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Abstract� We give a description of the moduli space of pointed smooth quartic
curves in terms of the root system E�� and use this to determine the rational co�
homology �with its mixed Hodge structure� of the moduli spaces M� and M�

�
of

smooth �pointed� curves of genus three�

�� Introduction

In this paper we determine the Poincar�e polynomials of the moduli spaces M�

and M�
� of smooth �pointed� genus three curves and of certain natural strata

therein� Our approach is based on the well�known fact that the moduli space
of smooth quartic curves Q �which is simply the complement of the hyperelliptic
locus in M�� is also the moduli space of �smooth� Del Pezzo surfaces of degree
two� This allows us to �nd simple descriptions of the strata of the moduli space
Q� of pointed smooth quartic curves �C� p� in terms of root systems� For instance�
we may de�ne strata in Q� according to the intersection behaviour of C and the
tangent line L through p� There are four cases	 L can meet C in 
 distinct points
�the general situation�� or L is a genuine bitangent �two points of intersection with
C�� or L and C meet in p with a contact of order 
 resp� �� These de�ne strata
Qord� Qbtg� Q�x� Qh�x� It turns out that each of these strata can be described
in terms of a Weyl group �of type E� or E�� acting on a torus T of adjoint type
or its projectivized Lie algebra P �Lie�T ��� The toroidal cases correspond to Qord�
Qbtg and the projective cases to Q�x and Qh�x� As we point out at the end of this
introduction� the latter two are intimately related to the miniversal deformations of
the plane curve singularities that also bear the names E� and E�� The relationship
between Qbtg and the adjoint E��torus had already been observed by us in �
�� Our
�rst main result is theorem ������ which tells us how these strata �t together� It
contains a description of Q� solely in terms of a root system of type E��
We compute the Poincar�e polynomials of these strata and related varieties� Ac�

tually we obtain �ner information� According to Deligne ���� a cohomology group
of an algebraic variety carries a mixed Hodge structure� The varieties encountered
here �such asM� andM�

�� turn out to have particularly simple Hodge structures	
in every degree their cohomology is pure of type �k� k� for a certain k� It is therefore
convenient to express our results in terms of what we propose to call Poincar�e�Serre
polynomials	 this is a polynomial in two variables t� u attached to the cohomology
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of an algebraic variety �or more generally� to a graded mixed Hodge structure� by
letting the coe�cient of tkul be the dimension of the weight l subquotient in degree
k� For u � � this reduces to the Poincar�e polynomial� and if we substitute t � ���
then the coe�cients of the resulting polynomial are the weighted euler characteris�
tics which were apparently �rst used by Serre in a characteristic p setting� We can
now state our two other main results	

�����The moduli space of smooth quartic curves resp� of smooth genus three curves
has Poincar�e�Serre polynomial � � t�u�� resp� � � t�u� � t�u���

������The Poincar�e�Serre polynomial of the moduli space of pointed smooth quartic
curves resp� of pointed smooth genus three curves is equal to � � t�u� � t�u�� �
t�u�� � �t�u�� resp� � � �t�u� � t�u� � t�u�� � t�u�� � �t�u���

The proof of ����� uses the fact� due to Harer and Zagier ���� that the euler charac�
teristic of M� equals 
� but the proof of ������ is independent of this� According
to �a generalization of� the Hodge conjecture� a class of degree �k is algebraic if
and only if it is of type �k� k�� So ����� predicts that the class ofM� in degree two
is algebraic� whereas the one in degree six is not� This is in agreement with the
computation by Faber ��� of the Chow groups ofM�� We also observe that ������
implies that the euler characteristic ofM�

� is �� which checks with another result
of Harer and Zagier�
Our proof also allows the computation of the rational cohomology of the above

moduli spaces with level two structure� even as representation spaces of Sp��� F���
but we have not pursued this� Our method generalizes well to other Del Pezzo
surfaces� but this will possibly be the subject matter of another paper�
We brie�y indicate the contents of each section�

Section � contains the description of the four strata in terms of root data� At
the end we explain how these strata �t together� so that we obtain a description of
M�

� in terms of the root system E�� We also show thatM�
� is rational� �It is still

not known whether M� is rational��
Sections � and 
 are di�erent in character and are independent of section �� The

toroidal cases alluded to above lead us to study arrangements of hypertori and the
cohomology of their complements� For this purpose we found it convenient to set
up things in a more general manner in order to have a uni�ed treatment of a�ne�
linear and toroidal arrangements� It turns out that the most e�ective approach is
then by the methods of sheaf theory� even in the well�studied case of hyperplane
arrangements it yields probably the fastest proof of the basic results of Brieskorn�
The general discussion is carried out in section �� whereas in section 
 the special
features of arrangements coming from root systems are examined�
In the �nal section � we apply the methods developed in section 
 to compute

various Poincar�e�Serre polynomials�

For the computation of the Poincar�e polynomial of M� it is possible to avoid
Del Pezzo surfaces altogether if one is willing to use some facts about the plane
curve singularities of type E� and E� instead� Since that proof essentially consists
of properly arranging known results� and uses less in the way of algebraic geometry�

we may as well outline it here� Consider the moduli space Q�x of pairs �C�L� where
Cis a smooth quartic curve in P� and L is a line with a point of contact of order
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� It is clear that this moduli space is the disjoint union of Q�x and Qh�x� and

that the forgetful map Q�x �Q is �nite� Consider the miniversal deformations of
the plane curve singularities E�� E�	

E� C�u� 	 x� � y� � u�xy
� � u	xy � u�y

� � u�x� u
y � u�� � ��

E� C�v� 	 x� � xy� � v�xy
� � v�x

� � v�xy � v	y
� � v�x� v�y � v
 � ��

If we give the u� and v�parameters weights equal the their subscript� then the spaces
U �� C � resp� V �� C � for which they are coordinates acquire a C � �action� If we let
C � act on xy�space by giving x weight � resp� 
 and y weight 
 resp� �� then the
two equations become weighted homogeneous� This implies that curves in the same
C � �orbit are projectively equivalent� Every curve C�u� is smooth at in�nity� and
meets the line at in�nity� L�� in a smooth point with contact of order �� A similar
statement holds for the curves C�v�� except that they meet L� in two distinct
points with contact of order 
 and �� So if U � � U resp� V � � V parametrize the
smooth curves� then we have natural maps U ��C� � Qh�x and V ��C� � Q�x� It
is easily veri�ed that these maps are isomorphisms�
The Poincar�e polynomials of the spaces U � and V � have been determined by

Brieskorn ���	 they are � � t resp� � � t � t� � t�� Those of their C � �orbit spaces
are obtained by dividing these by the Poincar�e polynomial of C � �which is � � t��
It follows that the Poincar�e polynomial of Qh�x resp� Q�x is equal to � resp�
� � t�� The Gysin sequence for rational cohomology may be applied to the pair

�Q�x�Qh�x� �see lemma ������� and it shows that the Poincar�e polynomial of Q�x

is equal to �� t�� t�� Hence the Poincar�e polynomial of Q is termwise bounded by
� � t� � t�� We regard Q as the complement of the hyperelliptic locus H� inM��
One veri�es that the Poincar�e polynomial of H� is constant equal to � �see lemma
������� Another Gysin sequence argument shows that then the Poincar�e polynomial
ofM� must be termwise dominated by ���t��t�� If we combine this with the fact
that the second betti number ofM� is equal to � �Harer� and the fact that its euler
characteristic is 
 �Harer and Zagier ����� it follows that the Poincar�e polynomial
ofM� must be equal to � � t� � t��

This paper was conceived after the conference and its contents bears no relation
to the talk I gave there�

Acknowledgements� I thank Hans Sterk for comments on the �rst version of this
paper and I am grateful to the referee for the conscientious way he has done his
job�

Notation� We shall denote the Poincar�e polynomial� resp� Poincar�e�Serre polyno�
mial� of a variety Z by P �Z� resp� PS�Z��
If a re�ection group W acts on a space X� then as a rule DX denotes the union

of the �xed point sets of the re�ections inW � and X� denotes its complement in X�

�� The Del Pezzo model for Q�

In this section we will describe a model for the moduli space of pointed genus
three curves� based on the theory of Del Pezzo surfaces� We begin by recalling some
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classical material which is set out in more detail in Manin ����� Demazure��� and
Dolgachev and Ortland ����

����� Let us start out with a smooth plane curve C � P� of degree �� It is known
that such a curve has �� double tangents� Let X � P� be the double cover which
rami�es along C� This is a Del Pezzo surface of degree two� To be more precise�
the pre�image of a line is the polar divisor of a meromorphic ��form on X without
zeroes �such a divisor is said to be anti�canonical� and its self�intersection is ��
Every anti�canonical curve on X is thus obtained and the projection X � P� can
therefore be thought of as the map de�ned by the anti�canonical system on X� So
this map and the involution of X de�ned by it are �up to a linear transformation�
intrinsic to X�
The pre�image of a double tangent consists of two exceptional curves� and this

yields all the � � �� � �� exceptional curves on X� If E�� � � � � E� are disjoint
exceptional curves on X� then contracting them yields a projective plane� Any
anti�canonical curve D on X will meet E�� � � � � E� transversally and will project
onto a cubic curve in the projective plane passing through the images P�� � � � � P� of
E�� � � � � E�� Conversely� the strict transform of every cubic through these points
is anti�canonical� This implies that the linear system of cubic curves through
P�� � � � � P� cannot have any �xed point after blowing up P�� � � � � P�� This condi�
tion translates into	 no three of the Pi�s are on a line and no six are on a quadric�
We then say that the points P�� � � � � P� are in general position� If L � P� is a line
tangent to C which is not a double tangent� then its pre�image �L in X is a rational
curve with a node� a rational curve with a cusp� or consists of two smooth rational
curves meeting each other in a tacnodal singularity� depending on whether C and
L have a point of contact of order �� 
 or ��
We can also go in the opposite direction	 if we start out from seven points in a

projective plane which are in general position in the above sense� then blowing them
up yields a Del Pezzo surface of degree two and thereby a smooth quartic curve in
a �di�erent� projective plane� A singular cubic curve passing through these seven
points yields a tangent to the quartic� There are many ways of choosing seven
disjoint exceptional curves on X� in fact� as we will recall below� there is a large
group �a Weyl group of type E�� which permutes transitively the possible choices�
Distinct choices lead to con�gurations of seven points in a projective plane which
are in general not projectively equivalent� The relationship between these point
con�gurations is rather subtle and still not fully understood� If however� we also �x
a tangent line of C� then the point con�gurations come with a singular cubic curve
through them and� as we will see� the relations between these algebro�geometric
data are a lot easier to describe�

����� Let L be the free Z�module with generators e�� � � � � e�� l� equipped with
the symmetric bilinear form for which this is an orthogonal basis and ei�ei � ��
and l�l � �� Let k 	� 
l � e� � � � � � e�� Notice that k�k � � and that the
orthogonal complement Q of k in L is negative de�nite� The elements � 	 Q
with ��� � �� form a root system R of type E�� a basis for this root system is
�� 	� e� � e�� � � � � �� 	� e� � e�� �� 	� l � e� � e� � e�� The positive roots with
respect to this basis are the elements ei�ej with i � j� l�ei�ej�ek with i � j � k
and �l � e� � e� � � � � �ei � � � � e� with � 
 i 
 ��
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Denote by W the corresponding Weyl group� This is also the group of automor�
phisms of the lattice Q�

���
� Choose seven �ordered� points P�� � � � � P� in a projective plane which are
in general position in the sense that no three are collinear and no six lie on a conic�
so that the surface X 	� X�P�� � � � � P��� P� obtained by blowing up these points
is a Del Pezzo surface of degree �� If E�� � � � � E� are the corresponding exceptional
curves� then we have an isomorphism of lattices � 	 L �� Pic�X� under which ei
corresponds to the class of Ei and l to the class of the pre�image of a line in P� �
The strict transform of a cubic curve passing through the seven points is an anti�
canonical curve whose class corresponds to k� The classes of the ���� exceptional
curves correspond to	 ei� � 
 i 
 � ���� the class l�ei�ej of the strict transform of
the line PiPj� � 
 i � j 
 � ����� the class k� l� ei � ej of the strict transform of
the conic through �ve of the seven points� � 
 i � j 
 � ����� the class k� ei of the
cubic that passes through the seven points and has a double point in Pi� � 
 i 
 �
���� They are precisely the elements e 	 L with �e�e � e�k � �� We denote that
set by E � It is an orbit of W �

����� For us X is the primary object and we will regard the collection exceptional
curves E�� � � � � E� as an additional structure on X� called a marking� We noticed
that a marking determines an isomorphism � 	 L �� Pic�X� which sends k onto the
anti�canonical class� The converse is also true� Hence the possible markings are
permuted simply transitively by the stabilizer of k in the orthogonal group of L�
This stabilizer is just W � The anti�canonical system maps X to a projective plane
and this map is a double cover of that projective plane ramifying along a smooth
quartic curve C� So X admits a canonical involution whos �xed point set is C�
This involution �xes of course the anti�canonical class� and acts on its orthogonal
complement as minus the identity� For reasons that become clear in a moment� we
will denote this orthogonal complement by Pic��X�� Giving a marking of X up to
the canonical involution is equivalent to giving a level two structure on C� To make
this somewhat more precise� let us give names to the relevant moduli spaces	

� The moduli space of Del Pezzo �marked� surfaces of degree two is denoted by

DP� �resp� gDP��� The forgetful map gDP� � DP� is a Galois covering with
covering group W� 	�W�f��g�

� The moduli space Q��� of smooth quartic curves with level two structure� The
forgetful map Q����Q is a Galois covering with covering group Sp���F���

The following result is due to Van Geemen� see ����

Proposition ������ There is an isomorphism ofW�
�� Sp���F�� and a compatible

equivariant isomorphismgDP� �Q����

����� We will rather be concerned with moduli spaces parametrizing more struc�
ture� We introduce	

� DP��sing�	 the moduli space of pairs �X� p� where X is a Del Pezzo surface of
degree two and p 	 X is such that there is an anti�canonical curve K on X which
has a singular point at p� �This K is then unique�� We identify this space with
the moduli space of pointed smooth quartic curves Q��
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� DP��node�	 the Zariski open subset of DP��sing� parametrizing pairs �X� p� for
which K has an ordinary double point at p� We identify this with the Zariski
open subset Qord of Q��

� DP��cusp�	 the locus in DP��sing� parametrizing pairs �X� p� where K has a
cusp at p� We identify this with the subvariety Q�x of Q��

� DP��nnode�	 the locus in DP��sing� parametrizing pairs �X� p� such that K is
a union of two exceptional curves meeting transversally in two distinct points�
one of which is p� We identify this with the subvariety Qbtg of Q��

� DP��tacn�	 the locus in DP��sing� parametrizing pairs �X� p� such that K which
is a union of two exceptional curves meeting in p with multiplicity two �and
nowhere else�� We identify this with the subvariety Qh�x of Q��

We have similar moduli spaces of these objects equipped with marking �resp� level
two structure�� So we �nd for instance that there is an equivariant isomorphismgDP��sing��Q�����
We notice that DP��cusp� and DP��nnode� are of codimension one� while the

subvariety DP��tacn� is of codimension two and is the intersection of the closures of
the two other strata� We shall �rst obtain explicit models of these strata separately�
and then indicate how they �t together� We will also use

� Qbtg	 the moduli space of pairs �C�L� consisting of a smooth quartic curve with
a genuine bitangent L� Clearly� there is a natural map Qbtg � Qbtg of degree
two�

����� Let X be a Del Pezzo surface of degree �� and let K be an anti�canonical
curve on X which is a irreducible rational curve with a node p� We recall that
Pic��K� �� C � � and that the obvious map Kreg � Pic��K� is an isomorphism� so
that Kreg is a Pic��K��torsor� The restriction homomorphism Pic�X� � Pic�K�
induces a homomorphism

� 	 Pic��X� � Pic��K��

Notice that Hom�Pic��X��Pic��K�� is an algebraic torus and that the Weyl
group of X acts on it via Pic��X��
Let T denote the algebraic torus Hom�Q� C� �� It comes with a natural action of

the Weyl group W � There are exactly two group isomorphisms between Pic��K�
and C � which are mutually inverse� Since W contains minus the identity� it fol�
lows that there is a natural isomorphism between the Weyl group�orbit spaces of
Hom�Pic��X��Pic��K�� and T � So � determines an element m�X� p� of WnT � A
marking � of X determines a lift m�X� p� �� 	 f��gnT � If we compose � with
the automorphism of Pic�X� induced by the canonical involution i� then m�X� p� ��
does not change since i acts on Pic��X� as minus the identity�
The invariant m�X� p� �� de�nes a W��equivariant morphism

�m 	 Qord��� ��gDP��node�� f��gnT�

Every root � 	 R determines a character � 	 T �� ���� 	 C � � The kernel of this
character is exactly the �xed point locus of the re�ection in W de�ned by the root
�� Let DT denote the union of these �xed point hypertori and put T

� 	� T �DT �
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Proposition ������ The morphism �m maps Qord��� ��gDP��node� isomorphically
and W��equivariantly onto f��gnT � and hence induces an isomorphism

Qord ��WnT ��

Proof� We will construct its inverse� Let � 	 T �� This means that � is a character
of Q which does not take the value � on any root� Choose an abstract rational
curve K with a node� an isomorphism C � �� Pic��K� and P� 	 Kreg� De�ne
P�� � � � � P� 	 Kreg by �Pi��� � ��ei�� � ei� � �Pi�� i � �� � � � � �� The linear system
of degree 
 on K de�ned by ��l� e� � e� � e�� � �P�� � �P�� � �P�� determines an
embedding of K in a projective plane� The condition that the images of the seven
points be in general position amounts to	 Pi 
� Pj if i 
� j� i�e�� ��ei � ej� 
� �� no
three points are on a line� i�e�� ��l � ei � ej � ek� 
� � if i� j� k are distinct� no six
are on a conic� i�e�� for � 
 i 
 �� ���l � e� � � � � �ei � � � � e�� 
� �� But this is just
saying that ���� 
� � for all roots ��

Corollary ������ The moduli space M�
� of pointed genus three curves is rational�

Proof� The previous proposition implies thatM�
� and WnT are birationally equiv�

alent� So it is enough to prove that WnT is rational� Let P be the weight lattice
of R� i�e�� the set of elements of Q � Q which have integral inner product with
all elements of Q� This lattice contains Q as a sublattice of index two� So the
algebraic torus S 	� Hom�P� C� � covers T twice and the corresponding involution
of S is given by translation over the isomorphism �� 	 P�Q �� f����g� If 	i 	 P is
de�ned by 	i��j � 
i�j� then de�ne a W �invariant function fi 	 S � C by

fi��� 	�
X

��W�i

��	��

Together these functions de�ne a mapping f 	 WnS � C � � According to the
exponential invariant theory of root systems ��� Ch� �� this is an isomorphism�
Translation over �� multiplies fi with ���	i�� and so the involution induces in C �

a linear involution �whose eigenvalues � resp� �� have multiplicity � resp� 
�� The
quotient of C � by such an involution is rational� Since that quotient is isomorphic
to WnT � the proposition follows�

������ Our aim is to give an explicit description of eDP��sing� �� Q���� as an
extension of WnT �� We shall �rst give similar descriptions of the three missing
strata�
In the discussion ����� we replace K by a rational curve with a cusp� Then

Pic��K� �� C � and Pic��K� �� Kreg� Put V 	� Hom�Q� C �� Each root � 	 R de�nes
a �re�ection� hyperplane in V � we letDV � V denote the union of these hyperplanes
and put V � 	� V �DV � This corresponds to an open subset P�V �

� � P�V � of the
associated projective space�
If K lies as an anti�canonical curve on a marked Del Pezzo surface �X��� of

degree �� then an isomorphism Pic�K� �� C identi�es � 	 Pic��X� � Pic��K� with
an element of V � As in the previous case we �nd that this element lies in V ��
Since the isomorphism is determined up to a scalar multiplication� only its image
m�X� p� �� in P�V �� is well�de�ned� The same argument as before shows	
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Proposition ������� The invariant m�X� p� �� 	 P�V �� de�nes an equivariant
isomorphism

�m 	 Q�x��� ��gDP��cusp�� P�V ��

and hence an isomorphism

m 	 Q�x �� WnP�V ���

The last isomorphism is known in a somewhat di�erent guise in singularity the�
ory	 there the right�hand side is interpreted as a C � �orbit space of the punctured
base of a miniversal deformation of a E� plane curve singularity�

������ We now address the case where we are given a point p 	 X that lies
on an anti�canonical curve K consisting of two rational curves E�E� intersecting
transversally in two distinct points� These two curves are exceptional and are
interchanged by the canonical involution i� If Pic��X�E� � Pic�X� denotes the
orthogonal complement of the classes of E and E� in Pic�X�� then we have again
a restriction homomorphism � 	 Pic��X�E� � Pic��K�� We have Pic��K� �� Kreg

as before and now Pic��K� �� C � � C � � We �x this last isomorphism by requiring
that the �rst resp� second factor comes from E resp� E�� and that �t� t�� 	 C � � C �

moves a point ofKreg�E resp� Kreg�E� to p if t resp� t� tends to �� So replacement
of p by the other singular point of K inverts the isomorphism�
Since ������ � ����� � �i���� � i������ we see that the image of � is con�

tained in the subgroup Pic��K�� of i�anti�invariant elements� We identify Pic��K��

with �� C � by means of the parametrization s �� �s� s���� Notice that the involution
i inverts this isomorphism� Suppose that X is equipped with a marking �� Then
E and E� de�ne elements e� e� 	 L such that e � e� � k� Denote the orthogonal
complement of this pair in L by Q�e�� Then R�e� 	� R �Q�e� is a subroot system
of type E� which spans Q�e�� �To see this� recall that W acts transitively on the
exceptional classes� so that we may assume that e � e�� Then ��� � � � � �	� �� is a
root basis of R�e��� Hence � plus the choice of E determines a well�de�ned element
of the torus T �e� 	� Hom�Q�e�� C � �� The other choice of irreducible component E�

yields the opposite element of T �e�� under the equality T �e�� � T �e�� So we really
get an element

m�X� p� �� 	 f��gn
a
e�E

T �e��

where �� is the involution that sends m 	 T �e� to �m 	 T �i�e���
As before we �nd that ���� 
� � for all roots � 	 R�e�� If T �e�� � T �e� denotes

the open subset de�ned by this property� then we have	

Proposition ����	�� The invariant m�X� p� �� de�nes a W��equivariant isomor�
phism

Qbtg��� ��gDP��nnode�� f��gn
a
e�E

T �e���

and hence induces for any e 	 E an isomorphism

m 	 Qbtg �� WenT �e�
��
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Moreover� interchanging the singular points corresponds on the right�hand side to
applying inversion in each component T �e��� so that we also get an isomorphism

m 	 Qbtg
��We�f��gnT �e�

��

Proof� We outline the construction of the inverse mapping in case e � e�� Omitting
the roots involving e� from the root basis� resp� system of positive roots for Q in
������ gives a root basis� resp� system of positive roots for Q�e�� Now let be
given � 	 Hom��Q�e�� C � ��� Choose an abstract curve K made up of two smooth
rational curves E� E� which intersect in two ordinary double points� call one of
these intersection points p and identify Pic��K� with C � � C � as above� Use the
one parameter subgroup s �� �s� s��� of C � � C � to identify � with an element of
Hom�Q�e��Pic��K��� Choose P� 	 E�Kreg arbitrary and let P�� � � � � P� 	 E�Kreg

be de�ned by the condition that �Pi��� � ��ei���ei���Pi�� i � �� � � � � �� MapK to
a projective plane by means of the linear system ��l�e��e��e����P����P����P���
This collapses E� to a point so that K is mapped onto a cubic with a node� The
images of P�� � � � � P�� E� are in general position precisely if � does not take the value
� on a root of Q�e��

������ Finally we do the case where p 	 X lies on an anti�canonical curve K
having a tacnode at p� Then K consists of two exceptional curves E�E� which are
interchanged by the canonical involution i and which intersect in a single point p
�with multiplicity ��� The anti�invariant part of Pic��K� is isomorphic to C � so that
if � is a marking of X� we end up with an invariant m�X� p� �� 	 P�V �e��� where
V �e� 	� Hom�Q�e�� C �� We �nd in a similar fashion	

Proposition ������� The invariant m�X� p� �� de�nes a W��equivariant isomor�
phism

Qh�x ��gDP��tacn�� f��gn
a
e�E

P�V �e���

and hence for any e 	 E an isomorphism

Qh�x �� WenP�V �e��
��

The last isomorphism has an interpretation similar to that in the case Q�x� the
E� plane curve singularity is here a E� plane curve singularity�

������ We now show how the target spaces of the various maps �m �t together�
It will be convenient to combine the four types of strata into two groups	 we let
DP��irr� be the union of node and cusp strata and let DP��red� be the union of
the node� and tacnode strata� Notice that the former is open in DP��sing� and
that the latter is its complement� We denote the subvariety of Q� corresponding

to DP��red� by Qbtg� The variety Qbtg is similarly de�ned�

Let �T � T be the blow�up of the origin of T � If we identify the tangent space
of T at O with V � then the exceptional divisor gets identi�ed with the projective
space P�V �� Let D 
T be the strict transform of DT and put �T

� 	� �T �D 
T � so that

P�V �� � P�V � �D 
T � We regard T
� and P�V �� as subvarieties of �T �� Notice that

�T � is their disjoint union�
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Proposition ����
�� The maps �m de�ne a W��equivariant isomorphism

Q����� Qbtg��� ��gDP��irr�� f��gn �T �

and hence induce an isomorphism

Q� � Qbtg �� Wn �T ��

Proof� The map �m is clearly W��equivariant� Think of the inverse of the isomor�

phism ����� as a birational map from �f�gn �T � to gDP��irr�� We must show that
this map is actually a morphism and that its restriction to the added stratum gives
the inverse of the isomorphism ������� �This will do� since target and domain are
normal�� For this in turn� it su�ces to prove that for every smooth germ of an

algebraic curve ingDP��irr� whose generic point is ingDP��node� and whose special

point is ingDP��cusp�� the restriction of �m to that curve is a morphism� Take such
a curve and represent it by a parametrized curve

u 	 t 	  �� �K�t��P��t�� � � � � P��t���

where �P��t�� � � � � P��t�� are points of P
� in general position and K�t� is a cubic

curve passing simply through these points such that for t 
� �� K�t� is a rational
irreducible curve with a node� whereas K��� is a rational irreducible curve with
a cusp� A natural way of trivializing the Pic ard groups over  � is as follows	
Choose a generating section t �� ��t� of the relative dualizing sheaf� So for every
t 	  � ��t� is a holomorphic nowhere vanishing di�erential onK�t�reg which extends

meromorphically over the normalization �K�t� of K�t�� The family K�t� is trivial

over  �� and hence the two points of �K�t� lying over the singular point are given
by two sections P��t� and P��t�� For t 
� �� ��t� has simple poles at these two
points� A straightforward local computation shows that f�t� 	� �ResP��t���t��

��

has a zero at t � �� For t 
� �� an identi�cation Pic��K�t�� �� C � is given by a kind
of Abel�Jacobi map	

�Q�� �P � �� exp�f�t�

Z Q

P

��t� ��

wheras Pic��K���� may be identi�ed with the additive group of C via

�Q� � �P � ��

Z Q

P

�����

If P �t�� Q�t� 	 K�t� are sections with P ���� Q��� 	 K���reg� then there is a canonical
homotopy class ��t� of paths in K�t� from P �t� to Q�t�� so that

R
��t� ��t� is a well�

de�ned analytic function of t 	  � From this we see that the image of Q�t�� P �t�
under the above Abel�Jacobi map goes to � as t goes to �� In particular� for t� ��
��t� 	 T tends to the identity element of T � On the other hand� f�t��� log��t�
tends to an element of V which represents �m�u����� as t � �� Hence �mu is a
morphism�

We do the same thing for cases !nnode" and !tacn"	 Let �T �e� � T �e� be the
blow�up of the origin of T �e� and use the obvious notation� so for instance �T �e�� is

the disjoint union of �T � and P�V �e���� We have	
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Proposition ������� The maps �m make up a W��equivariant isomorphism

Qbtg��� ��gDP��red�� f��gn
a
e�E

�T �e��

and induce for every e 	 E isomorphisms

Qbtg �� Wen �T �e�
�� Qbtg

�� We�f��gn �T �e�
��

The proof is similar to ������� and we therefore omit it�

����
� Although we will not need it in what follows� we complete the picture by
describing how the two groups of strata �t together�
Taking the inner product with an element e 	 E de�nes an element of the

weight lattice Hom�Q�Z� and hence a one�parameter subgroup pe of T � Such a one
parameter subgroup determines an a�ne torus embedding T � Te with Te � T �
T �e�� The union TE of these torus embeddings �with the Te�s glued along T �
is an open subvariety of the familiar complete torus embedding de�ned by the
decomposition of Hom�Q�R� into Weyl chambers� Notice that the closure Pe of
the image of pe in TE is a projective line� Blowing up the origin of TE makes
�the strict transforms of� the Pe�s disjoint� Blowing up once more along these

strict transforms yields a modi�cation �TE � TE � The exceptional divisors of the
second blow�up are of the form P�V �e�� � Pe with normal bundle the external
tensor product of the tautological bundles �of degree ���� Such a divisor can be
analytically collapsed onto the P�V �e���factor� and this de�nes a map �TE � �TE �
The theorem below implies that this contraction can be performed algebraically�
The space �T �E is then the disjoint union of T

�� P�V ��� the T �e���s and the P�V �e����s�

Theorem ������� The union of the maps �m�

�m 	 Q���� ��gDP��sing�� f��gn �T �E �

make up a W��equivariant isomorphism and hence induce an isomorphism

m 	 Q� �Wn �T �E �

Proof� We proceed as in the proof of ������ and show that the restriction of m to

any smooth germ of an algebraic curve in gDP��sing� is a morphism� In view of
������ and ������� we only need to consider the case when the generic point of the

curve maps to gDP��irr� and the special point maps togDP��red�� Assume such a

curve is given� Its generic point is either ingDP��node� or ingDP��cusp�� Suppose
for de�niteness that the former holds and represent the germ by a parametrized
curve

u 	 t 	  �� �K�t��P��t�� � � � � P��t���

where �P��t�� � � � � P��t�� are points of P� in general position and K�t� is an irre�
ducible cubic curve through them such that the �rst six are its the smooth locus�
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The special point u��� maps to DP ��nnode� or DP��tacn� depending on whether
K��� has a an ordinary double point or a cusp at P�����
In the �rst case� the corresponding ��t� 	 Hom�Q� C� � has the property that

lim
t��

��t���� � ������� for � 	 Q�e���

whereas ��t��P��t�� P��t�� tends to � or �� It follows that �mu is a morphism�
In the second case we trivialize the Picard groups over  � as in ������ and �nd

an analytic function f 	  � C with the property that f��� � � and

lim
t��

f�t��� log��t���� � ������� for � 	 Q�e���

So �mu is in this case a morphism as well�

Remark� It would be interesting to !complete" this isomorphism with the hyper�
elliptic locus and the boundary of the Deligne�Mumford compacti�cation� Even
more of a challenge is to �nd a description of the �bration of f��gn �T �E by quartic
curves entirely in terms of the root system�

�� Arrangements of divisors

����� Let M be a connected complex manifold of dimension m and let D be
a reduced divisor D on M � Assume that D is arrangement�like� i�e�� can locally
be given as a product of linear functions� For simplicity we make the additional
assumption that the irreducible components of D are smooth� This is so in the
three examples which are our main concern	

��� M is an a�ne space A and the irreducible components of D are a�ne�linear
hyperplanes� This is the case that has been studied most� see for instance
Orlik and Solomon �����

��� M is a projective space P and the irreducible components ofD are projective
hyperplanes�

�
� M is an algebraic torus T and the irreducible components ofD are hypertori�
i�e�� �translated� subtori of codimension one�

Let S be the collection of irreducible components of intersections of irreducible
components of D� We include M in S �as an intersection with empty index set��
Notice that every member of S is smooth�
For S 	 S� we denote the inclusion of S inM by iS � We further putM � 	�M�D�

and we will denote the inclusion of M � in M by j�
We shall describe a complex of sheaves onM that represents the full direct image

Rj�ZM�� We do this by means of an inductive procedure� First a simple lemma�

Lemma ������ There is a covariant functor S 	 S �� ES from the partial ordered
set S to the category of abelian groups satisfying

��� EM �Z�
��� for every S 	 S of codimension k � �� the sequence of homomorphisms

�� ES �
M
S��S

codimS��k��

ES� � � � � �
M
S��S

codimS���

ES� � EM � �

is an exact complex�



COHOMOLOGY OF M� AND M�

�
��

This functor is unique up to unique isomorphism� Moreover� ES is free and its rank

�S� is given by the inductive formula


�M � � �� and if S 
�M� then
X
S��S

����codim S�
�S�� � ��

Proof� The �rst part is easy and is left to the reader� The second part follows from
the fact that the euler characteristic of the displayed complex must be zero�

The Z�modules ES were introduced by Orlik and Solomon �����

���
� If F is a sheaf on S 	 S� then the tensor product of iS�F with the complex
of ����� gives an exact complex of sheaves on M � We may apply this to i�SI� where
I is a sheaf onM � If I has the property that any local section with support in the
union of the S 	 S of codimension k is a sum of sections with support in a single
S 	 S of codimension k� then it follows that

�
M

codim S�k

iS�i
�
SI �ES � � � � �

M
codimS��

iS�i
�
SI � ES � iD�i

�
DI � �

is exact� Let us take for I the Godement resolution I� of ZM� it clearly posseses
this property� If we combine this with the standard exact sequence

�� iD�i
�
DI

� � I� � j�j
�I� � ��

we �nd that j�j�I� is injectively resolved by the double complex

�
M

codim S�k

iS�i
�
SI

� �ES � � � � �
M

codimS��

iS�i
�
SI

� � ES � I� � ��

Now j�I� is the Godement resolution of ZM �� and the Thom isomorphism shows
that i�SI

� is quasi�isomorphic to ZS���codimS���codimS�� So a cohomological
grading gives the spectral sequence

���
��� E�p�q
� �

M
codimS�p

Hq��p�S� �ES��p�� Hq�p�M ���

In the algebraic setting� this is a spectral sequence of mixed Hodge structures�

����� Let us see what this spectral sequence yields in our three examples�

������� In the a�ne�linear case� the members of S are a�ne�linear subspaces
and are therefore acyclic� In particular� the spectral sequence degenerates and we
recover the result of Brieskorn ��� and Orlik and Solomon ���� that states that
Hk�A�� is free of rank

P
S�S�codim S�k 
�S�� In particular� the Poincar�e polynomial

of A� is
P �A���t� �

X
S�S


�S�tcodim S �

This also shows that in the general case ES��p� can be interpreted as the coho�
mology in degree codimS of the intersection of a small spherical neighborhood of a
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point of S with M �� If H is a hyperplane in D de�ned by an a�ne�linear form fH �
then the logarithmic di�erential �H 	� dfH����ifH � only depends on H �not on
fH �� and according to Brieskorn ��� the Z�subalgebra of the DeRham complex of
A� generated by these forms maps isomorphically onto H��A��� It is clear that the
cohomology in degree k is pure of type �k� k�� so that PS�A���t� u� � P �M ���tu���

������� In the projective case we can regard one of the irreducible components as
a hyperplane at in�nity and this reduces the situation to the previous case� Perhaps
a better approach is the following� Let V be the vector space such that P is its
associated projective space� and let DV � V be the union of linear hyperplanes
corresponding to D� Then V � is a C � �bundle over P �� this C� �bundle is trivial if
D 
� �� Assuming that this is the case� we see that we have short exact sequences

�� Hk�P ��� Hk�V ��� Hk���P ������� �

and that

P �P ���t� �
P �V ���t�

� � t
� PS�P ���t� u� � P �V ���tu���

Notice that H��P �� is the subalgebra of H��V �� generated by the di�erences of
logarithmic di�erentials �H � �H� �

�����
� As we already noticed� the spectral sequence ���
��� is a spectral sequence of
mixed Hodge structures� Every S 	 S is an algebraic torus� so its cohomology is the
exterior algebra of H��S�� and H��S� is pure of type ��� ��� Hence E�p�q

� is pure of
weight ��q�p�� Since the di�erentials must respect the weight� the spectral sequence
with rational coe�cients degenerates at the E��term� In particular� Hk�T �� is pure
of Tate type �k� k�� It also follows that the Poincar�e polynomial of T � is equal to

P �T ���t� �
X
S�S


�S�tcodim S�� � t�dim S � �� � t�m
X
S�S


�S�
� t

� � t

�codimS
�

and that PS�T ���t� u� � P �T ���tu��� It is not di�cult to prove that the whole
complex cohomology is generated by the logarithmic di�erentials �these include
the translation invariant di�erentials#�� So the C �algebra generated by these forms
maps surjectively to H��T �� C �� According to Deligne ��� this map is also injective�

����� Assume that G is a �nite group operating on M which preserves D� The
spectral sequence then becomes a spectral sequence of G�modules� The stabilizer
NG�S� of S acts on any sum �T�SHk�T � � ET � where the sum is taken over all
strata T 	 S of a given codimension which contain S� If S 
� M � then it follows
from lemma ����� that the virtual representation

M
T�S

����codimS�ET

is zero� This allows us in principle to compute the character of the representation
of NG�S� on ES �
The G�invariants yield a spectral sequence �E�p�q

� �G � Hq�p�M ��G� After ten�
soring with Q� this last group becomes isomorphic to Hq�p�GnM ��Q�� So if S� is
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a system of orbit representatives for the G�action in S� then we have a spectral
sequence

�������
M

codimS�p�S�S�

�Hq��p�S�Q��ES�
NG�S���p�� Hq�p�GnM ��Q��

It degenerates in the a�ne and toroidal cases�

�� Arrangements of divisors attached to root sytems

In this section we focus our attention on arrangement�like divisors that come
from root systems�

�
��� Let W be a �nite re�ection group of rank l acting e�ectively in a complex
vector space V � and let D � V be the union of re�ection hyperplanes� If � � m� 

m� 
 m� 
 � � � 
 ml are the exponents of W � then according to a formula of
Solomon and Brieskorn�

P �V ���t� � $li���� �mit��

We denote the space of W �invariants in Ef�g � Q �� Hl�V ��Q� by L�W �� So if
�Wi�i are the irreducible components of W � then L�W � is the tensor product of the
L�Wi��s� For later purposes we observe that minus the identity acts trivially on the
modules ES � if codimS � � this is clear� and the general case easily follows from
this� In particular� minus the identity acts trivially on L�W ��
Choose a fundamental chamber C for W and identify its codimension one faces

with the vertex set of its Coxeter diagram Cox�W �� Then every set X of vertices
of Cox�W � determines an intersection of re�ection hyperplanes S�X� of W � and
in this way we meet every W �orbit in S� If X is a collection of vertex subsets of
Cox�W � such that the corresponding subset of S is a system of representatives of
W �orbits� then it follows from ����� that

Hp�WnV ��Q���
M

X�X �jXj�p

E
NW �S�X��
S�X� �Q��

M
X�X �jXj�p

L�WX �
NW �X��

This reduces the computation of the rational cohomology of WnV � to that of the
spaces L�W �� �for all re�ection groupsW �� as a representation of the automorphism
group of Cox�W ��� The way this is done is indicated below� Here we only notice
that in case W is of type A�� Ef�g �Zso that L�W � is canonically isomorphic to

Q� IfW is of type �A��
k then the permutation group on the irreducible components

of W acts on L�W � according to the sign character�

�
��� In the previous example we denote by P the projective space of V and
we let DP be the divisor corresponding to D� Since V

� is a trivial C � bundle over
P � 	� P �DP �

P �P ���t� � �� � t���P �V ���t� � $li���� �mit��

and similarly
P �WnP ���t� � �� � t���P �WnV ���t��
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This may also help us to represent L�W � �inductively� by logarithmic forms of
degree l on V �� Suppose that W is irreducible and that l � �� For every re�ection
hyperplaneH let �H 	� dfH����ifH � be the logarithmicdi�erential de�ned in ������
Then � 	�

P
H �H represents a generator of the W �invariant part of H��V ��Q��

Multiplication by � maps Hl���V �� onto Hl�V ��� and this map is W �equivariant�
So this induces a surjection

M
X�X �jXj�l��

L�WX �
NW �X� � L�W ��

This� or a similar program� has been carried out by Brieskorn ���� For irreducible
W he �nds that L�W � is one�dimensional in case W is of type A�� Cn� Deven� E��
E�� F�� H�� H�� I��even� and is trivial in all other cases� So dimL�W � 
 � always�
Since we shall need to know how the symmetries of the Coxeter diagram of Dl act
on L�W �Dl��� we will follow this procedure in that case� assuming that we already
know that L�W � � � if W is of type Ak� k � �� We use the standard convention
that D� � A�� D� � �A���� D� � A��

Lemma �	�	�� Assume that W is a Coxeter group of type Dl� For odd l� L�W � �
�� For even l� L�W � is one�dimensional and a generator is the class of

� 	�
X
w�W

w���H�
� � � � � �Hl��

where H�� � � � �Hl be mutually orthogonal re�ection hyperplanes� Moreover� an
automorphismof Cox�W � that interchanges two branches acts as minus the identity
on L�W ��

Proof� For l � �� �� 
 this is clear� Suppose l � � and assume by induction that
we have proved the assertion in degree � l� The induction hypothesis implies that
subdiagrams X of Cox�Dl� with l � � nodes that have L�WX � 
� � occur for even
l only� and they are all of type Dl�� � A�� It already follows that L�W � � � if l
is odd� Assume now l even� For l � � there is precisely one subdiagram of type
Dl�� �A�� for l � �� there are three� but they all belong to the same W �orbit� So
in either case there is only one such X in X and hence dimL�W � 
 �� We show
that � represents a nonzero class� First notice that the hyperplane H� spanned by
X is a re�ection hyperplane of a re�ection s of W �the re�ection w�r�t� the highest
root�� This implies that the W �stabilizer of S�X� is just hsi �WX � Now choose
l� � mutually orthogonal re�ection hyperplanes H�� � � � �Hl of WX � Our induction
hypothesis implies that �X 	�

P
w�WX

w���H�
�� � ���Hl� is a generator of L�WX ��

So �H�
� �X is a generator of L�hsi �WX ��

Let p 	 P be the point de�ned by X� B be a spherical neighborhood of p that
does not meet any re�ection hyperplane associated to WX � and U the preimage of
B in V � f�g� Then w���H�

� � � � � �Hl�jU � V
� is exact unless w�S�X� � S�X��

Hence �jU � V � is cohomologous to

X
w�hsi	WX

w���H�
� � � � � �Hl � � ��H�

� �X �
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and the latter represents a nonzero class� Therefore� � represents a nonzero class�
Finally� if g 	 GL�V � leaves the chamber C invariant and induces an automor�

phism of Cox�Dl� that interchanges two branches �components if l � ��� then it is
easy to �nd a g�invariant set of mutually orthogal re�ection planes H�� � � � �Hl such
that g induces the transposition of Hl�� and Hl� This implies that g acts on L�W �
as minus the identity�

�
��� Let R be a reduced irreducible root system� and let T be the algebraic torus
whose character group is the �root� lattice spanned by R� So T is the tensor product
of the lattice P
 of dual weights and C � � It comes with an action ofW � We take for
D the union of the �xed point hypertori of the re�ections in W � We wish to �nd a
system of representatives of the W �orbits in S� For this� we follow the discussion in
Bourbaki ��� Ch� �� no ��
�� Let h denote the real vector space spanned by the dual
root system R
� so that h�P
 can be identi�ed with the maximal compact torus
Tc in T � The a�ne transformation group of h generated by W and the translations
in P
 is a semi�direct product W�P
� and a fundamental domain of W�P
 in h will
map isomorphically onto a fundamental domain of W in Tc�
Consider the somewhat smaller groupW�Q
� where Q
 is the lattice spanned by

the coroots� It is known Bourbaki ��� Ch� �� no �� that W�Q
 acts as a re�ection
group on h and that a fundamental domain �in the strict sense� of this action is the
simplex C de�ned by the a�ne�linear inequalities �� � �� � � � � �l � � and �� 
 ��
where �� is the highest root� It is customary to write �� for � � ��� We regard

��� � � � � �l as the set of nodes of the completed Dynkin dDyn�R� diagram of R� The
faces of C are now in bijective �incidence�reversing� correspondence with the proper
subsets of ��� � � � � �l� Let us denote by H the collection of a�ne�linear subspaces
of h that are intersections of re�ection hyperplanes�
Since W�Q
 is normal in W�P
 there is an induced action of the semi�direct

product P
�Q
 on C� This realizes this group as an automorphism group ofdDyn�R�� It also follows that W�P
 preserves the union of re�ection hyperplanes
of W�Q
� So the complexi�cation of this union is the pre�image of D under the
covering h� C � T � It follows that the W �orbits in S and the W�P
�orbits in H
are in bijective correspondence� So for every proper subset X of dDyn�R� we �nd a
member S�X� of S and in this way we hit every W �orbit in S �usually more than

once�� We select a collection X of proper subsets of dDyn�R� such that the collection
fS�X� 	 X 	 Xg is a system of representatives of W �orbits in S�
According to the previous section� the rational cohomology of WnT � is isomor�

phic to M
jXj�p�X�X

�H��S�X��Q��ES�X��
NW �S�X���p��

Let us consider the contribution from X in more detail� Let WX � W resp�
WX � W denote the subgroup of W generated by the re�ections s��� with � 	 X
resp� ��X �where s���� � s������ If w 	 W �xes every element of X� then
w 	 WX � So if we put

W �X� 	� NW �S�X����WX �WX�

then W �X� acts e�ectively on X as a group of graph automorphisms�
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We may identify �ES�X��Q�
WX with L�WX �� Since WX acts trivially on S�X��

we can� in the above expression� replace ES�X� � Q by L�WX �� In particular� we
only get a contribution if WX is a product of re�ection groups of the type listed in
�
���� If hX � h denotes the subspace of h common zeroes of the roots in X� then
H��S�Q� may be identi�ed with the exterior algebra of the rational vector space
h�X�Q� It is known that a re�ection group has no invariants in the exterior algebra
of its tautological representation� except in degree zero ��� Ch� � � exerc� ��
�� So if
aX is �xed point set of WX in hX � then

�H��S�X��Q�� ES�X��
WX	WX � ��a�X�Q� L�WX ��jXj��

It then remains to �nd the space of invariants of the group W �X� in the latter
space� Fortunately� the space aX tends to be small�

�
��� Let �T � T be the blow up of the identity element of T � and let D 
T be the

strict transform of D� We regard T � as an open subvariety of �T � � �T �D 
T � Denote
by V the tangent space of T at the origin� by P�V � the corresponding projective
space� We identify the latter with the exceptional divisor in �T � So �T � is the disjoint
union of T � and P�V �� 	� P�V � � �T ��

Lemma �	�
�� The sequence

�� H�� �T ��� H��T ��
Res
��H��P ���������� �

is exact and W �equivariant� In particular� Hk� �T �� carries a pure Hodge structure
of Tate type �k� k�� Furthermore�

P �Wn �T ���t� � P �WnT ���t� �
t

� � t
P �WnV ���t��

P �W�f��gn �T ���t� � P �W�f��gnT ���t� �
t

� � t
P �WnV ���t��

The cohomology in degree k is Tate of weight �k� so the Poincar�e�Serre polynomials
are obtained by substitution of tu� in the corresponding Poincar�e polynomials�

Proof� The sequences stem from the long exact sequence of the pair � �T �� T �� and
the Thom isomorphism� So for the �rst assertion it is enough to show that the
map Hk�T �� � Hk��� �T �� T �� �� Hk���P �� is surjective� If B is a small convex
neighborhood of the identity of T � then we can factor this map as Hk�T �� �
Hk�B�� � Hk���P ��� The �rst map is onto for k � �� Since H��B�� is generated
in degree one� it follows that this is so for all k� The second map is surjective
because B� is topologically a trivial punctured disk bundle over P ��
The last assertions are a consequence of the �rst one and the formula in ��������

�� Computations

We shall apply the methods of the previous section to the cases E� and E�� They
will enable us to determine �among other things� the Poincar�e�Serre polynomial of
the moduli spacesM� andM�

�� We begin with a lemma that will be used frequently�
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Lemma ������ Let X be an algebraic variety of pure dimension� Y � X a hyper�
surface� and assume that both are rational homology manifolds� Then we have a
Gysin exact cohomology sequence of mixed Hodge structures

� Hk���Y �Q������ Hk�X�Q�� Hk�X � Y �Q�� Hk���Y �Q������ �

Proof� The assumption implies that the local cohomology sheaf Hk
Y �X�Q� vanishes

for k 
� �� and can be identi�ed with i�QX���� for k � �� The lemma follows from
this�

Lemma ������ The Poincar�e�Serre polynomials ofQ�x� Qh�x� Q�x are respectively
� � t�u��� �� � � t�u� � t�u���

Proof� According to the table in Brieskorn ��� the Poincar�e polynomial of WnV � is
for W of type E� resp� E� equal to � � t resp� � � t� t� � t�� Hence the Poincar�e
polynomial of the corresponding projectivized space is by ������� equal to � resp�
� � t�� Since we have identi�cations of these spaces with Q�x resp� Qh�x� the �rst
two assertions follow�
The subvariety Qh�x ofQ�x satis�es the hypothesis of ������ The Gysin sequence

splits into short exact sequences� showing that

PS�Q�x��t� u� � t�u�PS�Qh�x��t� u� � PS�Q�x��t� u��

This implies the last formula�

Corollary ���	�� The Poincar�e polynomial ofQ is termwise bounded by ��t��t��

Proof� The forgetful map Q�x � Q is �nite� and so the Poincar�e polynomial of Q

is termwise bounded by the one of Q�x which is � � t� � t��
As indicated in the introduction� we can at this point easily derive that the

Poincar�e�Serre polynomial ofM� is �� t�u�� t�u�� if we make use of the fact that
M� has second betti number � �due to Harer� and euler characteristic 
 �Harer
and Zagier ����� We will follow however a slightly di�erent path that does not use
Harer�s computation of b��M���

����� Determination of the Poincar�e polynomials of WnT � and W�f��gnT � in
case R is of type E��
We label the fundamental roots ��� � � � � �� such that in the completed E� Dynkin

diagram ���� � � � � �	� and ���� ��� ��� are strings� The only subsets X of dDyn�E��
that may contribute to the Poincar�e polynomial of WnT � are those of type Ak� �
k � �� �� 
� � and D�� It is easily veri�ed that such subsets belong to the same
W �orbit if they are of the same type�

Case �	 X is of type A�� say X � f��g�
Then WX is equal to the re�ection group generated by s����� � � � � s��	� and aX

is trivial� Hence ��aX � L�WX � �� L�WX � is one�dimensional� It is easy to see
that L�WX � has a canonical generator� so W �X� and �� act trivially on it� We
conclude that X contributes t to each Poincar�e polynomial�

Case 
	 X is of type �A���� say X � f��� �	g�
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ThenWX equals the re�ection group generated by s����� s����� s����� and so aX
is one�dimensional� There is a w 	 W which permutes �� and ��� and any such a
w acts as minus the identity on L�WX �� A small computation shows that w acts as
minus the identity on aX � Hence there are no W �X��invariants in ��aX � L�WX ��
Therefore X does not contribute in either case�

Case �	 X is of type �A��
�� say X � f��� ��� �	g�

The only positive root orthogonal to X is ��� and hence dimaX � �� We
determineW �X� and its action on aX � The roots �� and �	 belong to the A	�system
orthogonal to ��� Now for any pair of orthogonal roots in an A	�system there is
always a Weyl group element of this system that interchanges these roots� So there
is a w 	W that leaves �� �xed and interchanges �� and �	� Since these roots are
transitively permuted by W �X�� it follows that W �X� maps �isomorphically� onto
the full permutation group SX ofX� The elements ofW �X� that induce the identity
on L�WX � are those that induce an even permutation of X� The group W �X� acts
on aX as a re�ection group of type A�� From this it follows that the space ofW �X��
invariants ��aX � L�WX � is equal to the one�dimensional space �

�aX � L�WX ��
So X contributes t	 to P �WnT ��� Since �� acts as minus the identity in aX � but
as the identity on L�WX ��� it acts as the identity on ��aX �L�WX �� and so we get
the same contribution to P �W�f��gnT ��

The last two cases are not much di�erent from the previous case�

Case �	 X is of type �A���� so X � f��� ��� ��� �	g�

There are no roots orthogonal to X� and so aX � hX is of dimension two�

A similar argument shows that W �X� maps isomorphically onto the full permu�
tation group SX of X� The elements of W �X� that act as the identity on L�WX �
are precisely the ones that induce an even permutation of X� Consider the repre�
sentation of W �X� �� S� on aX � We saw in the previous case that the restriction
of this representation to the stabilizer of �� ��� S�� has image a re�ection group of
type A�� Up to isomorphism� there is only one such irreducible representation of
S� and the image of this representation is the same as its restriction to S�� Clearly�
each even element will go to an even element� As before� �� acts as the identity
on L�WX ��

It follows that the space of W �X��invariants and the space of W �X��f��g�
invariants of ��aX � L�WX � are both equal to ��aX � L�WX �� so that we get a
contribution t� in either case�

Case 
	 X is of type D�� so X � f��� ��� ��� ��g�

We have that aX � hX is of dimension two� the group W �X� maps isomorphi�

cally onto the symmetry group Aut�X� �� S� of X as a subgraph of dDyn�R� and
W �X� induces in hX a re�ection group of type A�� According to lemma �
�
� this
group acts on L�WX � according to the sign character�Since �� acts on L�WX � as
the identity� the space of W �X��invariants in ��aX � L�WX � is also the space of
W �X��f��g�invariants� and equal to ��aX �L�WX �� Hence we get a contribution
t� in either case�

Conclusion� The Poincar�e polynomial of both WnT � and W�f��gnT � is equal to
� � t � t	 � �t��
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Corollary ������ The subvariety Qbtg of Q�� resp� its closure Qbtg in Q�� has
all its cohomology in degree k pure of type �k� k�� and its Poincar�e polynomial is
�� t� t	 ��t�� resp� �� t	��t�� The same assertion holds for the subvariety Qbtg

of Q� resp� its closure Qbtg of Q�

Proof� It follows from ������ that Qbtg resp� Qbtg can be identi�ed with the W �
orbit space of T � resp� �T � �where the root system is of type E��� According to the
table in Brieskorn ���� the Poincar�e polynomial of WnV � is equal to �� t� The �rst
part of the claim then follows from lemma �
��� and the above computation� The
second part follows in the same way�

In order to �nish our computation of the Poincar�e�Serre polynomial of M� we
need to deal with the hyperelliptic locus�

Lemma ���
�� Let n be an integer � 
� Then the moduli space %n of n�element
subsets of P� �taken modulo projective equivalence� has no rational homology in
nonzero degree�

Proof� Let �%n � %n be the Sn�covering obtained by ordering the elements� We
can represent a point of �%n by an �n� ���tuple �z�� � � � � zn��� in C with

P
i zi � �

and the zi�s of course distinct �the nth point is ��� This �n � ���tuple is unique
up to scalar multiplication� Now the hyperplane V of Cn�� de�ned by

P
i zi � �

is the natural representation space of Sn�� as a re�ection group �of type An����

We just proved that �%n can be identi�ed with P�V ��� This identi�cation is clearly
Sn���equivariant� and so we have an unrami�ed covering Sn��nP�V �� � %n �of
degree n�� According to Brieskorn ��� the Poincar�e polynomial of Sn��nV � equals
� � t� and so by �
��� the Poincar�e polynomial of Sn��nP�V �� reduces to �� Hence
the same is true for %n�

Since the moduli space Hg of smooth hyperelliptic curves of genus g may be
identi�ed with %�g��� we �nd that Hg is acyclic for rational homology�

Theorem ���
�� The moduli space Q� resp� M�� has Poincar�e�Serre polynomial
� � t�u�� resp� � � t�u� � t�u���

Proof� Since the forgetful map Qbtg �Q is �nite� the Poincar�e polynomial of Q is

termwise bounded by � � t	 � �t�� According to ���
� it is also termwise bounded
by �� t�� t�� Hence it is termwise bounded by �� t�� The pair �M��H�� satis�es
the hypothesis of lemma ����� and the Gysin sequence of this pair shows that the
Poincar�e polynomial ofM� is equal to the Poincar�e polynomial ofQ plus t�� that is�
either ��t��t� or ��t�� According to Harer and Zagier ���� the euler characteristic
of M� equals 
� and so the �rst case holds� It is clear that the class in degree �
resp� � has weight � resp� ���

Next we calculate the Poincar�e�Serre polynomial ofM�
��

����� Determination of the Poincar�e polynomial ofWnT � in case R is of type E��
In this case P
�Q
 is of order two and can be identi�ed with the automorphism

group of dDyn�R�� The types of subdiagramsX that may contribute to the Poincar�e
polynomial are �A��k� k � �� � � � � �� D�� D� and E�� We shall list a representative

collection of subsets X of dDyn�R� of these types� It turns out that in each case the
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root systemRX of roots orthogonal toX spans the orthogonal complement ofX� So
we always have that aX � � and hence that ���aX �L�WX ��W �X� � L�WX �W �X��

We label the fundamental roots ��� � � � � �� such that in the completed E� Dynkin
diagram� ���� � � � � ��� and ���� ��� are strings�

Case �	 X of type A�� Then RX is of type D� and W �X� acts trivially on
L�WX �� So X contributes t�

Case 
	 X of type �A���� say X � f��� ��g� Then RX is type �A��	� There is
a transformation in the Weyl group that permutes the two elements of X� Such a
transformation acts as minus the identity on L�WX �� and so X does not contribute�

Case �	 There are two subcases here which can be distinguished by the type of
RX

Subcase �a	 X � f��� ��� ��g� Then RX is of type D�� There is a w 	Wf��������g

which interchanges �� and ��� Such a transformation �xes �� and acts on L�WX �
as minus the identity� Hence X does not contribute�
Subcase �b	 X � f��� ��� ��g� Then RX is of type �A���� The Weyl group element
w of the previous case �xes ��� and acts as minus the identity on L�WX �� So this
X does not contribute either�

Case �	 X of type �A���� Here too� there are two subcases� which are dual to
�
a� and �
b�	 in case ��a� WX is contained in a Weyl group of type D�� while in
case ��b� this is not so	
Subcase �a	 X � f��� ��� ��� ��g
Subcase �b	 X � f��� ��� ��� ��g
In either case RX is of type �A���� The Weyl group element used in case 
 serves

the same purpose here and we �nd that neither case contributes�

Case 
	 X of type �A��	� so X � f��� ��� ��� ��� ��g� Then the system RX is of
type �A���� Arguing as before� we �nd that X does not contribute�

Case �	 X is of type D�� so X � f��� ��� ��� ��g� The system RX is of type
�A���� This case is dual to case 
a� The groupW �X� is the automorphismgroupX�
If w 	 W is the element that interchanges �� and �� and �xes the other elements of
X� then w induces minus the identity in L�WX ��� We therefore get no contribution
from X�

Case �	 X is of type D�� say X � f��� � � � � ��g� This case is dual to case ����
We have RX � f���g� Since W �X� is trivial� X contributes t� to the Poincar�e
polynomial�

Case �	 X is of type E�� Clearly W �X� is trivial� so this case contributes t��

Conclusion� The Poincar�e polynomial of WnT � is � � t � t� � t� and the Poincar�e

polynomial of Wn �T � is � � t��

Corollary ������ The space Q� � Qbtg has the property that its cohomology in
degree k is pure of type �k� k�� Its Poincar�e polynomial is equal to � � t��

Proof� By ������ this moduli space can be identi�ed with the W �orbit space of �T ��
where R is of type E�� Now apply the preceding conclusion�
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Theorem ������� The Poincar�e�Serre polynomial of the moduli space of pointed
smooth quartic curves Q� resp� pointed smooth genus three curves M�

� is equal to
� � t�u� � t�u�� � t�u�� � �t�u�� resp� � � �t�u� � t�u� � t�u�� � t�u�� � �t�u���

Proof� Lemma ����� applies to the pair �Q��Qbtg�� It follows from ����� and ��
�
that the associated Gysin sequence breaks up in short exact sequences and that

the Poincar�e�Serre polynomial of Q� is equal to PS�Q� � Qbtg� � t�u�PS�Qbtg��
This proves the �rst part of the theorem� The complement of Q� in M�

� is the
hyperelliptic locus H�

�� The forgetful map H
�
� � H� is a �bration by projective

lines� Its spectral sequence degenerates� and so the inclusion of a �bre ��� P��
induces an isomorphism on rational cohomology� Hence PS�H�

���t� u� � � � t�u��
The second part follows from another application of ������

Corollary ������� The cohomology of the variation of Hodge structure over M�

de�ned by the �rst direct image ofM�
� �M� is pure Tate in every degree� and its

Poincar�e�Serre polynomial is equal to t�u�� � t�u���

Proof� The forgetful mapM�
� � M� is proper and smooth modulo quotient sin�

gularities� According to a theorem of Deligne �
�� the associated Leray spectral se�
quence degenerates at the E��term over Q� It is in fact a spectral sequence of Hodge
structures� this is a special case of a theorem of M� Saito ����� but in the present case
�where we deal with a map which is projective and essentially smooth� it can prob�
ably also be proved using the methods of Deligne� The three possibly nonzero sub�
quotients in degree k areHk�M��Q��H

k���M��E�� andH
k���M��Q������ where

E denotes the �rst direct image� So the Poincar�e�Serre polynomial of H��M��E�
is equal to

t��
�
PS�M�

���t� u�� �� � t�u��PS�M���t� u�
�
� t�u�� � t�u���
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