of C3 to C3b. These changes are not observed 
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Figure 1. Possible binding sites mapped on the structure of C3. (a,b) Possible binding sites for factor 
B, receptors CR1, CR2, CR3, and soluble regulators factor H and properdin are indicated in black 
cartoon drawing, by arrows and residue numbering or “keywords” of possible binding sites. (b) C3 
rotated 180° with respect to the view shown in (a). 

when comparing the structures of C3 and C3c. Interestingly, the α′NT that car-
ries the four acidic residues important for factor B binding is buried in C3 but 
exposed in C3c. In C3 the acidic residues occupy a cone formed by the ANA, 
MG3, and MG8 domains, where they are loosely structured as judged by the 
quality of the electron density. At Glu-737 the chain exits this cone and makes a 
90º turn at 737–738 and runs through the β-ring passing residues Glu-202–Pro-
206 (these latter residues are part of the CRIT segment and hence implied in 
factor B binding66,67). At 745FPES748 the chain kinks and starts MG6α of the inter-
twined MG6β/MG6α domain. In C3c the α′NT resides fully on the opposite, 
MG6 side of the molecule. In the structure of C3c residues Asp-730–Arg-742 
interact with MG7. The kink 745–748 is reoriented and the chain continues into 
MG6. Thus, the α′NT has slid through the ring formed by the β-chain in the 
conversion of C3 into C3c. Consequently, residues 727–768 (as studied by anti-
body binding70) form one continuous solvent exposed region in C3c, whereas 
this region is on two separate sides of the molecule and partially shielded in C3. 
The large structural relocation of α′NT from C3 to C3c poses the question of 
where the α′NT region resides in C3b. In other words, on which side of C3b 
does factor B bind, assuming that α′NT is directly involved in factor B binding? 
The C3 convertase can be formed either with C3b or C3(H2O) that still has the 
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ANA domain covalently attached. This observation argues for factor B binding 
to α′NT on the ANA side of the molecule. However, this argument is not con-
clusive when the possible flexibility of C3 is taken into account. The α′NT is 
poorly structured and its preceding loop 720–729 is not structured in C3. Thus, 
it is possible that ANA may reorient in the activated C3(H2O), yielding enough 
leverage for the α′NT to slip under the bridge. This is supported by deletion 
mutants of C3 lacking residues 759–765, 759–762, or 762–765 of MG6 that 
result in threefold or more increased concentrations of C3(H2O) in COS cell 
supernatants71. On fragment Bb three positively charged regions have been pro-
posed to bind the acidic residues of the α′NT19. These regions are located on the 
SP domain (residues 701–708) and two patches at the VWA–SP domain inter-
section. These data, taken together, do not yet provide a conclusive model of 
factor B or fragment Bb binding to C3b. Since the C3bB and C3bBb complexes 
are labile, a more achievable goal is to obtain a structure of C3b that will pro-
vide the arrangements of the multiple binding sites for factor B. 

The labile C3bB and C3bBb complexes are stabilized by properdin. Proper-
din consists of 410 residues that form six or seven trombospondin (TSR) do-
mains72 and exists as either dimers, trimers, or tetramers73. It increases the affin-
ity of factor B for C3b, prevents cleavage of C3b to iC3b by factor I, and 
enhances the convertase lifetime to approx. 30 minutes74. A binding site for 
properdin on C3b has been identified on residues 1402–143575. This site is situ-
ated on MG8, partly on an insertion between strands βC and βC′, which changes 
conformation in the conversion of C3 to C3c from β–α–β to β–α–α. This site is 
hidden in C3 and exposed in C3c. Properdin binding indicates that this site is 
probably exposed in the C3bB and C3bBb complexes. In addition, the proper-
din–C3bBb interaction has been described to be dependent mainly on ionic 
strength76. Properdin is predominantly positively charged, especially the domains 
TSR-3, 5, and 672 (TSR-4, 5, and 6 have been shown to be involved in C3b bind-
ing72,77). C3 and C3c are mainly negatively charged5, and factor Bb has dispersed 
positive- and negative-charged patches19. Possibly some of the positive patches 
of Bb are involved in electrostatic interaction with C3b, resulting in a mainly 
negatively charged C3bBb complex in good agreement with ionic strength-
dependent binding of the positively charged properdin. A new and totally differ-
ent mode of convertase stabilization has recently been described for a comple-
ment inhibitor from S. aureus, called SCIN78. This 85-residue protein not only 
stabilizes but also inhibits the C3bBb convertases, indicating that these two pro-
teins probably interact in distinct ways to stabilize the convertase complex. 

4.  DECAY ACCELERATION 

When complement is not properly regulated it may cause severe damage to 
host tissues. To prevent self tissue from complement-mediated destruction, host 
cells express various regulators that downregulate convertase activity. These 
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regulators form a family of related proteins, called “regulators of complement 
activation” (RCA), which consist almost entirely of CCP domains arranged in a 
beads-on-a-string fashion. They act on convertases by accelerating the dissocia-
tion of the complexes, termed “decay-acceleration activity,”79 and function as 
markers to discriminate between self and non-self. Factor H, decay-accelerating 
factor (DAF, CD55), and complement receptor 1 (CR1, CD35) are three impor-
tant members of this family that are composed of 20, 4, and 30 CCP domains 
respectively. Whereas DAF and CR1 are cell-surface proteins, factor H is a 
soluble regulator and thus must possess additional binding sites to distinguish 
self from foreign. The tick-borne pathogen Borrelia burgdorferi utilizes this 
regulator from the infected host; it hijacks factor H by binding it to its Bb-
CRASP surface protein, thereby avoiding complement activation on its surface80.
In addition, other pathogens protect themselves from complement activation by 
expressing CCP containing proteins that have similarly decay-accelerating and 
cofactor activities81. Thus, strings of CCP domains provide an important frame-
work for regulating convertase activity. Although the regulators differ enor-
mously in number of CCP domains, it has been shown that typically three CCP 
domains suffice to achieve decay-accelerating activity: e.g., CCP2-4 of DAF82,
CCP1-3 of CR183, and CCP1-4 of factor H84. Various structural data have 
been reported of CCP domains of these proteins: CCP2-328, CCP3-427, and more 
recently all four CCP’s29 of DAF have been solved; CCP15-17 of CR131;
and, CCP15-1626 and CCP525 of factor H (see Table 1). Many questions, how-
ever, remain unanswered with respect to multiple binding sites and conforma-
tional flexibility of the CCP containing molecules. Understanding the molecular 
mechanisms that underlie the decay-accelerating activities is expected to have 
a significant impact in developing inhibitors of complement for therapeutic pur-
poses85.

Multiple studies63,64,70,86,87 indicate that residues 727–767 of C3b form an im-
portant interaction site for CR1 and factor H. Moreover, factor B, factor H, and 
CR1 compete for interaction with C3b or C3(H2O). As for factor B, mutagenesis 
studies have identified various acidic residues important for binding. Factor H 
binding depends on Glu-744 and Glu-747 located in domain MG6. For CR1 
binding Asp-730, Glu-731, Glu-736, Glu-737, Glu-747, Glu-754, and Glu-755 
of C3b are important. The latter residues are part of the α′NT region (729–745) 
and MG6 domain (535–577 and 746–806). These data possibly indicate that 
both factor H and CR1 have a primary binding site on MG6 (Figure 2). Two 
possible modes of action exist for decay-accelerating activity of factor H and 
CR1. If the factor B binding site lies on the MG6 side on C3b, then factor H and 
CR1 might at least in part act through steric hindrance. If, in contrast, the factor 
B binding site is on the ANA side of C3b, then factor H and CR1 may affect the 
α′NT by binding to MG6 and altering the conformation of α′NT by pulling 
these residues completely or in part through the β-ring. The effect of factor H, 
however, must be reversible, since C3b can bind factor B after factor H is re-
moved from a C3b–H complex88. Furthermore, factor H has at least one addi-
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tional interaction site on C3b, i.e., helices α9–α11 and neighboring loops in the 
TED domain (1187–1249)89,90. For DAF the binding site on C3b is unknown, 
though it has been shown that DAF can bind to C3b without Bb present91. Im-
portant sites for interaction with factor H, DAF, and CR1 on fragment Bb have 
been identified on the VWA domain60. Mutations around helix α1 and neighbor-
ing loops were shown to be important for resistance to decay acceleration by all 
three regulators. A second site important for interaction with DAF and CR1, but 
not factor H, was shown to reside on helices α4 and 5. The interactions of the 
regulators with C3b, and its homolog C4b of the classical pathway, have been 
found to be dominated by electrostatic interactions, as demonstrated by the salt 
dependency76,92. Furthermore, mutation studies on the regulators have indicated 
that positive charges are favorable in binding to C3b (and C4b)28,31,83,93-95. This is 
in good agreement with the predicted overall negative charge of the C3bBb 
complex, as discussed above. Although the recently solved DAF structure indi-
cates that there is also a negatively charged region on CCP3 and 4 that might be 
important for the interaction with the C3bBb convertase29. Possibly the posi-
tively charged region on MG1 and MG5 of C3b or one of the positive patches in 
factor Bb is involved in this interaction. As of yet it is not clear what the mode 
of action for these regulators is; however, as factor Bb cannot bind C3b after its 
dissociation from the convertase, it is possible that the regulators induce a con-
formational change in factor Bb that is unfavorable for binding to C3b and thus 
accelerate the decay. 

5.  COFACTOR ACTIVITY 

Next to decay-accelerating activity, factor H and CR1 serve, as does membrane-
cofactor protein (MCP), as cofactors in the cleavage of C3b by factor I96-99, i.e., 
these proteins exhibit so-called “cofactor activity.” Like factor H and CR1, MCP 
is a member of the RCA family of proteins. It consists of four N-terminal CCP 
domains, an O-glycosilated serine, threonine and proline-rich region, a trans-
membrane region, and a C-terminal intracellular domain100. The structure of the 
CCP1-2 pair has been solved30. CCP3–4 are sufficient for binding to C3b; how-
ever, CCP2 is required for cofactor activity101. The cofactor-mediated factor I 
proteolytic inactivation of C3b involves three cleavages in the CUB domain of 
C3b. The first cleavage, between residues Arg-1281–Ser-1282 in loop β6–β7
(i.e., the loop connecting strands β6 and β7) of the CUBf part of CUB, generates 
iC3b1. The second cleavage occurs between Arg-1298–Ser-1299, situated in 
strand β8 of CUBf and generates fragment C3f (2 kDa)102 and iC3b2. The third 
cleavage, between Arg-932–Ser-933 in loop β3′–β4 of the CUBg part of CUB, 
results in the formation of C3dg (40 kDa)103 and C3c (135 kDa). This indicates 
variable binding modes of the protease, factor I, with respect to the CUB domain 
that carries the three scissile bonds. Residues of the TED domain that are impor-
tant for factor H binding (1187–1249)89 lie adjacent to CUB (Figure 2), suggest-
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ing that factor H binding to this site may be involved directly in orienting factor 
I with respect to cleavage sites in CUB. Moreover, factor H, CR1, and MCP are 
possibly involved in unraveling of the CUB domain, enabling factor I to bind 
and cleave CUB three times. So far no interaction sites on C3b for MCP are 
known. Mutations in C3(H2O), however, that affect factor H and CR1 binding 
have no effect on MCP binding, indicating a different mode of interaction for 
MCP87. Taken together, the available data suggest a model in which the compact 
arrangement of the TED domain in C3 is relaxed and opened up in C3b (with 
TED attached to the target surface), while the CUB domain is gradually un-
folded in iC3b due to cleavages, until the bond between C3dg and C3c is finally 
severed. 

6.  SIGNALING ROLES OF C3B FRAGMENTS 

The factor I- and factor H-, CR1- or MCP-mediated conversion of C3b to 
iC3b induces large structural changes104 and alters the binding properties of the 
molecule3. Cleavage of C3b into iC3b results in loss of factor B and properdin 
binding; and gain of complement receptor 2 (CR2, CD21), 3 (CR3, αMβ2,
CD11b/ CD18, Mac-1) and 4 (CR4, αXβ2, CD11c/CD18, p150,95); and conglu-
tinin binding54. At the same time, the binding modes for factor H and CR1 
change, since different residues of the α′NT and the MG6 domain become im-
portant for interaction with factor H and CR164,87. Finally, proteolysis leads to 
two separate products — C3c released into the medium and C3dg fragment at-
tached to the surface. 

iC3b is the opsonin that facilitates phagocytosis of antigens by leukocytes. 
Recognition of iC3b by leukocytes is mediated by the integrin CR3105-107. The 
inserted (I) domain plays a critical role in ligand binding to CR3, similar to other 
integrins, e.g., CR4. In both cases, the binding site involves a metal-ion-
dependent adhesion site (MIDAS) in the I domain108. Various structural stud-
ies109,110 have shown that ligand binding to a MIDAS site involves an acidic resi-
due of the ligand that completes the coordination sphere of the divalent ion 
bound at the MIDAS. In the integrins the ligand binding induces a large struc-
tural change of the C-terminal α-helix in the I domains, which activates the in-
tegrin109-111. These I domains are structurally homologous to the VWA domain of 
factor B33,34. Also in the case of factor B, the MIDAS site is important for the 
metal-dependent interaction with C3b112. This homology between I and VWA 
domains have prompted others to propose a similar activation mechanism for 
factor B in the formation of the C3bBb convertase55,113. Nonetheless, CR3 and 
CR4 bind iC3b, whereas factor B binds C3b. A possible binding site for both 
factor B and CR3 has been identified on the α′NT region of C3b and iC3b64.
This would suggest that there are differences in or near this interaction site be-
tween C3b and iC3b or that both factor B and CR3 bind multiple regions in C3b 
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and iC3b respectively. The latter is supported by various studies that show that 
regions outside the I domain contribute to iC3b interaction114,115.

Surface-bound iC3b and C3dg play critical roles in B-cell stimulation and 
the initiation of adaptive immune responses. Coligation of C3dg or iC3b with 
CR2 and the B-cell antigen receptor complex amplifies a signal transduction 
cascade through the CR2/CD19/CD81 co-activation complex2. CR2 is a member 
of the RCA family. It consists of 15 or 16 N-terminal CCP modules, a 24 resi-
due transmembrane domain, and a C-terminal 34-residue intracellular part. Only 
CCP1 and 2 are necessary for binding to C3dg or iC3b116. The CR2 binding site 
is located on the TED domain. Various studies have provided information on the 
interaction and binding sites in the iC3b–CR2 and C3d–CR2 complexes117-124. A 
few years ago, the structure of C3d in complex with CCP1-2 of CR2 was 
solved36. This structure shows extensive main-chain interactions between C3d 
and CCP2 of CR2 and no direct interaction between CCP1 of CR2 and C3d. 
However, the observed structural arrangement of the complex is controversial. 
Very recently it was shown that, in addition, the CCP1 domain of CR2 probably 
makes direct contacts to C3d125,126. Nevertheless, the exact site of interaction of 
CCP1 on C3d still remains unknown. Though significant structural differences 
are apparent between the structures of C3d in the CR2–C3d complex and the 
TED domain in C3, the CR2–CCP2 binding site is very similar in the two struc-
tures — ruling out that conformational changes play a role for this subsite. 
Moreover, this site is completely exposed in native C3 (Figure 2). This indicates 
that CCP1 of CR2 discriminates between the conformational states of C3 vs. 
iC3b and C3dg, because its binding site is either inaccessible in C3 or has 
changed its conformation. 

7.  CONCLUDING REMARKS 

The structures of native C3 and its major fragment C3c have provided a wealth 
of structural insights into the central protein of the complement system. The 
proteolytic activation steps, generating the important fragments C3b and iC3b, 
are thought to induce significant conformational changes in the molecule, yield-
ing protein molecules with distinct binding properties. The structures of C3 and 
C3c reveal the extent of conformational changes that may be expected. These 
structures together with the large amount of biochemical, mutagenesis, and bind-
ing data available on C3, its fragments, and the various interacting partners pro-
vide for the first time a detailed map of the various proposed binding sites. Still, 
many questions remain unanswered and additional structural data and site-
directed mutagenesis experiments, now made possible in a more rational way, 
are required to elucidate the complete complexity of the central component of 
the complement system. 
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