COHOMOLOGY OF M3 AND M.

EDUARD LOOIJENGA

ABSTRACT. We give a description of the moduli space of pointed smooth quartic
curves in terms of the root system E7, and use this to determine the rational co-
homology (with its mixed Hodge structure) of the moduli spaces M3 and M% of
smooth (pointed) curves of genus three.

0. INTRODUCTION

In this paper we determine the Poincaré polynomials of the moduli spaces M3
and M3 of smooth (pointed) genus three curves and of certain natural strata
therein. Our approach is based on the well-known fact that the moduli space
of smooth quartic curves @ (which is simply the complement of the hyperelliptic
locus in Mas) is also the moduli space of (smooth) Del Pezzo surfaces of degree
two. This allows us to find simple descriptions of the strata of the moduli space
Q' of pointed smooth quartic curves (C, p) in terms of root systems. For instance,
we may define strata in Q! according to the intersection behaviour of C' and the
tangent line L through p. There are four cases: L can meet C'in 3 distinct points
(the general situation), or L is a genuine bitangent (two points of intersection with
), or L and C meet in p with a contact of order 3 resp. 4. These define strata
Qord, thg, Qﬂx, QMX Tt turns out that each of these strata can be described
in terms of a Weyl group (of type E7 or Fsg) acting on a torus T of adjoint type
or its projectivized Lie algebra P(Lie(T')). The toroidal cases correspond to Q°9,
QP8 and the projective cases to O and QMIX| As we point out at the end of this
introduction, the latter two are intimately related to the miniversal deformations of
the plane curve singularities that also bear the names E7 and Fg. The relationship
between Q'8 and the adjoint Fs-torus had already been observed by us in [9]. Our
first main result is theorem (1.20) which tells us how these strata fit together. Tt
contains a description of Q! solely in terms of a root system of type E-.

We compute the Poincaré polynomials of these strata and related varieties. Ac-
tually we obtain finer information. According to Deligne [4], a cohomology group
of an algebraic variety carries a mixed Hodge structure. The varieties encountered
here (such as M3 and M3) turn out to have particularly simple Hodge structures:
in every degree their cohomology is pure of type (k, k) for a certain k. It is therefore
convenient to express our results in terms of what we propose to call Poincaré-Serre
polynomials: this is a polynomial in two variables ¢, u attached to the cohomology
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of an algebraic variety (or more generally, to a graded mixed Hodge structure) by
letting the coefficient of t*u' be the dimension of the weight { subquotient in degree
k. For u = 1 this reduces to the Poincaré polynomial, and if we substitute t = —1,
then the coefficients of the resulting polynomial are the weighted euler characteris-
tics which were apparently first used by Serre in a characteristic p setting. We can
now state our two other main results:

(4.7) The moduli space of smooth quartic curves resp. of smooth genus three curves
has Poincaré-Serre polynomial 1 + t%u'? resp. 1+ t%u? 4 t%u!2.

(4.10) The Poincaré-Serre polynomial of the moduli space of pointed smooth quartic
curves resp. of pointed smooth genus three curves is equal to 1 + t?u? + t5u'? +
tu? 4 2630 resp. 1+ 2620 4 t*u* + 0u'? + 7wt ? 4 265014

The proof of (4.7) uses the fact, due to Harer and Zagier [8], that the euler charac-
teristic of M3z equals 3, but the proof of (4.10) is independent of this. According
to (a generalization of) the Hodge conjecture, a class of degree 2k is algebraic if
and only if it is of type (k, k). So (4.7) predicts that the class of M3 in degree two
is algebraic, whereas the one in degree six is not. This is in agreement with the
computation by Faber [7] of the Chow groups of M3. We also observe that (4.10)
implies that the euler characteristic of M3 is 6, which checks with another result
of Harer and Zagier.

Our proof also allows the computation of the rational cohomology of the above
moduli spaces with level two structure, even as representation spaces of Sp(6, Fs),
but we have not pursued this. Our method generalizes well to other Del Pezzo
surfaces, but this will possibly be the subject matter of another paper.

We briefly indicate the contents of each section.

Section 1 contains the description of the four strata in terms of root data. At
the end we explain how these strata fit together, so that we obtain a description of
M3 in terms of the root system E7. We also show that M3 is rational. (It is still
not known whether Msj is rational.)

Sections 2 and 3 are different in character and are independent of section 1. The
toroidal cases alluded to above lead us to study arrangements of hypertori and the
cohomology of their complements. For this purpose we found it convenient to set
up things in a more general manner in order to have a unified treatment of affine-
linear and toroidal arrangements. It turns out that the most effective approach is
then by the methods of sheaf theory; even in the well-studied case of hyperplane
arrangements it yields probably the fastest proof of the basic results of Brieskorn.
The general discussion is carried out in section 2, whereas in section 3 the special
features of arrangements coming from root systems are examined.

In the final section 4 we apply the methods developed in section 3 to compute
various Poincaré-Serre polynomials.

For the computation of the Poincaré polynomial of M3y it is possible to avoid
Del Pezzo surfaces altogether if one is willing to use some facts about the plane
curve singularities of type Fg and E7 instead. Since that proof essentially consists
of properly arranging known results, and uses less in the way of algebraic geometry,
we may as well outline it here. Consider the moduli space Q% of pairs (C, L) where
Cis a smooth quartic curve in P? and L is a line with a point of contact of order
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> 3. It is clear that this moduli space is the disjoint union of 0% and Q"1* and
that the forgetful map O 3 9 is finite. Consider the miniversal deformations of
the plane curve singularities Fg, F7:

Fs C(u): 23+ yt + uszy® + usey + usy? + us® + uoy + uo = 0,
E; C(v): 23+ 2y 4 voxy? + vsx? + vazy + vsy? + vex + vry + ve = 0.

If we give the u- and v-parameters weights equal the their subscript, then the spaces
U 22 C8 resp. V = C7 for which they are coordinates acquire a C*-action. If we let
C* act on zy-space by giving = weight 4 resp. 3 and y weight 3 resp. 2, then the
two equations become weighted homogeneous. This implies that curves in the same
C*-orbit are projectively equivalent. Every curve C'(u) is smooth at infinity, and
meets the line at infinity, L., in a smooth point with contact of order 4. A similar
statement holds for the curves C'(v), except that they meet Lo in two distinct
points with contact of order 3 and 1. So if U’ C U resp. V' C V parametrize the
smooth curves, then we have natural maps U'/C* — QM* and V//C — Q™. It
is easily verified that these maps are isomorphisms.

The Poincaré polynomials of the spaces U’ and V'’ have been determined by
Brieskorn [2]: they are 1 4+t resp. 1+t 4% +17. Those of their C*-orbit spaces
are obtained by dividing these by the Poincaré polynomial of C* (which is 1 4 ).
It follows that the Poincaré polynomial of Q" resp. QF* is equal to 1 resp.
1+t The Gysin sequence for rational cohomology may be applied to the pair
(Qfx QBX) (see lemma (4.1)), and it shows that the Poincaré polynomial of Q*
is equal to 1412 +1¢%. Hence the Poincaré polynomial of Q is termwise bounded by
1412415 We regard Q as the complement of the hyperelliptic locus Hs in Ma.
One verifies that the Poincaré polynomial of Hs is constant equal to 1 (see lemma
(4.6)). Another Gysin sequence argument shows that then the Poincaré polynomial
of M3 must be termwise dominated by 1+2t% 415, If we combine this with the fact
that the second betti number of M3 is equal to 1 (Harer) and the fact that its euler
characteristic is 3 (Harer and Zagier [8]), it follows that the Poincaré polynomial
of M3z must be equal to 1 +t? + 15,

This paper was conceived after the conference and 1ts contents bears no relation
to the talk I gave there.

Acknowledgements. 1 thank Hans Sterk for comments on the first version of this
paper and I am grateful to the referee for the conscientious way he has done his
job.

Notation. We shall denote the Poincaré polynomial, resp. Poincaré-Serre polyno-
mial, of a variety Z by P(Z) resp. PS(Z).

If a reflection group W acts on a space X, then as a rule Dx denotes the union
of the fixed point sets of the reflections in W, and X’ denotes its complement in X.

1. THE DEL PEZZO MODEL FOR Q!

In this section we will describe a model for the moduli space of pointed genus
three curves, based on the theory of Del Pezzo surfaces. We begin by recalling some
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classical material which is set out in more detail in Manin [10], Demazure[5] and

Dolgachev and Ortland [6].

(1.1) Let us start out with a smooth plane curve C' C P? of degree 4. It is known
that such a curve has 28 double tangents. Let X — P2 be the double cover which
ramifies along C'. This is a Del Pezzo surface of degree two. To be more precise,
the pre-image of a line is the polar divisor of a meromorphic 2-form on X without
zeroes (such a divisor is said to be anti-canonical) and its self-intersection is 2.
Every anti-canonical curve on X is thus obtained and the projection X — P? can
therefore be thought of as the map defined by the anti-canonical system on X. So
this map and the involution of X defined by it are (up to a linear transformation)
intrinsic to X.

The pre-image of a double tangent consists of two exceptional curves; and this
yields all the 2 x 28 = 56 exceptional curves on X. If Eq,... E7 are disjoint
exceptional curves on X, then contracting them yields a projective plane. Any
anti-canonical curve D on X will meet F1q,..., Fy transversally and will project
onto a cubic curve in the projective plane passing through the images Py, ..., P; of
Ey, ..., E7. Conversely, the strict transform of every cubic through these points
is anti-canonical. This implies that the linear system of cubic curves through
Py, ..., P; cannot have any fixed point after blowing up Py,..., P;. This condi-
tion translates into: no three of the P;’s are on a line and no six are on a quadric.
We then say that the points Py, ..., P; are in general position. If L C P? is a line
tangent to C' which is not a double tangent, then its pre-image L in X is a rational
curve with a node, a rational curve with a cusp, or consists of two smooth rational
curves meeting each other in a tacnodal singularity, depending on whether C' and
L have a point of contact of order 2, 3 or 4.

We can also go in the opposite direction: if we start out from seven points in a
projective plane which are in general position in the above sense, then blowing them
up yields a Del Pezzo surface of degree two and thereby a smooth quartic curve in
a (different) projective plane. A singular cubic curve passing through these seven
points yields a tangent to the quartic. There are many ways of choosing seven
disjoint exceptional curves on X; in fact, as we will recall below, there is a large
group (a Weyl group of type E7) which permutes transitively the possible choices.
Distinct choices lead to configurations of seven points in a projective plane which
are in general not projectively equivalent. The relationship between these point
configurations is rather subtle and still not fully understood. If however, we also fix
a tangent line of €' then the point configurations come with a singular cubic curve
through them and, as we will see, the relations between these algebro-geometric
data are a lot easier to describe.

(1.2) Let L be the free Z-module with generators ey, ..., e7,{, equipped with
the symmetric bilinear form for which this is an orthogonal basis and e;.e; = —1
and [l = 1. Let k := 3]l —e; — --- — e7. Notice that k.k = 2 and that the
orthogonal complement ) of k£ in L is negative definite. The elements o € @
with a.a« = —2 form a root system R of type E7; a basis for this root system is
ap = €1 —e€g,...,0g .= eg —er, a7 ;=1 —e; — ey — ez. The positive roots with
respect to this basis are the elements e; —e; with ¢ < j, l—e; —e; —ep with ¢ < j <k
and 2l —e; —ea - — € ---—ep with 1 <0 < 7.
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Denote by W the corresponding Weyl group. This is also the group of automor-
phisms of the lattice Q).

(1.3) Choose seven (ordered) points Pp,..., Py in a projective plane which are
in general position in the sense that no three are collinear and no six lie on a conic,
so that the surface X := X(Py,..., P;) — P? obtained by blowing up these points
is a Del Pezzo surface of degree 2. If Ey,..., E; are the corresponding exceptional
curves, then we have an isomorphism of lattices ¢ : L = Pic(X) under which e;
corresponds to the class of E; and [ to the class of the pre-image of a line in P? .
The strict transform of a cubic curve passing through the seven points is an anti-
canonical curve whose class corresponds to k. The classes of the (56) exceptional
curves correspond to: e;, 1 <7< 7 (7), the class [ —e; —e; of the strict transform of
the line PiP;, 1 <i< j<T7(21), the class k —{ 4 e; + ¢; of the strict transform of
the conic through five of the seven points, 1 <7 < j <7 (21), the class k —e; of the
cubic that passes through the seven points and has a double point in F;, 1 <2 <7
(7). They are precisely the elements e € L with —e.e = e.k = 1. We denote that
set by &£. It is an orbit of W.

(1.4) For us X is the primary object and we will regard the collection exceptional
curves Fy, ..., F7 as an additional structure on X, called a marking. We noticed
that a marking determines an isomorphism ¢ : L 2 Pic(X) which sends & onto the
anti-canonical class. The converse is also true. Hence the possible markings are
permuted simply transitively by the stabilizer of k in the orthogonal group of L.
This stabilizer is just W. The anti-canonical system maps X to a projective plane
and this map is a double cover of that projective plane ramifying along a smooth
quartic curve C'. So X admits a canonical involution whos fixed point set is C'.
This involution fixes of course the anti-canonical class, and acts on its orthogonal
complement as minus the identity. For reasons that become clear in a moment, we
will denote this orthogonal complement by Pic?(X). Giving a marking of X up to
the canonical involution is equivalent to giving a level two structure on C'. To make
this somewhat more precise, let us give names to the relevant moduli spaces:

— The moduli space of Del Pezzo (marked) surfaces of degree two is denoted by
DPy (resp. 5732) The forgetful map 5732 — DP; is a Galois covering with
covering group W, := W/{£1}.

— The moduli space @(2) of smooth quartic curves with level two structure. The
forgetful map Q(2) — Q is a Galois covering with covering group Sp(6,F2).

The following result is due to Van Geemen, see [6].

Proposition (1.5). There is an isomorphism of W, 2 Sp(6,TF2) and a compatible
equivariant isomorphism DPs — Q(2).

(1.6) We will rather be concerned with moduli spaces parametrizing more struc-
ture. We introduce:

— DPy(sing): the moduli space of pairs (X, p) where X is a Del Pezzo surface of
degree two and p € X is such that there is an anti-canonical curve K on X which
has a singular point at p. (This K is then unique.) We identify this space with
the moduli space of pointed smooth quartic curves Q.
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— DP3(node): the Zariski open subset of DPs(sing) parametrizing pairs (X, p) for
which K has an ordinary double point at p. We identify this with the Zariski
open subset Q°rd of Q1.

— DP3(cusp): the locus in DPy(sing) parametrizing pairs (X, p) where K has a
cusp at p. We identify this with the subvariety Q%% of Q.

— DP3(nnode): the locus in DPs(sing) parametrizing pairs (X, p) such that K is
a union of two exceptional curves meeting transversally in two distinct points,
one of which is p. We identify this with the subvariety Q'8 of Q.

— DPa(tacn): the locus in DPy(sing) parametrizing pairs (X, p) such that K which
is a union of two exceptional curves meeting in p with multiplicity two (and
nowhere else). We identify this with the subvariety Qhx of Q1.

We have similar moduli spaces of these objects equipped with marking (resp. level
two structure). So we find for instance that there is an equivariant isomorphism
DPa(sing) — Q1(2).

We notice that DPs(cusp) and DP3(nnode) are of codimension one, while the
subvariety DPs(tacn) is of codimension two and is the intersection of the closures of
the two other strata. We shall first obtain explicit models of these strata separately,
and then indicate how they fit together. We will also use

— Qg the moduli space of pairs (C, L) consisting of a smooth quartic curve with
a genuine bitangent L. Clearly, there is a natural map Q"' — Q. of degree
two.

(1.7) Let X be a Del Pezzo surface of degree 2, and let K be an anti-canonical
curve on X which is a irreducible rational curve with a node p. We recall that
Pic?(K) = C*, and that the obvious map Kyeg — Pic'(K) is an isomorphism, so
that K is a Pic’(K)-torsor. The restriction homomorphism Pic(X) — Pic(K)
induces a homomorphism

x : Pic?(X) — Pic®(K).

Notice that Hom(Pic?(X), Pic?(K)) is an algebraic torus and that the Weyl
group of X acts on it via Pic?(X).

Let T' denote the algebraic torus Hom(@), C*). It comes with a natural action of
the Weyl group W. There are exactly two group isomorphisms between Pic?(K)
and C* which are mutually inverse. Since W contains minus the identity, it fol-
lows that there is a natural isomorphism between the Weyl group-orbit spaces of
Hom(Pic®(X), Pic?(K)) and T. So x determines an element m(X,p) of W\T. A
marking ¢ of X determines a lift m(X,p,¢) € {£1}\T. If we compose ¢ with
the automorphism of Pic(X) induced by the canonical involution ¢, then m(X, p, ¢)
does not change since i acts on Pic?(.X) as minus the identity.

The invariant m(X, p, ¢) defines a W -equivariant morphism

i : Q(2) = DPy(node) — {£1}\T.
Every root o € R determines a character y € T — x(«) € C*. The kernel of this

character is exactly the fixed point locus of the reflection in W defined by the root
a. Let Dy denote the union of these fixed point hypertori and put 77 := T — Drp.
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Proposition (1.8). The morphism m maps Q°™4(2) = ﬁz(node) isomorphically
and Wy -equivariantly onto {+1}\T" and hence induces an isomorphism

Qo = W\T.

Proof. We will construct its inverse. Let y € 7”. This means that x is a character
of ) which does not take the value 1 on any root. Choose an abstract rational
curve K with a node, an isomorphism C* = PicO(K) and P; € K. Define
Py, ..., Pr € Kreg by (Pig1) = x(€it1 — ;) + (Pi), i =1,...,6. The linear system
of degree 3 on K defined by x (I — e1 —e2 — e3) + (P1) + (P2) + (Ps) determines an
embedding of K in a projective plane. The condition that the images of the seven
points be in general position amounts to: P; # P; if i # j, i.e., x(e; —e;) # 1, no
three points are on a line, i.e., x({ — e; —e; —eg) # 1 if ¢, j, k are distinct, no six
are on a conic, i.e., for 1 <¢ <6, x(20 —ey---—¢& - - —eg) # 1. But this is just
saying that x(a) # 1 for all roots a.

Corollary (1.9). The moduli space M} of pointed genus three curves is rational.

Proof. The previous proposition implies that M3 and W\T are birationally equiv-
alent. So it is enough to prove that W\T is rational. Let P be the weight lattice
of R, i.e., the set of elements of ) ® @ which have integral inner product with
all elements of ). This lattice contains @ as a sublattice of index two. So the
algebraic torus S := Hom(P,C*) covers T twice and the corresponding involution
of S is given by translation over the isomorphism yo : P/Q = {1,—1}. If \; € P is
defined by Aj.o; = d; 5, then define a W-invariant function f; : S — C by

filx) = Z X(A).

AEW X,

Together these functions define a mapping f : W\S — C’. According to the
exponential invariant theory of root systems [I, Ch. 6] this is an isomorphism.
Translation over yo multiplies f; with xo();), and so the involution induces in C”
a linear involution (whose eigenvalues 1 resp. —1 have multiplicity 4 resp. 3). The
quotient of C7 by such an involution is rational. Since that quotient is isomorphic
to W\T, the proposition follows.

(1.10) Our aim is to give an explicit description of ﬁPz(sing) =~ Q1(2) as an
extension of W\T’. We shall first give similar descriptions of the three missing
strata.

In the discussion (1.7) we replace K by a rational curve with a cusp. Then
Pic?(K) = C, and Pic’(K) = Kyeg. Put V := Hom(Q, C). Each root a € R defines
a (reflection) hyperplane in V; we let Dy C V denote the union of these hyperplanes
and put V' := V — Dy. This corresponds to an open subset P(V) C P(V) of the
assoclated projective space.

If K lies as an anti-canonical curve on a marked Del Pezzo surface (X, ¢) of
degree 2, then an isomorphism Pic(K) = C identifies x : Pic®(X) — Pic®(K) with
an element of V. As in the previous case we find that this element lies in V’.
Since the isomorphism is determined up to a scalar multiplication, only its image
m(X,p,¢) in P(V)" is well-defined. The same argument as before shows:
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Proposition (1.11). The invariant m(X,p,¢) € P(V)' defines an equivariant
isomorphism

o Q1(2) = ﬁz(cusp) — PV

and hence an isomorphism

m: Q™ = W\P(V)'.

The last isomorphism i1s known in a somewhat different guise in singularity the-
ory: there the right-hand side is interpreted as a C*-orbit space of the punctured
base of a miniversal deformation of a E7 plane curve singularity.

(1.12) We now address the case where we are given a point p € X that lies
on an anti-canonical curve K consisting of two rational curves F, E’ intersecting
transversally in two distinct points. These two curves are exceptional and are
interchanged by the canonical involution 7. If Pic’(X, E) C Pic(X) denotes the
orthogonal complement of the classes of E and E’ in Pic(X), then we have again
a restriction homomorphism x : Pic?(X, E) — Pic?(K). We have Pic'(K) & Kyeg
as before and now Pic?(K) = C* x C*. We fix this last isomorphism by requiring
that the first resp. second factor comes from F resp. E’, and that (¢,') € C* x C*
moves a point of KegNE resp. KpegNE’ to pift resp. ¢ tends to 0. So replacement
of p by the other singular point of K inverts the isomorphism.

Since y(a)™! = x(—a) = xi*(a) = *x(a), we see that the image of x is con-
tained in the subgroup Pic?(K)~ of i-anti-invariant elements. We identify Pic®(K)~
with 2 C* by means of the parametrization s — (s, s~1). Notice that the involution
¢ inverts this isomorphism. Suppose that X is equipped with a marking ¢. Then
E and E’ define elements e,e¢’ € L such that e + ¢’ = k. Denote the orthogonal
complement of this pair in L by Q(e). Then R(e) := RN Q(e) is a subroot system
of type Fs which spans Q(e). (To see this, recall that W acts transitively on the
exceptional classes, so that we may assume that e = e7. Then ay,...,a5,a71s a
root basis of R(e).) Hence x plus the choice of E determines a well-defined element
of the torus T'(e) := Hom(Q(e), C*). The other choice of irreducible component £
yields the opposite element of T'(e’) under the equality T'(e) = T'(e). So we really
get an element

m(X,p,¢) € {1\ [ 7(e),

eef

where —1 is the involution that sends m € T'(e) to —m € T'(i(e)).
As before we find that y(«) # 1 for all roots « € R(e). If T(e)’ C T(e) denotes
the open subset defined by this property, then we have:

Proposition (1.13). The invariant m(X,p, ¢) defines a W, -equivariant isomor-
phism
Q"'8(2) = DPy(nnode) — {11\ [ 7'(e),
eef

and hence induces for any e € £ an isomorphism

m: QP8 =~ W\T (e)".
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Moreover, interchanging the singular points corresponds on the right-hand side to
applying inversion in each component T(e)’, so that we also get an isomorphism

m: Qpeg = W A1 1\T(e)".

Proof. We outline the construction of the inverse mapping in case e = e7. Omitting
the roots involving e7 from the root basis, resp. system of positive roots for @ in
(1.2), gives a root basis, resp. system of positive roots for @(e). Now let be
given y € Hom((Q(e), C*)’. Choose an abstract curve K made up of two smooth
rational curves F, E’ which intersect in two ordinary double points, call one of
these intersection points p and identify Pic?(K) with C* x C* as above. Use the
one parameter subgroup s — (s,s71) of C* x C* to identify y with an element of
Hom(Q(e), Pic’(K)). Choose P, € ENKeg arbitrary and let Py, ..., Ps € BN Koy
be defined by the condition that (Pi41) = x(eiy1—€)+(P;),i=1,...,5. Map K to
a projective plane by means of the linear system x({—e; —ea—eg)+(P1)+(P2)+(Ps).
This collapses E’ to a point so that K is mapped onto a cubic with a node. The
images of Py, ..., Ps, B/ are in general position precisely if y does not take the value
1 on a root of Q(e).

(1.14) Finally we do the case where p € X lies on an anti-canonical curve K
having a tacnode at p. Then K consists of two exceptional curves F, F’ which are
interchanged by the canonical involution ¢ and which intersect in a single point p
(with multiplicity 2). The anti-invariant part of Pic’(K) is isomorphic to C, so that
if ¢ is a marking of X, we end up with an invariant m(X,p,¢) € P(V(e)), where
V(e) := Hom(Q(e), C). We find in a similar fashion:

Proposition (1.15). The invariant m(X, p, ¢) defines a W, -equivariant isomor-
phism
Q" = PPy (tacn) — {11\ [ P(V ()
eef

and hence for any e € £ an isomorphism

QX = W AP(V (e)).

The last isomorphism has an interpretation similar to that in the case Q%: the
E'7 plane curve singularity is here a Eg plane curve singularity.

(1.16) We now show how the target spaces of the various maps m fit together.
It will be convenient to combine the four types of strata into two groups: we let
DPy(irr) be the union of node and cusp strata and let DPy(red) be the union of
the node? and tacnode strata. Notice that the former is open in DPs(sing) and
that the latter is its complement. We denote the subvariety of Q' corresponding
to DPa(red) by QP®%. The variety Q% is similarly defined.

Let T — T be the blow-up of the origin of T'. If we identify the tangent space
of T at O with V, then the exceptional divisor gets identified with the projective
space P(V). Let Dy be the strict transform of Dr and put 77 := 1 — D5, so that
P(V) = P(V) — Ds. We regard 7" and P(V)’ as subvarieties of 7”. Notice that
T’ is their disjoint union.
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Proposition (1.17). The maps m define a W, -equivariant isomorphism
01(2) — QP'8(2) = DPy(irr) — {£1\T"
and hence induce an isomorphism

Q! — QP8 = W\ T,

Proof. The map m is clearly Wi-equivariant. Think of the inverse of the isomor-
phism (1.8) as a birational map from £{1}\7" to ﬁz(irr). We must show that
this map is actually a morphism and that its restriction to the added stratum gives
the inverse of the isomorphism (1.11). (This will do, since target and domain are
normal.) For this in turn, it suffices to prove that for every smooth germ of an
algebraic curve in ﬁz(irr) whose generic point is in ﬁz(node) and whose special
point is in ﬁz(cusp), the restriction of m to that curve is a morphism. Take such
a curve and represent it by a parametrized curve

u:t €A (K@), Pi(t),..., PAt)),

where (Py(t),..., Pz(t)) are points of P? in general position and K (t) is a cubic
curve passing simply through these points such that for ¢ # 0, K(¢) is a rational
irreducible curve with a node, whereas K (0) is a rational irreducible curve with
a cusp. A natural way of trivializing the Pic ard groups over A* is as follows:
Choose a generating section ¢ — w(t) of the relative dualizing sheaf. So for every
t € A, w(t) is a holomorphic nowhere vanishing differential on K (t)g which extends
meromorphically over the normalization [A((t) of K(t). The family K () is trivial
over A* and hence the two points of [A((t) lying over the singular point are given
by two sections Py(t) and Ps(t). For ¢t # 0, w(t) has simple poles at these two
points. A straightforward local computation shows that f(t) := (ResPD(t)w(t))_l
has a zero at t = 0. For ¢ # 0, an identification Pic®(K (¢)) = C* is given by a kind

of Abel-Jacobi map:
Q

(@ = (P) = exp () [ wlt)),

P
wheras Pic®(K(0)) may be identified with the additive group of C via

Q
Q) - (P) H/P w(0).

If P(t),Q(t) € K(t) are sections with P(0), Q(0) € K(0)reg, then there is a canonical
homotopy class () of paths in K (¢) from P(¢) to Q(), so that fv(t) w(t) is a well-
defined analytic function of ¢ € A. From this we see that the image of Q(¢) — P(?)
under the above Abel-Jacobi map goes to 1 as ¢ goes to 0. In particular, for { — 0,
x(t) € T tends to the identity element of 7. On the other hand, f(t)~! log x(t)
tends to an element of V' which represents m(u(0)), as ¢ — 0. Hence /u is a
morphism.

We do the same thing for cases “nnode” and “tacn”: Let T(e) — T'(e) be the
blow-up of the origin of T'(¢) and use the obvious notation; so for instance T'(e)’ is
the disjoint union of 7" and P(V(e))’. We have:
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Proposition (1.18). The maps m make up a W, -equivariant isomorphism

QP8 (2) = DPy(red) — {11\ [] T(e)’

eef

and induce for every e € £ isomorphisms
QUE = WAT(e), Qg = We A£1N\T(e)"

The proof is similar to (1.17), and we therefore omit it.

(1.19) Although we will not need it in what follows, we complete the picture by
describing how the two groups of strata fit together.

Taking the inner product with an element e € & defines an element of the
weight lattice Hom(Q, 7Z) and hence a one-parameter subgroup p. of T'. Such a one
parameter subgroup determines an affine torus embedding 7" C 7T, with T, — T =
T(e). The union Tg of these torus embeddings (with the 7.’s glued along T7)
is an open subvariety of the familiar complete torus embedding defined by the
decomposition of Hom(Q,R) into Weyl chambers. Notice that the closure P, of
the image of p. in T¢ is a projective line. Blowing up the origin of T¢ makes
(the strict transforms of) the P.’s disjoint. Blowing up once more along these
strict transforms yields a modification Te — Te. The exceptional divisors of the
second blow-up are of the form P(V(e)) x P, with normal bundle the external
tensor product of the tautological bundles (of degree —1). Such a divisor can be
analytically collapsed onto the P(V (e))-factor, and this defines a map Te — Te.
The theorem below implies that this contraction can be performed algebraically.
The space Té is then the disjoint union of 77, P(V')’, the T'(¢)"’s and the P(V (e))"’s.

Theorem (1.20). The union of the maps m,
i : QN(2) = DPy(sing) — {+11\T%,
make up a W, -equivariant isomorphism and hence induce an isomorphism

m: Qb — W\TE.

Proof. We proceed as in the proof of (1.17) and show that the restriction of m to

any smooth germ of an algebraic curve in ﬁz(sing) is a morphism. In view of
(1.17) and (1.18), we only need to consider the case when the generic point of the

curve maps to DPs(irr) and the special point maps to ﬁz(red). Assume such a
curve is given. Its generic point is either in DPs(node) or in DPa(cusp). Suppose
for definiteness that the former holds and represent the germ by a parametrized
curve

u:t €A (K@), Pi(t),..., PAt)),

where (Py(t),..., Pr(t)) are points of P? in general position and K (t) is an irre-
ducible cubic curve through them such that the first six are its the smooth locus.
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The special point u(0) maps to DPy(nnode) or DPs(tacn) depending on whether
K(0) has a an ordinary double point or a cusp at P7(0).
In the first case, the corresponding x(¢) € Hom(Q, C*) has the property that

lim x(t)(a) = x(0)(a)  for a € Qler),

whereas x(¢)(Ps(t) — Pz(t)) tends to 0 or co. It follows that rnu is a morphism.
In the second case we trivialize the Picard groups over A* as in (1.17) and find
an analytic function f : A — C with the property that f(0) =0 and

lim £(1)~" log x(1)(a) = x(0)(a) for a € Q(er).
So mu is in this case a morphism as well.

Remark. Tt would be interesting to “complete” this isomorphism with the hyper-
elliptic locus and the boundary of the Deligne-Mumford compactification. FEven
more of a challenge is to find a description of the fibration of {#1}\7} by quartic
curves entirely in terms of the root system.

2. ARRANGEMENTS OF DIVISORS

(2.1) Let M be a connected complex manifold of dimension m and let D be
a reduced divisor D on M. Assume that D is arrangement-like, i.e.; can locally
be given as a product of linear functions. For simplicity we make the additional
assumption that the irreducible components of D are smooth. This is so in the
three examples which are our main concern:

(1) M is an affine space A and the irreducible components of D are affine-linear
hyperplanes. This is the case that has been studied most, see for instance
Orlik and Solomon [11].

(2) M is aprojective space P and the irreducible components of D are projective
hyperplanes.

(3) M is an algebraic torus T and the irreducible components of D are hypertori,
i.e., (translated) subtori of codimension one.

Let § be the collection of irreducible components of intersections of irreducible
components of D. We include M in § (as an intersection with empty index set).
Notice that every member of § is smooth.

For S € 8, we denote the inclusion of S'in M by ig. We further put M’ := M —D,
and we will denote the inclusion of M’ in M by j.

We shall describe a complex of sheaves on M that represents the full direct image
Rj.Z . We do this by means of an inductive procedure. First a simple lemma.

Lemma (2.2). There is a covariant functor S € S — Eg from the partial ordered
set S to the category of abelian groups satisfying

(1) By =7Z,

(2) for every S € S of codimension k > 1, the sequence of homomorphisms

0— Es — @ Eg — - — @ Eg — Epyy =0

s'os s'os
codim S/=k—1 codim S/=1

is an exact complex.
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This functor is unique up to unique isomorphism. Moreover, Eg is free and its rank
¢(S) is given by the inductive formula

e(M)=1, andifS+# M, then Z (—l)COdim SIE(S/) =0.
§108

Proof. The first part is easy and is left to the reader. The second part follows from
the fact that the euler characteristic of the displayed complex must be zero.

The Z-modules Fg were introduced by Orlik and Solomon [11].

(2.3) If F is a sheaf on S € S, then the tensor product of i51F with the complex
of (2.2) gives an exact complex of sheaves on M. We may apply this to isZ, where
7 1s a sheaf on M. If 7 has the property that any local section with support in the
union of the S € § of codimension & is a sum of sections with support in a single
S € § of codimension k, then it follows that

= P isisIoEs = P isisT @ Es —ipipl =0
codim S=k codim S=1

is exact. Let us take for Z the Godement resolution Z* of Zyy; it clearly posseses
this property. If we combine this with the standard exact sequence

0— ipipnI® = I* = j.j"I* =0,
we find that j,j*Z* is injectively resolved by the double complex

- P isisI°@Es = P isisI* @ Es »I* 0.
codim S=k codim S=1
Now j*Z* is the Godement resolution of Zps/, and the Thom isomorphism shows

that #LZ* is quasi-isomorphic to Zg[—2codim S](—codim S). So a cohomological
grading gives the spectral sequence

(2.3-1) EfPi= H HT(S) @ Es(—p) = HIP(M').

codim S=p

In the algebraic setting, this is a spectral sequence of mixed Hodge structures.

(2.4) Let us see what this spectral sequence yields in our three examples.

(2.4.1) In the affine-linear case, the members of S are affine-linear subspaces
and are therefore acyclic. In particular, the spectral sequence degenerates and we
recover the result of Brieskorn [2] and Orlik and Solomon [11] that states that
H%(A') is free of rank ZSes,codim s, €(S). In particular, the Poincaré polynomial

of A is .
P(AY(t) =Y e(Syteetm s,
5€e8

This also shows that in the general case Eg(—p) can be interpreted as the coho-
mology in degree codim S of the intersection of a small spherical neighborhood of a
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point of S with M’. If H is a hyperplane in D defined by an affine-linear form fg,
then the logarithmic differential wy = dfg/(2nify) only depends on H (not on
fm), and according to Brieskorn [2] the Z-subalgebra of the DeRham complex of
A’ generated by these forms maps isomorphically onto H*(A’). Tt is clear that the
cohomology in degree k is pure of type (k, k), so that PS(A")(¢,u) = P(M')(tu?).
(2.4.2) In the projective case we can regard one of the irreducible components as
a hyperplane at infinity and this reduces the situation to the previous case. Perhaps
a better approach is the following. Let V be the vector space such that P is its
associated projective space, and let Dy C V be the union of linear hyperplanes
corresponding to ). Then V' is a C*-bundle over P’; this C*-bundle is trivial if
D # (. Assuming that this is the case, we see that we have short exact sequences

0— H¥(P') = HY(V') = HF-1(P))(=1) = 0

and that PVt
PPy = P10 sy = PO 0,
Notice that H*(P’) is the subalgebra of H*(V') generated by the differences of

logarithmic differentials wgy — wg.

(2.4.3) As we already noticed, the spectral sequence (2.3-1) is a spectral sequence of
mixed Hodge structures. Every S € § is an algebraic torus, so its cohomology is the
exterior algebra of H1(S), and H'(S) is pure of type (1,1). Hence E; " is pure of
weight 2(¢—p). Since the differentials must respect the weight, the spectral sequence
with rational coefficients degenerates at the Ei-term. In particular, H*(T") is pure
of Tate type (k, k). Tt also follows that the Poincaré polynomial of T” is equal to

P(T")(t) = Z E(S)tCodimS(l _|_t)dim5 —(1+m Z E(S)<L>codim5’

Ses Ses 1+t

and that PS(T")(t,u) = P(T")(tu?). It is not difficult to prove that the whole
complex cohomology is generated by the logarithmic differentials (these include
the translation invariant differentials!). So the C-algebra generated by these forms
maps surjectively to H*(T";C). According to Deligne [4] this map is also injective.

(2.5) Assume that ¢ is a finite group operating on M which preserves D. The
spectral sequence then becomes a spectral sequence of G-modules. The stabilizer
Ng(S) of S acts on any sum @©r~sH*(T) @ Er, where the sum is taken over all
strata 7' € § of a given codimension which contain S. If S # M, then it follows
from lemma (2.2) that the virtual representation

@ (_1)codim S1 ET

TOS

is zero. This allows us in principle to compute the character of the representation
of Ng(S) on Eg.

The G-invariants yield a spectral sequence (E;"9)% = HI7P(M')%. After ten-
soring with @, this last group becomes isomorphic to H? ?(G\M'; Q). So if Sy is
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a system of orbit representatives for the G-action in &, then we have a spectral
sequence

(2:5-1) D (HI=%P(S;0) @ Es)Na ) (—p) = HI7P(G\M'; Q).
codim S=p;5€S,

It degenerates in the affine and toroidal cases.

3. ARRANGEMENTS OF DIVISORS ATTACHED TO ROOT SYTEMS

In this section we focus our attention on arrangement-like divisors that come
from root systems.

(3.1) Let W be a finite reflection group of rank ! acting effectively in a complex
vector space V, and let D C V be the union of reflection hyperplanes. If 1 = m; <
ms < mg < --- < my are the exponents of W, then according to a formula of
Solomon and Brieskorn,

P(V')(t) =TIk, (1 4 myt).

We denote the space of W-invariants in Ejgy @ Q = H'(V';Q) by L(W). So if
(W;); are the irreducible components of W, then L(W) is the tensor product of the
L(W;)’s. For later purposes we observe that minus the identity acts trivially on the
modules Fg; if codim .S = 1 this is clear, and the general case easily follows from
this. In particular, minus the identity acts trivially on L(IV).

Choose a fundamental chamber C' for W and identify its codimension one faces
with the vertex set of its Coxeter diagram Cox(WW). Then every set X of vertices
of Cox(W) determines an intersection of reflection hyperplanes S(X) of W, and
in this way we meet every W-orbit in §. If A" is a collection of vertex subsets of
Cox(W) such that the corresponding subset of S is a system of representatives of
W-orbits, then it follows from (2.5) that

wrw\vvios @ BT ec= @ L)t
XeX,|X|=p XeX,|X|=p

This reduces the computation of the rational cohomology of WAV’ to that of the
spaces L(WW') (for all reflection groups W') as a representation of the automorphism
group of Cox(W’). The way this is done is indicated below. Here we only notice
that in case W is of type Ay, Eygy = Z so that L(W) is canonically isomorphic to
Q. If W is of type (A;)* then the permutation group on the irreducible components
of W acts on L(W) according to the sign character.

(3.2) In the previous example we denote by P the projective space of V' and
we let Dp be the divisor corresponding to D. Since V' is a trivial C* bundle over
P':=P— Dp,

P(P)(1) = (1+ 1) P(V/)(1) = Tisy (14 mit),

and similarly

P(WA\P')(t) = (L+ )T P(IW\V')(1).
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This may also help us to represent L(WW) (inductively) by logarithmic forms of
degree [ on V’. Suppose that W is irreducible and that { > 1. For every reflection
hyperplane H let wy := dfgr /(27i frr) be the logarithmic differential defined in (2.4).
Then w := Y ywpy represents a generator of the W-invariant part of H'(V'; Q).
Multiplication by w maps H'=1 (V') onto H'(V'), and this map is W-equivariant.
So this induces a surjection

D L) o L),
XeX |X|=l-1

This, or a similar program, has been carried out by Brieskorn [2]. For irreducible
W he finds that L(1¥) is one-dimensional in case W is of type A1, Cp, Deven, F7,
Es, Fy, Hs, H4, Is(even) and is trivial in all other cases. So dim L(W) < 1 always.
Since we shall need to know how the symmetries of the Coxeter diagram of D; act
on L(W(Dy)), we will follow this procedure in that case, assuming that we already
know that L(W) = 0 if W is of type Ai, k > 2. We use the standard convention
that D1 = Al, D2 = (Al)z, D3 = A3.

Lemma (3.3). Assume that W is a Coxeter group of type D;. For odd [, L(W) =
0. For even I, L(W) is one-dimensional and a generator is the class of

¢ = Z w(wm, A Aw ),

weW

where Hq, ..., H; be mutually orthogonal reflection hyperplanes. Moreover, an
automorphism of Cox(W) that interchanges two branches acts as minus the identity

on L(W).

Proof. For [ = 1,2,3 this is clear. Suppose [ > 4 and assume by induction that
we have proved the assertion in degree < [. The induction hypothesis implies that
subdiagrams X of Cox(D;) with [ — 1 nodes that have L(Wx) # 0 occur for even
[ only, and they are all of type D;j_» & A;. Tt already follows that L(W) = 0 if {
is odd. Assume now [ even. For [ > 4 there 1s precisely one subdiagram of type
Di_5 @ Aq; for [ = 4, there are three, but they all belong to the same W-orbit. So
in either case there is only one such X in X and hence dim L(W) < 1. We show
that { represents a nonzero class. First notice that the hyperplane H; spanned by
X is a reflection hyperplane of a reflection s of W (the reflection w.r.t. the highest
root). This implies that the W-stabilizer of S(X) is just (s) x Wx. Now choose
! — 1 mutually orthogonal reflection hyperplanes Hs, ..., H; of Wx . Our induction
hypothesis implies that (x = oy, W (wh, A+ -Awp,) is a generator of L(Wx).
So wrr, ACx is a generator of L((s) x Wx).

Let p € P be the point defined by X, B be a spherical neighborhood of p that
does not meet any reflection hyperplane associated to Wx, and U the preimage of
Bin V —{0}. Then w*(wg, A Awm,)|UNV" is exact unless w*S(X) = S(X).
Hence ¢|U NV’ is cohomologous to

> wi(ww, A Awn,) = 2w, Ax,
we(s)XWx
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and the latter represents a nonzero class. Therefore, { represents a nonzero class.

Finally, if ¢ € GL(V) leaves the chamber C' invariant and induces an automor-
phism of Cox(Dy) that interchanges two branches (components if { = 2), then it is
easy to find a g-invariant set of mutually orthogal reflection planes Hy, ..., H; such
that ¢ induces the transposition of H;_; and H;. This implies that g acts on L(W)
as minus the identity.

(3.4) Let R be areduced irreducible root system, and let T' be the algebraic torus
whose character group is the (root) lattice spanned by R. So T is the tensor product
of the lattice PV of dual weights and C*. Tt comes with an action of W. We take for
D the union of the fixed point hypertori of the reflections in W. We wish to find a
system of representatives of the W-orbits in §. For this, we follow the discussion in
Bourbaki [1, Ch. 6, no 2.3]. Let h denote the real vector space spanned by the dual
root system RY, so that h/P"Y can be identified with the maximal compact torus
T. in T. The affine transformation group of h generated by W and the translations
in PY is a semi-direct product W.P", and a fundamental domain of W.P" in b will
map isomorphically onto a fundamental domain of W in 7.

Consider the somewhat smaller group W.QV, where QV is the lattice spanned by
the coroots. It is known Bourbaki [1, Ch. 6, no 2] that W.QY acts as a reflection
group on h and that a fundamental domain (in the strict sense) of this action is the
simplex C' defined by the affine-linear inequalities oy > 0,...,0; > 0 and & < 1,
where & is the highest root. It is customary to write ag for 1 — a&. We regard
ag, ..., qp as the set of nodes of the completed Dynkin ]jy\n(R) diagram of R. The
faces of C' are now in bijective (incidence-reversing) correspondence with the proper
subsets of aq,...,a;. Let us denote by H the collection of affine-linear subspaces
of h that are intersections of reflection hyperplanes.

Since W.QV is normal in W.PV there is an induced action of the semi-direct
product PY/QY on C. This realizes this group as an automorphism group of
]jy\n(R) It also follows that W.PVY preserves the union of reflection hyperplanes
of W.QV. So the complexification of this union is the pre-image of D under the
covering h @ C — T It follows that the W-orbits in & and the W.PY-orbits in H
are in bijective correspondence. So for every proper subset X of ]jy\n(R) we find a
member S(X) of § and in this way we hit every W-orbit in S (usually more than
once). We select a collection X' of proper subsets of ]jy\n(R) such that the collection
{S(X) : X € X} is a system of representatives of W-orbits in S.

According to the previous section, the rational cohomology of W\T” is isomor-
phic to

P (H(S(X);Q) @ Esx)) W XD

|X|=p,XeX

Let us consider the contribution from X in more detail. Let Wx C W resp.
WX C W denote the subgroup of W generated by the reflections s(a) with o € X
resp. alX (where s(ag) = s(&)). If w € W fixes every element of X, then
w € WX, So if we put

W(X) = Nw (S(X))/(Wx x W)

then W(X) acts effectively on X as a group of graph automorphisms.
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We may identify (Fg(x) ®Q)Wx with L(Wx). Since Wx acts trivially on S(X),
we can, in the above expression, replace Fgx)y @ Q by L(Wx). In particular, we
only get a contribution if Wx is a product of reflection groups of the type listed in
(3.2). If hx C b denotes the subspace of h common zeroes of the roots in X, then
H*(S;Q) may be identified with the exterior algebra of the rational vector space
b% - It 1s known that a reflection group has no invariants in the exterior algebra
of its tautological representation, except in degree zero [1, Ch. 5 | exerc. 5.3]. So if
ax is fixed point set of W¥ in hx, then

(H*(S(X); Q) @ Es(x))"V " *Wx = Aty g © L(Wx)[IX]).
It then remains to find the space of invariants of the group W(X) in the latter

space. Fortunately, the space ax tends to be small.

(3.5) Let T — T be the blow up of the identity element of 7', and let Dy be the
strict transform of D. We regard T” as an open subvariety of T/ = T'— D#. Denote
by V the tangent space of T' at the origin, by P(V') the corresponding projective

space. We identify the latter with the exceptional divisor in 7T". So T’ is the disjoint
union of 77 and P(V) .= P(V)NT".

Lemma (3.6). The sequence

0— H*(T") — H’(T’)R—e?H’(P’)(—l)[l] —0

is exact and W-equivariant. In particular, Hk(T’) carries a pure Hodge structure
of Tate type (k, k). Furthermore,

t
14+t

P(WAX1IN\T () = P(W L1 \T")(t) — %HP(W\V’)(t).

PW\T')(t) = P(W\T')(?) PIVAV')(1),

The cohomology in degree k is Tate of weight 2k, so the Poincaré-Serre polynomials
are obtained by substitution of tu? in the corresponding Poincaré polynomials.

Proof. The sequences stem from the long exact sequence of the pair (f’,T’) and
the Thom isomorphism. So for the first assertion it is enough to show that the
map H*(T') — Hk‘H(T’,T’) ~ [+~ P’} is surjective. If B is a small convex
neighborhood of the identity of 7', then we can factor this map as H*(T") —
H*(B') — H*~Y(P’). The first map is onto for k = 1. Since H*(B’) is generated
in degree one, it follows that this is so for all £. The second map is surjective
because B’ is topologically a trivial punctured disk bundle over P’.

The last assertions are a consequence of the first one and the formula in (2.4.2).

4. COMPUTATIONS

We shall apply the methods of the previous section to the cases Fg and E;. They
will enable us to determine (among other things) the Poincaré-Serre polynomial of
the moduli spaces M3 and M3. We begin with a lemma that will be used frequently.
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Lemma (4.1). Let X be an algebraic variety of pure dimension, Y C X a hyper-
surface, and assume that both are rational homology manifolds. Then we have a
Gysin exact cohomology sequence of mixed Hodge structures

= H*2(Y;0)(=1) = H*(X;0) = H*(X = Y;Q) = H*H(Y;Q)(-1) — .

Proof. The assumption implies that the local cohomology sheaf #% (X; Q) vanishes
for k # 2, and can be identified with ,Qx(—1) for £ = 2. The lemma follows from
this.

Lemma (4.2). The Poincaré-Serre polynomials of Q% QPM*  QfX are respectively
14+tu'? 1, 1+ t2u? + t5u!2,
Proof. According to the table in Brieskorn [2] the Poincaré polynomial of W\V" is
for W of type Eg resp. E7 equal to 1+t resp. 1+t 4154+ ¢7. Hence the Poincaré
polynomial of the corresponding projectivized space is by (2.4.2) equal to 1 resp.
1 + 5. Since we have identifications of these spaces with Q¥ resp. Q"X the first
two assertions follow. .

The subvariety Q"% of QX satisfies the hypothesis of (4.1). The Gysin sequence
splits into short exact sequences, showing that

PS(Q™)(t,u) = 2u> PS(Q"™X) (¢, u) + PS(Q™) (¢, u).

This implies the last formula.

Corollary (4.3). The Poincaré polynomial of Q is termwise bounded by 1+t2 +t°.

Proof. The forgetful map Q%™ — Q is finite, and so the Poincaré polynomial of Q
is termwise bounded by the one of O which is 1 + 2 + 6.

As indicated in the introduction, we can at this point easily derive that the
Poincaré-Serre polynomial of M3 is 1 +t%u? +t%u'? if we make use of the fact that
M3 has second betti number 1 (due to Harer) and euler characteristic 3 (Harer
and Zagier [8]). We will follow however a slightly different path that does not use
Harer’s computation of ba(M3).

(4.4) Determination of the Poincaré polynomials of W\T" and WA+1}\T" in
case R is of type Fs.

We label the fundamental roots aq, . . ., ag such that in the completed Es Dynkin
diagram («q,...,as5) and (g, o, ag) are strings. The only subsets X of ]jy\n(E6)
that may contribute to the Poincaré polynomial of W\T" are those of type A%,
k =1,2,3,4 and D4. It is easily verified that such subsets belong to the same
W-orbit if they are of the same type.

Case 1: X is of type Ay, say X = {ap}.

Then WX is equal to the reflection group generated by s(ay),...,s(as) and ax
is trivial. Hence Atax ® L(Wx) = L(Wx) is one-dimensional. It is easy to see
that L(Wx) has a canonical generator, so W(X) and —1 act trivially on it. We
conclude that X contributes ¢ to each Poincaré polynomial.

Case 2: X is of type (A1)?, say X = {ag, as}.
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Then WX equals the reflection group generated by s(a1), s(as), s(as), and so ax
is one-dimensional. There is a w € W which permutes ag and ag, and any such a
w acts as minus the identity on L(Wx). A small computation shows that w acts as
minus the identity on ax. Hence there are no W(X)-invariants in A*ax @ L(Wx).
Therefore X does not contribute in either case.

Case 3: X is of type (A1)3, say X = {ag, a1, a5}.

The only positive root orthogonal to X is ag, and hence dimax = 2. We
determine W (X) and its action on ax. The roots a; and a5 belong to the As-system
orthogonal to ag. Now for any pair of orthogonal roots in an As-system there is
always a Weyl group element of this system that interchanges these roots. So there
is a w € W that leaves g fixed and interchanges a; and «g. Since these roots are
transitively permuted by W(X), it follows that W(X) maps (isomorphically) onto
the full permutation group Sx of X. The elements of W (X) that induce the identity
on L(Wx) are those that induce an even permutation of X. The group W(X) acts
on ax as a reflection group of type A;. From this it follows that the space of W (X)-
invariants A®ax @ L(Wx) is equal to the one-dimensional space A*ax @ L(Wx).
So X contributes t* to P(W\T"). Since —1 acts as minus the identity in ax, but
as the identity on L(Wx)), it acts as the identity on A2ax @ L(Wx ), and so we get
the same contribution to P(W.{£1}\T")

The last two cases are not much different from the previous case.

Case 4: X is of type (A1)*, so X = {ag, a1, a3, a5}

There are no roots orthogonal to X, and so ax = hx is of dimension two.

A similar argument shows that W (X) maps isomorphically onto the full permu-
tation group Sx of X. The elements of W(X) that act as the identity on L(Wx)
are precisely the ones that induce an even permutation of X. Consider the repre-
sentation of W(X) =2 &, on ax. We saw in the previous case that the restriction
of this representation to the stabilizer of az (= S3) has image a reflection group of
type As. Up to isomorphism, there is only one such irreducible representation of
S84 and the image of this representation is the same as its restriction to Ss. Clearly,
each even element will go to an even element. As before, —1 acts as the identity
on L(Wx).

It follows that the space of W(X)-invariants and the space of W(X).{£1}-
invariants of A*ax @ L(Wx) are both equal to A%ax © L(Wx), so that we get a
contribution % in either case.

Case 5: X is of type Da, so X = {as, a3, a4, as}.

We have that ax = hx is of dimension two, the group W{(X) maps isomorphi-
cally onto the symmetry group Aut(X) = Sz of X as a subgraph of ]jy\n(R) and
W(X) induces in hx a reflection group of type As. According to lemma (3.3) this
group acts on L(Wx) according to the sign character.Since —1 acts on L(Wx) as
the identity, the space of W(X)-invariants in A®ax ® L(Wx) is also the space of
W(X).{#£1}-invariants, and equal to A2ax @ L(Wx). Hence we get a contribution
% in either case.

Conclusion. The Poincaré polynomial of both W\T” and W.{x1}\T" is equal to
L4+t +1°+ 215,
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Corollary (4.5). The subvariety Q"' of Q', resp. its closure Q"8 in Q') has
all its cohomology in degree k pure of type (k, k), and its Poincaré polynomial is
14+t+1° 4215, resp. 1+1°+2t8. The same assertion holds for the subvariety Qbig
of Q, resp. its closure Q% of Q.

Proof. Tt follows from (1.18) that QP8 resp. QP8 can be identified with the W-
orbit space of T” resp. T" (where the root system is of type Fg). According to the
table in Brieskorn [2], the Poincaré polynomial of W\V” is equal to 1 +1¢. The first
part of the claim then follows from lemma (3.6) and the above computation. The
second part follows in the same way.

In order to finish our computation of the Poincaré-Serre polynomial of Mz we
need to deal with the hyperelliptic locus.

Lemma (4.6). Let n be an integer > 3. Then the moduli space ¥, of n-element
subsets of P! (taken modulo projective equivalence) has no rational homology in
nonzero degree.

Proof. Let in — ¥, be the 8,-covering obtained by ordering the elements. We
can represent a point of ¥,, by an (n — 1)-tuple (21,...,2,-1) in Cwith ), z; =0
and the z;’s of course distinct (the nth point is o). This (n — 1)-tuple is unique
up to scalar multiplication. Now the hyperplane V of C*~! defined by >, z; = 0
is the natural representation space of S,_;1 as a reflection group (of type Ap_2).
We just proved that ¥, can be identified with P(V)’. This identification is clearly
Sy —1-equivariant, and so we have an unramified covering S,_1\P(V) — X, (of
degree n). According to Brieskorn [2] the Poincaré polynomial of S,_1\V' equals
141, and so by (3.2) the Poincaré polynomial of S,_1\P(V)’ reduces to 1. Hence
the same 1s true for ¥,,.

Since the moduli space #H, of smooth hyperelliptic curves of genus ¢ may be
identified with 5,42, we find that #, is acyclic for rational homology.

Theorem (4.7). The moduli space Q, resp. Ms, has Poincaré-Serre polynomial
14+ t5u'? resp. 14 t2u® +t5ul2.

Proof. Since the forgetful map Q% — Q is finite, the Poincaré polynomial of Q is
termwise bounded by 1 + ¢ 4+ 2t%. According to (4.3) it is also termwise bounded
by 141?415 Hence it is termwise bounded by 1+ ¢5. The pair (Ms, H3) satisfies
the hypothesis of lemma (4.1) and the Gysin sequence of this pair shows that the
Poincaré polynomial of M3 is equal to the Poincaré polynomial of Q plus 2, that is,
either 14+¢2+¢% or 1+¢%. According to Harer and Zagier [8], the euler characteristic
of M3 equals 3, and so the first case holds. It is clear that the class in degree 2
resp. 6 has weight 2 resp. 12.

Next we calculate the Poincaré-Serre polynomial of M1.

(4.8) Determination of the Poincaré polynomial of W\T" in case R is of type E7.
In this case PV /QV is of order two and can be identified with the automorphism

group of ]jy\n(R) The types of subdiagrams X that may contribute to the Poincaré
polynomial are (A;)* k =1,...,5, D4, Ds and E;. We shall list a representative
collection of subsets X of Dyn(R) of these types. It turns out that in each case the
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root system RX of roots orthogonal to X spans the orthogonal complement of X. So
we always have that ax = 0 and hence that (A*ax ® L(WX))W(X) = L(WX)W(X).

We label the fundamental roots aq, ..., a7 such that in the completed E7 Dynkin
diagram, (oo, ..., as) and (a7, ag) are strings.

Case 1: X of type A;. Then R?* is of type Ds and W (X) acts trivially on
L(Wx). So X contributes ¢.

Case 2: X of type (A;1)?, say X = {ag,as}. Then R* is type (A;)°. There is
a transformation in the Weyl group that permutes the two elements of X. Such a
transformation acts as minus the identity on L(Wx), and so X does not contribute.

Case 3: There are two subcases here which can be distinguished by the type of
RX
Subcase 3a: X = {ag,as,ar}. Then R* is of type D4. There is a w € Wiae,an, a0}
which interchanges ag and «3. Such a transformation fixes a7 and acts on L(Wx)
as minus the identity. Hence X does not contribute.
Subcase 3b: X = {ag, as, as}. Then R¥ is of type (A;)*. The Weyl group element
w of the previous case fixes «g, and acts as minus the identity on L(Wx). So this
X does not contribute either.

Case 4: X of type (A1)*. Here too, there are two subcases, which are dual to
(3a) and (3b): in case (4a) Wx is contained in a Weyl group of type Dy, while in
case (4b) this is not so:

Subcase 4a: X = {ag, as, a4, ag}
Subcase 4b: X = {ap, as, a4, a7}

In either case RX is of type (A;)3. The Weyl group element used in case 3 serves

the same purpose here and we find that neither case contributes.

Case 5: X of type (A1)?, s0 X = {ag, a2, a4, as, az}. Then the system RX is of
type (A1)?. Arguing as before, we find that X does not contribute.

Case 6: X is of type Dy, so X = {as, a3, as,ar}. The system RX is of type
(A1)3. This case is dual to case 3a. The group W (X) is the automorphism group X.
If w € W is the element that interchanges as and a4 and fixes the other elements of

X, then w induces minus the identity in L(Wx)). We therefore get no contribution
from X.

Case 7: X is of type Dg, say X = {aa,...,a7}. This case is dual to case (1).
We have RX = {£ag}. Since W(X) is trivial, X contributes t° to the Poincaré
polynomial.

Case 8: X is of type E7. Clearly W(X) is trivial, so this case contributes ¢°.

Conclusion. The Poincaré polynomial of W\T" is 1 +t +t° +¢7 and the Poincaré
polynomial of W\T" is 1 + 5.

Corollary (4.9). The space Q! — Q% has the property that its cohomology in
degree k is pure of type (k, k). Its Poincaré polynomial is equal to 1+ t°.

Proof. By (1.17) this moduli space can be identified with the W-orbit space of T,
where R is of type E7. Now apply the preceding conclusion.
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Theorem (4.10). The Poincaré-Serre polynomial of the moduli space of pointed
smooth quartic curves Q! resp. pointed smooth genus three curves M3 is equal to
14 t2u? 4+ t5u'? + t7ul? + 26%u™ resp. 1+ 2t%u® + t*u® 4 t%u'? 4+ t7u? + 26504,

Proof. Lemma (4.1) applies to the pair (Q', @Q°®). It follows from (4.5) and 4.9)
that the associated Gysin sequence breaks up in short exact sequences and that
the Poincaré-Serre polynomial of Q! is equal to PS(Q! — thg) + tZUZPS(thg).
This proves the first part of the theorem. The complement of Q! in M} is the
hyperelliptic locus H3. The forgetful map H. — Hs is a fibration by projective
lines. Its spectral sequence degenerates, and so the inclusion of a fibre (= P1)
induces an isomorphism on rational cohomology. Hence PS(H3)(t,u) = 1 + t?u?.
The second part follows from another application of (4.1).

Corollary (4.11). The cohomology of the variation of Hodge structure over M3
defined by the first direct image of M} — M3 is pure Tate in every degree, and its
Poincaré-Serre polynomial is equal to t5u'® 4 t7u'4,

Proof. The forgetful map M3 — M3 is proper and smooth modulo quotient sin-
gularities. According to a theorem of Deligne [3], the associated Leray spectral se-
quence degenerates at the Ea-term over Q. It 1s in fact a spectral sequence of Hodge
structures; this is a special case of a theorem of M. Saito [12], but in the present case
(where we deal with a map which is projective and essentially smooth) it can prob-
ably also be proved using the methods of Deligne. The three possibly nonzero sub-
quotients in degree k are H* (M3;Q), H* =1 (M3; E), and H*~?(M3;Q)(—1), where
E denotes the first direct image. So the Poincaré-Serre polynomial of H*(Ms3; E)
is equal to

tTH(PS(ME)(t, u) — (1 + t2u?) PS(M3) (¢, u))= tou'? + ¢ Tul?.
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