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Geometrical cluster ensemble analysis of random sphere packings
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We introduce a geometric analysis of random sphere packings based on the ensemble averaging of
hard-sphere clusters generated via local rules including a nonoverlap constraint for hard spheres.
Our cluster ensemble analysis matches well with computer simulations and experimental data on
random hard-sphere packing with respect to volume fractions and radial distribution functions. To
model loose as well as dense sphere packings various ensemble averages are investigated, obtained
by varying the generation rules for clusters. Essential findings are a lower bound on volume fraction
for random loose packing that is surprisingly close to the freezing volume fraction for hard spheres
and, for random close packing, the observation of an unexpected split peak in the distribution of
volume fractions for the local configurations. Our ensemble analysis highlights the importance of
collective and global effects in random sphere packings by comparing clusters generated via local
rules to random sphere packings and clusters that include collective effects. © 2006 American

Institute of Physics. [DOI: 10.1063/1.2390700]

I. INTRODUCTION

Random particle packings1 are ubiquitous in nature and
technology and can be found in divergent topics such as
granular media (sand, powders), stacks of catalyst carriers,
and random fibers in biological cells.? Despite the fact that
packed particles very often have a nonspherical shape,3’4
studies of random packings have focused on spheres.s_8 Such
studies have revealed two distinct limits of random packing,
namely, random close packing (RCP) and random loose
packing (RLP).

Random close packing is associated with a maximum
density for a collection of randomly positioned spheres. In
the extensive experiments recently performed by Aste® and
Aste et al.,7 as well as recent computer simulations,9’10 a
value of around 0.64 is found as an upper limit for the RCP
sphere volume fraction, in line with earlier literature®® on
random sphere packings. A debated issue is whether a unique
well-defined RCP density exists for this maximum random
state. Torquato et al" argued that random close packing is
actually ill defined and introduced the alternative concept of
a maximally random jammed state. This state refers to the
largest density for which an order parameter is minimized, a
criterion also used by Stachurski to define an ideal amor-
phous solid."> Another definition for RCP introduced by
Roux'® states that ideal random close packings of hard
spheres are equilibrium states devoid of crystal nuclei that
remain stable without friction. Compaction procedures are
regarded as recipes to minimize the effects of friction. The
definitions of both Torquato et al."" and Roux" imply the
existence of a well-defined maximum density: either an order
parameter has to be minimized or the constraint of no crystal
nuclei has to be enforced to find the maximum random close
packing density.
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While random close packing refers to the density maxi-
mization of a disordered sphere packing, random loose pack-
ing is associated with minimizing the packing density to the
lowest value for which a collection of randomly positioned
spheres is mechanically stable in the limit of zero gravity.
Mechanically stable means here that the packing is in static
equilibrium under a set of externally applied forces.

Solving any of the global packing problems mentioned
above is quite a challenge. In this paper our primary aim is to
investigate an alternative to such global extremum problems,
starting from the perspective of random sphere packings
composed of sphere clusters rather than single spheres. As
typical cluster radius we choose the distance over which the
pair distribution decays such that the main peaks of a distri-
bution function from an experimental sphere packing are
captured, i.e., where the distribution function starts to oscil-
late around 1. This approach reminds us of De Gennes’s
model for structural glasses where clusters of atoms or par-
ticles rather than single entities are the building blocks of a
structural glass.14

In more detail our approach is as follows. We calculate
the packing density from the frequency distribution of
Voronoi volumes similar to Finney,6’7’15 who gave an esti-
mate for the RCP volume fraction calculated from a Voronoi
analysis of experimental determined sphere configurations.
Shahinpoor'6 used Voronoi volumes to construct a statistical
mechanical analysis of stable random packings of granular
materials where ensemble averages are obtained from a prob-
ability distribution as a function of void ratio. In this paper
we combine the concept of clusters as building blocks with
the statistical mechanics description from Shahinpoor to cal-
culate ensemble averages of properties of random packing
such as the probability distribution of Voronoi volumes. To
obtain this distribution in our analysis a random sphere pack-
ing is considered as an ensemble of clusters of identical hard
spheres, which models the constraints of nonoverlap and ran-
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dom positioning. These clusters are generated according to
well-defined local rules. Properties such as volume fraction,
contact numbers, and radial distribution function are calcu-
lated as a “geometric” ensemble average over these clusters,
which can be seen as the geometric equivalent of an en-
semble average over phase space in the statistical mechanics
of thermal systems. Generation rules for constructing sphere
clusters are varied to model properties of random loose as
well as close packing. First we review in Sec. II some im-
portant concepts in random packing, followed by a descrip-
tion of generation methods for cluster ensembles in Sec. III.
In Sec. IV we discuss results from the cluster ensemble
analysis and make a comparison to experimental sphere
packings, in particular, the experimental data of Aste,” who
seems to have analyzed the largest number of spheres so far.

Il. PRELIMINARY

The essential approximation underlying our cluster en-
semble analysis is that any sphere and its neighboring
spheres in a random packing form a local configuration that
is statistically independent from the other sphere configura-
tions. This approximation enables us to use a mathematically
well-defined criterion for generating geometric local cluster
configurations with corresponding ensemble averages of, for
example, the packing fraction. The ensemble averages are
compared to values obtained from experimental and simu-
lated random packings. Using local rules only allows us to
assess any influence of global and collective effects on the
properties of a random packing.

The rules for generating a cluster should produce sphere
configurations that mimic the local structure in a random
packing. In a stable random packing the majority of spheres
are arrested at their position, whereas a minority of about
1%-3% of spheres can rattle'’ when the whole packing is
shaken. The generated clusters must also have most of the
spheres arrested. Donev et al."® distinguished three types of
jamming for packed spheres, namely, spheres that are locally
jammed, collectively jammed, or strictly jammed. A sphere is
locally jammed if it cannot translate when the positions of all
other spheres in the packing are fixed. Collectively jammed
and strictly jammed are more stringent conditions'® where a
collection of spheres or all spheres cannot translate or rotate.
Peters et al."” analyzed a specific case of local jamming,
namely, the caging of a sphere with the corresponding caging
number defined as the average minimum number of spheres
that needs to be placed at random on the surface of sphere S
to block all translational degrees of freedom of S with the
condition of nonoverlap for spheres.lg’20 In a disorded sphere
packing it is expected that as a first approximation the con-
tacts on each sphere are distributed randomly over the sphere
surface, constrained by the nonoverlap condition. Thus in our
approach, for spheres in a random packing to be locally
jammed, the average number of contacts at least equals the
caging number if contacts are distributed randomly on the
surfaces of spheres.

J. Chem. Phys. 125, 194709 (2006)

The mathematical criterion for a sphere S to be non-
caged, namely, that a hemisphere on S can be chosen such
that all contacts are part of that hemisphere,lg’20 can be cast
into a problem of contact normal forces to give a more physi-
cal picture. For a noncaged sphere S all vector sums of non-
zero normal forces applied at the contact points are
nonzero.”' The contact forces can only push spheres. This
definition of noncaging plus the requirement that contact
forces are always directed to the center sphere yields the
following equation:

flnl +f2n2 + ...

which can be written as the system of linear equations

+fm;=0 with f;=0, (1)

flnl i L8] +f2n2'n1+ +f[ni‘n1=0,

S+ fony cmp+ L+ fim-ny =0,

2

flnl . nl'+f2n2 ‘n;+ ... +f[nl" ll,-=0

or
Af=0 with £=0. 3)

Here A is an n X n matrix whose elements are the dot prod-
ucts of the normal vectors n; and f is a vector which contains
the force magnitude of the ith contact with normal n;. The
trivial solution to this system of equations is f=0. If a non-
trivial solution exists then a sphere is caged and the relative
acceleration of two spheres at each contact point can be
made zero under the application of a set of nonzero contact
forces. In a static packing each local configuration has to
satisfy (1) with the exception of rattlers.

In addition to contact forces from other spheres, particles
in an experimental random packing may also be affected by
the container wall. Spheres in a box might crystallize since
the face centered cubic (fcc) or hexagonal close packed (hep)
lattice minimizes gravitational potential energy. However,
when spheres in a box are quenched fast enough a stable
disordered state is formed. There are several examples of
sphere packings being tapped and shaken yet they stay dis-
ordered and do not settle into an fcc or hep lattice.” In the
present work sphere cluster ensembles are generated in un-
bounded space, which is convenient because it allows us to
study random packing without influence of a wall in the bulk
of a random packing. Having described the criteria a cluster
has to satisfy, we will now outline the various methods for
generating clusters with specific packing properties.

lll. METHODS

We have investigated three types of algorithms to gener-
ate configurations based on a local rule to which we refer to,
respectively, as the caging method, the parking method and
the drop and roll method. For comparison, an additional al-
gorithm was developed for taking collective effects into ac-
count, namely, a modification of the mechanical contraction
method.*'” The cluster ensemble analysis for the different
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(a) (b)

FIG. 1. Examples of two-dimensional (2D) clusters generated. The volume
fraction follows from the area of the center disk divided by the area of its
Voronoi cell. Shells 1 and 2 are denoted with their respective numbers. Both
clusters show a stringlike structure. (a) Typical cluster generated with caging
method. (b) The parking method cluster has a higher volume fraction than
the caging cluster.

algorithms is compared to computer simulations of random
packing in a box with periodic boundary conditions and to
experimental disordered sphere packing.

A. Caging method

The caging method starts with placing a central sphere S
at the origin. Neighboring spheres are subsequently added to
S at random fixed positions until S is caged according to the
definition in Sec. II. The added neighbor spheres in the first
coordination shell are in turn caged by adding more spheres
at random that yield the second shell. After the second shell,
a third shell is created in the same manner. Figure 1(a) illus-
trates the model in two dimensions, and Fig. 2(a) shows a
three-dimensional example.

B. Parking method

The parking method is very similar to the caging method
except that it is based on the parking number” defined as the
average maximum number of spheres that can be placed at
random on a single sphere including a nonoverlap condition.
Now a first shell of neighboring spheres is formed by adding
spheres at random fixed positions on a central sphere until it
is no longer possible to park more spheres. The added neigh-
bor spheres form again the first shell. Note that owing to the

FIG. 2. Graphical representations of the generated clusters. The volume
fraction increases in each picture. (a) Example of a cluster from caging

method. (b) The parking method. (¢) Drop and roll method. (d) Mechanical
contraction method.
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definition of the parking number the central sphere will al-
ways be caged. The spheres from the first shell then form the
basis for the second shell. A second shell is formed by ran-
domly parking the maximum number of fixed spheres on the
first shell, a procedure which can be repeated for additional
shells [Figs. 1(b) and 2(b)].

C. Drop and roll method

Our third method is a “drop and roll” model inspired by
Ref. 24. The first coordination shell is created just as in the
parking model, but the next shells are formed by a drop and
roll mechanism, i.e., a sphere is dropped on the cluster from
a random direction and then rolled over the cluster surface
until it contacts at least three other spheres. This is repeated
for a fixed number of spheres [Fig. 2(c)].

D. Mechanical contraction method for clusters

The fourth procedure is a modiﬁed version of the me-
chanical contraction method for spheres " For a convenient
comparison with the previous three local methods a central
sphere S is held fixed at the origin around which a gas of
spheres is generated. The largest distance from a sphere cen-
ter to the origin defines the radius of a bounding sphere that
comprises all sphere centers. The volume of the bounding
sphere is reduced and the spheres are moved towards S by
scaling their position. Overlap between the spheres is re-
moved as described elsewhere for the mechanical contraction
method (MCM).*

When the volume of the bounding sphere is minimized,
the enclosed spheres start to crystallize to fit inside the
bounding sphere since the most efficient packing in filling
space is the fcc or hep packing.25 To prevent global crystal-
lization in the container any overlap between spheres and the
bounding sphere is not removed. Local crystallinity is moni-
tored by local bond order parameters and contact numbers.
As the bounding sphere shrinks, the volume fraction will at
some point exceed 0.64 and a new bounding sphere is cal-
culated. The above steps are repeated until a termination con-
dition is met, namely, when the newly calculated bounding
sphere is larger then the previously calculated bounding
sphere. At the termination point the cluster will dilate be-
cause spheres have to move outwards to remove the overlap
caused by scaling their position and then the bounding radius
increases. This algorithm models collective effects from the
presence of other spheres, in contrast to the previous three
local models involving only the positioning of a single
sphere per step. A typical example of a cluster is shown in
Fig. 2(d).

E. Computing average properties of a cluster
ensemble

For comparison to the volume fractions of a random
sphere packing we calculate the ensemble average of the
local cluster volume fraction. The latter is calculated em-
ploying a Voronoi cell, i.e., the region of space closer to a
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TABLE I. Ensemble averages for the four cluster algorithms.

N* N, N, N, Phi Phi ¢ Phi 1 Phi 2
Cage 3.54 4711 4.593 3.3105 0.495 0.497 0.502 0.494
method
Park 3.59 8.392 4.42 3.186 0.528 0.625 0.551 0.519
method
Drop 7.442 8.38 6.618 7.623 0.603 0.650 0.616 0.599
and roll
MCM 6.341 6.274 6.333 6.344 0.645 0.633 0.641 0.646
cluster
MCM 5.8 0.62
packing

“N is the average contact number of the first two shells. N., N|, and N, are the average contact numbers, for the
central sphere, the first shell, and the second shell, respectively. Phi is the average volume fraction of the first
two shells. Phi ¢, Phi 1, and Phi 2 are the averages of the local volume fraction for the central sphere, the first

shell, and second shell, respectively.

specific point than other points in the same point set. The
volume of the Voronoi cell is the volume closest to the center
of a sphere and the local volume fraction is obtained by
dividing the volume of a sphere by its Voronoi volume®'>2¢
(see Fig. 1). Contact numbers and the radial distribution
function for the central sphere are also calculated by averag-
ing over the ensemble of clusters. The calculated ensemble
averages have an uncertainty because, to form a sphere pack-
ing, clusters are merged together and it is not clear how
exactly the merging of clusters will influence the calculated
averages.

Furthermore, the Q, and Qg4 orientational bond order
parameters27 were calculated to compare the orientational or-
der with experimental data from.° Q4 and Qg are calculated
by considering the local bonds connecting a sphere to its
neighbors from the Voronoi diagram in stead of the neigh-
bors within a fixed distance.’® Q; is defined as:

1
> (Y606, p0))P,

m=-1

0 \/ - @)
ST

where the angular brackets () denote the average over the

local bonds i consisting of the vectors connecting a sphere

with its neighbors.

F. Modified mechanical contraction method

The properties of the clusters are also compared to ran-
dom sphere packings generated by the MCM. Here a slightly
different method is used: instead of contracting a system of
spheres, the radii of the spheres are increased which has the
same effect. In the original MCM sphere positions are scaled
by a factor depending on the volume of the simulation box.
This volume dependence is removed by keeping the simula-
tion box fixed, and instead the radius of the spheres is in-
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FIG. 3. Distribution of contact num-
bers for central sphere. (a) Caging
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creased similar to the Lubachevsky-Stillinger algorithm.28
Overlapping spheres are separated employing the same over-
lap removal scheme as in MCM. As the spheres grow in size
it becomes impossible at a certain point to remove the over-
lap. Then the volume of the simulation box is increased and
the mentioned steps are repeated a fixed number of times. In
the next section the results for the various algorithms dis-
cussed are evaluated.

IV. RESULTS AND DISCUSSION

The geometric ensemble averages over 1000 clusters for
the four algorithms from Sec. III are listed in Table I. It
should be noted that the averages over the total cluster must
be treated with care since it is not known how to combine the
clusters into a packing. Part of the outer shells can be shared
which modifies the global average. A visualization of a typi-
cal cluster generated by each algorithm is shown in Fig. 2.
The distribution in contact numbers for the center sphere and
the first shell is plotted in Figs. 3 and 4. The distribution of
local volume fractions for the center sphere and first shell are
given in Figs. 5 and 6. The normalized radial distribution
function (rdf) for the central sphere was calculated and av-
eraged over all generated clusters in the ensemble (see Fig.

(@)

FIG. 4. Distribution of contact num-
bers for spheres in the first shell. (a)
Caging method. (b) Parking method.
(c) Drop and roll method. (d) MCM
cluster method. (e) Distribution of
contact numbers for spheres in a
MCM packing.

7). For all methods the rdf has a first peak at one diameter,
corresponding to spheres in contact with the central sphere.
For the caging method the rdf shows almost no structure
after the first two peaks and the second peak is not split in
two, in contrast to the other methods that yield a split second
peak and a broad peak for r less than three sphere diameters.
The first peak of the split peak is due to the tetrahedral ar-
rangement of the spheres, which is absent in the caging
method. The alignment of three spheres in a row produces
the second peak. In Fig. 8, the O, and Q¢ for a cluster en-
semble are plotted as pairs and compared with the Q’s cal-
culated for a perfect crystal structure, namely, the fcc, body
centered cubic (bcc), hep, and icosahedral arrangement. The
four cluster algorithms show a distribution of Q4-Qg pairs,
where the majority of pairs are different from the Q4-Qg
pairs for the crystal structures which show that the generated
clusters are indeed random structures. Similar to what is re-
ported by Aste® there is no icosahedral ordering present in
the clusters or in the sphere packings [Figs. 8(e) and 8(f)].

A. Caging results

For the caging method we find the same caging number
of 4.71, reported earlier’ as contact number for the center
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sphere. In the next two shells the contact number is lower
than the caging number. The volume fractions found with the
caging method are surprisingly close to the freezing volume
fraction of 0.495 of hard spheres and are roughly constant
through all shells. The similarity between the freezing vol-
ume fraction and caging volume fraction can be tentatively
explained as follows. Spheres in a fluid are immobilized due
to geometric restrictions when a system of hard spheres starts
to freeze upon increasing the density. Spheres in the caging
cluster ensemble represent a static snapshot of such a disor-
dered immobilized state. The freezing of hard spheres, of
course, is a thermal process so when the motion of spheres is
blocked, either the internal energy of the spheres needs to
increase or the structure of the system needs to change. Since
freezing occurs at constant temperature this means that the
structure must change. The caging cluster method generates
disordered structures in which spheres cannot translate and
thus indeed might represent a density at which freezing oc-
curs. This explanation, it should be noted, is clearly tentative
since freezing is a dynamic process whereas caging in our
definition is a pure geometrical concept.

The volume fraction of a caging cluster ensemble is
compared with experimental data on random sphere packings
by extrapolating a plot (see Fig. 9) of volume fraction versus
contact number from Aste.® A best linear fit of the data was
made without imposing the constraint that the fit has to in-
tersect z=4 at volume fraction 0.55. For the local caging
number of 4.71 a volume fraction of 0.54 is found. With the
constraint the fit gives a volume fraction of 0.57. The caging
volume fraction of 0.495 is lower than the random loose
packing volume fraction of 0.55 found by Onoda and
Liniger.8 It makes sense that for a global configuration of
spheres a higher volume fraction is necessary to achieve a
stable packing and this is also illustrated by the two-
dimensional example [Fig. 1(a)]. It is clear from the picture

070 040 045 050 055 060 065 0.70
Volume fraction

that a slight stress may further compact the two-dimensional
cluster to make it more stable.

Silbert ez al.’ performed molecular dynamics simulations
on frictionless and frictional sphere packings and found that
the contact number of the packings depends on the friction
coefficient and the coefficient of restitution of the spheres. In
the limit of infinite friction the contact number asymptotes to
the minimum value of 4. The contact numbers’ for packings
with a reasonably small friction coefficient are around the
caging number. The low friction coefficient allows the
spheres to slip and for the spheres to be jammed the force in
the normal direction is more important. To balance normal
forces with randomly positioned contacts a contact number
close to the caging number is needed. For a contact number
of 4.69, that is, very close to the caging number, the volume
fraction in packings generated by Silbert et al’ is 0.59,
which in turn is close to the volume fraction of 0.601 in
Aste® where a sphere cannot move without displacing its first
neighbors.

B. Parking results

For the parking method we find a reproducible, average
contact number of 8.39, which is lower than the parking
number of 8.7 reported in Ref. 23. For the next shell a value
of 4.42 is found. Interestingly, it is not possible to achieve a
value close to the parking number for the neighboring
spheres. Thus by maximizing the contact number for sphere
S, the contact number for a touching sphere S, is lowered
because the already parked spheres on S; exclude volume for
new spheres to be parked on S,. In the second shell the
contact number decreases further. For the parking method the
volume fraction of 0.625 for the central sphere is close to the
random close packing density commonly found in experi-
mental packings of 0.62-0.64, but for shells surrounding the
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FIG. 6. Distribution of local volume
fraction for central sphere and for
spheres in the first shell. (a) Caging
method. (b) Parking method. (c) Drop
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central sphere this is no longer the case due to the mentioned
excluded volume effects. The cluster dilutes as it grows via
parking more spheres. The already parked spheres influence
the placement of new spheres and this promotes the growth
of a stringlike structure, as shown in Fig. 1(b) for two dimen-
sions. The parking model describes the structure of a random
packing reasonably well as can be seen from the radial dis-
tribution functions in Fig. 7, but the overall density of 0.53 is
still roughly 20% below the RCP density of 0.64.

Another interesting feature is present in the distribution
of volume fractions for the central particle where a split peak
can be seen [Fig. 5(b)] with one peak at 0.60 and one peak at
0.64. The origin of the split peak in the distribution is not
precisely clear, but apparently there is a preference for some
particular configurations due to the excluded volume effects
from the nonoverlap condition. Figure 3(b) suggests a rela-
tion between the contact number and the peaks in the volume
fraction distribution where the two main peaks could corre-
spond to spheres with contact numbers of 8 and 9. The analy-
sis of the contact number for spheres with volume fraction in
the first peak ranging from 0.595 to 0.625 and 0.625-0.665
in the second peak confirms that 98% of spheres in the first
peak have a contact number of 8 and 86% of spheres have a
contact number of 9 in the second peak. The distribution for
the central sphere supports the experimental observation that

50 055 060 065 0.70 075040 045 050 055 060 065 070 075
Volume fraction

®

shaking and tapping a container of a random packing of
spheres densifies the packing. Tapping apparently changes
the ratio of 0.60 and 0.64 structures in a disordered sphere
packing by increasing the average contact number.

C. Drop and roll method

For the drop and roll method the average number of
neighbor spheres on the center sphere is the parking number
as expected. For the next shell the number of contacts per
sphere decreases to 6.62, and for the second shell the contact
number is 7.62. The contact numbers are higher than those
for the parking method because the drop and roll method
prevents the stringlike structure as in the cluster method
since the spheres are rolled until they touch at least three
other spheres. The result is a higher volume fraction for the
central sphere and for the surrounding shells than the parking
method. The volume fraction decreases with shell number
because as spheres are dropped from a random direction, the
probability of hitting a sphere from a certain direction be-
comes nonuniform, which results in an anisotropic structure
[Fig. 2(c)]. However, the contact numbers for these clusters
are higher than the numbers found in random packing. Fur-
thermore, some spheres have 12 neighbors, though there are
only a small percentage as can be seen from the Q,—Qg
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FIG. 7. Radial distribution functions
for the center sphere. (a) Caging
method. (b) Parking method. (c) Drop
and roll method. (d) MCM cluster
method. (¢) MCM random packing. (f)
Experimental random packing of hard
spheres.

8
7. () (b)
6
5_
c4
U)3<
24
N e s /"\/’\
() | sososvesmosessesssssossssssesnat
8
7 (c) @
6
8 4
T 4]
03*
2 1
: AN P N
0
8
7 (e) 0
6
5 A
T 4] 1
03-
2
: \ e
(O ] evesscscessssosssossssnns ——

0.0 05 1.0 15 20 25
r

graph [Fig. 8(c)]. The rdf shows a clear split peak which is
the result of rolling spheres until there are three contacts.
This promotes the formation of tetrahedral arrangements.

D. MCM cluster method

For the MCM cluster method the contact number is
roughly constant for each sphere shell with a value of 6.3.
The MCM cluster method models the features of a random
close packing better than the two other methods. The rdf
matches reasonably with the rdfs for the MCM and experi-
mental packing. The peaks in the rdf occur at roughly the
same position but the shape of the peaks differs. The contact
number for the central sphere is larger in the parking method
than for the MCM clusters. However, the volume fraction of
the center sphere is higher in the MCM model and also
denser in the next shells than in the case of the parking
method. The average volume fraction of 0.645 is close to the
random close packing volume fraction usually cited to be
around 0.64. Maximizing the coordination number locally as
is done in the parking method does not maximize the overall
volume fraction of the cluster. The MCM cluster method
clearly shows the importance of collective effects occurring
due to the geometric constraints on the spheres. By lowering
the contact number for the central sphere, the first and sec-

3.0 00 05 1.0

ond shell can pack more densely compared to the parking
method. The collective movement of the spheres creates a
more isotropic structure than for the drop and roll method.
The local models only mimic the behavior of a random pack-
ing reasonably well for the central sphere and its first shell.
The second shell is not representative since collective effects
become more important. There are no sphere configurations
formed with a contact number of 12 as can be seen from
Figs. 3(d) and 4(d). From the bond order parameters [Fig.
8(d)] it can be seen that the majority of local configurations
of the MCM are different than those for a fcc or hep crystal.

E. Modified MCM for random sphere packing

The modified MCM method is an iterative volume frac-
tion maximization procedure. The volume of the simulation
box is increased at each step and spheres can reorganize
themselves more efficiently. The volume fraction increases
as the spheres grow in size. After a fixed number of steps the
volume fraction reaches a plateau at 0.637 (see Fig. 10). The
plateau of 0.637 indicates that the packing is trapped in a
local volume minimum.
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FIG. 8. Q, and Qg orientational bond
order parameters. The stars represent
Q, and Qg in fcc, hep, bee, and icosa-
hedral. (a) Caging method. (b) Parking
method. (c) Drop and roll method. (d)
MCM cluster method. (¢) MCM ran-
dom packing. (f) Experimental ran-
dom packing of hard spheres.
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V. CONCLUSIONS

The cluster ensemble analysis turns out to be a versatile
method in investigating properties of random sphere pack-
ings. The ensemble averages yield a lower bound for the
random loose packing (RLP) volume fraction and show
quantitative agreement for random close packed (RCP) vol-
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FIG. 9. Linear fit through the experimental data from Aste. Extrapolating
the data yields for the caging number of 4.71 a volume fraction of 0.54.
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ume fraction, contact numbers, and radial distribution func-
tions. Furthermore, the ensemble analysis is useful to at least
qualitatively understand the origin of RLP and RCP from a
simple local geometrical analysis based on the physics of the
packing formation.

The caging cluster method yields a volume fraction of
0.495, remarkably close to the hard sphere freezing volume
fraction, providing a lower bound on volume fraction for
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FIG. 10. Volume fraction as a function of particle radius for the modified
mechanical contraction method.
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random loose packing. An unexpected split peak is found in
the distribution in volume fractions for the parking method,
related to the contact number of the center sphere. We show
that local models provide insight into the properties of ran-
dom packing of equally sized spheres. Calculated radial dis-
tribution functions for the clusters show the same peaks as
experimental data and computer simulations. A local orien-
tational bond order analysis confirms that the generated clus-
ters are indeed disordered. The radial distribution function
for the parking cluster resembles the radial distribution of a
random packing better than the drop and roll model where
the two peaks in the rdf are clearly split. The radial distribu-
tion function of the MCM cluster method agrees with the rdf
for a MCM packing and experimental sphere packings in
features, but the height and width slightly differs.

The parking cluster method and the drop and roll method
both generate configurations with properties similar to ran-
dom close packing. These methods show that by increasing
the contact number the local volume fraction increases.
However, there are still some differences in properties with
respect to experimental packings due to collective and global
effects. The MCM cluster method remedies these effects and
models a random close packing more closely since it ac-
counts for collective effects. The MCM cluster is denser than
the clusters from the local methods, and a maximization of
the volume fraction is realized. For a more detailed descrip-
tion of random packing more complicated models are
needed, which model collective effects in the generation of
clusters or packings.
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