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Abstract. In this paper we extend earlier work on deontic deadlines in CTL to
the framework of alternating time temporal logic (ATL). The resulting setting
enables us to model several concepts discussed in the deontic logic literature.
Among the issues discussed are: conditionality, ought implies can, deliberateness,
settledness, achievement obligations versus maintenance obligations and deontic
detachment. We motivate our framework by arguing for the importance of tempo-
ral order obligations, from the standpoint of agent theory as studied in computer
science. In particular we will argue that in general achievement obligations cannot
do without a deadline condition saying the achievement has to take place before it.
Then we define our logic as a reduction to ATL. We demonstrate the applicability
of the logic by discussing a possible solution to Chisholm’s paradox. The solution
differs considerably from other known temporal approaches to the paradox.

1 Introduction

In agent theory, as studied in computer science, we are interested in designing logi-
cal models that describe how agents can reason about and decide what to do, given
their obligations, permissions, abilities, desires, intentions, beliefs, etc. Decisions have
a temporal aspect, namely, they are about what to do in the future, and they deal with
conditional information, namely, they have to result from considering and reasoning
about hypothetical circumstances. The deontic ATL operators we consider in this paper
are both conditional and temporal. Their syntactical form is OA(ρ ≤ δ : ξA). The intu-
itive interpretation of the operator is that if the agents in the set A achieve δ, they are
obliged to achieve ρ at the same time or before that, under penalty of suffering the neg-
ative condition ξA. A good example of such an obligation is the following: according to
Dutch traffic regulations one has to indicate direction before one turns off. In this exam-
ple, δ is ‘turning off’, ρ is ‘indicating direction’ and ξ can be the circumstance of being
vulnerable for being fined by a police officer. Obligations OA(ρ ≤ δ : ξA) are thus condi-
tional on the actual occurrence of δ and are temporal in the sense that the achievement
ρ has to precede the condition δ. Readers familiar with the deontic logic literature will
recognize that another example is the second sentence of Chisholm’s original paradox-
ical scenario: ‘if one helps, first one has to tell’. In section 9 we discuss formalizations
of Chisholm’s scenario in our formalism.

One might wonder why we think obligations expressed as OA(ρ ≤ δ : ξA) are so
important. Let us explain. Obligations that guide agents in the actions they select for
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performing are always about the future. Obligations about the past are not interesting
for agents having to decide what to do, because we may safely assume that agents do
not control the past. We adopt terminology from BDI-theory, and say that the reference
time of the obligations we are interested in is the future, while the validity time is the
present1. The latter emphasizes that we want our logic to model the reasoning of an
agent that has to decide what to do ‘now’, considering the obligations he has about the
future. A rough classification of obligations whose reference time is the future is the di-
vision in achievement obligations and maintenance obligations. Similar terminology is
used by Cohen and Levesque [8] who distinguish between achievement goals and main-
tenance goals. In an achievement obligation, the objective is to achieve something in
the future that is not already (necessarily) true now. For a ‘maintenance obligation’ the
objective is to preserve the truth of a condition that is already true now. Our main inter-
est in this paper will be with achievement obligations, since as we will see in section 6,
maintenance obligations can be rewritten into equivalent achievement obligations. So,
for agent theory as studied in computer science achievement obligations are the most
interesting type of norms. Now we will argue in section 2 that achievement obligations
are close to meaningless without a condition δ before whose occurrence the achieve-
ment ρ has to be realized, which explains why obligations of the form OA(ρ ≤ δ : ξA)
are central to our investigations.

In some of the previous work on this subject [4], we referred to the condition δ as a
‘deadline’ of an obligation OA(ρ ≤ δ : ξA). That was partly because there we studied
this type of modality in the purely temporal framework of CTL. Here we use ATL for
the temporal component. ATL has elements of logics of Agency. In [5] we showed
how to embed Coalition Logic (CL), which is a subset of ATL, in the STIT framework
of Horty [11]2. Since ATL can be seen as a logic of (strategic) ability it enables us
to define different notions of control over conditions. And adding information about
control over the condition δ (or, to be more precise, absence of control over ¬δ, which
is something else) is actually what can turn a conditional temporal order obligation into
a real deadline obligation, as we explain in section 8. So obligations OA(ρ ≤ δ : ξA) as
such should not be referred to as ‘deadline’ obligations. They are conditional temporal
order obligations, which can be made into deadline obligations, by adding that agents
A do not control avoidance of the deadline condition δ.

2 Why Achievement Obligations Need a ‘Deadline’ Condition

Dignum et al [9, 17] stress the importance of providing deadlines (which they do not
view as particular kinds of conditionals, like we do) for obligations from practical
considerations. And indeed, in the environments where software agents are envisioned

1 The distinction between validity time and reference time for logics that contain a temporal
modality as one of the logic components, was, for instance, formulated by Lindström and
Rabinowicz [13] in the context of temporal epistemic logics. But it equally applies to temporal
motivational logics. And we belief that a failure to distinguish the two concepts is the source
of a lot of confusion.

2 And a paper on embedding ATL as a whole into the strategic version of Horty’s STIT formal-
ism is under review.
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to operate, they will have to deal with deadlines. Think about agents negotiating cer-
tain deadlines, to coordinate their behavior. For instance, agents may engage in mutual
agreements by means of contracts, which typically contain deadlines.

However, there are more fundamental reasons to equip achievement obligations with
deadline conditions. A fundamental assumption in deontic logic is that norms (oblig-
ations) can be violated, and that we should be able to reason about this circumstance.
Now, if we think about the situation where an agent has an achievement obligation ϕ
for, say, ‘stop smoking’, and we want to make the temporal component of ϕ explicit,
then we cannot model this by writing for ϕ a formula like OFstop smoking (Oψ for
‘it is obliged that ψ’ and Fχ for ‘some time in the future χ’), because we cannot vio-
late this obligation. At any future point, the agent can claim that although he has not
stopped smoking yet, he will eventually, at some point even further in the future. Most
deontic logicians would agree that obligations that cannot be violated are no obliga-
tions at all. So what it takes for an achievement obligation to really be an obligation
is reference to a condition under which it is violated. And this is exactly what a dead-
line condition is: a condition giving rise to a violation if the achievement has not been
accomplished before. If this condition corresponds to a given point is some time met-
ric, we have a genuine deadline obligation. But if this condition is an abstract propo-
sition δ, we have a special kind of conditional obligation, namely, a temporal order
obligation.

A possible objection against the above line of reasoning is that sometimes there do
seem to be ways in which to violate an achievement obligation without a deadline. Be-
fore explaining the objection, we need to point out that obligations play multiple roles
in rational agent modelling. There are two abstraction levels on which they play a role.
First there are achievement obligations incurred and represented by agents. These oblig-
ations should have a deadline, since otherwise they cannot be violated which means
that they do not influence the agents decision making. But there are also achievement
obligations that function as specifications for the agents behavior as seen by an agent
designer. A good example is the formal property of fairness. For instance, a designer
might specify that his agent is obliged to distribute its deliberation efforts fairly over
its set of goals. The design of the agent may violate this fairness obligation. But note
that in general this is not something the agent itself is concerned with. The agent is
designed as it is, and it cannot choose to have another design. And thus it cannot violate
an achievement obligation without a deadline. Or can he? Of course, we can imagine
that an agent indeed is able to alter its own design, thereby violating a certain achieve-
ment obligation. For instance, we might claim that an agent violates the achievement
obligation to shake hands with president Bush someday by cutting off his own hands.
A similar objection is that an agent might perform something irrevocable in its environ-
ment. For instance, an agent can be said to violate the achievement obligation to bring
back the book to the library some day by burning it3.

We acknowledge these as valid objections against our claim that achievement oblig-
ations need deadlines. However, there are still some good reasons to claim that deadline
conditions are crucial for achievement obligations. For instance, an agent cannot destroy

3 What if we are able to reproduce exactly the same book? Then, apparently burning did not
count as irrevocably destroying the possibility to comply.
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the possibility to be able to stop smoking, so at least for some achievement obligations
a deadline is necessary. Furthermore, one seems to have a contrived interpretation of
an obligation like ‘having to return a book to the library some day’ if one claims that
it does not imply that one actually has to bring it back but only that one should not
irrevocably destroy it.

Our suggestion, is that we can study the difference between, for instance the smok-
ing example and the library example as a difference in the interaction with abilities.
In section 8 we will mention several ways in which obligations act with ability. One
interaction with ability is that we can choose to define that an obligation for achieving
ϕ implies that an agent is obliged to keep open the possibility of reaching ϕ (we will
however not discuss this interaction in section 8). If we choose to include this property,
indeed, in the library example we violate the achievement obligation to bring back the
book eventually, by burning the book. However, for the smoking example there is no
difference: it is hard to imagine how an agent can violate an obligation to keep open the
possibility to stop smoking.

3 Reduction Using Negative Conditions

As explained, the syntax of the central modality we study in this paper is OA(ρ ≤ δ : ξA)
(although we permit ourselves a brief generalization to a conditional variant OA(ρ ≤ δ :
ξA | η) in section 9). The O stands for obligation, A is a group of agents having the
obligation, ρ is the condition to be achieved, δ the condition functioning as the deadline
for the achievement, and ξA a condition necessarily true in case the deadline obligation
is violated. We think of ξA as a condition that is in some sense negative for the group
of agents A. Negative conditions typically play a role in the semantics of notions like
obligation, commitment and intention. Goals, desires, wants, wishes, objectives, etc.
are typically associated with positive conditions. Our approach differs from most others
working with negative condition [3, 15] in that we make the negative condition explicit
in the syntax of the obligation modalities. In standard deontic logic (SDL) [18], the
negative conditions are implicit in the modal semantics: modally accessible worlds are
optimal worlds where no violations occur. In Anderson’s reduction for SDL [3], the
negative conditions are explicit in the object language through a propositional constant
Viol. In this paper we go one step further by explicitly giving the negative conditions
ξA as parameters for the obligation operator OA(ρ ≤ δ : ξA). This has many advantages.
For instance, it gives us the machinery to specify that certain obligations are incurred
as the result of violating other obligations. That is, we can nest obligations by using
formulas of the form OA(ρ ≤ δ : ξA) for ξA. However, we do not consider such nestings
in this paper. The most important reason for making the negative conditions explicit,
is the advantage this has in the study of Chisholm’s scenario in section 9. It enables
us to view the choice of which temporal obligation to comply to as a decision about
which non-temporal negative condition to prefer. Obviously, such decisions can only
be made relative to a preference order over negative conditions. In this paper such an
order is not made explicit, since here we are only concerned with a possible definition
for temporal obligations in terms of negative conditions. Possible logical structures for
negative conditions themselves are not explored.
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Also, allowing general negative conditions ξA enables us to discuss some principles
of deontic logic. For instance, in case ξA = ⊥, the norm is ‘regimented’. Actually this
means that the norm is no longer a norm, since it is no longer possible to violate it; the
norm simply becomes a hard constraint on the behavior of agents. Thus OA(ρ ≤ δ : ⊥)
means that A can only do ρ before δ, and nothing else. In terms of strategies: the agent
has no strategy where eventually he meets a δ without having met a ρ first. The case
ξA = � gives a dual effect: now the penalty is always true, which means that it looses
its meaning as a divider between ‘the good’ and ‘the bad’. As a result, OA(ρ ≤ δ : ξA)
looses its normative meaning; any point of achieving ρ or δ becomes as good as any
other. This means that OA(ρ ≤ δ : �) has to be generally valid, as is the case for our
definitions for the operator.

Our aim is to define the semantics of the modality OA(ρ ≤ δ : ξA) entirely by con-
structing reductions to formulas of alternating time temporal logic (ATL) [1, 2] talking
about negative conditions. ATL is a temporal logic of agency with a game theoretic
semantics in terms of strategies. The deadline obligations we define will then be strate-
gic obligations in the sense that they limit the possible strategies of agents by asso-
ciating negative conditions with courses of agent choices that do not comply to the
obligation.

Reducing to ATL has many advantages. We can use the logical machinery of ATL
(axiomatization, model checking algorithms), to do reasoning. We can check properties
of deontic logics by translating and proving them in ATL. Finally, we can do planning
with obligations and deadlines using a satisfiability checker for ATL. We do not have
to be too afraid that ATL, as a formal system, might be to weak to encode interesting
properties, since it has been shown to have an exponential time complete complexity.

4 ATL

We present ATL ([1, 2]) here using a non-standard, but concise and intuitive syntax and
semantics.

4.1 Core Syntax, Abbreviations and Intuitions

Definition 1. Well-formed formulas of the temporal languageLATL are defined by:

ϕ, ψ, . . . := p | ¬ϕ | ϕ ∧ ψ | 〈[A]〉η | [〈A〉]η
η, θ, . . . := ηUeeθ

where ϕ, ψ, . . . represent arbitrary well-formed formulas, η, θ, . . . represent temporal
path formulas, the p are elements from an infinite set of propositional symbols P, and
A is a subset of a finite set of agent names E (we define A ≡de f E \ A). We use the su-
perscript ‘ee’ for the until operator to denote that this is the version of ‘the until’ where
ϕ is not required to hold for the present, nor for the point where ψ, i.e., the present
and the point where φ are both excluded. Roughly, 〈[A]〉η is read as ‘A can ensure η’,
and the dual [〈A〉]η is read as ‘A cannot avoid η’. A more precise explanation, revealing
the existential and universal quantification over strategies in both these operators (which
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explains our choice of syntax using a combination of sharp and square brackets for both
operators) is as follows:

〈[A]〉(ϕUeeψ): agents A have a strategy that, whatever strategy is taken by agents A,
ensures that eventually, at some point m, the condition ψ will hold,
while ϕ holds from the next moment until the moment before m

[〈A〉](ϕUeeψ): for all strategies of agents A the agents A have a strategy such that
eventually, at some point m, the condition ψ will hold, while ϕ holds
from the next moment until the moment before m

We use standard propositional abbreviations, and also define the following operators
as abbreviations.

Definition 2

〈[A]〉Xϕ ≡de f 〈[A]〉(⊥Ueeϕ) [〈A〉]Xϕ ≡de f [〈A〉](⊥Ueeϕ)
〈[A]〉Fϕ ≡de f ϕ ∨ 〈[A]〉(�Ueeϕ) [〈A〉]Fϕ ≡de f ϕ ∨ [〈A〉](�Ueeϕ)
〈[A]〉Gϕ ≡de f ¬[〈A〉]F¬ϕ [〈A〉]Gϕ ≡de f ¬〈[A]〉F¬ϕ
〈[A]〉(ϕUeψ) ≡de f ϕ ∧ 〈[A]〉(ϕUeeψ) [〈A〉](ϕUeψ) ≡de f ϕ ∧ [〈A〉](ϕUeeψ)
〈[A]〉(ϕUψ) ≡de f 〈[A]〉(ϕUe(ϕ ∧ ψ)) [〈A〉](ϕUψ) ≡de f [〈A〉](ϕUe(ϕ ∧ ψ))
〈[A]〉(ϕUwψ) ≡de f ¬[〈A〉](¬ψU¬ϕ) [〈A〉](ϕUwψ) ≡de f ¬〈[A]〉(¬ψU¬ϕ)

The informal meanings of the formulas are as follows (the informal meanings in com-
bination with the [〈A〉] operator follow trivially):

〈[A]〉Xϕ : agents A have a strategy to ensure that at any next moment ϕ will hold
〈[A]〉Fϕ : agents A have a strategy to ensure that eventually ϕ will hold
〈[A]〉Gϕ : agents A have a strategy to ensure that holds globally
〈[A]〉(ϕUeψ): agents A have a strategy to ensure that, eventually, at some point m,

the condition ψ will hold, while ϕ holds from now until the moment
before m

〈[A]〉(ϕUψ): agents A have a strategy to ensure that, eventually, at some point the
condition ψ will hold, while ϕ holds from now until then

〈[A]〉(ϕUwψ): agents A have a strategy to ensure that, if eventually ψ will hold, then
ϕ holds from now until then, or forever otherwise

4.2 Model Theoretic Semantics

The intuition behind ATL models is that agents have choices, such that the non-determi-
nism of each choice is only due to the choices other agents have at the same moment.
Thus, the simultaneous choice of al agents together, always brings the system to a
unique follow-up state. In other words, if an agent would know what the choices of other
agents would be, given his own choice, he would know exactly in which state he arrives.

Definition 3. An ATL modelM = (S ,C, π), consists of a non-empty set S of states, a
total function C : A × S 
→ 22S

yielding for each agent and each state a set of choices
(informally: ‘actions’) under the condition that the intersection of each combination
of choices for separate agents gives a unique next system state (i.e., for each s, the
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function RX(s) = {⋂
a∈A

Cha | Cha ∈ C(a, s)} yields a non-empty set of singleton sets

representing the possible follow-up states of s), and, finally, an interpretation function
π for propositional atoms.

Note that from the condition on the function C it follows that the choices for each
individual agent at a certain moment in time are a partitioning of the set of all choices
possible for the total system of agents, as embodied by the relation Rsys = {(s, s′) | s ∈
S and {s′} ∈ RX(s)}. And, also note that this latter condition does not entail the former.
That is, there can be partitions of the choices for the total system that do not correspond
to the choices of some agent in the system.

Definition 4. A strategy αa for an agent a, is a function αa : S 
→ 2S with ∀s ∈ S :
αa(s) ∈ C(a, s), assigning choices of the agent a to states of the ATL model.

Often, strategies are defined as mappings αa : S + 
→ 2S , from finite sequences of
states to choices in the final state of a sequence. However, to interpret ATL, this is not
necessary, because ATL is not expressive enough to recognize by which sequence of
previous states a certain state is reached. More in particular, without affecting truth of
any ATL formula, we can always transform an ATL model into one where Rsys is tree-
like. On tree structures it is clear right away that a mapping from states to choices in
that state suffices, since any state can only be reached by the actions leading to it.

The strategy function is straightforwardly extended to sets of agents.

Definition 5. A full path σ in M is an infinite sequence4 σ = s0, s1, s2, . . . such that for
every i ≥ 0, si ∈ S and (si, si+1) ∈ Rsys. We say that the full path σ starts at s if and only
if s0 = s. We denote the state si of a full path σ = s0, s1, s2, . . . inM by σ[i].

A full path σ complies to a strategy αA of a set of agents A if and only if for every
n ≥ 0, σ[n + 1] ∈ αA(σ[n]). We denote the set of full paths complying to a strategy αA

by Σ(αA).

Definition 6. Validity M, s |= ϕ, of an ATL-formula ϕ in a world s of a modelM =
(S ,C, π) is defined as:

M, s |= p ⇔ s ∈ π(p)
M, s |= ¬ϕ ⇔ notM, s |= ϕ
M, s |= ϕ ∧ ψ ⇔M, s |= ϕ andM, s |= ψ
M, s |= 〈[A]〉η ⇔ ∃αA s. t. ∀σ ∈ Σ(αA) with σ[0] = s :M, σ[0], σ |= η
M, s |= [〈A〉]η ⇔ ∀αA : ∃σ ∈ Σ(αA) with σ[0] = s s. t.M, σ[0], σ |= η
M, σ[0], σ |= ϕUeeψ⇔ ∃n > 0 s. t.

(1)M, σ[n] |= ψ and
(2) ∀i with 0 < i < n :M, σ[i] |= ϕ

Validity on a ATL modelM is defined as validity in all states of the model. If ϕ is valid
on an ATL modelM, we say that M is a model for ϕ. General validity of a formula

4 Alternatively, we may drop the requirement that Rsys is serial, and add a maximality condition
to the notion of ‘full path’.
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ϕ is defined as validity on all ATL models. The logic ATL is the subset of all general
validities of LATL over the class of ATL models.

5 Conditional Temporal Order Obligations

In this section we define operators for temporal order obligations as reductions to ATL-
formulas talking about negative conditions. We use ATL-formulas indexed with a set of
agents, i.e, ξA, to denote negative conditions. The central observation linking obligations
OA(ρ ≤ δ : ξA) to ATL, is the following:

OA(ρ ≤ δ : ξA) holds if and only if it is not the case that the group of agents A
has a strategy to achieve δ, to avoid ρ at all moments until δ occurs for the first
time, and avoid the negative condition ξA at the point where δ.

In other words, if A want to achieve δ at some future point, they have to make sure that
before that they achieve ρ, because otherwise the negative condition ξA will be valid at
the point where δ. We can rewrite this formally as a truth condition on ATL models:

Definition 7 (temporal order obligations)

M, s |= OA(ρ ≤ δ : ξA)⇔ �αA,∀σ ∈ Σ(αA) with σ[0] = s,∃ j :
such that
∀0 ≤ i < j :M, σ[i] |= ¬ρ ∧ ¬δ andM, σ[ j] |= ¬ρ ∧ δ
and
M, σ[ j] |= ¬ξA

This says: if at some future point δ occurs, than A has no way of ensuring that, if ρ has
not occurred before the point where δ occurs for the first time, there is not a negative
condition ξA at the point where δ. This means that if A do have a strategy to avoid the
negative condition while not doing ρ before δ, they do not have the obligation.

Under the above definition, in case only some strategies of agents may lead to neg-
ative conditions if they do not ensure that ρ is achieved before δ, the agents are not
obliged to achieve ρ before δ. This situation actually constitutes a kind of condition-
ality other than the conditionality with respect to deadline conditions δ. Modelling it
would require an operator OA(ρ ≤ δ : ξA | η), where η is a temporal formula denoting
the subset of paths the obligation holds on. Note that the original obligation reappears
as the case where η equals �. This kind of conditionality (which is not further explored
in this paper) can be modelled using the more expressive variant AT L∗. We leave this
extension and a discussion on the different kinds of conditionality that can be defined
for temporal deontic operators for a future paper.

A second aspect of definition 7 that has to be explained is that it by no means implies
that an obligation requires that δ becomes true eventually (which is why it is conditional
on δ). However, we do have that if A cannot avoid that δ might never become true, they
cannot have a strategy that ensures that at some point δ will hold (and where if ρ has not
been done before, there is not a negative condition), which means that they are obliged
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every ρ before δ (validity 10 in proposition 2 reflects this). This seems rather counter
intuitive. However, in section 8 we define a deliberate version of the operator for which
this property is eliminated.

The third thing to discuss is that intuitively, a strategic notion of obligation should
distinguish between the strategies that are good and the strategies that are bad. How-
ever, our definition suggests that we can define the obligation in terms of what strate-
gies agents have. The link between these two views is the use of the negative conditions
and the conditionality with respect to occurrence of the condition δ. Actually we can
view the definition as distinguishing between good and bad strategies in the following
sense: the strategies in which an agent eventually meets the condition δ without hav-
ing achieved the condition ρ before, are the bad strategies, all the others are the good
ones.

We can circumscribe the truth condition of definition 7 as an ATL formula. We have
the following proposition:

Proposition 1. A formula OA(ρ ≤ δ : ξA) is true at some point of an ATL model if and
only if the point satisfies the ATL formula (δ ∧ (¬ρ → ξA)) ∨ ¬〈[A]〉((¬ρ ∧ ¬δ)Ue(δ ∧
¬ρ ∧ ¬ξA)).

Proof. We only give an impression of the proof. The present is not controlled by any
strategy. If δ holds presently, and ρ does not hold presently, there is a violation presently.
In the truth condition this corresponds to the case j = 0, and in the formula to δ∧(¬ρ→
ξA). Equivalence is easy to see. For moments other than the present, the equivalence
follows almost directly from the semantics of the ATL operators involved.

6 Maintenance Obligations with a Relief Condition

In the introduction we explained what maintenance obligations are. Where achievement
obligations for a property ρ naturally come with a property δ functioning as a deadline
condition, maintenance properties ϕ come with a property ψ functioning as a relief
condition: if the relief condition occurs, the obligation to maintain ϕ no longer holds.
We can define maintenance obligations OA(ϕ � ψ : ξA) in terms of achievement
obligations as follows:

Definition 8
OA(ϕ� ψ : ξA) ≡de f OA(ψ ≤ ¬ϕ : ξA)

The rationale for the definition is as follows. An agent can comply to obligations OA(ρ ≤
δ : ξA) in two different ways: (1) he can look at it as having to do ρ before he does δ,
but he can also (2) look at it as having to preserve ¬δ as long as he has not achieved
ρ. Note that for a maintenance obligation OA(ϕ � ψ : ξA), the negative condition
occurs at the first point where ϕ is no longer maintained, provided this point is before
ψ. In section 9 we will use a maintenance obligation to model one of the sentences of
Chisholm’s scenario.
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7 More Logical Properties

In this section we mention some logical properties of the defined obligation operator.

Proposition 2. The following schemas are valid:

|= OA((ρ ∧ χ) ≤ δ : ξA)→ OA(ρ ≤ δ : ξA) (1)

|= OA(ρ ≤ � : ξA) ∧OA(χ ≤ � : ζA)→ OA((ρ ∧ χ) ≤ � : ξA ∨ ζA) (2)

|= OA(� ≤ δ : ξA) (3)

|= OA(γ ≤ γ : ξA) (4)

|= OA(ρ ≤ ⊥ : ξA) (5)

|= ¬OA(⊥ ≤ � : ⊥A) (6)

|= ¬(OA(ρ ≤ � : ξA) ∧ OA(¬ρ ≤ � : ξA)) (7)

|= OA(ρ ≤ δ : �) (8)

|= OA(ρ ≤ δ : ⊥)→ OA(ρ ≤ δ : ξA) (9)

|= [〈A〉]G¬δ→ OA(ρ ≤ δ : ξA) (10)

|= OA(ρ ≤ δ : ξA)→ [〈A〉](OA(ρ ≤ δ : ξA)Uw(ρ ∨ δ)) (11)

|= OA(ρ ≤ δ : ξA)→ OA(OA(ρ ≤ δ : ξA)� (ρ ∨ δ) : ξA) (12)

|= ξA → OA(ρ ≤ � : ξA) (13)

|= OA(ρ ≤ ξA : ξA) (14)

Proposition 3. The following schemas are not valid:

�|= OA(ρ ≤ δ : ξA) ∧OA(δ ≤ γ : ζA)→ OA(ρ ≤ γ : ξA ∨ ζA) (15)

�|= OA(ρ ≤ δ : ξA)→ OA(ρ ≤ (δ ∧ γ) : ξA) (16)

�|= OA(ρ ≤ δ : ξA) ∧OA(ρ ≤ γ : ξA)→ OA(ρ ≤ (δ ∨ γ) : ξA) (17)

�|= OA(ρ ≤ δ : ξA) ∧OA(ρ ≤ γ : ξA)→ OA(ρ ≤ (δ ∧ γ) : ξA) (18)

�|= OA(ρ ≤ δ : ξA) ∧OA(χ ≤ δ : ξA)→ OA((ρ ∧ χ) ≤ δ : ξA) (19)

�|= OA(ρ ≤ δ : ξA)→ OA(δ ≤ ρ : ξA) (20)

�|= OA(⊥ ≤ δ : ξA) �|= ¬OA(⊥ ≤ δ : ξA) (21)

�|= ¬OA(⊥ ≤ � : ξA) �|= OA(⊥ ≤ � : ξA) (22)

�|= ¬(OA(ρ ≤ δ : ξA) ∧OA(¬ρ ≤ δ : ξA)) (23)

�|= OA(ρ ≤ � : ξA) �|= ¬OA(ρ ≤ � : ξA) (24)

We have no opportunity here to discuss these properties. In stead we briefly discuss
some more logical issues.

The logical properties for maintenance obligations with a relief condition follow
easily from the properties for achievement obligations with a deadline condition.

Many of the above properties concern properties of single paths within arbitrary
strategies. Therefore we were able to give most of the proofs using an LTL theorem
prover [12].
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An interesting question is whether we can see classical non-temporal obligations
(such as the ones of SDL) as limit cases of temporal order obligations. Intuitively it
should be the case that if we ‘substitute’ the most common temporal connotations of
general obligations in the temporal deontic operators, we get standard deontic operators
back. In our opinion, the most likely substitution for this purpose is δ = �. We have the
following theorem:

Theorem 1. The logic of Oa(ρ≤� : ⊥) is standard deontic logic (the modal logic KD)5.

Proof. Substitution in the definition for O gives ¬〈[A]〉((¬ρ ∧ ¬�)Ue(� ∧ ¬ρ ∧ ¬⊥)).
This reduces to [〈a〉]Xρ. Since there is only one agent, system actions and actions of
a are identical. The seriality condition on system actions ensures modal property D. K
follows from the fact that for one agent, the ATL structure is based on a classical Kripke
frame. From this it also follows that the logic is exactly KD, since this frame satisfies
no additional properties.

8 Interactions with Ability: Deadlines and Deliberate Versions

In the previous sections, we did not consider the issue whether or not the conditions ρ,
δ and ξ were actually ‘under control’ of groups of agents A. However, as is well known
from the deontic literature, issues like ‘ought implies can’, ‘settledness’ and ‘power’
take a central place in it. In this section we study some interactions of obligations and
‘control’.

First we discuss the issue of control over the condition δ. We called the obligations
‘temporal order obligations’ exactly because we did not exclude that δwas indeed under
control of the group of agents A. In contrast, a deadline obligation can be viewed as a
temporal order obligation where the agents A do not control δ. However we have to be
very careful with what we mean. Actually, not controlling δ should not be understood
as agents A not having a strategy for Fδ (consequently they also would not have a
strategy to violate without negative consequences, and thus would be obliged anything
before ρ). Not controlling δ should be understood as not having a strategy for G¬δ.
The difference with conditional temporal order obligations is thus that agents A cannot
avoid their duty by pushing a deadline forward indefinitely, that is, they do not control
¬δ. We can imagine that a temporal deadline D(δ, n) for n time units is defined as (Xn

represents n nestings of the next operator.):

Definition 9

D(δ, n) ≡de f 〈[∅]〉Xn(δ ∧ 〈[∅]〉G¬δ) ∧
∧

0≤i<n

〈[∅]〉Xi¬δ

The ATL formula D(δ, n) says that on all paths, after n steps δ is true, while δ is never
true before or after that. Clearly, in case of a temporal deadline of this kind, no set of
agents A can have a strategy for G¬δ. In this circumstance the temporal order obligation
becomes a real deadline obligation: δ is sure to happen in n time units, and agents

5 Like in conditional deontic logics, the logic of O(ϕ | �) is often also SDL.
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do not have a strategy to avoid ρ at all points before δ and not experience a negative
condition at δ. We may thus introduce deadline obligations by conjuncting temporal
order obligations with formulas D(δ, n). Note that for deadline obligations, there is no
longer any conditionality with respect to δ, since δ is sure to happen at a given point in
the future.

Now we return to variants that are due to different possibilities for the control of
achievements ρ. To give content to his concept of ‘categorical imperative’, Kant sug-
gested the principle of ‘ought implies can’. Kant’s principle also makes sense in the
present, more profane context. Rational agents are assumed to be realistic, which means
that they will not let their decisions be influenced by obligations for conditions ρ they
cannot achieve before δ anyway. Obligation variants that incorporate this property can
be defined as:

Definition 11

Ooc
A (ρ ≤ δ : ξA) ≡de f OA(ρ ≤ δ : ξA) ∧ 〈[A]〉(¬δUρ)

For agent theory, Kant’s dictum can be supplemented with a second principle concern-
ing the interaction of obligation and ability. We might call this second principle ‘ought
implies can avoid’. This relates to a problem with the definition of O that has been
signaled many times before in deontic logic. It is sometimes called the problem of ‘set-
tledness’ [10, 14]. The issue is that any obligation O for which compliance is settled,
or, in other words, temporally inevitable, is true. In particular we have the property
ρ → OA(ρ ≤ δ : ξA), which is an instance of the more general property 9 of section 7.
We avoid the property (and some others that are non-intuitive, such as property 10 of
section 7) by defining deliberate versions of the obligation operators:

Definition 12

Odl
A (ρ ≤ δ : ξA) ≡de f OA(ρ ≤ δ : ξA) ∧ ¬OA(ρ ≤ δ : ⊥)

The formula ¬OA(ρ ≤ δ : ⊥) says that it is not the case that O is an obligation for which
a violation is impossible (i.e., an obligation for which the negative condition cannot
become true). In other words, agents do have a strategy not to comply to the obligation.
However, if they do so, there will be a negative condition. So, now the obligation is
conditional on the possibility not to comply. Thus, agents can only have an obligation
to achieve something if they have the choice not to do so. i.e., when it is not already
settled.

The two principles of ‘ought implies can’ and ‘ought implies can avoid’ come down
to the requirement that choices are not empty and have alternatives. Incorporating these
principles in the definitions avoids counter intuitive properties like always having the
obligation to achieve tautologies (OA(� ≤ δ : ξA)). But in deontic logic, properties like
O� have actually been defended (it is, for instance, a property of SDL). We think that for
the applications of deontic logic in agent theory, they should be excluded. An artificial
agent having to deal with obligations is only interested reasoning about obligations that
influence his decisions. If there is nothing to choose, either because the set of choices
is empty or there is only one alternative, the obligations mean nothing to the agent.
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To conclude this section, we want to point out that not all properties of section 7 hold
for the variants in this section. To save space, we did not elaborate on the effects of the
interaction with abilities on the logical properties. However, we do need to mention the
following property that holds for the deliberate variant:

Proposition 4

|= Odl
A (ρ ≤ δ : ξA) ∧ Odl

A (δ ≤ γ : ζA)→ Odl
A (ρ ≤ γ : ξA ∨ ζA)

This property is crucial in our discussion on the modelling of a Chisholm’s scenario in
section 9.

9 Modelling Chisholm’s Scenario

The original formulation of Chisholm’s problematic scenario is [7]:

1. it ought to be that a certain man go to the assistance of his neighbors
2. it ought to be that if he does go he tell them he is coming
3. if he does not go then he ought not to tell them he is coming
4. he does not go

The modelling task we pursue in this section is to find a logical formalization that:

– faithfully reflects the natural language meaning, including the temporal aspects (the
temporal order in sentence 2, the future directedness of all obligations, the present
as the validity time of all obligations, etc.),

– is consistent,
– has no logically redundant sentences,
– derives that A ought not to tell.

As explained in the introduction, we are interested in obligations whose validity time
is the present and whose reference time is the future, since these are the obligations an
agent has to account for when making a decision about what to do. In particular we
will interpret all sentences of Chisholm’s scenario as sentences being valid presently
while the ‘regulating force’ of the obligations involved refers to the future. Note that
this differs from many other temporal interpretations of Chisholm’s sentences. For in-
stance, [6] discusses also a backwards looking interpretation that considers a setting
where we know for a fact that the man did not help, that the obligation to help has
been violated, and whether or not the agent told that he would come. However, most
temporal interpretations of the scenario have been particularly aimed at using time to
avoid the looming inconsistencies of a-temporal interpretations. For instance, Prakken
and Sergot [16] suggest that temporalization can avoid ‘pragmatic oddities’, such as the
one consisting of the obligation to help in combination with the obligation not to tell,
by stipulating that the validity times of these obligations are disjoint. Following their
line of reasoning, the oddity should be solved by interpreting the scenario in such a way
that the obligation to help is valid until the moment it is violated, while from that point
on the obligation not to tell is valid. We do not regard that as a solution, since we want
a solution where the validity time of all obligations is the present.
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Let us give our formalization first, before explaining the formulas.

Odl
A (help ≤ too late : ξA) ∧ D(too late, n) (25)

Odl
A (tell ≤ help : ζA) (26)

〈[∅]〉(¬help U too late)→ Odl
A (¬tell� too late : ηA) (27)

〈[∅]〉(¬help U too late) (28)

In the first sentence we have to model that the man is obliged to go to the assistance
of his neighbors. As said, we want to interpret this as an obligation about the future:
the man is obliged to help at some future point. However, as explained in section 2, we
cannot simply model this as an obligation of the form OFhelp. Such obligations are
vulnerable for indefinite deferral, and there is no reason for the man to start helping
soon. So, if we want to interpret the obligation as an achievement obligation, we have
to bring in a condition δ before which the helping needs to take place. Since the sen-
tence does not explicitly refer to such a condition, we simply model it as the condition
too late and define that too late is true in exactly n time units. One might argue that we
are introducing a concept that is not in the natural language description of the obliga-
tion. However, we claim that this is the only way we can make sense of the sentence
if we interpret it as an achievement obligation. Although from the natural language de-
scription we cannot know the exact value of n, in our opinion it is safe to assume it is a
parameter playing a role in the intuitive interpretation of the sentence as an achievement
obligation.

As mentioned in the introduction, the second sentence is an outstanding example of
the kind of obligations we can model in our formalism. The obligation to tell, with the
present as its validity time, is conditional on the condition of helping, while the telling
has to precede the helping. We know of no other temporal deontic formalism that can
model this sentence as faithful as the present one.

It has been argued that the third sentence should have the same form as the second
sentence, since both are conditionals. However, we argue that for our future directed
interpretation this is not a sensible requirement. In particular, the second sentence is
an achievement obligation, while the third is a maintenance obligation (see section 6):
from the present until the moment where it is too late to help, the man has the obligation
to preserve the condition of not telling, that is, if he will not help. This conditionality
with respect to not helping is simply modelled using a material implication6 expressing
dependency on the condition whether presently it is known for a fact that the man is not
going to help.

To interpret the fourth sentence as a fact about the future, we model it as an ATL
expression saying that no strategies are possible that possibly result in the man actually
helping before it is too late. We acknowledge that this is not necessarily the most in-
tuitive choice. First of all it would contradict (and not violate) the formula modelling
the first sentence if this would be a variant that incorporates ‘ought implies can’ (see
definition 11). Second, modelling the sentence as a fact about the future is problematic

6 Actually a conditional obligation of the form Odl
A (¬tell� too late : ηA) | (¬help U too late))

as briefly mentioned in section 5 would be a better choice here. But this would not affect the
main idea behind the solution to Chisholm’s scenario.



Strategic Deontic Temporal Logic as a Reduction to ATL 67

as such. Intuitively, one should always keep open the possibility that the man will help.
Therefore it would be much better to model the fourth sentence as an intention. Actu-
ally intentions can be suitably modelled as self-directed obligations, which means we
can express them in the present formalism. We leave this for future research.

The above formalization is consistent, does not contain logical dependencies, and
stays close to the natural language sentences. We now investigate whether it gives rise
to the right conclusions. With the formulas modelling the first two sentences, together
with the logical principle of proposition 4 for deliberate obligations, we derive OA(tell ≤
too late : ξA ∨ ζA). Deriving a ‘new’ obligation from the first two sentences has been
called ‘deontic detachment’ in the literature. But note that it is a rather special kind of
deontic detachment specific for temporal order obligations.

With the formulas modelling the last two sentences, we derive OA(¬tell� too late :
ηA). Obviously, this conflicts with the obligation derived through deontic detachment.
But there is no inconsistency, not even when we use one and the same negative condition
for all obligations involved (or when ξA ↔ ζA ↔ ηA). What the conflicting information
tells us is that we cannot avoid one of the negative conditions ξA ∨ ζA or ηA becoming
true at some point before too late: we cannot at the same time achieve ‘telling’ and
preserve ‘not telling’: a choice has to be made. Of course one of the requirements for
a solution to the scenario is that this choice should be ‘not telling’: we should be able
to conclude that given the above modelling of the scenario, the obligation not to tell is
‘relevant’, while the obligation to tell is not. This is seen as follows. The agent will want
to avoid the negative conditions. And in this case there is a best way to do that. Given
the information in sentence 4 that there will be no helping before it is too late, we can
derive that negative condition ξA is sure to occur at the point too late. This means that
the derived obligation OA(tell ≤ too late : ξA ∨ ζA) is not interesting for the agent to
base its decision on: trying to obey it is pointless, because its negative condition is valid
anyway. This leaves the obligation OA(¬tell � too late : ηA) as the relevant one: the
agent will want to avoid the negative condition ηA, and thus should not tell.

10 Conclusion

In this paper we argued that achievement obligations need a deadline condition that
functions as a point where a possible violation of the obligation is payed for. We named
the resulting conditional obligations ‘temporal order obligations’. We showed how to
define several semantics for temporal order obligations by giving characterizations of
these modalities in plain ATL. This has as an advantage that all logic machinery already
developed for ATL is applicable. The resulting framework is quite rich: we showed that
it enables us to investigate issues like ‘ought implies can’, ‘ought implies can avoid’,
deliberateness and deontic detachment. We mentioned logical properties of the defined
operators, discussed their conditionality aspect, and demonstrated its applicability by
modelling Chisholm’s famous scenario.

Many issues had to be left for future research. In particular the generalization to
obligations OA(ρ ≤ δ : ξA | η) could not be explained in detail, despite its possible
relevance for Chisholm’s scenario. Also intentions, which are also relevant for the sce-
nario, had to be left aside. Among the other issues we are planning to investigate in the



68 J. Broersen

present framework are concepts like ‘power’,‘responsibility’ and ‘counts as’. For the
longer term, we would also like to investigate the relation between deontic semantics
and game equilibria.
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