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Abstract

Surface sediments from 68 small lakes in the Alps and 9 well-dated sediment core samples that cover a gradient of
total phosphorus (TP) concentrations of 6 to 520TP I-* were studied for diatom, chrysophyte cyst, cladocera,

and chironomid assemblages. Inference models for mean circulatigTiBgvere developed for diatoms, chirono-

mids, and benthic cladocera using weighted-averaging partial least squares. After screening for outliers, the final
transfer functions have coefficients of determinatici), (as assessed by cross-validation, of 0.79 (diatoms), 0.68
(chironomids), and 0.49 (benthic cladocera). Planktonic cladocera and chrysophytes show very weak relationships
to TP and no TP inference models were developed for these biota. Diatoms showed the best relationship with TP,
whereas the other biota all have large secondary gradients, suggesting that variables other than TP have a strong
influence on their composition and abundance. Comparison with other diatom — TP inference models shows that our
model has high predictive power and a low root mean squared error of prediction, as assessed by cross-validation.

Introduction tion. Besides these biological effects that are of con-
cern to nature conservationists, enrichment in phos-
Nutrient enrichment in aquatic systems due to soil ero- phorus, nitrogen, and carbon, and the consequent loss
sion, fertilizer runoff from agricultural land, and espe- of oxygen, also have economic consequences with
cially sewage disposal has been identified as a majorrespect to water-sports, tourism, the quality of drink-
environmental problem for many decades (Likens, ing water, and the quantitative and qualitative yield of
1972; OCDE, 1982). Effects of such eutrophication fisheries. Many countries have realized the importance
are an increased lake productivity and closely related of this issue and have, consequently, taken legal mea-
to this is a loss of aquatic organism diversity. Fur- sures against nutrient enrichment of aquatic systems.
thermore, substantial structural changes in the aquaticHowever, in order to set realistic legal or manage-
ecosystem (e.g. plankton, fish, and macrophyte com- ment goals (Rast & Holland, 1988), it is important
munities) also occur as a consequence of eutrophica-to differentiate between the natural trophic state and
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25| n.a.

14| n.a.

10| n.a.
20| n.a.

31| na.

33| n.a.

13

1.5 37

1.2| 43

0.1

48| 69| 92| 30| 22| 31

1.2

n.a.| n.a.| n.a.

n.a.| n.a.| n.a.

n.a.| na.| na.
n.a.| n.a.| na.
n.a.| n.a.| n.a.
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n.a.| n.a.| na.| na.| n.a.
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4
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8| 2.65| 2.8/ 0.29| 1.08
8| 0.33| 0.5 0.03| 0.20

1.50| 153| 8.3 1.68

0.09| 21

1.6/ 0.01

374| 8.5| 0.34| 2.66| 274| 8.2| 2.75| 2.7| 1.05| 1.77

334| 8.0/ 0.49| 8.34| 354| 8.1 3.51

1848| 26.0| 0.07

463| 67.0| 5.20| 73.00| n.a.| n.a.

463| 67.0| 5.20| 73.00| n.a.| n.a.
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463| 67.0| 5.20| 73.00| n.a.| n.a.
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2339| 49.0| 0.89| 36.65| 565
1094| 13.8| 0.20| 5.07| 274

945 11.8| 0.12| 2.70| 241

334

SEG
END
LIO

BA1988

BA1982

BA1979

BA1973
BA1972

BA1967

BA1958

ROT1986

ROT1979/80
ROT1969/70

66|Lago del Segrino
67 |Lago di Endine

68|Lac Lioson

69 |Baldeggersee 1988

69|Baldeggersee 1982

69|Baldeggersee 1979

69|Baldeggersee 1973

69|Baldeggersee 1972

69|Baldeggersee 1967

69 |Baldeggersee 1958
19|Rotsee 1986

19|Rotsee 1979/80
19|Rotsee 1969/70

Maximum
Mean

Median

Minimum

Table 1 Continued

anthropogenically-induced nutrient enrichment. Lim-
nological monitoring data assessing water chemistry
or biological data are rarely available for more than the
last few decades (e.g. Maberly et al., 1994) and, there-
fore very rarely document the onset of eutrophication.
Baseline lake-nutrient data therefore have to be evalu-
ated by use of palaeolimnological methods (Schindler,
1987; Anderson, 1993).

Furthermore, processes governing the natural
trophic ontogeny of lake systems have long interest-
ed limnologists, and are of fundamental importance
to aquatic science (Whiteside, 1983). Various clas-
sification systems relating the occurrence of different
indicators to the trophic state of a lake have been devel-
oped. For example, macrophytes (e.g. Birks, 1980;
Krause, 1981; Lotter, 1988), algal pigments (e.g.
Zillig, 1981, 1989), saprobic indices using different
organisms (Kolkwitz, 1950), diatoms (Lange-Bertalot,
1978, 1979), and chironomids (e.g. Saether, 1979) have
all been used as indicators of trophic state. Moreover,
sediment geochemistry has also been used to assess
lake trophic state (e.g. Engstrom et al., 1985; Schelske
et al., 1986; Brenner & Binford, 1988, Anderson &
Rippey, 1994, Rippey & Anderson, 1996). All these
methods provide qualitative insights into the long-term
development of an aquatic system in relation to its
nutrient history. It is only recently that quantitative
diatom-based inference models have been developed
to reconstruct the past trophic state of lakes (e.g. Whit-
more, 1989; Agbeti & Dickman, 1989; Anderson et al.,
1993; Christie & Smol, 1993) and thus provide real-
istic baseline conditions that may be used for legisla-
tive and lake-management purposes (Anderson, 1995).
Such quantitative reconstructions of past trophic state
not only give insights into the long-term history of a
lake, but also provide important information about the
onset, the rate, and the magnitude of eutrophication.

The aims of the present study are to examine the
present-day relationship between the distribution of
different aquatic organisms in the Alps in relation to
nutrients, with special reference to phosphorus, and to
develop quantitative inference models that permit the
reconstruction of total phosphorus values from subfos-
sil assemblages of aquatic organisms.

Methods
Surface sediments from the deepest part of 68 lakes

had previously been sampled and analysed for organic
remains by Lotter et al. (1997a) in order to develop
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Figure L Map of Switzerland showing the location of the sampled lakes. The numbers refer to the lake names in Table 1.

guantitative palaeoecological climate-inference mod- bottom). The pH was determined in the field, whereas
els. Statistical analyses of these data also revealed sig-oxygen content, alkalinity, dissolved organic carbon
nificant nutrient effects; thus in this paper we make use (DOC), nitrate (NQ@), total nitrogen (TN), orthophos-
of these data to derive nutrient inference models. phate (PQ), total phosphorus (TP), calcium (Ca), mag-
The lakes are situated on the Swiss Plateau, in nesium (Mg), sodium (Na), potassium (K), and silica
the Jura mountains and in the Alps, as well as in (Si) were measured in the laboratory at EAWAG (for
the foreland of the southern Alps (Figure 1) at eleva- details see Nller et al., in press). For most of the low-
tions between 300 and 2350 m above sea level (a.s.l.,land lakes, additional water chemistry data obtained
see Table 1). To minimize the effects of low pH that through the regional environmental protection agen-
might override the effects of other important environ- cies allowed an estimate of interannual variability in
mental variables on aquatic organisms, only lakes in water chemistry (lkanson, 1992). Lakes without such
calcareous bedrock regions were chosen. As a conseimonitoring data, especially at higher elevations, were
guence, the resulting inference models are not likely revisited for surface-water sampling under the ice dur-
to be applicable to lakes underlain by non-calcareous ing the winter. A depth-weighted average was estimat-
bedrock. Geographical lake and catchment data areed using the three to four water chemistry determina-
given in Table 1. tions. An arithmetical mean of this value and the circu-
Continuous temperature and conductivity profiles lation value (lowland lakes) or the winter value (alpine
were recorded before sampling in spring 1993 or 1994 lakes) was then calculated for the nutrient parameters.
at the deepest point to assess lake stratification. In theThese data are used as an estimate of the mean water
non-stratified lakes, three water samples (surface, mid chemistry for the circulation period (Table 1) and are
depth, 1 m above bottom) were taken, whereas in ther- assumed to represent the maximum available epilim-
mally stratified lakes, four water samples were taken netic nutrient concentrations in these lakes.
(surface, above and below the thermocline, 1 m above
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Figure 2 Distribution of diatoms along the TP gradient. Only selected taxa are shown. Classification of trophic status is according to OCDE
(1982).

For this study the uppermost centimetre of two by one analyst only, thus providing a potentially high-
Kajak-cores taken ca 0.5 m apart in the deepest partquality modern training-set with consistent taxonomy
of the basin was used for analysis. In certain lakes and nomenclature (Birks, 1994).
the top 2 cm were needed because of the scarcity of  Percentages were calculated for each set of organ-
chironomid head capsules (for details see Lotter et al., isms. In an attempt to optimize the ‘signal’ to ‘noise’
1997a). The methods used for the analyses of the dif- ratio in the data (Prentice, 1980), all percentage data
ferent biological microfossils are described in Lotter were transformed to square-roots. The inference mod-
etal. (1997a). Each set of organisms has been analysecls were developed, as described in Lotter et al.
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Figure 2 Continued

(1997a) using weighted averaging partial least squares  The final screened training-sets for {gdl'P are
regression (WA-PLS). Model assessment using cross-characterized in Table 2 by detrended canonical cor-
validation, data screening, outlier detection, and sum- respondence analysis (DCCA), with TP as the only
marisation of the final screened training-sets (Table 2) explanatory variable (detrending-by-segments, non-
follow Lotter et al. (1997a). As the distribution of the linear rescaling, rare taxa downweighted). The gradi-
TP values is right-skewed, a lggtransformation was  ent length of the DCCA axis 1 is the gradient length of
applied to normalize its distribution. All results are the environmental variable in standard deviation (SD)
reported as log ug TP L. units (ter Braak & Juggins, 1993; ter Braak et al.,
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Table 2 Descriptive statistics for the screened modern

training-sets in relation to lag TP inference models after 1993). The gradientlength of the second unconstrained

screening for outliers

Diatoms Benthic  Chironomids

Cladocera
Number of samples 72 69 48
Number of taxa 341 30 59
N2 for samples
minimum 3.25 1.00 2.06
median 16.89 6.19 12.50
maximum 45.67 14.82 22.91
N2 for taxa
minimum 1.00 1.00 1.00
median 3.90 13.85 9.22
maximum 47.20 58.67 37.93
DCCA axis 1
A1 0.295 0.088 0.285
gradient length (SD) 2901 1.478 2.351
% variance 8.4 8.0 11.4
DCA axis 2
A2 0.207 0.123 0.356
gradient length (SD) 2.346 2.141 3.455
% variance 59 113 14.2
Total inertia 3.510 1.092 2.506
A1/A2 1.425 0.715 0.800
LOglo TP
minimum 1.000 0.780 1.000
mean 1.588 1.601 1.450
median 1.380 1.430 1.380
maximum 2.720 2.590 2.010

standard deviation 0.408 0.391 0.245
Prediction model
Number of WA-PLS

components 2 1 2
apparent? 0.927 0.625 0.838
RMSE (apparent) 0.110 0.240 0.099
jack-knifedr?2 0.786 0.487 0.679
RMSEP (jack—knifed) 0.191 0.280 0.139
mean bias 0.011 0.004 —0.003
maximum bias 0.329 0.568 0.206

Taxon response models (maximum likelihood)
for all taxa in >20% of the samples

skewed unimodal model 2 2 0
symmetric unimodal

model 20 7 10
sigmoidal model 28 4 7

null model 14 5 12

axis is also presented, along with the eigenvalues and
percentage variance of the biological data explained
for each axis, as a guide to the presence of any large
secondary gradients in the data. The biological data-
sets used in the final training-sets are summarized in
terms of the ranges and medians of the effective num-
ber of taxa per sample and the effective number of
occurrences per taxon, as estimated by Hill's (1973)
N2 diversity measure (ter Braak, 1990; ter Braak &
Verdonschot, 1995). The environmental variables are
characterized in terms of their ranges, means, medians,
and standard deviations. The transfer function predic-
tion models are summarized in terms of the optimal
number of WA-PLS components, the appanénand

root mean squared error (RMSE), the jack-kniféd
and root mean squared error of prediction (RMSEP),
and the mean and maximum bias (Table 2). Details
of these statistics and the difference between apparent
r? and jack-knifed?, RMSE and RMSEP, and mean
and maximum bias are given by ter Braak & Juggins
(1993) and Birks (1995).

All DCCAs were implemented by the program
CANOCO version 3.12 (ter Braak, 1987-1992, 1990).
The WA-PLS and data-screening analyses were done
by means of the programs CALIBRATE version 0.61
and WAPLS version 1.0 (S. Juggins & C. J. F. ter
Braak, unpublished programs). Species response mod-
els were fitted using the program HOF (J. Oksanen,
unpublished program).

In Figures 2, 4, and 6, the distribution of the biolog-
ical assemblages in the surficial sediments are shown
along a TP gradient, from low TP values at the bottom
of the diagrams to high TP values in the top part. The
OCDE (1982) classification system with respect to TP
was adopted, in which concentratiodd0 g TP -1
are termed as oligotrophic, concentrations between 10—
35,9 TP I-* mesotrophic, 35-100g TP ! eutroph-
ic, and concentrations 1009 TP -1 hypertrophic.

Results
Diatoms

The TP gradient of the original 68 lake training-set
is relatively short (6—-16@ig |1-1) compared to other
European studies (Table 3). Due to the lack of modern
high TP lakes in the Alps, ten additional sediment core
samples with known measured circulation TP values
have been added to the modern training-set to extend
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Diatoms laria spp. andCyclotella radiosa whereas eutrophic
and hypertrophic sites show a dominanc€obcella-
ta, Asterionella formosa, Stephanodiscus panarg]
Fragilaria crotonensigFigure 2). The life-form spec-

30 ! ! ! ! tra are generally dominated by benthkiagilaria spp.
and periphytic diatoms in low to medium TP lakes,
a whereas planktonic diatoms dominate at higher TP
25 | . - concentrations.

In relation to TP, the diatom data have a gradient
.o length of 2.90 SD units. Log TP explains 8.4% of
20 Lt B the variance in the diatom data, whereas the second
) X unconstrained axis explains 5.9%, indicating a rela-
e tively strong relationship between the diatom assem-
157 St i blages and log TP. A preliminary WA-PLS model
e using all 77 samples gave an optimal two-component
model with a RMSEP of 0.24 lag 1g TP I, a jack-
knifed r? of 0.69, a mean bias of 0.008, and a max-
imum bias of 0.58. Five samples (BUR, HUSAIE
05 , , [ . LIO, ROT1969/70) have very high absolute residuals,
and these were deleted. The resulting training-set of
72 samples and 341 taxa gives a RMSEP of 0.19, a
jack-knifed r? of 0.79, a mean bias of 0.01, and a
b T, maximum bias of 0.33 for a two-component WA-PLS
037 . i model (Table 2). Further data screening failed to pro-
duce a significantimprovementin the predictive power
of the model.
. Of the 64 diatom taxa occurring in 20% or more of
0.1 7 R ' . i the samples, two show a statistically significant skewed
) unimodal response to leg TP, 20 have a statistically
0.3 1 : . i significant symmetric unimodal response, and 28 show
. : a statistically significant increasing or decreasing sig-
. . . moidal monotonic response to lggTP, whereas 14
03 10 13 20 = 30 diatom taxa show no significant response to (oGP
(Table 2), as assessed by a hierarchical set of species
Figure 3 Diatom — logoTP training-set: (a) plot of predicted response models (HUIsman-et al, 1993). These models
log1oTP against observed lgglP based on a 2-component WA- _are a sgrlgs of gen?rahsed .I|near mOdeI.S f'Fted_by max-
PLS model, and (b) plot of residuals (predicted — observed) against imum likelihood using a Poisson error distribution and
observed logyTP. a log link function.

Predicted log TP
-~

‘a

1.0 r

05 1 1 1

ol - .. -_... “' .. . . L

Residuals

Observed log TP

Cladocera

the gradient (6-520g 1%, see Table 1). Three of these
samples (ROT1986, ROT1979/80, and ROT1969/70; The cladoceran assemblages are generally dominated
Table 1) come from the well dated®(Cs) sediments by planktonic taxa (Figure 4). The relative abundances
of Rotsee (Lotter, 1988, 1989), whereas the other sev- of the chydorids are, therefore, very low. The latter are
en samples (BA1988; BA1982; BA1979; BA1973; composed mainly oAlona quadrangularis, A. affinjs
BA1972; BA1967; BA1958) originate from the annu-  Acroperus harpaeand Chydorus sphaericuthat are
ally laminated sediments of Baldeggersee (Lotter etal., more abundant in oligo- and mesotrophic lakes. The
1997b; Lotter, in press). planktonic cladocera show no clear pattern in relation

The diatom data-set thus consists of 68 surface sed-to the TP gradient.
iment samples and ten core samples. Oligotrophicand  The planktonic cladocera data-set consists of 72
mesotrophic sites are mainly characterizedrgi- samples containing only five taxaBgsminaspp.,
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Table 3 Performance of different diatom — TP calibration data-sets based on a WA or WA-PLS model. The RMSEP
are based on either leave-one-out jack-knifing (WA-PLS) or bootstrapping (W#)umber of lakes, WA = weighted
averaging; WA-PLS =weighted averaging partial least squares

Authors TP range lakes r2 app. RMSE RMSEP model
pgTPEL n apparent  loqug TPI-1  logug TP -1
Agbeti (1992) 2-63 28 0.86 0.15 WA
Hall & Smol (1992) 5-28 37 0.73 0.25 WA
Anderson et al. (1993) 25-800 43 0.75/0.77  0.17/0.16 WA
Fritz et al. (1993) 1-31 41 0.73 0.41 WA
Anderson & Rippey (1994) 15-800 49 0.80 0.19 0.24 WA
Anderson & Odgaard (1994) 25-1000 27 0.80 0.15 WA
Bennion (1994) 25-646 30 0.79 0.16 0.28 WA
Dixit & Smol (1994) 1-154 64 0.62 0.66 WA
Wunsam & Schmidt (1995) 5-266 86 0.57 0.32 0.35 WA
Wunsam et al. (1995) 2-266 86 0.61/0.65 0.12/0.22 0.35/0.36 WA
Bennion et al. (1995) 2-263 44 0.60 0.32 0.37 WA
Reavie et al. (1995) 5-85 59 0.73 033 WA
Bennion et al. (1996a) 5-1190 147 0.80 0.24 0.27 WA
Bennion et al. (1996b) 5-1190 152 0.91 0.15 0.21 WA
Hall & Smol (1996) 3-24 54 0.62 35 4.2¢ WA-PLS
Lotter et al. (this study) 6-520 72 0.93 0.11 0.19 WA-PLS

+ RMSE and RMSEP img TP I~

1

Daphnig. There is a very weak, statistically non-
significant relationship with log TP (0.7% of the
variance explained in a DCCA with lgg TP as the

sole constraining variable). The WA-PLS model (one-
component) is correspondingly poor with a RMSEP of

0.439 and a jack-knifedf of 0.001. In view of the poor

predictive power of this data-set, no further work was

done with the planktonic cladocera.

two show statistically significant skewed unimodal
responses to lag TP, seven show significant sym-
metric unimodal responses, and four have significant
sigmoidal responses. Five taxa have no significant

responses to lag TP (Table 2).

If the benthic and planktonic cladocera are com-
bined (72 samples, 35 taxa), the resulting two-
component WA-PLS model for all 72 samples has a

The benthic cladocera data consist of 74 samples RMSEP of 0.35 and a jack-knifed of 0.35. Screening
(68 surface-sediments, six subfossil samples) contain-and deletion of the six samples with absolute residuals
ing 30 taxa. There is a moderately strong and sta- greater than the standard deviation of P result
tistically significant relationship between the benthic in a two-component WA-PLS model with a RMSEP of
cladoceran assemblages andi{oBP as the sole con-

0.29 and jack-knifed? of 0.46. In view of the better

straining variable (8% of the variance explained by the predictive power of the benthic cladoceran model, we
first, constrained axis, 11.3% explained by the uncon- have discarded the total cladocera - TP model.
strained axis 2). A one-component WA-PLS model has
a RMSEP of 0.35 and a jack-knifed of 0.33. Five
samples had high absolute residuals and/or high lever-
age statistics (IFF, FLU, MON, LIO, BA1967). When

Chironomids

The distribution of the chironomids along the TP gra-
they were deleted the predictive power of the one- dientis illustrated in Figure 6. There is a grouping of
component WA-PLS model increased to a RMSEP of taxa such a®arachironomus, Glyptotendipes, Nano-
0.28 and a jack-knifed? of 0.49 (Table 2). Subse-

cladius, and Polypedilum sordensvith higher per-

guent deletions of samples with high residuals and/or centages in the eu- and hypertrophic lakésicoto-
high leverage values gave small improvements in the pushas the highest relative abundance in the hyper-
trophic lakes, whereadicropsectra, Chironomusgr.

Of the 18 benthic cladocerans present in 20% anthracinus, Tanypugr. lugens, Heterotrissocladius,
or more of the samples in the screened training-set,

model but no major improvement.
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Figure 4 Distribution of benthic Cladocera along the TP gradient. Only selected taxa are shown. Classification of trophic status is according

to OCDE (1982).

andParakiefferiellaspp. dominate the meso- and olig- BAN, BRT [iteration 2]). When these are deletedigg

otrophic lakes. TP explains 11.4% of the variance and the resulting
The chironomid data-set consists of 60 taxa in 58 two-component WA-PLS model has a high predictive

surface sediments. The analyses of additional subfossilpower with a RMSEP of 0.14 and a jack-knifedof

samples did not yield enough head capsules for further 0.68 (Table 2).

statistical analyses. There is a statistically significant  Of the 29 chironomid taxa present in 20% or more

relationship between the modern chironomid assem- of the final screened data-set, 10 have statistically sig-

blages and log TP, as assessed in a DCCA withlgg  nificant symmetric unimodal responses to)9gP and

TP as the sole constraining variable. LGP explains seven have statistically significant sigmoidal respons-

9.7% of the variance in the unscreened chironomid es. Twelve taxa have no statistical relationship tadog

data, whereas the second unconstrained DCA axis cap-TP.

tures 14.3% of the variance. A two-component WA-

PLS model gives a RMSEP of 0.21 and jack-knifed Chrysophyte cysts

r? of 0.53. Two iterations of data-screening, identify-

ing samples with high absolute residuals and/or high The chrysophyte cyst data consist of 78 taxa in 37 sam-

leverage values, identified ten outliers (ORI, MOO, ples. The additional subfossil samples did not contain

WIL, LAM, HAG, EGE, DIT, INK [iteration 1]; and a high enough number of cysts to permit useful statisti-
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cal analyses. The lag TP constrained DCCA axishas 1967; Stockner, 1971) to track the trophic history of
an eigenvalue (0.184) and gradient length (1.62 SD) a lake. The first quantitative inference models for TP
which are less than the first unconstrained axis (eigen- used linear regression (e.g. Whitmore, 1989; Agbeti &
value=0.256, gradient length=2.54 SD). Although Dickman, 1989), whereas later models took account of
logip TP explains 5.4% of the variance in these data, the non-linear unimodal relationship of diatom abun-
the second unconstrained axis explains 7.4%, suggest-dances in relation to TP. Weighted averaging (WA)
ing that the logp TP relationship is weak (ter Braak, and recently WA-PLS regression and calibration mod-
1987-1992) and that there are large gradients in the els have been employed (see Table 3). In comparison
cyst data unrelated to TP. Not surprisingly, the result- to these published models, our newly developed WA-
ing one-component WA-PLS model has a poor pre- PLS model for diatoms and TP compares well, as the
dictive ability with a RMSEP of 0.24, jack-knifedt apparent statistics are better than these statistics report-
of 0.18, mean bias of 0.002, and a maximum bias of ed for the previously published models. With its high
0.51. Attempts at data-screening failed to improve the jack-knifedr? (0.79) as well as a low RMSEP (0.19,
predictive power of the model. see Table 2) our model has high predictive power. Our
model encompasses a larger TP gradient (6520
TP I-1) than most of the North American models. The
Discussion integration of well-dated sediment samples with known
water chemistry helps to extend the gradient of interest
TP concentrations are, amongst other variables, widely and helps to reduce the problems of truncated species
used in limnology to define boundaries between dif- distributions near the ends of the environment gradient
ferent trophic states (e.g. Forsberg & Ryding, 1980; for some species.
OCDE, 1982). Inference models were developed for Besides TP, however, other factors such as basin
logip TP for the biological data-sets because oGP morphometry, mixing, light, grazing, and the availabil-
explains a large and statistically significant part of the ity of other nutrients such as silica, nitrogen, and car-
variance in the individual data-sets (between 6.2 and bon are also important for the distribution of diatoms.
3.9% of the variance in the species data, see Lotter Indirect effects of increased TP concentrations on
etal., in press). Several modern training-sets for diatom diatoms may also include a rise in pH and alkalinity
— TP inference have been described from Europe andthrough enhanced aquatic productivity. Furthermore,
North America (see Table 3). We, therefore, decid- diatom growth may be affected by interspecific com-
ed to focus on TP as a major nutrient and to assesspetition (see also Kilham et al., 1986, 1996), as well as
TP inference models for the different biological organ- inhibition through other algae by shading, allelopathy
isms. Nevertheless, we are aware that TP is a summa-(Keating, 1978), or nutrient competition (Tilman et al.,
ry variable that is composed of soluble (reactive and 1986).
unreactive) and particulate phosphorus fractions (e.qg.
Tarapchak & Nalewajko, 1986). Cladocera

Diatoms Apart from pH (Krause-Dellin & Steinberg, 1986),
summer temperatures (Lotter et al., 1997a), and salin-
Many of the common planktonic (e.g. Vollenwei- ity (Bos 1996; Bos et al., 1996), cladocera have so
der, 1950; Rosen, 1981; Kilham et al., 1986, 1996) far not been used as quantitative environmental indi-
and periphytic (e.g. Salden, 1978; Hofmann, 1994) cators. In palaeolimnological studies the succession
diatoms have defined nutrient requirements and have,of planktonic cladocera, froBosmina longispindo
therefore, been used as sensitive trophic indica- B. longirostrisor from B. longispinato B. coregoni
tors. Qualitative approaches using sedimentary diatom (or B. kesslel dominated assemblages are commonly
assemblages (e.g. Bradbury, 1975) have traditionally interpreted as a change from nutrient-poor to nutrient-
used the occurrence of some indicator diatoms (see e.grich conditions (e.g. Frey, 1969, 1988; Boucherle
Lowe, 1974; De Wolf, 1982; van Dam et al., 1994) to & Ziillig, 1983; Hofmann, 1987, 1990). However,
interpret diatom changes in terms of nutrient enrich- changes from large planktonic forms to smaller ones
ment. Early semi-quantitative approaches include the (Daphnia— B. longispina— B. longirostrig may also
use of the Centrales/Pennales ratio (Nygaard, 1956) orbe controlled by fish and copepod predation (Brooks
the Araphidineae/Centrales ratio (Stockner & Benson, & Dodson, 1965; Zaret & Kerfoot, 1975; Stenson,



1976; Kerfoot, 1978). Jeppesen et al. (1996), in a
recent study on planktivorous fish and trophic struc-
ture in Danish lakes, concluded that the influence of
TP on planktonic cladocerans is insignificant, which
agrees well with our results. Harmsworth & White-
side (1968) found decreasing chydorid species diversi-
ty with increasing primary production in lakes, where-
as Crisman & Whitehead (1978) discovered a marked
response of planktonic cladocerato changesin primary
production.

On the basis of 80 Danish lakes, Whiteside
(1969, 1970) categorized the surface-sediment clado-
cera assemblages into three groups of lakes: olig-
otrophic clear-water lakes; dystrophic brown-water
lakes (bog lakes); and polluted lakes. He also found that
the oligotrophic lakes had the highest number of clado-
ceran species, where@bna rectangulandChydorus
sphaericugpreferred nutrient-enriched lakes. A simi-
lar study in North American lakes was carried out by
Synerholm (1979). The ecological groups of chydorids
established by Whiteside (1970) have been confirmed
for lakes in northern Germany (Hofmann, 1996) and
were used in palaeoecological studies to explain long-
term changes in the littoral zone (Hofmann, 1986a,
submitted; Korhola, 1990).

The use ofBosminataxa as trophic indicators is
affected by the strong predominanc®aflsmina longi-
rostris in the data-set. It was present in 61 lakes and
made up more than 80% of the planktonic remains in
39 lakes and more than 50% in 50 lakes, while the
oligotrophicB. longispinais represented by only four
occurrences which were restricted to altitudes above
1690 m a.s.IB. longirostrisis indicative of eutrophic
conditions only when it occurs alone or together with
other eutrophic species (suchBscoregon). It is not
generally excluded from oligotrophic waters, where it
may occur together witl. longispina(Frey, 1988).

B. longirostrisis over represented in the data-set due
to the exclusion of large water bodies. The indica-
tive potential of theBosminataxa is also limited as
they include two forms of uncertain taxonomic status
and unknown ecological preferences, nantbgmi-

na sp. A (‘long mucro’) andBosminasp. B (‘short
mucro’), found in 18 and 19 lakes, respectively. The
major part (86%) of these occurrences originates from
sites below 700 m altitude.

Chironomids

Chironomids have traditionally been used to classi-
fy lakes according to their hypolimnetic oxygen lev-
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els (Brundin, 1956; Seether, 1979; Hofmann, 1986b,
1988) which are related to trophic state and basin mor-
phometry. However, food availability is likely also to
be important, particularly in defining the lower troph-
ic limit of species (Wiederholm, 1984; Lindegaard,
1995). Taxa of theTanytarsus lugensemmunity
(Brundin, 1956) are indicative of well-oxygenated con-
ditions, whereasChironomustaxa indicate oxygen-
poor situations. Accordingly, Walker (1995) predict-
ed an increase ilChironomusspp. with eutrophica-
tion. Jonasson (1969) states that amongst chironomids
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C. anthracinuss best adapted to low oxygen, butas it Chrysophytes
does not feed at low oxygen concentrations, this will
result in a slow or negligible growth of their larvae. Despite some recent advances in cyst identification,
Seether (1979) attributed many chironomids to specific such as the introduction of a standardized terminolo-
trophic states and Wiederholm (1980) found a good gy (Cronberg & Sandgren, 1986) and the publication
correlation between TP/mean lake depth and a benthicof an atlas of chrysophycean cysts (Duff et al., 1995),
quality index using seven chironomid indicator taxa. cysttaxonomy is based on morphotype description. A
Recently, in connection with diatom and geochemi- number of morphotypes, in particular those lacking
cal analyses, Walker et al. (1993) used chironomids to specific ornamentation, may be produced by several
reconstruct eutrophication-related changes in a Cana-species. Moreover, the same species can produce dif-
dian lake. ferent types of cysts according to sexual or asexual
Quantitative inference models have related the dis- cyst formation, genetic differences, or environmental
tribution of chironomids primarily to climatic variables  conditions (e.g., Sandgren, 1981, 1983). These factors
such as summer surface-water or air temperatures (e.gas well as the fact that only a few cyst morphotypes
Walker et al., 1991; Lotter et al., 1997a; Olander et al., have been linked to the taxa that produce them hamper
1997). Furthermore, they are also useful as palaeosalin-the use of chrysophyte cysts for palaeolimnological
ity indicators (Walker et al., 1995), and a model has inferences.
been developed for inferring hypolimnetic; @ondi- Although in recent years chrysophytes have mainly
tions (Quinlan et al., in press). been used in palaeolimnology to study lake acidifica-
The concentration of chironomid remains in the tion (e.g., Duff & Smol, 1991; Cumming et al., 1991;
surficial profundal sediments of the investigated lakes Rybak etal., 1991; Marchetto & Lami, 1994; Facher &
is highly dependent on the hypolimnetic oxygen con- Schmidt, 1996), or changes in salinity (e.g. Cumming
tent (Schnah, 1993). Eutrophic and hypertrophiclakes etal., 1993), they have for a long time been recognized
with hypolimnetic oxygen depletion have either no asimportantpotential indicators of environmental con-
head capsules or very low head-capsule concentra-ditions, such as trophic status (for reviews, see Cron-
tions in their sediments, a phenomenon well known berg, 1986; Smol, 1995). To avoid problems arising
in the chironomid literature (e.g. Wiederholm & Eriks- from morphological classification of chrysophycean
son, 1979; Kansanen, 1985; Walker et al., 1993). The cysts, Smol (1985) proposed the use of a ratio between
profundal assemblages are often dominated by taxachrysophyte cysts and diatom valves (C/D) to trace
washed in fromthe littoral zone (Sclém, 1993). There  past changes in lake trophic status. Chrysophytes are
is therefore a strong indirect influence of trophic state generally considered indicators of cool, nutrient-poor
on deepwater chironomid assemblages via the avail- waters (Rosen, 1981; Sandgren, 1988). Nevertheless,
ability of oxygen (Hofmann, 1988). Profundal oxygen chrysophyte cysts have not always to be considered
concentrations are also, in part, a function of basin oligotrophic indicators. In Frains Lake (Michigan),
morphometry. Th@anytarsus lugersommunity can Carney (1982) and Carney & Sandgren (1983) found
thus persist in the profundal zone of large, deep lakes a decline in the C/D ratio and an increase in cyst accu-
better than in shallower lakes of similar productivity mulation rate in relation to lake eutrophication, when
(Seether, 1980). The hypolimnion of large, deep lakes the diatom flora shifted fronCyclotellato Stephan-
is likely to exhibit less oxygen depletion. odiscusdominance. In a sediment study Zeeb et al.
Succession from danytarsus lugensommunity (1994) found that chrysophyte cysts responded with-
to a Chironomusassemblage in the profundal zone out lag to experimental lake eutrophication, whereas
as a response to eutrophication has been observed irdiatoms and chrysophyte scales showed a lag of 2—
several studies from different temperate regions (e.g. 3 years. They, therefore, concluded that cysts track
Hofmann, 1971; Wiederholm & Eriksson, 1979; War- short-term changes in water chemistry.
wick, 1980; Qinther, 1983; Kansanen, 1985). Habitat Inthe lakes considered in the present study, the C/D
structure and ecological conditions in the littoral zone ratios are significantly related (Kendall tepk:0.01)
are more variable and complex than in the profundal to altitude and, negatively, to temperature, alkalinity,
region. Therefore, it is difficult to detect clear rela- conductivity, and total nitrogen concentration. Howev-
tionships between the trophic state of a lake and the er, these relations are too weak to be used for reliable
structure of its littoral chironomid community (Bay- palaeoenvironmental reconstructions (Lotter et al., in
erisches Landesamilif Wasserwirtschaft, 1993). press). The relationship between C/D and temperature
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was only significant when a parametric model was used tal gradients, such as the stability of thermal stratifica-
with the original data or after logarithmic transforma- tion, the length of the growing season (Smol, 1985),
tion. The cyst assemblages are generally dominatedand the availability of organic material for phagotrophy
by unornamented cysts, either with or without collar. (Sanders et al., 1985), all of which may be important
Most of these types were grouped into counting units variables for the development of the chrysophyte flora.
because they often cannot be attributed to a species.
Moreover, several chrysophytes may produce the sameGeneral discussion
cyst types. As a consequence their distribution covers
the whole TP gradient (collective categories 49—120; Phosphorus has been identified as one of the limit-
146-156; 53—-152-198-234) or is limited to lakes with ing elements for phytoplankton biomass. TP values in
TP concentrations below 5@ |- (type 29 and collec-  lakes show a distinct annual cyclicity (Gibson et al.,
tive categories 50-51-52-110; 1-148; 127; 183). Also 1996). In contrast to other studies (e.g. Bennion, 1994;
distributed along the whole TP gradient are the types Anderson & Odgaard, 1994), the lakes in our mod-
76 and 171 (large cysts ornamented with spines and ern surface sediment training-set show their highest
indentation), the collective category 158-164 (cysts TP concentrations during the circulation period which
ornamented with verrucae), and, surprisingly, the col- generally takes place during early spring. We have tak-
lective category 33—222 (small cysts with shortridges), en these values as the basis for our inference models
which is reported as most common in deep oligotrophic because they are the maximum values available for the
lakes (Duff et al., 1995). Small cysts with long spines spring diatom growth (Lund, 1969) that may represent
(collective category 114-115-218), which are consid- a substantial part of the phytoplankton biomass.
ered typical for productive lakes, are restricted in our Although there are distinct changes in the compo-
training-set to lakes with TP concentrations between sition of the investigated aquatic organisms along the
10 and 50ug I=1. This range represents the lower sampled TP gradient, their relationship to TP is weaker
part of the TP gradient in our data-set, but is higher thanitis to temperature (Lotter etal., 1997a). Accord-
than the TP levels where most chrysophytes generally ing to the gradient lengths of the second, unconstrained
develop. Common cysts with defined preferences for axes, TP is a strong gradient for diatoms, whereas
characteristic trophic levels are types 88, 133, and 205 it is weaker for benthic cladocera and chironomids
(restricted to lakes with TP concentrations of 10480 (Table 2), and is very weak for planktonic cladocera
I=1), 153 (found in lakes with TP concentrations of 20— and chrysophytes. For these biota, there are clearly sec-
50 ug I71), and the types 41, 58-118, 116, 180, 189, ondary gradients that are more importantthan TP, such
and 214 (in lakes with TP concentrations higher than as temperature, conductivity, alkalinity, or DOC (see
50 g 1Y), Table 1, and Lotter et al., 1997a, Table 2). This is also
In our surface-sediment training-set, the quanti- evidentin the relatively high number of benthic clado-
tative relationship between chrysophyte cyst assem- cera and, particularly, of chironomid taxa that show no
blages and TP concentration is rather poor. This may statistically significant relationship to TP (Table 2).
be related to the small number of lakes with cysts in The residuals of the diatom, benthic cladocera,
sufficient quantity to obtain reliable counts, and to and chironomid WA-PLS inference models for TP all
the resulting short TP gradient that is biased towards show an over-estimation at the low end and an under-
mesotrophic to eutrophic lakes. Surprisingly, out of estimation at the high end of the gradient (Figures 3,
the 37 lakes with a high enough C/D ratio none are 5, 7). The reasons for this bias are discussed by Lotter
oligotrophic (0-10ug TP 1) according to OCDE et al. (1997a). This inherent bias in WA-PLS based
(1982) standards, but are mesotrophic (10x85TP models has consequences for TP reconstructions: very
I-1) (56.8%) or eutrophic (40.5%). On the other hand, low TP values will be over-estimated, whereas very
out of the 41 lakes having a very low C/D ratio, only high TP concentrations may be under-estimated. There
2.6% are oligotrophic. The low cyst numbers in the is also considerable scatter in the middle part of the
modern training-set of this study may indicate that TP gradient (Figures 3, 5, 7) that may be related to
these lakes are already too enriched in nutrients for the interannual variability in the TP data (e.g. Catalan
chrysophytes to be competitive. & Fee, 1994). The low end as well as the very high
Finally, the data-set presented here comprises bothend of the TP gradient includes very few sites in our
high mountain and lower altitude lakes, and may training-set. By extending the training-set to include
include some additional and unmeasured environmen-more oligotrophic and hypertrophic lakes, both ends
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Figure 6 Distribution of chironomids along the TP gradient. Only selected taxa are shown. Classification of trophic status is according to
OCDE (1982).

of the gradient would have a stronger basis and the Conclusions
model might potentially predict more reliable values at
the extreme ends of the gradient. The surface-sediment assemblages used in this study
The RMSEP of all the different models are very show strong relationships between TP concentrations
small due to the log transformation of the TP values.  during the circulation period and diatoms and, to a less-
After back transformation the errors range between er degree, benthic cladocera and chironomids. These
1.55 (diatoms) and 1.91g TP I-* (benthic cladocera).  relationships permit the use of these biota in TP infer-
Given the high annual and interannual variability in ence models. The majority of the taxa occurring in at
epilimnetic TP concentrations, these errors as well as least 20% of the samples in the individual training-sets
any sample-specific reconstruction errors are serioushave statistically significant relationshipsto TP (78.1%
underestimates of the total variability in epilimnetic TP  diatoms; 72.2% benthic cladocera; 58.6% chirono-
concentrations. However, WA-PLS models presented mids). Planktonic cladocera and chrysophytes show
here are solely for mean TP for the circulation period.
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Figure 6 Continued

a very weak relationship to TP and have, therefore, not well be related to the fact that climate is a major driving

been used for developing TP inference models.

agentfor aquatic ecosystems which is itself significant-

The diatom — TP inference model shows the high- ly influencing lake productivity and trophic status.

est predictive power, as has also been shown in several

other investigations. Multy-proxy approaches using a
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