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Abstract. We calculate phase diagrams of low-salt suspensions of charged colloidal particles
using a recently proposed effective one-component Hamiltonian for the colloids (van Roij R,
Dijkstra M and Hansen J-P 1999Phys. Rev.E 59 2010). This Hamiltonian consists of the purely
repulsive pairwise Derjaguin, Landau, Verwey, and Overbeek (DLVO) potential and density-
dependent volume terms. The latter play a crucial role in driving phase transitions at salt
concentrations of the order of 10µM or lower. We find phase diagrams that exhibit gas–liquid
coexistence with upper and lower critical points, and, for sufficiently large surface charge densities,
upper and lower gas–liquid–solid triple points. A connection between the Debye–Hückel theory
for simple electrolytes and the DLVO theory for colloidal suspensions is made.

1. Introduction

More than 125 years ago, Van der Waals argued that gas–liquid coexistence in simple fluids
can be attributed to the interplay between short-ranged (steric) repulsions and long-ranged
(dispersive) attractions between atoms or molecules [1]. He showed that it is thermo-
dynamically ‘favourable’ for a classical fluid at intermediate density to phase separate into
a dilute gas (with a high entropy) and a dense liquid (with a low internal energy), if the
temperature is sufficiently low, i.e. if the attractive interactions are sufficiently strong compared
to the thermal energykBT [2]. Van der Waals’ ideas have been much refined and quantified in
the course of the 20th century, but his insight that the liquid phase in simple fluids is stabilized
by the cohesive energy arising from long-ranged attractions and prevented from collapse by
short-ranged repulsions has long been accepted.

The interplay between short-ranged repulsions and long-ranged attractions has also been
a central theme in colloid science since the 1930s, when it was realized that the stability
of a colloidal suspension is determined primarily by the competition between double-layer
repulsions and dispersive attractions [3–5]. The theory developed by Derjaguin, Landau,
Verwey, and Overbeek (DLVO) describes the effective interactions between two colloidal
particles in a 1:1 electrolyte of salt concentrationn+ = n− = ns and solvent dielectric
constantε as a sum of a screened Coulomb repulsion and a Van der Waals–London–Hamaker
attraction [3–6]. It predicts that the amplitude of the pairwise repulsion is proportional to the
product of the electric charges of the two colloids, whereas the range is given by the Debye
screening lengthλD = 1/κD of the electrolyte, withκ2

D = 8πe2ns/εkBT , e being the unit
charge. For water at room temperature one finds, for salt concentrationsns = 1 M, 1 mM,
and 1µM, that λD ' 0.3, 10, 300 nm, respectively. The amplitude of the colloid–colloid
attraction is determined by the material-dependent Hamaker constantA ' 10−18–10−20 J, and
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its range extends typically to a few nanometres from the surface of the colloidal particles. The
competition between repulsion and attraction in this DLVO pair interaction depends strongly
on ns , and this explains, at least qualitatively, several experimental observations. At high
salt concentrationsns ' 1 M, whereλD � 1 nm, and hence attraction dominates over
repulsion according to the DLVO theory, suspensions are indeed unstable and show irreversible
flocculation ‘into the primary minimum’ of the pair potential at contact [7]. At intermediate
salt concentrationsns ' 10 mM, whereλD ' 1 nm, the attraction balances the repulsion and
reversible ‘gas–liquid’ coexistence is possible [6], whereas the regime of colloidal stability at
lower salt concentrations, withλD � 1 nm, corresponds to dominant repulsions. Many more
experimentally observed phenomena in colloidal suspensions have been explained on the basis
of the DLVO theory, which has become a well-established cornerstone of colloid science.

However, since the early 1980s several experimental results have been reported that seem
to be qualitatively at odds with the DLVO theory. These experiments, performed invariably
at extremely low salt concentrationsns ' 1–10µM, reveal strong evidence for coexistence
of a very dilute colloidal gas phase with a much denser colloidal liquid or crystal [8–11].
By analogy with Van der Waals’ line of reasoning in the case of simple fluids, one expects
that gas–liquid and gas–solid coexistence in colloidal suspensions should require long-ranged
attractions. Since we have seen above that the dispersive attraction is completely masked
by the electric double-layer repulsion in the extreme low-salt regimens ' 1–10µM, one
cannot explain the observations by invoking the Van der Waals–London–Hamaker interaction.
Instead it was argued that the experiments should be interpreted as evidence for the existence
of electrostaticattractions between colloids with charge of the same sign. In other words, the
low-salt experiments seem to invalidate the well-established DLVO theory!

The earliest attempt to explain these low-salt experiments was due to Sogami in 1983 [12]
and Sogami and Ise in 1984 [13]. These authors argued that one should consider not the
Helmholtzfree energy of the microions—which leads to the DLVO theory—but instead the
correspondingGibbsfree energy (of the isothermal isobaric ensemble) when determining the
effective colloid–colloid interaction. Their analysis revealed that the Gibbs pair potential
between the colloids exhibits a long-range attraction of electrostatic origin that could be strong
enough to drive gas–liquid or gas–solid phase separation in low-salt suspensions [12–14].
However, the fundamentals of the Sogami–Ise theory have remained at the centre of intense
debate [15, 16]. It was shown by Woodward in 1988, for instance, that the inhomogeneity of
the microions (due to the presence of the charged colloids) invalidates the key assumption in
the Sogami–Ise theory that the Gibbs free energy is a first-order homogeneous function of the
particle numbers [16]. More recently many other attempts to describe net attractions between
like-charged colloidal particles have appeared in the literature [17–19]. Most of these are based
on the influence of microion charge correlations or colloid charge fluctuations, which are not
taken into account in the (mean-field-like) DLVO theory. In general the resulting attractive
contribution to the colloid–colloid pair interaction arising from correlation effects is rather
weak and short ranged, and often requires the microions to be multivalent. It also appears
that the attractions, if present, are suppressed for colloidal spheres as compared to discs [20].
The recently proposed Coulombic depletion mechanism [21], by analogy with the depletion
effect in colloid–polymer mixtures, also gives rise to effective colloid–colloid attraction at high
Coulomb coupling. However, we are not aware of a study (with the exception of reference [19])
that shows that any of these fluctuation, correlation, or depletion effects can explain the phase
behaviour observed in the low-salt suspensions.

It is important to realize that knowledge of the effective interactions between colloids
is only a first (albeit important) step in the determination the phase behaviour of a colloidal
suspension. A popular route towards the study of the phase behaviour starts with the study
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the effective potential betweentwo colloidal particles in the presence of a bath of microions,
proceeds via theassumptionthat the interaction Hamiltonian of the colloidal suspension is then
simply the sum of this pair potential between all pairs of colloidal particles, and concludes
with the calculation of an appropriate thermodynamic potential, e.g. the Helmholtz free energy,
corresponding to that Hamiltonian. Clearly, the DLVO pair potential has often been used
successfully in this scheme. In this paper we follow a more systematic route towards the
phase diagram of a model for a colloidal suspension by calculating the total free energy of a
three-component mixture of highly charged hard spheres and monovalent positive and negative
point ions. The effective Hamiltonian of the colloidal particles, obtained by integrating out
the degrees of freedom of the point ions, is an intermediate result of this procedure. Despite
the fact that our calculations are at the linearized Poisson–Boltzmann level, in the spirit of the
original calculations in references [3, 4], the resulting effective one-component Hamiltonian
goes beyond the often-employed pairwise DLVO approximation in two important respects.
First, we find that the electrostatic screening is not only determined by the thermodynamic
state of the bath of microions but also by the colloid density; it reduces to that of the bath in the
limit of high salt concentration or low colloid density. Second, we find important nonpairwise
contributions which were not incorporated in early studies, but which do appear in more
recent studies, e.g. references [18, 19, 28, 29]. At high salt concentrations the present theory
is equivalent to the standard DLVO theory, whereas at extremely low salt concentrations it
predicts gas–liquid and gas–solid coexistence. Thus the theory provides, at least qualitatively,
an explanation for some puzzling and controversial experimental observations. Moreover, the
theory also connects the DLVO theory for colloidal suspensions to another classical linearized
Poisson–Boltzmann theory, namely the Debye–Hückel theory for simple electrolytes. The
latter is well known to predict gas–liquid coexistence at low temperatures. The required
cohesive energy that stabilizes the dense liquid phase of simple electrolytes is provided by
a combination of charge neutrality and correlations: every ion is surrounded by a cloud of
opposite charge. We argue that the recently observed gas–liquid and gas–solid coexistence
in colloidal suspensions is driven by a mechanism equivalent to that in simple electrolytes,
andnot, as has often been claimed, by pairwise electrostatic attraction between like-charged
colloidal particles. We also show that the charge and size asymmetry of the colloidal suspension
enriches the phase diagram compared to that of simple electrolytes, i.e. the asymmetry gives
rise to closed-loop gas–liquid and gas–solid coexistence, with upper and lower critical and
triple points. The approach that we apply is that put forward in references [22, 23]. By
extending this to a larger class of system parameters, new features of the phase equilibria are
revealed. Although our presentation is self-contained, we refer to reference [23] for many of
the technical details.

2. Model and effective Hamiltonian

We consider a three-component mixture consisting of (i)Nc colloidal spheres of diameter
D = 2R > 0 and charge−Ze (with Z � 1) distributed homogeneously over the surface,
(ii) Ns point ions of charge−e, and (iii)Ns + ZNc point ions of charge +e, all suspended in
a structureless medium of dielectric constantε and total volumeV at a constant temperature
T . This mixture is electrically neutral. Having in mind the low-salt regime discussed
above, we simply ignore the dispersion interactions between any of the three components,
and restrict attention to Coulombic and steric hard-core interactions. Using the label ‘µ’ to
denote collectively all positive and negative microions, we consider the total Hamiltonian
H = Hc + Hµ + Hcµ, where the bare colloid and microion Hamiltonians areHc andHµ,
respectively, and the colloid–microion interaction term isHcµ. The final goal is to calculate
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the Helmholtz free energyF(Nc,Ns, V ) of this system, and, hence, the phase behaviour.
Formally, one can write the canonical partition function of the mixture as

exp[−βF ] = Trc Trµ exp[−βH ] ≡ Trc exp[−βH eff
c ] (1)

where the traces Trc and Trµ are short for the canonical phase-space integrals over the colloidal
and microion degrees of freedom, respectively. The intermediate result of interest,H eff

c , as
defined in equation (1), is called the effective one-component colloid Hamiltonian, because
of the analogy with the relation between Hamiltonian and free energy in a one-component
system. Given that the bare colloid HamiltonianHc is independent of the coordinates of the
microions, it follows directly from equation (1) that

H eff
c = Hc + F ′ (2)

with

exp[−βF ′] = Trµ exp[−β(Hµ +Hcµ)]. (3)

Clearly,F ′ is the Helmholtz free energy of an inhomogeneous fluid of the microions in the
external field of colloids at fixed positionsRj with j = 1, . . . , Nc, i.e.F ′ = F ′({R}). The
formalism described in equations (1)–(3) is well known in the theory of liquid metals—where
one integrates out the electrons to obtain effective interactions between pseudoatoms [2, 24].
It was also used in reference [25] to describe salt-free suspensions of charged colloids.

In reference [23] we calculatedF ′ within density functional theory, thus treating the
microion species at the level of their density profiles instead of their individual coordinates
[25, 26]. The approximate functional used in reference [23] ignores microion–microion
correlations, and treats the electrostatics at the linearized Poisson–Boltzmann level. This
functional is minimized by microion profiles that describe electric double layers surrounding
the colloidal particles. The double-layer thickness is found to be governed by the screening
length 1/κ, with the screening parameterκ now given by

κ2 = 4πe2(2ns +Znc)

εkBT
(4)

where the colloid densitync = Nc/V and the salt concentrationns = Ns/V . This definition of
κ only coincides with that ofκD of the electrolyte, mentioned above, in the dilute colloid regime
nc → 0, the regime of interest in the determination of the interactions between a single pair of
colloids. At finite colloid densitync, however, the counterions (of number densityZnc) also
contribute to the screening, at least within the present theoretical description [27]. Obviously,
this counterion contribution is negligible, even for finitenc, in a regime of sufficiently high salt
concentrationsns � Znc. The value ofF ′, i.e. the minimum value of the functional, follows
from inserting the equilibrium (electric double-layer) profiles into the functional. Insertion of
the resultingF ′ into equation (2) yields, as was shown explicitly in reference [23], the effective
one-component colloid Hamiltonian with the form

H eff
c = HDLVO({R}) + F0(nc, ns). (5)

HereHDLVO depends on the instantaneous set of coordinates of the colloidal particles{R},
whereas the so-called volume termF0 is independent of the coordinates but dependent on the
densitiesnc andns , i.e.

HDLVO = Kc +
Nc∑

i<j=1

[
vHS(Rij ) +

Z2e2

ε

(
exp[κR]

1 +κR

)2 exp[−κRij ]
Rij

]
(6)

with Kc the (trivial) classical kinetic energy of the colloids,vHS the hard-sphere potential,
Rij = |Ri − Rj | the colloid–colloid separation,κ as defined in equation (4), and the



Low-salt suspensions of charged colloids 10051

volume term
F0(nc, ns)

V
= kBT

[
n+(ln n+ − 1) + n−(ln n− − 1) +

η

1− η
2n+n−
n+ + n−

]
− Z2e2

2ε(R + 1/κ)
nc − 1

2

4πZ2e2

εκ2
n2
c (7)

with microion densitiesn− = ns ,n+ = ns+Znc, and colloid packing fractionη = (4π/3)ncR3.
One recognizes thatHDLVO is the one-component DLVO Hamiltonian describing the pairwise
screened Coulomb repulsions between ‘dressed’ colloid particles, i.e. the colloids with their
double layers. The volume termF0, which is usually not considered (references [18,19,28,29]
are exceptions), is acquired in the mapping of the original three-component system onto an
effective one-component system. The first two terms of equation (7) account for the (ever-
present) ideal-gas contributions of the positive and negative microions, and the third for their
excluded-volume interactions with the colloids (at packing fractionη). This excluded-volume
term is merely the approximation that results from the simple quadratic functional employed
in reference [23]; it might be improved upon in anad hocfashion by using scaled-particle
expressions for the free volume as in the theory of colloid–polymer mixtures [30], or by
using ideas for including steric effects in electrolytes as discussed in reference [31]. Here
we are content to employ the present expression since it does capture the important feature of
monotonic increase as a function ofη. The fourth and fifth terms of equation (7) describe terms
of electrostatic origin. The fourth is, up to the factornc, of the order of the Coulomb energy
arising from a charge−Ze (on a colloidal particle) and a charge +Ze at a separationR+1/κ (the
double-layer charge and thickness, respectively). This term can therefore be interpreted as the
‘internal (free) energy’ of the dressed colloids per unit volume. The fifth term of equation (7)
is the free energy associated with the (positive) double layers in the screened mean field of
other (negative) colloids; it largely cancels the mean-field contribution from the colloid–colloid
repulsion described byFDLVO. This cancellation was discussed in reference [23] and will be
illustrated explicitly below. The presence of the two electrostatic terms inF0 is a reminder that
the entities which exhibit DLVO pair interactions are not structureless particles but composite
ones: a bare colloid of charge−Ze anda surrounding cloud of microions with a compensating
net charge +Ze.

3. Total free energy and phase diagrams

The form (5) of the effective Hamiltonian leads, using (1), to the following approximation for
the total Helmholtz free energy of the suspension:

F(Nc,Ns, V ) = FDLVO(Nc, V ; κ) + F0(nc, ns, V ) (8)

whereFDLVO is the Helmholtz free energy of a one-component fluid with theκ-dependent
HamiltonianHDLVO, i.e. exp[−βFDLVO] = Trc exp[−βHDLVO]. Many accurate and reliable
approximations have been developed over the years to estimate the free energy of one-
component fluids [2]. Our present calculations ofFDLVO are based on the Gibbs–Bogoliubov
inequality, with a hard-sphere fluid and the Einstein crystal as reference systems for the colloidal
fluid and solid phase, respectively [2,23,32]. OnceF is known, the chemical potentials of salt
and colloids, as well as the osmotic pressure of the suspension, follow directly from (numerical)
differentiation [23]. The phase boundaries, determined by equating the chemical potentials
and pressure in two coexisting phases, can then be calculated explicitly for given colloidal
chargeZ and hard-core diameterD, dielectric constantε, and temperatureT . It is easily
checked that the last two variables only occur in a particular combination with the unit charge
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e. This is the so-called Bjerrum lengthλB = e2/εkBT , which, at room temperature, takes
valuesλB ' 0.72, 2.3, and 4.1 nm for the suspending media water, ethanol, and pentanol,
respectively [33].

In this contribution we present phase diagrams in theη–ns representation for suspensions
of charged colloids at room temperature in ethanol, i.e.λB = 2.3 nm. In figures 1(a)–1(c)
we show three of such phase diagrams for colloids of total charge numberZ = 500, and
increasing diametersD = 300, 350, and 380 nm, respectively. We distinguish the disordered
fluid (F) and ordered crystalline (FCC) phase, as well as the dilute gas (G) and denser liquid (L)
phase. The terms ‘disordered’ and ‘ordered’ refer to the structure of the colloidal particles; the
microions form double layers around the colloidal particles but do not crystallize themselves
(as, e.g., in a Wigner crystal). Also the terms ‘dilute’ and ‘dense’ refer to the colloid density.
The full curves in figure 1 represent the phase boundaries. The F–FCC phase boundary
is primarily driven by the repulsive interactions, i.e. the main driving term of the freezing
transition is the contributionFDLVO to F . Freezing occurs at much lower packing fractions
than that of the hard-sphere freezing transition [34], since the thick double layers, at the low
salt concentrations under consideration here, give rise to a much larger effective diameter,
and hence to a larger effective packing fraction, than the actual ones [23, 35]. The ‘pocket’
of gas–liquid coexistence, which does not intersect the freezing line in any of the three phase
diagrams of figure 1, isnotdue toFDLVO but instead is due to the volume termF0 in the total free
energyF . The reason is that the one-component system without attractive interactions, such as
determinesFDLVO, does not possess the cohesive energy required to stabilize a liquid phase. In
contrast, the two electrostatic contributions toF0, given by the last two terms of equation (7),
do describe such cohesive energy as will be discussed in more detail in section 4. The pocket
of gas–liquid coexistence that results fromF0 was also found in reference [23] for dielectric
constants, and hence values ofλB , appropriate to aqueous suspensions. Here we show the
systematic shrinking of this pocket as the diameter increases, i.e. as the surface charge density
decreases. The two critical points that enclose the regime of gas–liquid coexistence coalesce
whenD = Dc, where the critical diameterDc is slightly larger than 380 nm. The value of
Dc depends, of course, on the specific numerical values ofZ andλB . ForD > Dc there is
no gas–liquid coexistence, and the single critical point atD = Dc is called a hypercritical or
bicritical point [36]. For decreasingD < Dc, at fixedZ, the gas–liquid pocket increases as the
upper and lower critical points move apart in theη–ns plane. Eventually, at sufficiently small
D or high surface charge density, the G–L phase boundary intersects with that of the F–FCC
transition. Such an intersection gives rise to G–L–FCC triple points.

In figure 2 we show an example of a phase diagram with such triple points. The diameter of
the particles isD = 350 nm as in figure 1(b), but now the colloidal charge number isZ = 750
instead ofZ = 500. The solvent is, as before, taken to be ethanol, withλB = 2.3 nm.
Figure 2(a) shows the gas–liquid upper critical point (×) at η ' 0.04 andns ' 7 µM. At
somewhat lower salt concentrations,ns ' 3–5µM, we find three coexisting phases, i.e. a triple-
point (4). The triple-point gas phase is of extremely low packing fraction,η < 10−6, whereas
the triple-point liquid and solid phases haveη ' 0.09 andη ' 0.11, respectively. At salt
concentrations below the triple point the colloidal liquid phase is no longer thermodynamically
stable, and we find only coexistence between an extremely low-density gas and the solid. The
trend of the packing fraction of the melting line decreasing with decreasingns continues in this
regime ofns . Now the packing fraction of the gas–solid (evaporation) line decreases smoothly
with decreasingns until extremely low values,η ' 0.007 andns ' 0.1 µM, are reached.
This regime is shown in detail in figure 2(b). Perhaps surprisingly, we find another set of
simultaneously coexisting gas, liquid, and solid phases (4) atns ' 0.22–0.15µM. As in the
case of the upper triple point, the lower triple-point gas phase is extremely dilute (η < 10−6),
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Figure 1. The phase diagram of a suspension of colloidal particles (packing fractionη) in a 1:1
electrolyte of densityns with the dielectric constant that of ethanol. The colloid charge number is
Z = 500, and the diameter is (a)D = 300, (b)D = 350, and (c)D = 380 nm. We distinguish the
fluid phase F, the crystalline FCC solid phase, and ‘pockets’ of coexisting gas G and liquid L with
accompanying critical points×. The G + L two-phase regime decreases with increasingD, and
disappears completely forD > 380 nm. Note that the coexisting gas phase is extremely dilute,
η < 10−6, for 0.2< ns (µM) < 4 in (a).
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Figure 2. The phase diagram of a suspension of colloidal particles (packing fractionη) in a 1:1
electrolyte of densityns with the dielectric constant that of ethanol. The colloid charge number is
Z = 750, and the diameter isD = 350 nm. The phases are denoted as in figure 1, but here the
regime of G + L coexistence intersects the F + FCC coexistence region to yield an upper and a lower
triple point. Panel (a) displays the phase boundaries on an unexpanded scale. The4s denote the
upper triple-point gas, liquid, and solid phase, and× denotes the gas–liquid upper critical point.
Panel (b) displays the results at very low salt concentrations. Here the4s denote the lower triple-
point coexisting phases, and× denotes the lower gas–liquid critical point. Note the difference in
scales between (a) and (b).

whereas the triple-point liquid and FCC solid phase have packing fractionsη ' 0.0055 and
0.0065, respectively. Atns ' 0.05µM andη ' 10−4 we find the gas–liquid lower critical
point.
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In principle we should also consider the possibility of a stable body-centred cubic (BCC)
phase. Here we argue, however, that the BCC phase is not stable in the present parameter regime
of interest; the fluid or the FCC phase is lower in free energy. A simple qualitative argument
is obtained as follows. It is known from several studies of one-component Yukawa systems
that the BCC phase can only be thermodynamically stable ifξ < ξm, whereξ ≡ κρ−1/3 is a
dimensionless combination of the Yukawa screening parameterκ and the densityρ, and where
ξm is a temperature-dependent maximum that takes values of the order ofξm ≈ 1.72–5 [37,38].
Using equation (4) forκ and settingρ = nc, it is easily verified that the conditionξ < ξm gives
rise to a necessary (but not sufficient) conditionns < n0/Z

2 to be satisfied if the BCC phase is
possibly stable, withn0 = ξ6

m/(864π3λ3
B). Using the Bjerrum length of ethanol,λB = 2.3 nm,

one then finds thatn0 ' 10−4 M when ξm = 1.72 andn0 ' 0.1 M whenξm = 5. These
values give rise to a salt concentrationns that is too low to allow for a stable BCC phase for
the present colloid chargesZ; the BCC phase is unlikely to be a stable phase in the regime of
interest here.

The examples of phase separation shown in figures 1 and 2 do not involve the colloidal
particles only, since the added salt fractionates simultaneously. In general the colloid-dilute
phase has a higher added salt concentration than the colloid-dense phase with which it coexists,
or, in other words, the tie lines that connect coexisting phases have a negative slope in the
representation of figures 1 and 2. It is very important, however, to realize that this doesnot
imply that the total microion concentration in the colloid-dilute phase is higher than in the
coexisting colloid-dense phase. In fact, the opposite is the case: the screening parameterκ of
the colloid-dense phase is always larger, due to the larger contribution from the counterions
in the dense phase, than that of the coexisting colloid-dilute phase; see equation (4). This
becomes explicit on considering the screening lengths 1/κ at the two triple points of figure 2.
For the upper triple point we have 1/κ ' 76, 69, and 68 nm in the gas, liquid, and solid phase,
respectively, and for the lower triple point 366, 306, and 300 nm. It will turn out to be a crucial
ingredient of the phase separation mechanism that the double layers in the denser phases are
more compressed than in the more dilute phases.

We emphasize that the phase diagrams in figures 1 and 2 result only from electrostatic
and excluded-volume interactions in a three-component mixture;no long-ranged dispersion
interactions between the colloidal particles have been included. In fact, one could envisage
a situation where dispersive Van der Waals–London–Hamaker interactions are included, and
give rise to gas–liquid coexistence (with a critical point) and a gas–solid coexistence (and a
gas–liquid–solid triple point) atns ' 0.01 M without affecting the low-salt phase behaviour
discussed here [6]. One would then have a phase diagram withthreegas–liquid critical points,
and three triple points [39]. Here, however, we focus on the low-salt regime, where the
dispersion interactions can be safely ignored.

In section 4 we discuss the mechanism thatdrives the gas–liquid and gas–solid phase
separation shown in figures 1 and 2, and in section 5 the mechanism that is responsible for the
remixingand the existence of the lower critical point at extremely low salt concentrations.

4. Demixing mechanism: connection with Debye–Ḧuckel theory

It is instructive to consider a limiting case that might give some extra insight into the mechanism
that drives the phase transitions discussed in section 3. We first reduce the three-component
system under consideration to a two-component system by setting the added salt concentration
ns = 0, leaving the (positive) counterions as the only microionic species. For convenience we
also assume the colloids to be point particles, i.e.R = 0. The limiting system is, therefore,
equivalent to an asymmetric 1:Z electrolyte with species densitiesZnc andnc. Note thatη = 0



10056 R van Roij and R Evans

sinceR = 0. A crude mean-field estimate ofFDLVO, denotedFMF
DLVO, is then

FMF
DLVO

V
= kBT nc(ln nc − 1) +

1

2
an2

c (9)

wherea is the integrated strength of the DLVO pair potential given in equation (6). With
R = 0 it follows that

a = (Z2e2/ε)

∫
dr exp[−κr]/r = 4πZ2e2/εκ2.

This approximation is in the spirit of Van der Waals’ theory for gas–liquid coexistence, in
which half of the integrated strength of the attractions appears as the prefactor of the term
in the free energy per unit volume that is quadratic in the density [2]. In the case of mutual
attractions this contribution to the free energy is negative, but here we havea > 0 because of
the purely repulsive character of the pair interactions between the colloids. The first term of
equation (9) is simply the ideal-gas contribution of the colloidal particles. Adding the estimate
of equation (9) to the volume term of equation (7) yields, from equation (8), the sought-for
mean-field approximationFMF = FMF

DLVO + F0 to F . It is easily checked that the final term
of F0 in equation (7) cancels the second term ofFMF

DLVO in equation (9). Settingη = 0 and
recalling the ideal-gas contribution of the two species:

Fid = kBT V [nc(ln nc − 1) +Znc(lnZnc − 1)]

it follows that the excess (over the ideal) free-energy density is given by

FMF − Fid
V kBT

= −Zκ
3

8π
∝ −n3/2

c (10)

sinceκ2 = 4πe2Znc/εkBT now. ForZ = 1 this expression is remarkably similar, although
not identical, to the Debye–Ḧuckel expression for the excess free energy of a symmetric 1:1
electrolyte of point ions at densityn = n+ = n−, for which the right-hand side of equation (10)
would have read−κ3

D/12π ∝ −n3/2 with κ2
D = 8πe2n/εkBT [40,41]. Without the presence

of the final term ofF0 we wouldnothave obtained the cancellation of the terman2
c/2∝ −nc.

Then the lowest-order density correction on the right-hand side of equation (10) would have
beenO(nc) instead ofO(n3/2

c ). The existence of this final term and the resulting cancellation
in the total mean-field free energy of the system is also discussed by Warren in reference [42].

The negativeO(n3/2) contribution to the free-energy density is well known, at least in the
case of electrolytes, to give rise to a gas–liquid spinodal instability at low enough temperatures,
i.e. at strong enough Coulomb coupling [41]. When the additional hard-core contributions to
F are taken into account properly, the instability gives rise to a ‘Van der Waals loop’, and hence
to gas–liquid coexistence in the symmetric electrolyte [41]. Thenatureof the corresponding
criticality has been hotly debated over the past few years, but simulation, experiment, and
theory leave no doubt concerning theexistenceof such a critical point and, of course, gas–liquid
coexistence below it [41,43,44]. Although the Debye–Hückel theory provides a poor account
of the location of the phase boundary of the restricted primitive model of an electrolyte [41,44],
it does contain the essential physics of the gas–liquid transition in these systems. Although the
average local charge density vanishes by symmetry, every charge of the electrolyte is, by charge
neutrality, surrounded by an oppositely charged ‘cloud’ of typical thicknessλD = 1/κD. This
correlation gives rise to an electrostatic (free-) energy contribution of the order of−e2/ελD
per microion, or equivalently of order−κ3

DkBT per unit volume. Thus, loosely speaking, a
high-density liquid phase is stabilized by cohesive energy resulting from the closer average
proximity of oppositely charged particles. A dilute gas phase is, as usual, stabilized by its high
entropy.
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By identifying the correlation ‘cloud’ in the 1:1 electrolyte with the electric double layer
in the colloidal suspension, the rather obvious connection between the two is now established.
Indeed, the gas–liquid (and gas–solid) phase separation found in low-salt colloidal suspensions
is driven mainly by that part of the volume term which reduces to theO(−n3/2

c ) term in
equation (10), i.e. to the Debye–Hückel excess free energy of a 1:1 electrolyte (up to a num-
erical factor). Themechanismof the phase separation in the colloidal suspension is therefore
similar to that which is well established in 1:1 electrolytes. In our language of colloidal
suspensions we argue as follows. At high salt concentrationsns � Znc, the double-layer
thickness 1/κ is essentially determined by the excess salt concentrationns , independently of
nc; see the definition ofκ in equation (4). The typical separation between the charge in a
double layer and ‘its’ colloidal particle is therefore essentially identical in dilute and dense
colloid phases (provided thatZnc � ns). Consequently, there is no mechanism to provide an
excess cohesive energy that stabilizes a liquid phase, i.e. that could balance the high entropy
of a coexisting gas phase. The situation is different in the low-salt regimens 6 Znc, where
1/κ is substantially smaller in a dense phase than in a dilute phase. Under these circumstances
the typical distance between the surface charge of a colloidal particle and the charge in its
surrounding double layer is smaller in a dense phase, and this can give rise to the required
excess cohesive energy that stabilizes a liquid phase in coexistence with a gas. By analogy
with the 1:1 electrolyte case, one shouldnotspeak of attractions between like-charged species
in order to explain the phase separation—the colloids indeed repel each other via screened
Coulomb interactions as is explicit in equation (6). Rather, the stable colloidal liquid phase
is explained by the charge-neutrality-induced correlation effect whereby charged colloids are
surrounded by an oppositely charged cloud of microions, i.e. whereby oppositely charged
particles tend to be closer to each other, on average, than particles with the same sign of
electric charge.

A connection between Debye–Hückel theory for simple electrolytes and fluid–fluid phase
separation (or ‘complex coacervation’) in colloidal or polymeric suspensions was, in fact,
already discussed in 1938 by Langmuir [45], and in more detail in 1956–1957 by Voorn
and co-workers [46]. These authors made remarks along the lines discussed above, and
identified the Debye–Ḧuckel mechanism as the driving force behind the phase separation
in these suspensions. It is our impression, however, that they did not make explicit connection
between the Debye–Ḧuckel theory and the effective one-component DLVO theory of colloidal
suspensions [47]. Such a connection is, in principle, present in recent work by Levinet al,
although their expression for the colloid–charge-cloud free-energy density does not reduce to
a Debye–Ḧuckel-likeO(−n3/2

c ) term in the limit of a symmetric electrolyte of point ions [29].
In contrast, the present theory does establish this connection directly, via the volume termF0.
There is, however, an important quantitative difference between the present description and the
earlier work of Langmuir and Voorn. This difference is also why the limiting case expressed in
equation (10) does not reproduce the exact numerical prefactor of the Debye–Hückel limiting
law. Whereasall charge-carrying species contribute to the screening in the Debye–Hückel
theory for simple electrolytes and in the treatments of references [45,46],only the microions
screen in the present theoretical description. In other words, a symmetry that is present in the
Debye–Ḧuckel theory is lost here; the colloidal particles are treated at a level different from
the microions. More specifically, the density functional that underlies the present study does
take into account the colloid–microion correlations—the microions experience the external
potential of the colloids and form double layers around them—but the functional neglects the
microion–microion correlations. Clearly, these correlations would give rise to an additional
free-energy contribution at the Debye–Hückel level. It was argued in reference [25], however,
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that the colloid–microion correlations are far more important than the microion–microion
correlations in the case of extreme charge asymmetry, and certainly in the regime of low
added salt concentrations of interest here. Given the generally successful description of high-
salt colloidal suspensions by the DLVO theory, in which the colloids do not contribute to
the screening either, we expect the present semi-quantitative connection with Debye–Hückel
theory to be sufficient to explain the main features of the low-salt behaviour of suspensions of
highly charged colloidal particles. Nevertheless, it would be interesting to construct a theory
that interpolatesexactlybetween the symmetric 1:1 electrolyte and the extremely asymmetric
colloidal suspensions. Such a theory should, amongst other things, answer the question of
how large the colloidal parametersZ andD must be before the colloidal particles cease to
contribute to the screening [39]. We leave this as an open problem.

5. The mechanism of remixing

Above, we argued that the gas–liquid and gas–solid phase separations, which occur at
sufficiently low salt concentrations, are driven by the balance of the high entropy of the
microions in the relatively expanded double layers of the dilute gas phase and the low
electrostatic energy of the more compressed double layers of the dense liquid or solid phase.
This demixing mechanism becomes stronger for lower salt concentrations, and therefore does
notexplain the existence, at even lower salt concentrations, of the lower critical and triple points
shown in figures 1 and 2. The competing mechanism required to remix at extremely low salt
concentration is provided by the increasing range 1/κ, for decreasingns , of the screened
Coulomb repulsions in the DLVO pair potential. The resulting free-energy contribution to
FDLVO in the dense liquid or solid phase therefore increases with decreasingns at fixednc.
This explains, qualitatively, the slope of the melting and evaporation lines in figures 1 and 2,
as well as the tendency of the regime of gas–liquid and gas–solid coexistence to shrink at
extremely low salt concentrations.

6. Summary

We have calculated the total Helmholtz free energyF of a model of a charged colloidal
suspension with added salt. By treating the electrostatics at the Debye–Hückel (or linearized
Poisson–Boltzmann) level, we found thatF = FDLVO + F0. HereFDLVO is the free energy
of a one-component system of dressed colloids interacting via a pairwise, screened Coulomb
(DLVO) repulsive potential, andF0 is a volume term describing ideal-gas, excluded-volume,
and electrostatic contributions of the microions. The cohesive electrostatic free energy (arising
from the attraction between each negative colloid and its oppositely charged double layer)
which entersF0 gives rise to gas–liquid and gas–solid coexistence at low salt concentrations.
This is despite the fact that the colloid–colloid DLVO interaction (and the corresponding free-
energy contributionFDLVO) consists of repulsive contributions only.

We presented phase diagrams for several suspensions of charged colloidal particles with
added monovalent salt in ethanol. At intermediate colloidal surface charge density, these
exhibit a pocket of gas–liquid coexistence accompanied by an upper and a lower critical point.
Below a certain critical total charge at a given colloid diameter, or above a certain critical
diameter for a given total charge, there isnogas–liquid coexistence in the phase diagram. The
disappearance of the gas–liquid coexistence regime upon decreasing surface charge density
proceeds by the approach and final coalescence of the upper and lower critical point into a
hypercritical or bicritical point. When the surface charge density is sufficiently large, the
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regime of gas–liquid coexistence is large enough to intersect the melting and freezing lines.
This gives rise to an upper and a lower triple point in the phase diagram of highly charged
colloids. The salt concentrations of the upper triple point are in the experimentally observable
regime of a few micromoles per litre; those of the lower triple point are at least an order of
magnitude smaller and therefore probably experimentally inaccessible.

The present theory provides a straightforward, semi-quantitative explanation for the
experimental observations of gas–liquid and gas–solid coexistence in low-salt suspensions.
Unlike in other recent approaches, the well-established DLVO theory for the pair interactions
between the colloidal particles does not need to be abandoned in favour of a theory that
describes long-ranged electrostatic colloid–colloid attractions. Rather, we noted that the total
free energyF of the suspension isnotequal toFDLVO but involves the additional termF0 that
drives low-salt phase transitions. In addition, the physics contained withinF0 provides a direct
connection between the Debye–Hückel theory for simple electrolytes and the DLVO theory
for colloidal suspensions. It appears that the recent experimental observations of gas–liquid
and gas–solid coexistence in low-salt suspensions of charged colloids have not been connected
to the well-known gas–liquid transition in simple electrolytes. We believe that the theory
discussed here and in references [22, 23] provides this connection, and in that sense it links
two well-known classical linearized Poisson–Boltzmann theories.
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