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Bone regeneration is a complex process regulated by a large number of bioactive molecules. Many growth
factors and cytokines involved in the natural process of bone healing have been identified and tested as potential
therapeutic candidates to enhance the regeneration process. Although many of these studies show an en-
hancement of the bone regeneration process by a single drug therapy, in vivo bone regeneration is the result of a
complex interplay between the applied growth factor and various endogenous produced growth factors. To
investigate these growth factor interactions, various studies have investigated the effect of growth factor com-
binations on bone regeneration. This review provides an overview of the growth factor and cytokine combi-
nations tested in translational bone regeneration studies and shows that their interaction may result in an
enhancement or inhibition of bone formation.

Introduction

Bone is, after blood, the most commonly transplanted
tissue. Worldwide, an estimated 2.2 million grafting

procedures are performed annually to repair bone defects
in orthopedics, neurosurgery, and dentistry.1 Given the
demographic challenges of a growing and aging popula-
tion, this number is expected to increase. The increasing
number of grafting procedures and the disadvantages of
current autograft treatments (e.g., limited graft quantity
and donor-site morbidity) and allograft treatments (e.g.,
reduced rate of graft incorporation and risk of disease
transmission) drive the quest for alternative methods to
treat large bone defects.2–6

The ability of devitalized, demineralized bone to induce
ectopic bone formation and the recognition that proteins
were responsible for this bone induction launched the
promising strategy of bone tissue engineering based on
bioactive molecules.7,8 Since then, various proteins with an
important role in this autoinductive process were isolated
and investigated for their therapeutic potential in bone re-
generation, including bone morphogenetic proteins (BMPs),
transforming growth factor-beta (TGF-b), fibroblast growth
factor (FGF), insulin-like growth factor (IGF), vascular en-
dothelial growth factor (VEGF), platelet-derived growth
factor (PDGF), epidermal growth factor, parathyroid hor-
mone (related protein) (PTH/PTHrP), and interleukins (IL).
Although many studies show an enhancement of the re-
generation process by applying one of these proteins, the

exact molecular coordination of the bone regeneration pro-
cess has not been fully defined. Moreover, as various growth
factors and cytokines are involved simultaneously in natural
bone healing, the combined addition of several factors in
specific temporal fashion is likely to be more effective in
exogenous stimulation of healing.

Normal bone regeneration (e.g., during fracture healing) is
a complex process that involves a large number of growth
factors and cytokines for its regulation. No matter how in-
fluential one factor may appear in the process, its action in
isolation may have little effect without interaction with en-
dogenously produced growth factors and cytokines. There-
fore, determination of growth factor interactions is essential
to understand and/or control the process of bone regenera-
tion. This review provides an overview of the combinations
of growth factors that have been investigated in translational
bone regeneration studies. Since most research focuses on
combinations with BMPs due to their potent osteoinductive
capacity, these growth factors will play a central role in this
review.

BMPs and Their Combinations

Over 20 members of the BMP family have been identified
and at least 7 of them have documented osteoinductive
capacities.9 The biologically active form of BMPs consist of
30–38 kDa proteins composed of two disulfide-linked poly-
peptide subunits. On the basis of their amino acid sequence
homology, the osteoinductive BMPs have been divided into
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separate subgroups, which include the BMP-2/-4 group and
the osteogenic protein-1 or OP-1 group (BMP-5 to -8).10–12

Most research in the field of bone regeneration focuses on the
commercially available BMP homodimers. However, BMP
members can also form heterodimers consisting of, for ex-
ample, one BMP-2 and one BMP-7 subunit and displaying
much higher affinities for BMP receptors than homodimers.13

Given the number of BMP genes, the possible number of
combinations is large. So far, native BMP-heterodimers have
not been identified in vivo and their separation from homo-
dimers in experimental studies remains difficult because of
the biochemical similarity between BMPs.11,14

Although BMPs are involved in numerous developmental
and pathophysiological processes, their effects on bone for-
mation have been studied most extensively. In bone, they are
synthesized by skeletal cells such as osteoblasts and se-
questered in the extracellular bone matrix.7,15,16 In vitro,
BMPs can differentiate mesenchymal stem cells into the os-
teoblastic phenotype.17,18 When implanted ectopically, the
osteoinductive BMPs can initiate the complete cascade of
bone formation, including the migration of mesenchymal
stem cells and their differentiation into osteoblasts.11 This
bone induction occurs through endochondral as well as in-
tramembranous ossification and results in the formation of
normal woven and/or lamellar bone.11,19

In contrast to the numerous studies in which the effect of
separate BMP homodimers was investigated, few studies
focused on the combined administration of BMP family
members (Table 1).20–25 So far, none of the studies using BMP
homodimers has been able to show an enhanced effect of the
combinations.23–25 Neither the in vitro capacity to induce
osteogenic cell differentiation nor the in vivo capacity to in-
duce ectopic bone showed an effect of administration of
homodimer mixtures compared to an equal dose of one of
the BMP homodimers separately. In contrast to the homo-
dimer mixtures, several recombinant BMP heterodimers
(particularly BMP-2/-6, BMP-2/-7, and BMP-4/-7) were
more potent in vitro and in vivo compared to a corresponding

amount of their homodimers.24,25 This increase in os-
teoinductive activity was even 20-fold in case of BMP-2/-7.
Also, transduction studies using nonviral or adenoviral os-
teoinductive BMP vectors showed more efficient induction of
osteoblast differentiation and spinal fusion.18,21,26–28

A possible explanation for the different effects between
homodimers and heterodimers may be found in the BMP
signaling pathway (summarized in Refs.29–31). The BMP sig-
naling pathway converges at the receptor and intracellular
signaling level. BMPs bind to two different types of serine/
threonine kinase receptors, known as type I and type II
receptors (Fig. 1). The type I receptors are subdivided into
three different activin receptor-like kinases (ALK), known as
ALK-2, ALK-3, and ALK-6. Of these type I receptors, ALK-3
and ALK-6 have a high affinity for BMP-2/-4 group and a
low affinity for the OP-1 group,32,33 whereas ALK-2 prefer-
entially binds the OP-1 group.33–35 In contrast to the type I
receptors, the three type II receptors (BMPR-II, ActR-IIA, and
ActR-IIB) appear to bind most BMPs. Upon BMP binding,
the receptors form multimers, most likely a tetramer con-
sisting of two pairs of type I and type II receptors.36 This
allows the activation of the type I receptor and subsequent
intracellular signaling. The combination of ALK-3 or ALK-6
with ALK-2 type I receptor signaling was shown to be more
potent in inducing transcriptional activation than signaling
by either receptor alone.12 Binding of heterodimers may be
more likely to induce such a combined receptor activation
than homodimers. Another explanation for the enhanced
activity of heterodimers may lie in differential Noggin an-
tagonism of BMP action, which was shown to be decreased
for heterodimers compared to homodimer signaling.37

Transforming Growth Factor-Beta

TGF-bs are multifunctional growth factors with a broad
range of biological activities in various cell types in many
different tissues. Three isoforms of TGF-b have been found in
humans (TGF-b1 through -b3), which all consist of 25 kDa

Table 1. Combinations of Bone Morphogenetic Proteins

Growth factors Form (dose) Setting Outcome parameters Effect Ref.

BMP-2/BMP-7 Homodimers
(100 mg/100 mg)

Tooth extraction defect
in primates

Bone area n.s.a 23

BMP-4/BMP-7 Hetero- and
homodimers

Critical-sized femoral
defect in rats

Bone volume
Mechanical strength

Homodimers n.s.a

Heterodimers
synergisticb

25

Various BMP
combinations

Hetero- and
homodimers

Intramuscular implants
in mice/rats

Bone volume Homodimers n.s.a

Heterodimers
synergisticb

24

BMP-2/BMP-7 Gene therapy Critical-sized calvarial
defect in mice

Bone volume Additive effectc 26

BMP-2/BMP-7 Gene therapy Subcutaneous implants
in mice

AP activity
Calcium content
Phosphate content

Synergisticc 27

BMP-2/BMP-7 Gene therapy Posterolateral spinal
fusion model in rats

Bone volume
AP activity
Osteocalcin

Synergisticc 21

aCombination of homodimers compared each homodimer alone.
bHeterodimers compared to homodimers.
cAdenovirus vectors encoding BMP-2 (AdBMP-2) and BMP-7 (AdBMP-7) compared to each vector alone
AP, alkaline phosphatase; BMP, bone morphogenetic protein; n.s., not significant.
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homodimers sharing 60%–80% similarity in their amino acid
sequence. TGF-b is synthesized by many different cell types
and is stored as an inactive complex with latency-associated
peptide in the extracellular bone matrix.38 Another major
source of this factor are platelets in the blood clot formed
after a fracture. Release of the protein from the complex and
subsequent induction of its bioactivity is tightly regulated
and can occur through different mechanisms.39 In general,
TGF-b stimulates migration of osteoprogenitor cells and is a
potent regulator of cell proliferation, cell differentiation, and
extracellular matrix synthesis.40,41 Its use for bone regenera-
tion has been evaluated in various experimental settings that
show both stimulatory and inhibitory effects on bone for-
mation. Overall, stimulatory effects on bone healing and
bone formation predominate.40 Although no osteoinductive
capacity is reported in rodent studies, intramuscular bone
induction was found in a TGF-b-loaded collagenous matrix
in primates.42,43

In several studies attempts were made to enhance bone
regeneration by combining TGF-b and BMPs (Table 2).42–50

To investigate a possible interaction between TGF-b and
BMP during bone induction, the combination was always
compared to similar dosages of each of the individual
growth factor. Despite the differences in experimental set-
tings, isoforms used and delivery vehicles, most studies
showed an additive or synergistic effect of the combina-
tion. Ectopic implantation studies in primates showed that
TGF-b enhanced BMP-7-induced bone formation in a dose-
responsive manner.42,43 The largest synergistic effect was

seen after coadministration of low TGF and BMP dosages
combined with culture-expanded bone marrow stromal cells
in RGD-modified alginate hydrogels.49

Although the exact molecular actions of the growth factor
combinations are not fully understood, several effects have
been proposed by which the different isoforms of TGF-b
synergize with BMPs. In the early phase after implantation,
both growth factors can directly increase the local pool of
osteoprogenitor cells by stimulating their migration.40 Since
the circulation is one of the sources of osteoprogenitor cells
during ectopic BMP-induced bone regeneration,51 cell re-
cruitment may also be indirectly enhanced by their combined
effect on angiogenesis. It has been suggested that TGF-b1
and BMP-7 synergistically interact to enhance angiogenesis
and vascular invasion since their coadministration increased
vessel formation in a chick chorioallantoic membrane assay
and type IV collagen expression in ectopic ossicles in pri-
mates.42,52 The mitogenic effect of TGF-b may further in-
crease the osteoprogenitor cell pool by stimulating cell
proliferation. In vitro, this mitogenic effect did not modify the
osteoinductive responsiveness of the cells to BMP.53

Apart from their combined effects on angiogenesis, cell
recruitment and proliferation, TGF-b and BMPs also interact
during osteoblast differentiation (extensively reviewed by
Janssens et al.40). Despite the conflicting results of numerous
in vitro experiments, it seems that TGF-b1 may have stimu-
latory effects on osteoblast differentiation during the early
stage and an inhibitory effect on differentiation and miner-
alization at later stages. This altered biological effect would

FIG. 1. Signal transduction via BMP receptors. Upon BMP binding, the receptors most likely form tetramers consisting of
two pairs of type I and type II receptors that subsequently activate the intracellular signaling pathways. Since the three type I
receptors (ALK-2, ALK-3, and ALK-6) have different affinity for the various BMP molecules, the potency of the intracellular
signaling activation varies between the different BMP–receptor complexes. The combination of ALK-3 or ALK-6 with ALK-2
type I receptor signaling was shown to be more potent in inducing transcriptional activation than signaling by either receptor
alone (*). ALK, activin receptor-like kinase; BMP, bone morphogenetic protein.
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seem to be the result of crosstalk between the intracellular
signaling pathways of BMP-2 and TGF-b1. Although TGF-b1
seems to inhibit matrix mineralization at later stages, the
in vivo consequences of these inhibitory effects might be lim-
ited since expression of TGF-b receptors is downregulated
when cell differentiation progresses. This results in a de-
creased responsiveness to TGF-b1 at later differentiation
stages.

Fibroblast Growth Factor

FGFs are considered potent regulators of cell growth
and wound healing. The FGF family consists of 25 mem-
bers, which range in size from 17 to 34 kDa, share a
16%–65% similarity in amino acid sequence, and fall into
different subgroups.54 In bone, they are produced by var-
ious cells, including osteoblasts, macrophages, and endo-
thelial cells, and are stored in their active form in the
extracellular bone matrix. When released or secreted, FGFs
act in an autocrine and paracrine way as a mitogen on
many cell types. In addition to their mitogenic effects,
FGFs are involved in a number of other cellular processes,
including angiogenesis, wound healing, and cell differen-
tiation. During fracture healing, distinct groups of FGFs
are differentially expressed, suggesting an active stage-
specific role for FGF signaling during the repair process.55

In the early phase, FGF-1, -2, and -5 genes are expressed,
which is associated with a rapid increase in local cell
population.55,56 At later stages, expression of other FGFs is
upregulated, suggesting that these growth factors are in-
volved in the regulation of chondrogenesis and osteogen-
esis.55 The best studied family member on bone
regeneration is FGF-2 (also known as bFGF). Although
FGF-2 alone is not capable of inducing ectopic bone for-
mation, it plays an important role in the regulation of
normal bone healing.57 Exogenous FGF-2 enhances callus

formation and stimulates bone healing in various ortho-
pedic applications.58–64

In various studies FGF-2 or FGF-4 was combined with
BMPs in an attempt to enhance bone regeneration and it was
shown that the effects of FGF were time and dose dependent
(Table 3). Using a local BMP-2 delivery vehicle in combination
with subcutaneous FGF-4 injections for 3 consecutive days,
FGF administration at an early stage after implantation (days
2–4) increased the amount of newly formed bone, whereas its
administration at later time points (days 6–8 or 9–11) had no
effect.65 When implanted in a delivery vehicle, low FGF dos-
ages in combination with a single BMP dose synergistically
enhanced BMP-induced bone formation; however, bone for-
mation was inhibited by coadministration of high FGF dos-
ages.66–69 The shift from an enhanced to an inhibitory effect
occurred between *16 and 2000 ng FGF per delivery vehicle.

So far, little is known about the mechanism underlying the
dose- and time-dependent FGF effects. The time-dependent
effect may suggest that FGF plays an important role in cell
recruitment and expansion during the early phase of bone
regeneration. This is also suggested in vitro, where successive
exposure of mesenchymal stem cells to FGF followed by
BMP was equally successful in inducing calcium deposition
compared to combined growth factor exposure during the
same period.70,71 In vivo, the combined angiogenic and mi-
gration effects of FGF could indirectly or directly enhance the
recruitment of mesenchymal stem cells to the implantation
site.52 Further, the mitogenic effect of FGF likely stimulates
the proliferation of the local osteoprogenitor cells. BMPs can
subsequently commit the enlarged osteoprogenitor cell pool
toward the osteoblastic lineage, which ultimately results in
the enhanced local bone formation.

Interestingly, in vitro, FGF-2/-9 were shown to stimulate
mesenchymal stem cell proliferation and reversibly inhibit
their differentiation in a dose-dependent manner.71–73 An
inhibitory effect on the production of differentiation markers

Table 2. Combinations with Transforming Growth Factor-Beta

Growth factor dose Setting Outcome parameters Effecta Ref.

15 ng TGF-bb

2 mg BMP-2
Intramuscular implants

in mice
Bone area Synergistic 48

0.5–15mg TGF-b1
20–100 mg BMP-7

Intramuscular implants
in primates

Bone area
AP activity

Synergistic 43

0.5–100mg TGF-b1
20–100 mg BMP-7

Intramuscular and calvarial
defect implants in primates

Bone area
AP activity
Collagen expression

Synergistic 42

10 ng TGF-b1
15 mg bBMPc

3-mm segmental radial
defect in dogs

Bone area Additive 46

140 ng TGF-b2
25–400 ng bBMPc/mg

implant

Subcutaneous implants
in rats

Bone (semiquantitative)
AP activity

Synergistic 44,45

12 mg TGF-b2
25 mg BMP-2

Titanium implant
model in dogs

Implant fixation
Bone area

Additive (implant fixation)
Nonsignificant (bone area)

50

20 ng TGF-b3
200 ng BMP-2

Subcutaneous implants
in mice

Bone area Synergistic 49

0.2 mg TGF-b3
2 mg BMP-2

Critical-sized femoral defect
in rats

Bone volume
Mechanical strength

Nonsignificant 47

aEffect of combination of growth factors compared to TGF-b and BMP alone.
bTGF-b extracted from platelets by acid/ethanol procedure and chromatography.
cBMP extracted and purified from bovine bone.
TGF-b, transforming growth factor-beta.
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like alkaline phosphatase activity and induction of mineral-
ization were also seen in cultures containing FGF-2/-9 in
combination with BMP-2 in a 1:5 ratio or with osteogenic
medium.71,73,74 However, in cultures containing FGF-2 and
BMP-2 at a ratio of 1:10 or higher, the combination had a
stimulatory effect on the bone differentiation markers com-
pared to BMP alone.70 These studies suggest a ratio-dependent
FGF/BMP effect in which the mitogenic FGF stimulus over-
rules the BMP-induced osteogenic differentiation at high FGF
concentrations. In vivo, the excessive amount of FGF at the time
of BMP release might have inhibited bone induction.

In an attempt to further elucidate the mechanism behind
the dose-related FGF effect, expression of genes associated
with BMP signaling was studied in cells surrounding ec-
topically implanted FGF-2/BMP-2 delivery vehicles.68

Whereas BMP-2 alone induced an upregulation of ALK-3
and BMPR-II receptors, exposure to BMP-2 with FGF-2 re-
sulted in an additional upregulation of ALK-6 receptor ex-
pression.68 In vitro, this FGF-enhanced ALK-6 expression
augments BMP-induced Smad signaling and expression of
alkaline phosphatase activity.75 Further, FGF-2 stimulated
expression of Smad 6 (an inhibitory Smad) in a dose-
dependent manner, which may explain the inhibition of
BMP-2-mediated differentiation at higher FGF concentra-
tions. Although it is not known whether these changes in
gene expression profiles are responsible for the in vivo
physiological response, they clearly show a dose-dependent
crosstalk between the FGF and BMP signaling pathways.

Insulin-Like Growth Factor

IGF-I and IGF-II are small single-chain polypeptides of
*7.5 kDa that play an important role in bone metabolism
and are essential to skeletal growth and maintenance of bone
mass. They are synthesized by multiple tissues and elicit
their effects in an endocrine, paracrine, and autocrine way.
The majority of IGFs exist in complexes, bound to one of the
IGF-binding proteins that modulate their biological actions
in a cell-specific manner.76 IGFs are the most abundant
growth factors produced by bone cells and are stored at the
highest concentration of all growth factors in the bone ma-
trix. Although there is still debate about its exact role in bone
cell proliferation and differentiation, IGF has an anti-
apoptotic effect on (pre)osteoblasts and enhances bone ma-
trix synthesis.77 In vivo, systemic IGF infusion showed an
increase in bone formation, bone volume, and/or bone
turnover in animal models and clinical trials for osteoporo-
sis.78 However, major drawbacks of systemic-free IGF ad-
ministration are its side effects such as hypoglycemia,
intracranial hypertension, headache, fatigue, and dyspnea.79

Consequently, localized IGF delivery was explored and
showed to enhance bone formation without increasing cir-
culating IGF-I levels.80,81 Although insulin can bind to the
IGF receptor as well, higher concentrations will be required
due to its lower affinity. Since this may cause hypoglycae-
mia, insulin will probably never be considered as a thera-
peutic agent for bone regeneration.

Table 3. Combinations with Fibroblast Growth Factor

Growth factor dose Setting Outcome parameters Effecta Ref.

10 ng FGF-2
1 mg BMP-2

Onlay of implants
on rabbit cranium

Bone area Additive at 3 weeks
Synergistic at 6 and 9 weeks

166

0.8 mg FGF-2
0.1 mg BMP-2

Subcutaneous
implants in rats

AP activity
Calcium content
Collagen content

Synergistic on AP activity
and calcium content, inhibitory
on collagen content at 2 weeks,
nonsignificant at later times

167

Cells exposed to
2.5/50 ng/mL
FGF-2/BMP-2
for 6 days

Implants with seeded
cells subcutaneous
in rats

Semiquantitative
histologic score

Synergistic 70

0.1 mg FGF-2
0.6 mg BMP-2

Bone chamber model
in rabbits

Bone area
Bone ingrowth

Inhibitory 168

0.016–50 mg FGF-2
2 mg BMP-2

Intramuscular implants
in rats

Bone area
AP activity

Synergistic at a dose �400 ng
inhibitory at a dose �2 mg

66

0.001–5 mg FGF-2
5 mg BMP-2

Intramuscular implants
in mice

BMD
Bone area

Synergistic at a dose �10 ng
inhibitory at a dose �100 ng

68

0.016–5 mg FGF-2
2 mg BMP-2

Intramuscular implants
in rats

BMD, BMC
Bone area
AP activity

Synergistic at a dose �16 ng
inhibitory at a dose �80 ng

67

0.2 mg FGF-2
1 mg BMP-2

Femoral osteotomy
in rabbits

Bone area Additive compared to
BMP-2 aloneb

84

12.5 mg FGF-2
5 mg BMP-2

Implants seeded with cells
and cultured for 1 week
placed in rabbit spinal
fusion model

Fusion determined
by radiographs
and palpation

Additive 169

0.1 mg FGF-2/kg/day
for 3 days

[BMP] unknown

Subcutaneous BMP implants
in rats and three
FGF injections

Bone density Synergistic with FGF
administration
at days 2–4

65

aEffect of combination of growth factors compared to FGF and BMP alone.
bControl group FGF alone was missing.
FGF, fibroblast growth factor; BMD, bone mineral density; BMC, bone mineral contents.
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A limited number of studies have investigated the effect of
combined IGF-I and BMP addition on in vitro and in vivo
osteogenesis. In vitro, sequential exposure to BMP-2 followed
by IGF-I led to synergistically enhanced mesenchymal cell
proliferation and alkaline phosphatase activity.82 Similar ef-
fects were seen after exogenous BMP-7 and IGF-I adminis-
tration or cotransfection of both genes in fetal calvarial cell
cultures.83 Both studies suggest that IGF-I enhances the mi-
togenic action as well as the differentiation activity of BMPs.
In an in vivo bone–implant integration model, combined
delivery of IGF-I and BMP-2 from coated titanium screws
significantly improved bone formation compared to BMP-2
alone (Table 4).84 Thus, the IGF/BMP combination seems to
enhance both in vitro and in vivo osteogenesis.

The combination of IGF and TGF-b has been studied
more extensively. Unfortunately, few studies compared the
growth factor combination versus single IGF and TGF-b
controls and their experimental setup varied greatly, in
particular with respect to dose and delivery vehicle (Table
4).85–88 Compared to TGF-b alone, nanogram dosages of the
IGF/TGF-b combination in solution or released from gela-
tin hydrogels did not result in significantly enhanced me-
chanical properties or bone formation in rat marginal

cortical defects, tibial defects, and mandibular defects, but
the release of micrograms of the growth factor combination
from a coated titanium implant enhanced the mechanical
properties and callus formation in a rat tibial fracture model
(Table 4).

Although only the latter in vivo study showed enhanced
effects of the IGF/TGF-b combination over TGF-b alone,
in vitro studies clearly suggest an interaction of both growth
factors in regulation of bone formation. Synthesis of IGFs
and IGF-binding proteins by osteoblasts is regulated by
various growth factors, including TGF-b.89,90 Further, exog-
enously administered combinations of IGF-I and TGF-b
synergistically enhanced cell proliferation and matrix syn-
thesis in osteoblast cultures.91–94 A similar synergistic effect
of IGF-I and FGF was seen on cell proliferation and matrix
synthesis in osteoblast cultures.91,92 Unfortunately, no stud-
ies have been performed to investigate the effect of an IGF/
FGF combination on in vivo bone regeneration.

Vascular Endothelial Growth Factor

VEGF is considered one of the key regulators of angio-
genesis during bone formation.95 The biologically active

Table 4. Combinations with Insulin-Like Growth Factor

Growth factors Setting Outcome parameters Effecta Ref.

0.25 mg IGF-1
1 mg BMP-2

Femoral osteotomy in rabbits Bone area Additive compared
to BMP-2 aloneb

84

10 ng IGF-I
25 ng TGF-b

Solution with growth factors
in a marginal femoral defect
in rats

Biomechanical test Nonsignificant 85

50 mg IGF-I
10 mg TGF-b1

Coated titanium implants in a
midshaft tibia fracture in rats

Biomechanical test
Callus formation

Additive/synergistic 88

25 ng IGF-1
0.1 mg TGF-b1

Gelatin hydrogel in a segmental
tibia defect in rats

Bone formation (X-ray) Nonsignificant 86

25 ng IGF-1
0.1 mg TGF-b1

Gelatin hydrogel in a marginal
mandibular defect in rats

Bone formation (X-ray) Nonsignificant 87

aEffect of combination of growth factors compared to IGF and BMP alone.
bControl group IGF alone was missing.
IGF, insulin-like growth factor.

Table 5. Combinations with Vascular Endothelial Growth Factor

Growth factor dose Setting Outcome parameters Effecta Ref.

Cells expressing VEGF
or BMP-2

IM and CD in mice Bone area Synergistic (IM)
Additive (CD)

101

Cells expressing VEGF
or BMP-2

IM in mice Bone area Synergistic at 4 weeks
Nonsignificant at 8 weeks

108

2 mg VEGF
6.6 mg BMP-2

SC and critical-sized FD
in rats

Bone volume Additive (SC)
Nonsignificant (FD)

110

12 mg VEGF
2 mg BMP-2

Cranial defect in rats Bone volume Synergistic at 4 weeks
Nonsignificant at 12 weeks

111

Cells expressing VEGF
or BMP-4

IM and CD in mice Bone area Synergistic (IM)
Additive (CD)

107

3 mg VEGF
BMP-4 plasmid

SC implants in mice Bone area
Bone mineral density
Bone mineral content

Additive 109

aEffect of combination of growth factors compared to VEGF and BMP alone.
CD, calcarial defect; FD, femoral defect; IM, Intramuscular implants; SC, subcutaneous; VEGF, vascular endothelial growth factor.
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form of VEGF, also referred to as VEGF-A, is a dimeric
protein that may consist of different splice variants (121–206
amino-acids) of a single gene. Most cell types produce sev-
eral VEGF forms simultaneously and their expression can be
enhanced by hypoxia or other cytokines. In vivo, VEGF in-
duces angiogenesis as well as permeabilization of capillar-
ies.96,97 During bone repair, these newly formed vessels and
vascular changes are crucial for nutrient supply, transport of
macromolecules, and invading cells. The important role of
VEGF during bone regeneration has been shown in various
experimental models, demonstrating stimulation or disrup-
tion of the normal bone regeneration process in response to
VEGF administration or inhibition, respectively.98–101

Several in vitro studies suggest a BMP/VEGF-regulated
coupling between osteogenesis and angiogenesis through re-
ciprocal signaling. Cocultures demonstrated that osteoblast-
like cells stimulated the proliferation of endothelial cells by
production of VEGF, whereas endothelial cells stimulated
the differentiation of osteoprogenitor cells by production of
BMP-2.102,103 Further, BMP-induced differentiation of pre-
osteoblast-like cells enhanced endogenous production of
VEGF.104–106 These studies show the importance of angio-
genesis during osteogenesis and emphasize the possible
benefits of combining VEGF and BMPs for bone regeneration.

So far, VEGF has only been combined with BMPs in an
attempt to enhance bone regeneration. The combined im-
plantation of VEGF-expressing cells with BMP-2 or BMP-4-
expressing cells synergistically enhanced bone formation at an
ectopic implantation site (Table 5).101,107,108 This effect on bone
regeneration was dependent on the amount of cells applied
and the ratio of VEGF-/BMP-expressing cells. Interestingly,
coimplantation of cells expressing the VEGF-antagonist
soluble Flt1 had an inhibitory effect on bone induction by
BMP-2- or BMP-4-expressing cells.101,107 The enhancement of
BMP-induced osteogenesis by VEGF was further investigated
using local delivery vehicles releasing recombinant VEGF in
combination with a BMP-4 plasmid or recombinant BMP-
2.109–111 Although these studies showed enhancement of
BMP-induced bone formation by VEGF, the effects with re-
combinant growth factor(s) were less pronounced compared
to the studies using ex vivo transduced cells.

Several mechanisms could be responsible for the enhanced
BMP-2-induced bone formation by VEGF. In addition to
BMP, VEGF may stimulate the recruitment of mesenchymal

stem cells.112,113 Further, VEGF-induced vascular changes
(e.g., increased vascular support network and vascular per-
meability) could enhance this cell recruitment. In combina-
tion with BMP-transduced cells, the VEGF-induced
angiogenesis could also have resulted in an increased sur-
vival of BMP-expressing cells. Such a larger pool of BMP-
expressing cells could have resulted in higher local dose of
the osteoinductive factor and a subsequent larger amount of
bone as a result of the dose–response relation between BMP
and bone formation.

Platelet-Derived Growth Factor

PDGF is considered one of the key regulators of general
tissue repair.114 Its family consists of dimeric proteins of
*30 kDa composed of disulfide-linked polypeptides en-
coded by four different genes (PDGF-A, -B, -C, and -D)
which form homodimers (PDGF-AA, -BB, -CC, and -DD)
and heterodimers (PDGF-AB). During the early phase of
wound healing, platelets are the major source of PDGF. After
injury and hemorrhage, platelets aggregate and release cy-
tokine-loaded granules containing various amounts of
PDGFs. Upon release, PDGFs stimulate the recruitment of
neutrophils, macrophages, and mesenchymal cells, which
then serve as an ongoing source of PDGFs during the healing
process. PDGF also enhances proliferation of various bone
cell types and enhances angiogenesis by its induction of
sprouting from adjacent blood vessels and expression of
VEGF. Although both PDGF and VEGF stimulate angio-
genesis, PDGF stimulates the migration of a population of
mesenchymal cells that appears to be different from those
stimulated by VEGF.115,116 Apart from its positive effect on
soft tissue healing, the therapeutic potential of PDGF was
also demonstrated in various animal models for skeletal re-
construction.114

The effect of various dosages of PDGF-BB was studied in
combination with BMPs in a collagen matrix in a craniotomy
defect (Table 6).117 Whereas BMPs caused a dose-dependent
increase in radiopacity and bone area in the defect, BMP-
induced bone formation was inhibited by PDGF-BB dosages
between 20 and 200 mg. Also in combination with deminer-
alized bone matrix, which contains various growth fac-
tors, including BMPs, PDGF showed a similar inhibitory
effect.118 This inhibitory effect of PDGF on BMP-induced or

Table 6. Combinations with Platelet-Derived Growth Factor

Growth factors Setting Outcome parameters Effecta Ref.

20–100 mg PDGF-BB
30–150 mg BMP

Cranial defect in rats Radioopacity and bone area Inhibitory 117

50 mL PRPb

200 ng BMP-2
Cranial defect in rats Bone mineral density

Bone mineral content
Synergistic 134

100 mL PRPb

15 mg BMP-2
Cranial defect in rabbits Bone area Nonsignificant 135

10 mg PDGF-BB
10 mg IGF-I

Periodontal defect in primates Bone area
New tooth attachments

Nonsignificant 129

6 mg PDGF-BB
6 mg IGF-I

Partial-thickness tibial defect in pigs Callus formation Synergisticc 123

aEffect of combination compared to PDGF or PRP and BMP alone.
bPlatelet concentrate containing various growth factors, including PDGF, TGF-b, IGF-I, and VEGF.
cCompared to intraanimal controls, however, absolute IGF-I values were higher or equal compared to combination group.
PDGF, platelet-derived growth factor; PRP, platelet-rich plasma.
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demineralized bone matrix-induced bone formation could be
the result of its inhibitory effect on osteoprogenitor differ-
entiation as indicated by its in vivo inhibitory effect on the
bone matrix apposition rate and in vitro inhibition of the
osteoblast phenotypic markers osteocalcin and alkaline
phosphatase.119–122 As PDGF stimulates active bone resorp-
tion, the inhibitory effect could also be attributed to a re-
duction of available surface for bone formation as the surface
is eroded by the increased number of osteoclasts.120

The effect of the PDGF/IGF combination has been studied
in a partial-thickness tibial defects in pigs.123 Comparison of
growth factor-treated defects and empty intraanimal control
defects showed that the combination of PDGF/IGF-I in-
creased callus area and thickness, whereas neither of the
growth factors alone enhanced regeneration. However, in-
terpretation of these data remains difficult since the absolute
callus area and thickness of implants containing IGF-I alone
were equal or higher compared to the PDGF/IGF-I combi-
nation. In contrast to this ambiguous in vivo effect, in vitro
studies did show enhanced effects of the PDGF/IGF com-
bination. In vitro, increased proliferation of several bone cell
types, deposition of collagen, and formation of bone matrix
was found, compared to the same amount of either of the
growth factors individually.91,94 Further studies are required
to characterize the interaction of these growth factors in bone
regeneration.

The combination of PDGF and IGF has been studied more
extensively in periodontal regeneration. Several in vivo
studies showed the formation of substantial amounts of new
bone, cementum, and periodontal ligament by a combination
of PDGF-BB and IGF-I.124–127 In a clinical trial, the local ap-
plication of a high dose (150mg/mL) of rhPDGF/rhIGF-I
significantly increased alveolar bone formation compared to
controls without growth factor.128 However, in only one
study the PDGF/IGF-I combination was compared to indi-
vidual growth factor controls.129 In this primate model, the
tested dose of IGF-I alone had no significant effect on bone
formation and the formation of new attachments be-
tween the tooth and periodontal bone. Although the PDGF/
IGF-I combination significantly enhanced bone and new at-
tachment formation compared to the delivery vehicle alone,
no significant differences were seen compared to PDGF
alone.

A substance that typically contains PDGF in addition to
several other growth factors is platelet-rich plasma (PRP) or
platelet gel. The platelets in PRP contain several growth
factors, including PDGF, TGF-b, IGF-I, and VEGF, that are

released upon their activation. Since this event also occurs
after normal bone injury, the concept to enhance bone re-
generation with autologous PRP is obvious. So far, the effects
of PRP in various clinical and animal models of bone re-
generation are ambiguous, with both enhancement of bone
regeneration and lack of additional effects reported.130–133 In
combination with BMP-2, human PRP improved angiogen-
esis and resulted in enhanced bone healing compared to
BMP-2 alone in a rat cranial defect.134 However, no statisti-
cally significant differences of platelet growth factor release
was seen after combined implantation of rabbit PRP/BMP-2
gels compared to fibrin/BMP-2 gels in rabbit cranial de-
fects.135 Moreover, in a clinical trial, the combination of PRP
and BMP has shown to be even less effective than BMPs
alone.136 In addition to the variation in experimental setups
between these studies, growth factor concentrations in PRP
are known to be variable between species and individuals,137

all adding to the confusion around effectivity of PRP and
combinations with BMPs.

Cytokines

The term cytokine encompasses a large and diverse family
of proteins that historically refers to the immunomodulating
agents (ILs, interferons, tumor necrosis factors, etc.). How-
ever, as more was learned about them, it appeared that these
molecules play an essential role in the complex crosstalk
between the immune and skeletal system. Although the
mechanisms are still poorly understood, it has become ap-
parent that many cytokines are involved in bone metabolism
and are able to stimulate or inhibit the formation and func-
tion of osteoblasts, osteoclasts, or their precursor cells.138–141

Despite the large number of available cytokines, only IL-11
has been studied in combination with BMP-2 in bone regen-
eration models (Table 7). IL-11 is produced by various cells
and has several biological activities, including roles in he-
matopoiesis, immune responses, and bone metabolism.142,143

In vitro, IL-11 enhances osteoclast formation and bone re-
sorption, but also stimulates expression of osteoblastic
markers in mesenchymal progenitor cells.144–146 During os-
teogenesis, IL-11 synergizes with BMP-2 in a dose-dependent
fashion to enhance the in vitro osteoblastic differentiation of
progenitor cells.146 Although the mechanical properties of the
formed bone were not significantly different compared to
BMP-2 alone, a similar synergistic increase in bone formation
rate was seen after combined implantation of IL-11 and
BMP-2 in a rat ectopic and rabbit segmental bone defect

Table 7. Combinations with Cytokines

Growth factors Setting Outcome parameters Effecta Ref.

20–200 mg IL-11
6 mg BMP-2

SC implants in rats Calcium content Synergistic 147

200 mg IL-11
1 mg BMP-2

Segmental bone defect
in rabbits

Bone volume
Mechanical strength

Synergistic
(bone volume)

Nonsignificant
(mechanical strength)

148

aEffect of combination compared to IL-11 and BMP alone.
IL, interleukin.
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model.147,148 Overall, these results show that IL-11 actions
predominantly enhance BMP-2-induced bone formation.

Systemic Regulators

In contrast to the local application of the previously
mentioned growth factors and cytokines, some systemically
administered hormones also enhance bone formation. Of
particular interest is PTH, a major systemic regulator of bone
metabolism. It is secreted from the parathyroid glands and
travels through the bloodstream to act upon bone. Whereas
continuous PTH infusion causes the bone disease osteitis fi-
brosa, its intermittent subcutaneous administration enhances
bone formation.149,150 The anabolic effect of intermittent PTH
on bone has made it an effective treatment for osteoporosis in
humans, where it was shown to increase bone mass and
reduce fracture rate.151 So far, the mechanism behind this
dual effect is still not completely understood. It has been
suggested that PTH-induced stimulation of bone formation
is due to an increase in osteoblast number. This increase in
osteoblast number is not dependent on osteoblastogenesis,
rather is the result of activation of existing bone-lining cells
that undergo hypertrophy and resume matrix synthe-
sis.149,152–155 Another proposed method for its effect is the
inhibition of osteoblast apoptosis.149,153

Since PTH acts upon cells committed to the osteoblastic
lineage, it has been combined with osteoinductive BMPs
(Table 8). Ectopically, systemic PTH treatment increased the
local BMP-2-induced bone formation and reversed the age-
related decrease in osteoinductive potential of BMP-2.156–158

Although systemic PTH treatment enhanced healing of a
partial-thickness tibial defect, no significant effect of BMP-7
and no synergistic effect of the PTH/BMP-7 combination
were seen.159 In a critical-sized femoral defect, the effects of
BMP-2 and PTH alone were opposite and their combination
synergistically enhanced bone formation.158 The discrepancy
between these studies may be due to the different orthotopic
models. In the partial-thickness defect, endogenous produc-
tion of BMPs was sufficient to heal the defect. Consequently,
PTH enhanced this endogenously induced bone formation
and addition of BMP-7 had no significant effect.159 The in-
terference of this local autoinduction was less in the critical-

sized defects where no spontaneous healing was seen in
empty defects and bone formation was significantly en-
hanced by BMP-2.158

Apart from the PTH/BMP-2 combination, BMP-2 has also
been combined with systemic administration of prostaglan-
din E2 and [1,25-dihydroxy]vitamin D3.156 In bone, the ana-
bolic actions of systemically administered prostaglandin E2

increases bone formation and bone mass.160,161 In combina-
tion with BMP-2, a low dose of prostaglandin E2 significantly
increased alkaline phosphatase activity and calcium content
of ectopic implants in rats.

In addition to PTH, vitamin D is an important regulator of
bone mineral homeostasis. It plays an important role in
osteoblast/osteoclast communication by stimulating the pro-
duction of receptor activator of nuclear factor-kB ligand
(RANKL) by osteoblasts, which enhances the recruitment
and activation of osteoclasts.162 In addition to the stimulation
of osteoblastic activity, it also inhibits osteoblast apoptosis.
Despite its complex actions on both osteoblast and osteoclast
activity, vitamin D treatment of osteoporotic patients resulted
in a modest enhancement of bone mineral density.163–165

Systemic administration of vitamin D3 significantly in-
creased alkaline phosphatase activity and calcium content of
ectopic BMP-2-loaded implants.156 So far, the mechanism
behind this effect is not known and further studies are re-
quired to characterize this vitamin D3–BMP-2 interaction.

Summary and Future Directions

Ever since the discovery of the autoinductive capacity of
bone by bioactive peptides, researchers have attempted to
enhance bone regeneration by modulating the cellular be-
havior using growth factors, cytokines, and hormones. Al-
though their exact role during the regeneration process has
not been fully defined, many of these molecules are able to
enhance bone formation with varying potency and efficacy.
As shown by the studies summarized in this review, many of
these growth factors interact during bone formation. De-
pending on the combination of growth factors, their routes of
delivery, the dosage used, and the animal model, this inter-
action could result in an enhancement or inhibition of
bone formation compared to the individual growth factors.

Table 8. Combinations with Systemically Administered Hormones

Growth factor dose Setting Outcome parameters Effecta Ref.

20 and 40 mg/kg/day PTH
5 mg BMP-2

SC BMP-2 implants in rats AP activity
Calcium content

Synergistic 156

10 mg/kg/day PTH
5 mg BMP-2

SC BMP-2 implants in mice Bone mineral density
Calcium content

Synergistic 157

10 mg/kg/day PTH
6.5 mg BMP-2

BMP-2 implants in SC and FD
in rats

Bone mineral density
Bone volume

Synergistic (SC)
Additive (FD)

158

10 mg/kg/day PTH
200 mg BMP-7

BMP-7 implants in a partial-thickness
tibial defect in rabbits

Bone mineral content
Bone volume
Mechanical strength

Nonsignificant 159

0.2 and 0.4 mg/kg/day PGE2

5 mg BMP-2
SC BMP-2 implants in rats AP activity

Calcium content
Synergistic 156

50 and 100 ng/kg/day VitD3

5 mg BMP-2
SC BMP-2 implants in rats AP activity

Calcium content
Synergistic 156

aEffect of combination compared to the hormone and BMP alone.
PTH, parathyroid hormone; VitD3, 1-alpha,25-dihydroxyvitamin D3.
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Synergistic effects on bone formation are seen for most
combinations, which in the case of fabricated BMP hetero-
dimers even resulted in a 20-fold increase in bone formation
compared to homodimers. Since these translational studies
are performed to develop new therapies for bone regenera-
tion, growth factor combinations with in vitro inhibitory ef-
fects are unlikely studied in translational bone regeneration
studies. This may be the reason that only few studies with
nonsignificant or inhibitory effects of combination therapies
could be found.

To date, the fragmentary results on combinations of usu-
ally two growth factors with a limited number of growth
factor concentrations and timing suggest that this is a rather
understudied area of investigation in bone regeneration, de-
spite its tremendous potential and virtually endless possible
combinations. It is recommended that future studies address
these challenges by systematically analyzing the many pos-
sibilities and that new, high-throughput screening techniques
will be required to achieve this. Overall, this review shows
we are only beginning to understand the possibilities of ap-
plying multiple growth factors and cytokines in vivo, the
signaling pathways involved, and their convergence points.

Bone regeneration based on the delivery of bioactive
molecules is a promising strategy that could revolutionize
the way bone grafting procedures are performed in ortho-
pedics, neurosurgery, and dentistry. Despite the success of
current single-drug treatments, our knowledge of the bone
regeneration process and growth factor interactions is still
limited. Therefore, further molecular, cellular, and transla-
tional studies are required to obtain a better understanding
of the actions and interactions of the different regulators of
the regeneration process. In addition, the challenge in
translational research will be to improve local delivery ve-
hicles and their pharmacokinetic profiles. So far, many of the
growth factor combinations have been released from rela-
tively simple delivery vehicles with unknown pharmacoki-
netic profiles. New delivery vehicles with adjustable release
profiles would help identify the optimal amounts, ratio,
timing, and release sequence of these regulators to optimize
the bone regeneration process and ensure consistent success
in clinical applications.
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