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Simulations of a non-Markovian description of nucleation
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In most nucleation theories, the state of a nucleating system is described by a distribution of droplet
masses and this distribution evolves as a memoryless stochastic process. This is incorrect for a large
class of nucleating systems. In a recent paper [J. Kuipers and G. T. Barkema, Phys. Rev. E 79,
062101 (2009)], we presented a non-Markovian model for droplet growth that includes memory
effects and this model was treated analytically in the absence of a free energy landscape. In this
paper, the model is considered with a free energy barrier present. Nucleation rates are measured in
the prototypical example of nucleation in the Ising model. Results of direct simulations and the
non-Markovian theory agree within a factor of 2 for spin-flip dynamics, and within 20% for local
spin-exchange dynamics, even though the measured nucleation rates vary over 27 orders of
magnitude. © 2010 American Institute of Physics. [doi:10.1063/1.3425732]

I. INTRODUCTION

Nucleation is an activated process that is key to under-
standing various subjects in polymer physics, biophysics,
and chemistry.1 It has been studied extensively and the first
theoretical description was given by Becker and Dt)ring2 in
the first half of the previous century. This classical nucle-
ation theory (CNT) describes how stable nuclei spontane-
ously emerge in a metastable environment. The state of a
nucleating system is described by a distribution n(m,t) of
droplet masses at time ¢. This distribution evolves via the
Fokker—Planck equation3 as a Markovian, i.e., memoryless,
stochastic process.

In a recent paper,4 we presented an alternative model for
droplet growth in nucleating systems, with the incorporation
of memory effects as main characteristic. Although the un-
derlying nucleating system with all degrees of freedom is
typically evolving via Markovian dynamics, the reduction to
a limited set of variables [in the case of CNT, the distribution
n(m,t)] gives rise to memory effects. This is most apparent
in, e.g., nucleation in binary mixtures of fluids. Here, drop-
lets of a certain type that have recently shrunk are sur-
rounded by a higher density of particles of that type, and are
therefore more likely to grow in the future. These memory
effects are not part of CNT, but are included in our model.
Memory effects like this are probably generic and also occur
in other activated processes, such as protein folding, once the
high-dimensional phase space is reduced to a lower-
dimensional subspace or a reaction coordinate.

Our non-Markovian model for droplet growth has been
analytically treated in the absence of a free energy barrier
and it is shown that anomalous diffusion takes place for sev-
eral orders of magnitude in time, i_.e., the mean square cluster
variation scales as (Am(#)2) ~r. This behavior has been
confirmed in simulations of the Ising model. The goal of this
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paper is to perform numerical simulations of our droplet
model in the presence of a free energy barrier and estimate
the nucleation rate. This problem seems too hard to handle
analytically. The free energy landscapes are provided by a
three-dimensional Ising model with various dynamics and
coupling constants. Together with simple a priori estimates
for the dynamical parameters, the nucleation rates of our
model are obtained. These are compared to the measured
nucleation rates of the Ising model and the rates predicted by
CNT with the Markovian assumption.

Il. CLASSICAL NUCLEATION RATE

CNT describes the state of a nucleating system by a
distribution n(m,t) of droplet masses at time 7. This distribu-
tion evolves via the Fokker—Planck equation

T L e L) N

with R(m) as the rate at which droplets of mass m grow to
droplets of mass m+1, F(m) as the free energy of a droplet
of mass m, and B as the inverse temperature. The free energy
of a droplet is assumed to consist of two terms: a positive
term proportional to its mass and a negative term propor-
tional to its surface area. This free energy function gives rise
to a critical droplet mass that maximizes the free energy. This
explains why nucleation is an activated process. From Eq.
(1), one can calculate the equilibrium distribution function

n®D(m) = NePFm (2)

with A a normalization constant, and the rate at which nucle-
ation occurs by considering it as a steady current in the mass
distribution with appropriate boundary conditions’

(CNT) _

1 (< 1 B
Vhwel = n(eq)(l) <m2=1 R(m)n(eq)(m)> : (3)
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FIG. 1. Ilustration of the four effects causing variations in the droplet mass
in a dilute environment: (1) the emission of returning particles, (2) the
emission the nonreturning particles, (3) the absorption of nonreturning par-
ticles, and (4) the absorption of returning particles.

lll. NON-MARKOVIAN DROPLET MODEL

In our non-Markovian droplet Inodel,4 we consider a
droplet in a dilute environment. The droplet mass changes by
means of four effects, namely, (1) the emission of particles
from the droplet that are returning, (2) the emission of non-
returning particles, (3) the absorption of particles from far
away (i.e., not returning from previous emission), and (4) the
absorption of particles that are returning. These four effects
are illustrated in Fig. 1. Effects 1-3 are independent and are
described by three random functions &.(7), & (1), and & (¢),
consisting of a series of Poisson distributed delta functions.
The fourth effect, the absorption of returning particles, is
correlated with the emittance of these particles. A particle
emitted at time 7 is returning with probability p,. The return
time is 7,, which is a random variable described by the re-
turn time distribution function w. This leads to the following
stochastic differential equation describing the evolution of
the mass m(z) of a nucleating droplet:

m(t) = &,(t) - £,(1) — £(1) + f drot— =T (7).
4)

In Ref. 4, this equation is treated analytically for small de-
viations from the critical droplet size, i.e., in a flat free en-
ergy landscape. A typical nucleation process, however, takes
place in the presence of a free energy barrier F(m). This free
energy is connected to a mass-dependent average systematic
growth v(m) of a droplet and a mass variation diffusion co-
efficient D,,(m). The systematic growth and diffusion coef-
ficient prescribe the expectation values of the random func-
tions in Eq. (4) via the equations

(&,(0) = (&,(1) =v(m(1)), (5a)

2 (86, (1056, (1) = 2(1 = p)Dy(m(1) & ~1'),  (5b)

(OE(1)SE(t")) = p,Dyy(m(1)) 8t —1'), (5¢)

with 6€,(1) = &,(1)—(€,(1)). These equations result in the fol-
lowing expectation values of the random forces:
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(&,(0) = (1= p)Dy(m(1) = 30(m(D)), (6a)
(&,(0) = (1= p)Dy(m(1) = 30(m(1)), (6b)
(€)= p,Dp(m(1)). (6¢)

These three equations fix the properties of the three Poisso-
nian random functions & completely.

Our objective is to simulate Eq. (4) to estimate the
nucleation rates of various three-dimensional Ising models
with both spin-flip and local spin-exchange dynamics. For
the systems, free energy landscapes are sampled. From the
choice of dynamics, a priori estimates for the return prob-
ability p,, the return time distribution u, and the mass fluc-
tuation diffusion coefficient D,,(m) are made. This defines
all parameters of Eq. (4).

IV. ISING MODEL

A prototypic system to study nucleation is the Ising
model.” To test our droplet model, nucleation rates are deter-
mined for a three-dimensional Ising model on a cubic lattice
with periodic boundary conditions. The Hamiltonian is given
by

H=-J>, s,-sj—hz Sis (7)
(i.j) i
with the first sum over all pairs of adjacent sites.

The simulations are performed with two different types
of dynamics: spin-flip and local spin-exchange. In the case of
local spin-exchange dynamics, spin-flip moves are also per-
formed in three strips of the system (one in each dimension).
This mimics an infinite reservoir with a fixed density of mi-
nority spins and prevents depletion, otherwise caused by a
nucleating cluster. Time is defined in units of spin-flip moves
or spin-exchanges moves per site.

For both types of dynamics, the state spaces and Hamil-
tonians, and therefore also the free energy landscapes, are
equal. This free energy landscape is needed in the definition
of the non-Markovian droplet model. It is sampled with suc-
cessive umbrella sampling,6 as function of the number ng of
up-spins that have six aligned neighbors. This variable is
chosen for multiple reasons. First, it indicates nucleation
very well. Furthermore, it only changes with small incre-
ments per time step and is easy to update in the simulations.
A typical free energy landscape is shown in Fig. 2.

V. DROPLET MODEL PARAMETERS

To complete the definition of our droplet model, assump-
tions are made for the mass fluctuation diffusion coefficient
D,,(m), the return probability p,, and the return time distri-
bution w(z). Since the free energy F has been sampled, the
average systematic growth then follows from v(m)
=DMBamF(m)

For our droplet model describing spin-flip dynamics,
Dy,(m) is chosen as
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FIG. 2. Free energy landscape of the three-dimensional Ising model with
coupling constant 8/=0.37 and external magnetization Sh=0.2. Also de-
noted are the prenucleation state A, the nucleated state B, and the region M
on top of the barrier, as used in the pathway recombination method.

D) = f4mRZ, . (8)
It is assumed that the critical cluster is spherical with radius
R.i=(3m./4m)"3. Here, f5 is the number of sites per unit
surface area (around a sphere on a lattice), that touch three
sites of the sphere. Spin flips at these sites do not increase the
energy and therefore remain attached to the cluster. Spin flips
at sites touching fewer sites of the cluster are energetically
unfavorable and detach within times of order one. The return
probability

PP =0, 9)

since a flipped spin does not linger in the neighborhood of
the cluster as is the case with a detached spin with local
spin-exchange dynamics. The return time distribution
wP)(7) is therefore irrelevant. This makes the model for
spin-flip dynamics memoryless and basically identical to
CNT. Instead of the ad hoc approximation for the mass fluc-
tuation diffusion coefficient of Eq. (8), one could obtain a
more accurate value by measuring it. Reference 7 presents a
method to perform these measurements.

On the other hand, for local spin-exchange dynamics,
this diffusion coefficient is chosen as

DE&XC]’I) — WRzri[e_12E1+2ﬁh~ (10)
Here, 7R2,, is the number of local spin-exchange moves per

unit time that exchange a spin touching the critical cluster
with a spin not touching it, and e!2#/+2P is the density of
single up-spins outside the cluster. This approximation only
neglects the fact that the cluster is slightly nonspherical and
the presence of small clusters in the surrounding environ-
ment, and is therefore expected to be very accurate. The
return probability and return time distribution are determined
by a three-dimensional random walk®

Pl = e (11)
R+ R

and
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_ OR exp(= 6R*/4Dgt)

(exch)
M (1)
V47D >

(12)

Here DB=% and SR=8+ /8, conform Ref. 4.

VI. PATHWAY RECOMBINATION

With all parameters defined, Eq. (4) can, in principle, be
numerically integrated to obtain results. The free energy bar-
riers, however, are typically very high, so that direct simula-
tions do not yield useful results. Therefore, we resort to a
variation in our pathway recombination method’ to effi-
ciently sample nucleation trajectories. This method samples
transition trajectories by starting on top of the barrier and
going forward and backward in time until the attractors are
reached. In the original method, these paths over the barrier
are combined with paths around the attractors to generate
complete transition trajectories and obtain transition times.
In this paper, a variation on the pathway recombination
method is used to sample nucleation rates instead of times.

Contrary to the computation of nucleation times, the
nucleation rates could also be sampled with transition path
sampling.10 Also, forward flux sampling11 could be used, if a
notion of the history, i.e., the times at which returning par-
ticles were emitted, is taken into account. Other methods,
such as milestoning,I2 do not work, since they disregard the
non-Markovianity of the dynamics.

To determine the nucleation rate, the free energy land-
scape of an Ising model is sampled and the two attractors A
and B and a small region M on top of the barrier are selected
(see Fig. 2). Trajectories over the barrier are now generated
by starting in a point in M (randomly picked from the Bolt-
zmann distribution) and going forward and backward in time
until attractors are reached at both sides of the path. The free
energy gap between the attractors and the top should be
large, so that the system typically equilibrates in an attractor
before reaching the top again.

While generating the trajectories, the time 7™ that one
spends on average in M is recorded and the numbers of paths
Nyyy (with X,Y=A,B) are counted. From the free energy
landscape it is known that the system should be in M with
probability p™), and therefore

(a1)
= (13)

with n,, as the rate at which trajectories through M are tra-
versed. The rate at which AMB-trajectories are traversed
then equals

NAMB (14)

Namp = Ny

ZxyNxmy
The rate v, from A to B obeys p™W v, p=n4,,5 with p®) the
probability of being in A. Therefore, the transition rate equals
1 Naws p™

VA

= ) (15)
b P(A) EX,YNXMY Il

This expression for the rate can be easily calculated from the
quantities sampled during the simulations.

Downloaded 18 Feb 2011 to 131.211.105.231. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



184109-4 J. Kuipers and G. T. Barkema
|
i [ [ v
,,,,,,,,,,,,,,,,,,,,,,,, > =0 ey
l |
i I [ I
e =0 >

FIG. 3. Illustration of the pathway recombination simulations of our non-
Markovian droplet model. Top panel: a forward simulation. Bottom panel:
an accompanying backward simulation. The solid arrows indicate absorption
and emission of returning and nonreturning spins. The dashed arrows indi-
cate the direction of time.

The simulations of the Ising model with pathway recom-
bination are straightforward and performed analogous to the
simulations in Ref. 9. The simulations of our droplet model,
however, require careful treatment of the memory effects,
especially since the simulations are going both forward and
backward in time after starting in M, and those paths should
be combined in a consistent way.

Vil. PATHS IN THE DROPLET MODEL

To sample paths in the non-Markovian droplet model,
the forward simulations are performed first. Such a forward
simulation is performed as follows: starting at time =0 and
going forward in time with increments of Az, for every time
interval the probabilities are calculated that a returning spin
is emitted, or nonreturning spin is emitted or absorbed (ef-
fects 1-3 from Fig. 1). These probabilities are given by
(E()AL, (&, (1)At, and (&' (1))Ar, respectively. When a re-
turning spin is emitted, a return time is randomly chosen
from the return time distribution (), and when the simula-
tion arrives at that moment in time, a returning spin is ab-
sorbed. Returning spins emitted at times before =0 are
missing now. To include them, at every time the probability
that a spin is returning, is calculated. This probability also
equals (£,(r))Az. If a spin is returning, its emission time is
randomly chosen from the distribution w(z). If this time is
larger than =0, the returning spin is neglected, since spins
returning from that time are already included in the simula-
tion. If, on the other hand, this emission time is smaller than
t=0, a returning spin is absorbed in the cluster. Figure 3 (top
panel) depicts this simulation process. The forward simula-
tion lasts until the cluster arrives in either the prenucleation
state A or the nucleated state B.

After the forward simulation has finished, a backward
simulation starting with the same size at =0 is performed.
Since time is running backward, the change in cluster size
m(r) gets a minus sign, so that absorption and emission are
interchanged. In the forward simulations the emission times
of spins emitted before r=0 are stored, and these times are
used as return times in the backward simulations. In the
backward simulations, this replaces the absorption of spins
that are emitted between time r=0 and the end of the forward
simulation. Except for this, the backward simulations are
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FIG. 4. Ratios of the predicted nucleation rates and the measured rates of
the Ising model. The ratios are displayed for both the non-Markovian (N-M)
droplet model and CNT, and both spin-flip and local spin-exchange dynam-
ics. For CNT with spin-exchange dynamics, the results with diffusion coef-
ficient Dﬁ;xcm and effective diffusion coefficient (1- p,)DE\;"Ch) are both dis-
played. A ratio of one indicates perfect agreement.

performed exactly like the forward simulations. Figure 3
(bottom panel) depicts this backward simulation process.

Viil. RESULTS

The simulations of the Ising model are performed with
both spin-flip and local spin-exchange dynamics on a 32
X 32X 32 cubic lattice with periodic boundary conditions.
The fixed external magnetization is 7=0.2kzT and the cou-
pling constant is in the range J=(0.36—0.45)k,T. This leads
to critical clusters of sizes varying from ten to 150 spins. For
these cluster sizes, the return probability of a detaching par-
ticle is around 80%. The obtained nucleation rates range
from 107 to 107, thereby spanning dozens of orders of
magnitude. For each parameter choice for the Ising model,
our non-Markovian droplet model is also simulated with the
appropriate parameters to estimate to nucleation rate.

The results of the simulations are shown in Fig. 4. For
both spin-flip and local spin-exchange dynamics, the nucle-
ation rates as predicted by our droplet model divided by the
measured nucleation rates of the Ising model are shown. For
spin-exchange dynamics, this factor is approximately 1,
showing that our method predicts the nucleation rate accu-
rately. For spin-flip dynamics, this ratio is approximately a
factor of 2. We consider this a fair agreement. The precise
cause of this factor is unknown, but we consider the chosen
diffusion coefficient of Eq. (8) as a likely source. Further-
more, memory effects due to the shape of a cluster might
play a role.

Also shown are the rates as predicted by CNT with the
Markovian assumption, i.e., Eq. (3), divided by the same
measured rates of the Ising model. The calculation of these
rates uses the same free energy landscapes and diffusion co-
efficients as the simulations of our droplet model. In the case
of local spin-exchange dynamics, the results with diffusion
coefficient (1- p,)foIXCh) are also shown, since one may ar-
gue that this is the effective large-time diffusion coefficient.

For spin-flip dynamics, the results of our model and
CNT with the Markovian assumption coincide. This is as
expected, since the absence of memory effects renders our
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model identical to the classical one. For local spin-exchange
dynamics, the rates predicted by our model are much closer
to the measured nucleation rates of the Ising model than the
classical rates are. The results of CNT with the Markovian
assumption with DE;XCh) as in Eq. (10) are too large and the
results with the corrected effective (1-— p,)DEfIXCh) are too
small. Our non-Markovian model with memory effects pro-
vides estimations of nucleation rates which never deviates
from directly measured rates by more than 20%, even though
these nucleation rates vary over many orders of magnitude.
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