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We investigate interfacial and capillary phenomena in a simple model for a fluid of hard rods, viz.
the Zwanzig model, in which the orientations of rectangular blocks are restricted to three orthogonal
directions. The theory, which is based on an Onsager-like free energy functional, predicts local
biaxial ordering at the “free” interface between the coexisting isotropic and nematic phases. For an
isotropic bulk fluid in contact with a single planar hard wall, we find a continuous surface phase
transition from uniaxial to biaxial local symmetry, followed by complete wetting of the wall—
isotropic fluid interface by a nematic film with director parallel to the wall, as the reservoir density
approaches its value at bulk coexistence. For a fluid confined by two parallel hard walls we
determine a first-order capillary nematization transition at large wall separation, which terminates in
a capillary critical point when the wall separation is about twice the length of the rods. This
transition is the analog of the capillary condensation observed for simple fluids confined by
attractive walls but is purely entropy driven here. ZD00 American Institute of Physics.
[S0021-9606)0)51535-9

I. INTRODUCTION theory is well established, with relative numerical uncertain-
ies of about 1:19 for the coexisting densities and order

Fluids of rodlike particles have attracted much attentiont . : )
over the years. Experimental observations date back to th%arameteré.Computer simulations in the 1980s showed that

1920s and 1930s. when Zochand Bawderet al?2 investi- hard-rod systems can also form the liquid crystalline
gated colloidal systems of vanadiumpentoxide,@y and smecticA phase’. The bulk phase diagram of hard sphero-

tobacco mosaic virugTMV) particles, respectively, and cylinders has been determined as a function of density and

found a phase transition from an isotropic fluid phageag ~ 'ength-to-diameter ratio by density functional thebfyand

. . 9,10 .
low concentrations to an orientationally ordered nemati?y Simulation:="Apart from some details, the general agree-

phase W) at higher concentrations. This density-driven iso-Ment between theory and simulation is good. Noting the ex-
tropic nematic(IN) phase transition in a homogeneous bulkPerimental observation of the smecficphase in a high-
fluid of rodlike particles was first tackled theoretically in the density TMV suspensioft, one can conclude that many
1940s, when Onsager argued that these colloidal rods can BéPects of theulk behavior of pure hard-rod fluids are rather
modeled, under certains conditions, as mutually impenWell understood by now.

etrablehard rods. He accounted for the IN transition in terms ~ More complex and much richer phenomena occur in in-
of a competition between the maximization of orientationalnomogeneous hard-rod fluids. These includeitiérfaces,
entropy and minimization of excluded volum@ key ingre- ~ surfaceeffects arising from adsorption at an external wall, or
dient of Onsager’s theory is the one-particle distribution as &apillary effects arising from spatial confinement. The main
function of the rod orientation, for which he derived a non-complication is caused by the simultaneous presence of an-
linear integral equation. This equation is exact when thdsotropy and inhomogeneity in the one-particle distribution.
length-to-diameter ratio of the rods tends to infinity. At low In the case of interest here, with a spatial inhomogeneity in
bulk densities the only solution to this equation is a uniformthe z direction only, generally the one-particle distribution
constant, which describes the isotropic phase, while at suffihas a nontrivial dependence on the center-of-mass coordinate
ciently high densities nonuniform solutions of uniaxial sym-z, the polar angled, and the azimuthal angle» of the rod
metry exist, which describe the nematic phase. Although exerientation. In other words, the loss of translational invari-
plicit calculation of these peaked nematic distributions isance in thez direction may also break the uniaxial symmetry
analytically intractable, this is numerically straightforward about the nematic director, and the resulting symmetry of the
because the uniaxial symmetry reduces the problem to a onegquilibrium distribution may bdiaxial. Taking into account
dimensional one in the polar angle of the rod orientation. Thehe simultaneous presence of inhomogeneity and biaxiality is
IN bulk coexistence that follows from Onsager’'s hard-rodcomputationally demanding, and workers often resort to ap-
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proximations that simplify or discard either one or both ofture via surface tension calculations. Complete wetting re-
these features. For instance, Holyst and Poniewierski assungglires the wall—isotropic fluid tension to be the sum of the
the “free” IN interface of hard spherocylinders, of lendgth  wall-nematic fluid tension and the IN tension. Testing this
and diameteD, to be sharp, i.e., a step function &#:0, equality requires accurate calculation of all the three surface
such that the one-particle distribution is that of the coexistingensions, which can be obtained but only by even larger com-
bulk isotropic phase for<0 and that of the bulk nematic putational efforts.

phase forz>0. Employing this approximation within an in- Even less work has been devoted to systems of confined
homogeneous generalization of Onsager’s theory for bulkard-rod fluids. Here we mention very recent work by Allen
hard-rod fluids, they show that the IN interfacial tension is aon hard ellipsoids in external anchoring fiefd€°which de-
minimum for a tilt angle of about 60°, independent of scribes theoretically determined biaxial profiles and simula-
L/D.*2 The tilt angle is the angle between the surface normation results as well. The focus of Ref. 19 is on elasticity and
and the bulk nematic director. This result is, however, inanchoring of liquid crystals, and that of Ref. 20 on the struc-
disagreement with more recent and extensive calculations hyire of the IN interface. The work of Refs. 19 and 20 is not,
Moore and McMullert® Chen and Noorlandi? and Cherl®  as is the present paper, concerned with phase transitions of
who employ the same generalized Onsager functional buhe confined fluid. Another recent study by Maoal. is
consider a wider class of variational profilesnooth, finite  concerned with hard spherocylinders confined by two paral-
width) for the IN interface. The resulting surface tensions ardel hard plates at separati¢h.?* The focus of Ref. 21 is on

up to 50% lower than those of Ref. 12, and the most favorthe H dependence of the excess free energy, and on the sol-
able tilt angle for long rods is found to be 90°, i.e., parallelvation force exerted by the rod fluid on the plates. Their aim
to the surfacé®~°In another study, Poniewierski and Holyst is to understand depletion interactions in colloidal systems.
use the generalized Onsager functional to describe a fluid dkttention is restricted to the uniaxially symmetric low-
hard rods in contact with a planar hard wall locatedzat density regime. By analogy with the single-wall results dis-
=0.1® Here an approximation is made that gives rise to bulkcussed above, one expects, as the authors of Ref. 21 also
distributions forz>(L+ D)/2. The surface tensions that fol- point out, a uniaxial—biaxial surface transition to occur at
low from these approximate profiles, combined with those ofboth walls for high reservoir densities. Moreover, by analogy
the IN interface obtained in Ref. 12, imply that a nematicwith the behavior of confined simple fluids® and thermo-
film with a director parallel to the surface wets completelytropic liquid crystal*?it is tempting to speculate that the
the hard wall—isotropic fluid interface as the bulk densityanalog of capillary condensation, i.e., capillary nematization,
approaches that of the IN transitibhinterestingly, this con-  should occur in the confined hard-rod system. Such a transi-
clusion points to an internal inconsistency since the approxition corresponds to a shift of the bulk IN transition to a lower
mation for the one-particle distribution does not allow for thechemical potential or reservoir density, and should occur
diverging thickness of a wetting film. Moreover, the approxi- provided the walls prefer the nematic phase. The spherical
mation does not allow for the possibility of a biaxial profile, symmetry of the pair interactions in simple liquids, and the
which is a prerequisite for the description of a nematic filmassumed incompressibility of thermotropic liquid crystals
with a director parallel to the wall. The issue of biaxiality is (resulting in homogeneous density profjlegermit detailed
addressed in a more recent paper by Poniewierski, where tfetudies of interfaces between coexisting phases, wetting
stability of uniaxial profiles close to the wall is studied by against substrates, capillary phenomena, and the interplay
means of a bifurcation analysiéThe onset of biaxial sym- between them. Most of these investigations are within the
metry occurs for profiles corresponding to a bulk densityframework of either density functional theory or Landau—de
15% below that of the coexisting isotropic bulk fluid, dem- Gennes theory. It is our impression that quantitative studies
onstrating the relevance stirfacebiaxiality even for states of the corresponding phenomena in density-driven hard-core
that are deep in the isotropic bulk phase. The nature of théquid crystals(or lyotropic liquid crystals have been hin-
uniaxial—biaxial transitiortfirst order or continuoysor that  dered by the numerical difficulties in determining inhomoge-
of the wetting films, was not addressed in Ref. 17—this reneous biaxially symmetric equilibrium profiles. It is against
quires a(computationally costly higher-order bifurcation this background that we undertake the present study.
analysis and full numerical calculations of the biaxial pro- In this paper we consider a fluid of hard rods of rectan-
files. We are aware of only one study, by Chen and Cui, thagular shape with orientations restricted to thr@eutually
does describe full calculations of density inhomogeneitiegperpendicular directions. The bulk IN transition of this
coupled to biaxiality:® These authors study a fluid of hard- model was considered by Zwanzig in 1983while the
core semiflexible polymers near a hard wall, using a densitpematic—smectic bulk transition was studied only recefitly.
functional that resembles the inhomogeneous Onsager fun&lthough a comparison of the results of the so-called Zwan-
tional. They find a very weakly first-order uniaxial—biaxial zig model with those of models with continuous orientations
transition at a chemical potential substantially below the INis not entirely straightforwaréf these studies do show that
bulk transition. They also find éiaxially symmetri¢ nem-  the Zwanzig model captures the essential symmetries and
atic film whose thickness diverges as bulk IN coexistence isnechanisms that underly the bulk phase transitions of more
approached This finding lends very strong support to the sophisticated models of bulk hard-rod fluids. Moreover, its
conjecture that the hard wall—isotropic fluid interface is wetsimplicity facilitates the(numerical analysis considerably.
completely by a nematic phase with a director parallel to theHere we show that the determination of inhomogeneous bi-
wall. However, no attempt was made to confirm the conjecaxial profiles is numerically straightforward, at least within
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Onsager’s second virial free energy functional for the Zwan-  Defining S;,=D+(L—D)é;,,, which represents the
zig model. This allows us to make a quantitative and consisspatial extent in direction=1,2,3 of a rod with orientation
tent study of several aspects of inhomogeneous hard-rod flux, we can can write the Mayer function of the rods explicitly
ids. We focus, within a single theory, on the IN interface, theas

uniaxial-biaxial surface transition and wetting against a 3

single hard wall, and capillary nematization for the fluid be- N _ 9 (L N p.—y!

tween two parallel hard walls. A brief report describing some faa (1:17) .1;[1 OG(Sat Se)=Iri=ril), ®

of these results has been published elsewfiere. wherer;=r-%; andO (t) is the Heaviside step function. This

particular factorization of the Mayer function, which results
Il. DENSITY FUNCTIONAL FOR THE ZWANZIG MODEL  from the combination of particle shape and restricted orien-

We consider a system of rectangular hard rods of sizdations, is the key to the relative simplicity of the calculations

LxDxD (with L>D) in a three dimensional space spannedthat follow, compared to those of say spherocylinders with
by the orthonormal unit vectoss, with a=1,2,3 represent- continuous orientations. Introducing the dimensionless den-
o 149

ing %, §, and2, respectively. The position of the center of Siti€SCa(2)= L?Dp(2), we can rewrite Eqd2) with (3) as
massr of a rod is continuous, while the allowed orientations g 7 ¢c]L2D

of the three principal axes of each rod is restricted to direc—TZE f dzc,(2)(Inc,(2)—1)

tionsX, . Due to up—down symmetry and the degeneracy of “

the two short axes of a rod, its orientation can be represented 1

by the discrete variabler=1,2,3, corresponding to the ori- +3 E, f dz dZK,.(2,2")c,(2)C,(Z'),
entation of the long axis of the rod alokg,. We are con- “d

cerned with the equilibrium one-particle distributipfr, ) 4

=p.(r) and the phase behavior of this system of rods in ayhere we set\®*=L2D without loss of generality. The ker-
given external potentiaV(r,«)=V,(r) at a fixed chemical pe| K is symmetric,K;; =K;;, and satisfiek ,,=K,; and
potential ., the total volume of the system beivg To this K 2= K 13 by symmetry, with

end, we consider the grand-potential functional )
E, ©(D—|z—2'|)

K1i(z,2")

3 =— ,
QpI=Flpl+ 2, | dr pul1)(Valr) = a2, (1) Lo 2
- E, O(L—[z—2'])
which is minimized by the equilibrium one-particle distribu-  Ks3(2,.2')= {25 oL -
tion, the minimal value being the equilibrium grand potential (5)
of the systemi® Here Fp] is the intrinsic free energy .. EL 6(D—|z—7'|)
functional®® which we assume to be given by KiAz.2') == 5D :
3
_ 3y _ E, O(3(L+D)-|z—2'|)
Bp1= 3 [ dr p ()G, (A%~ 1) udz.2)= s Dl

1 ) , , with E,=8LD? andE, =2D(L+D)? the excluded volume
2 z f drdr’ fou (rr)pa(Npa ('), () of a pair of parallel and perpendicular rods, respectively. In
o the limit D/L— 0, which we adopt from now on, the diago-
nal elementsK,,(z,z") contribute terms that are smaller
than the off-diagonal elements by a factor of ordi_.
Thus, theK,, contributions in Eq.(4) will be neglected.

where 8=1/kgT, with T the temperature and the thermal
wavelength.f .. (r,r’') is the Mayer function, which for
hard-core interactions equailsl if the particles overlap and

is 0 otherwise. The functional Ed2) is the discrete and  gyicry speaking this approximation is only justifiectif(2)
inhomogeneous version of Onsager's famous second virigl ot the same order for each i.e., in the isotropic phase

functional used, e.g., in Refs. 12, 16, 17, 21, and 31 t0 deynq jn the nematic phase not too far above the isotropic—
scribe bulk, surface and confining phenomena for fluids 0f,ematic transition density: it is no longer justified in the

freely rotating hard rods. By considering,(r)=p(2)a3,  perfectly aligned nematic phase. Recognizing that
with &;; the Kronecker delta, Eq(2) also reduces to the limp_.,®(D—|z—2'|)/(2D)=6(|z—2'|), the Dirac delta,
second virial functional employed by Mulder in his studies 5, that limy,,_.oE, /L?D =2, the grand potential functional
of the bulk nematic—smectic transition of perfectly aligned;g from Egs.(1), (4), and(5), given by

hard rods’® Moreover, this functional is identical to one used Y '

by Ratm et al. to study the influence of the coupling of BQ[c]L?D 3
orientational and positional ordering on the nematic—smectic ~— A &, dzc(2)(Inca(z)—1-Bu
transition?’ In this paper we danot consider crystalline,
smectic, columnar, or other spatially ordered bulk phases of
hard-rod system& We restrict our attention to external po-
tentials of the typev,(r)=V,(z). Thus, we only consider _
profiles p,(r)=p.(z). The macroscopic interfacial area in +(C1(2) +¢2(2))C5(2)), )
the xy plane is denoted bp. where we introduced

1AV (2)+2 f dz(cy(2)cx(2)
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B 1 1 nitions[Egs.(9) and(10)] are such that the three independent
Ca(z):EJ dz'e 5'——|Z—Z'|)Ca(2’) linear combinations of the Euler—Lagrange equati¢8s
read
1 fzﬂ/z @
=— dz'c,(Z"). 7 Ci(z
L)y 070 T S - BV Vi) + 262)A(2)
2

The scaling of the dimensionless densitys such that the
right-hand side of Eq(6) is independent oD in the limit In Cu(2)c2(2) _ — B(V1(2)+Vy(2)— 2V4(2))

D/L—0, so that the only relevant length lis The Euler— c3(2)
Lagrange equations resulting from the stationarity conditions 4 4 (2L
6Q[c]/éc,(z)=0 can be cast in the form - §c(z)(1—s(z))— ﬁf dz' c(z)
z—L/2
Incy(z)=Bu—BVi(z)—2cy(2) —2c5(2),
. X(—1+4s(z")), (12
Incy(2) =Bu—BVa(2z) —2¢4(2) —2¢3(2), tS)
Incs(z) =pBu—BVs(2)

Inca(z)=Bu—BV3(z) —2C1(2) — 2Cy(2).

Below we solve this set of three coupled nonlinear equations
iteratively for fixed external potentialg ,(z) and chemical
potentialsu. In all numerical calculations we use an equidis-which, for fixed 8V ,(z) and Bu, form a closed set of equa-
tantz grid of at least 100 points pdr, with some checks tions forc(z), s(z), andA(z) if one substitutes E¢(10) into
using 200 or 500 points pér which give virtually identical  the left hand-sides of Eq11).
results. Convergence is assumed when the relative difference
between the results of iteratignand j +1 is smaller than
10~/ for all values ofz in the grid; this proves sufficient for
the required accuracy.

The interpretation of the numerical results and the deri-  \ve consider first the homogeneous bulk fluid with
vation of some analytic results is facilitated by consideringva(r)zo in the macroscopic volume of interest. The equi-

4 z+L/2

30 sz/de c(z')(1-s(z')),

lll. ISOTROPIC AND NEMATIC BULK PHASES

three independent combinations @f(z), viz. librium profiles are then constant(z)=cy, s(z)=s,, and
c(z)=cy(2)+Co(2)+C3(2), A(z)=0, wherec, and s, are the bulk values of the total
density and the nematic order parameter, respectively, deter-
C3(2)— 3(ce(2)+cx(2)) mined by Bu, and where the biaxiality vanishes because of
= c(2) ) C) symmetry. Inserting these constant profiles into the Euler—
Lagrange equationd 1) reveals that the first equation is sat-
A2) c1(2)—cy(2) isfied identically, while the second one can be rewritten as
¢z’ 1+2s,
or reversibly 1-s, | 2CoS: (12
c1(2)= Lc(2)(1-s(2)+ 2A(2)), It is easily determined that the isotropic distribution, with
s,=0, is a solution of Eq(12) at anyc,,, and that additional
c,(2)= Lc(2)(1—s(z)— $A(2)), (100  nematic distributions, with €s,<1, are possible at suffi-
ciently highc,. The relation between nonzesg andc,, can
c3(2)= 2c(2)(1+2s(2)). be determined numerically from E¢L2). A simple estimate

_ ] ) of the minimum density required to obtain possible nonzero
Clearly, c(z) represents the total density profile, whi€z) values ofs, involves the lows, expansion: IF(1+2s,)/(1
and A(z) are orientational order parameter profiles. This—so)]:3so, which equals the right-hand side of EG2) at
choice is such thati) S(Z_):A“(Z):f) corresponds to €0-  the so-called bifurcation density,=ck,=3/2. We stress,
cally) isotropic distribution; (i) —z=s(z)<1 with A(2)  however, that nonzero values fsg are also possible far,
=0 is a uniaxial distribution with symmetry axis where a 5t too far belowc, .
positive/negative sign a¥(z) signals preference/depletion of In order to calculate the bulk phase coexistence ofl the
particles oriented parallel to the symmetry axidi) O 4ngN phase, we consider the chemical potentiaand the
#|A(2)|# |2$(z)|_<_jescr|bes a distribution of biaxial symme- pressurg = — Q4 /V, where(, is the minimal value of the
try, where a positive or negative sign af(z) signals pref-  fynctional Eq.(6). Inserting the constant profiles under con-

erence for orientations parallel t or ¥, res.pec.tively. If,  sideration into Eq(6) and the third one of Eq11) yields,
howeverA(z) = 2s(z) # 0, then the system is stillocally) after some algebra involving Eq€L0),
uniaxial, but with a symmetry axig (minus: c,(z) =c3(2))

or § (plus: c,(z)=c3(2)) instead ofz. In this case, it is BpL?D=c,+ 2c3(1—s?),

convenient to introduce the profiles(z) = — 3s(2) + 3A(2) (13)
and A'(z)=s(z)*3A(z), which then play the role of et 1+23b+_ 1

uniaxial and biaxial order parameters, respectively. The defi- Pr=Incy+in—g 3Co(1~S0).
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Phase coexistence occurs between the isotropic statg at 20 .

=c¢, (with s,=0) and the nematic state at=cy [with s, — paralleld_ '
=sy>0 determined numerically from Eq12)] for which pependiatar
u(c)=u(cy) and p(c))=p(cy). A straightforward nu- 15+

merical calculation yields

¢,=1.258224 86,

profile

cn=1.91544377, (14)

sy=0.914 986 27, 0s |

from which the values of the chemical potentjaly and
pressurepy at coexistence followBu;y=0.8087227 and
BpnL2D=2.313645. These coexistence data are identical 09 W
to those reported by Zwanzig within the second virial A A
approximatiorf® apart from ar(irrelevany shift of In 3 in the s ) v 0 2 4 6
definition of B and By in Ref. 26. For the latter reference ZL
we note that the numerical value @y is substantially FIG. 1. Profiles characterizing the isotropic—nematic interface of the Zwan-
smaller than the corresponding bulk coexistence pressurfy hard-rod fluid, as follows from solving the Euler—Lagrange equations
prrNee of infinitely elongated, freely rotating hard spherocylin- (8) with u= . The full and dashed curves denote perpendicular and
ders (with continuous orientation degrees of freedoiie., parallel_ orientgtion, respectively, of the nematic dire(_:tor_ in b|z|k—>(4_r oo_)

free 2 4 free to the interfacial normalc represents the total density,is the uniaxial
BpINeL D=14.11" Thus we hav":plN/plN =0.16. The rea- order parameter, anii=0 the biaxial order parameter, for the perpendicular
son for this substantial difference is that the orientationakases’ andA’ are the corresponding quantities for the parallel case.
entropy of the Zwanzig model is much reduced due to the
restricted number of allowed orientations, which cauggs

the IN transition to occur at a relatively low density, afid I: ca5(z)= 3cn(1—SN), Ci(2)= 5CN(1+2sy),

the orientational order of the coexisting nematic phase to be

relatively high. This was also pointed out by Strafé\Note (2> 2Zp);

that the accuracy of the bulk coexistence data is higher than 1 1 (16)
that obtained for rods with continuous orientation degrees of Lo €1 A2)=5Cn(1=sn),  Cs(2)= sCn(1+2sy),

freedom. The difference arises from the fact that the station- (2>2,).

arity condition Eq.(12) is an algebraic equation, whereas its . ) ) ) )
continuous counterpart is a nonlinear integral equatiohat 't IS €asily determined that the perpendicular geometry is of
we can obtain very accurate values for bulk coexistence datdNiaxial symmetry, i.e.5(z)=sy and A(2)=0 for 2>z,
turns out to be relevant for the study of the interfacial prop-While the parallel geometry is biaxial, i.e(z) = —s\/2 and

erties and phase behavior to be discussed in subsequent s&¢?) = —28(2) =sy for 2>z, . However, the nematic bulk
tions. phases far from the interface are related by a trivial rotation,

and therefore it is convenient to compare the combinations
c(2), s(z), andA(z) of the uniaxial interfacel() with c(z2),
s’(z), andA’(z) of the biaxial interfacel(). These combi-
IV. THE ISOTROPIC-NEMATIC INTERFACE nations, see below Eq10), are such thas’(z)=sy and
A’(z)=0, for z>z,, i.e., the primed and unprimed profiles
gre identical far away from the interface. In Fig. 1 we plot
these particular combinations of the profileqz) resulting
from an iterative numerical solution of the Euler—Lagrange

We can create a planar interface between the coexistin
isotropic and nematic bulk phase by imposing arbitrarily
weak external potential¢,(z), and in this mean-field treat-

ment we can determine the structure of the “free mterfaceequations(S) satisfying the boundary conditions, Eq45)

by calculatingc,(z) from Egs.(8) with u=u;y andV (2)
=0, subject to appropriate boundary conditions. For a suffi-and(le)' The dashed and full curves represent the perpen-

. : S . dicular and parallel geometry, respectively. Calculation of
ciently largez,,>0, we impose the coexisting isotropic bulk . ~ L
m . the profiles was performed fay,/L =10 on an equidistarz
phase at positions< —z,, by setting

grid of 100 points peL; calculations made using 200 points
c(2)=1tc, (z<-2zn, a=12,3), (15) perL or z,/L=20 gave i_ndistingl_Jishat_)Ie results. Good con-
vergence was only obtained by inputting very accurate bulk
with ¢, given in Eq.(14). At z>z,, we impose a nematic values forc,, cy, andsy in the asymptotic regime; poorer
bulk phase at total densityy. There are, howevetwo es-  estimates caused the interface to “wander away” fram
sentially different possibilities for the relative orientation of =0, thereby preventing convergence. It is seen from Fig. 1
the directorf of this nematic phase: perpendicular)(or  that the interfacial width is considerably larger for the per-
parallel (1) to the interface, where we adopt the conventionpendicular geometry, the profiles of which are relatively
that A=X (or equivalentlyh=9) is “parallel” to the inter-  smooth and exhibit uniaxial character throughout since
face, whileh=2 is “perpendicular” to the interface. These A(z)=0. In contrast, the case of parallel relative orientation
two alternatives are represented by the boundary conditionshows sharper features in all three profiles. There is a weak
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oscillation in the densityc(z) and a pronounced negative V. THE FLUID IN CONTACT WITH A SINGLE HARD
biaxiality A’(z) on the isotropic side of the interface. The WALL
biaxiality becomes slightly positive on the nematic side be-

fore decaying quickly to zero. The negative sigmddf(z) on | potential bulk densit . tact with inal
the isotropic side signals a local depletion of rods “sticking cal potentialu or bulk densi YCp) in contact with a single
wall. Here we restrict attention to a planar hard wal(miac-

through” the interface such that their end points enter the . aA ; & itioned az=0. It i
nematic side. This effect, and the equivalent sign change chSCOp'O areas, surface normat, posflioned a=0o. It 1S

the biaxiality, were obtained by Chen for hard rods with escribed by the external potential
continuous orientations, although the amplitude of the bi- w for z<0 (a=1,2
axial order parameter calculated in Ref. 15 is smaller. Note

In this section we consider a bulk fluid of rots chemi-

that the order parameter profig(z) increases much more BV.'(2) z L/Z_ (a=3), (19
rapidly than the density profile(z) on the nematic side. 0 otherwise,
This was also found by Chefl. wherez refers to the midpoint of a rod. The immediate con-

The calculated equilibrium profiles can be used to detersequence of such a wall is that rods oriented perpendicular to
mine the interfacial tensionyyy, and y,. by inserting  he wall, i.e., rods characterized ly=3, cannot approach it
them back into the functional of E() to yield the equilib-  ¢|oser than a distance/2, thereby giving rise to orienta-
rium valuel, of the grand potential of the system. Using the jona) order close to the wall for any bulk fluid in contact

general definition of the surface tension as the surface exceggin it. At low ¢, One expects this wall-induced orientational

grand potential per unit area, order to preserve the symmetry betwees 1,2, i.e.,c,(2)
Qg+ pV =C,(2) for z<L/2. This symmetry will be refered to as
y= 0 , (17)  ‘“uniaxial” after its continuous analogue, the symmetry axis
A being the surface normal. In the liquid crystal literature this

symmetry is often called “random planar.” At sufficiently

we obtain with the bulk pressure=py the numerical val- high c, one could expect that the tendency of rods to align

ues might break this uniaxial surface symmetry, and tlog(z)
By, LD =(2.7960=0.0004 X 10”2, #Cy(2) for z< L/2_. The symmetry c_lose_to _the wall is t_hen
' (18) referred to as “biaxial.” The uniaxial-biaxialUB) transi-
By, LD =(5.0660+0.0002 X 10”2, tion occurs for a value of, well below the bulk transition

density ¢,. We can also enquire about the hard wall-
The smaller value, by almost a factor 2, is for the biaxialisotropic fluid interface in the limic,—c, , i.e., the wetting
“parallel” configuration, which implies that a nematic direc- properties of the fluid of Zwanzig rods in contact with the
tor parallel to the IN interface is thermodynamically more hard wall. Both topics are investigated in some detail below.
favorable than a director perpendicular to the interface. This In order to study the possible onset of biaxiality, we
is consistent with calculations of the IN surface tensionrewrite the first Euler—Lagrange equati¢hl) with V (2)

yeree( ;) of freely rotating hard spherocylinders as a function=V£¥1)(z) as

of the (continuou$ tilt angle 8, between the surface normal s

and the nematic director as presented in Refs. 12—14. Al- 1-s(2)+ 3A(2) _20(2)A(2) 20
though these studies reveal a nontrivial, and possibly non- 1-s(z)— 2A(2) =2¢(2)A).

monotonic dependence @h, they all find that for the angles

with an ana|og in the present modebra”ek 0= 90°, per- Equatlon(ZO) has a trivial uniaxial SOlUtiom(Z)zo, inde-

pendicular:6,=0°) ye§(90°)< yfe%0°).*2" It is also in- pendent ofs(z) andc(z). Nontrivial biaxial solutionsA(z)

teresting to compare the numerical value of the lower tensiorf O are possible it(z)=cyg(z), where the UB bifurcation

yw=7yw, diven in Eq. (18 with the result yeree densitycg(z) follows from a lowA expansion of the loga-

=4/1®¢(90°) for infinitely elongated freely rotating sphero- fithm in Eq.(20) and is given by
cylinders. Without making any parametrization of profiles
within the Onsager theory, Chen obtaingg/i®.D =0.181
+0.0021° Thus our tension is substantially smaller than
yﬁ\,ee. Interestingly, however, the surface excess grand poterNote thatA(z)=0 is the only solution of Eq(20) when
tial ratio y|N/yH\|ee:0.15 is strikingly similar to the bulk c¢(z)<cyg(2), i.e., below the local bifurcation density. This
grand potential ratigy /phc®=0.16 determined in Sec. IIl. feature of the UB bifurcation is qualitatively different from
This is another indication that while the Zwanzig model doeghe bulk IN bifurcation discussed earlier, where nematic so-
indeed capture some of the essential physics of rod fluids, ltutions continue to exist at densitiésot too faj below the
renormalizes the numerical values of thermodynamic quanbifurcation. The difference is caused by the different nature
tities compared to models with continuous orientations. of the broken symmetry in the two cases, as discussed in
Finally we remark that the fractional accuracyyf, , is  detail by Mulder’ It follows from the third of the Euler—
better than fory,y ,—see Eq.(18). This is due to the rela- Lagrange equation$8), with Va(z)zvfj)(z), that c53(2)
tively smooth uniaxial profiles, which are slightly less sensi-=0, and hence(z) = — 3, for 0<z<L/2. Given that— 3 is
tive to the discretez grid than the sharper biaxial profiles. the minimum value fos(z), and thatcz(z) decreases with
This feature of the numerics is found throughout this work. decreasings(z), we conclude that local biaxialitj(z) #0

Cug(2)= 201=5(2)" (21
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starts to develop it(z)=1, or c,(z)=c,(z) =3, anywhere
in the interval 0<z<L/2. Inserting this condition in the first
of Egs.(8) atz=0 we find that the corresponding chemical
potential Buyg=1—1n2=0.31<Bu,. Thus, the wall-
induced UB bifurcation occurs at bulk densityjgz, which
from Eg. (13) (with s,=0 since the bulk is isotropjcis
given by

————— uniaxial
—-— biaxial

CY

* * A S~ T _________——1
2cg  4clp 0 P :

3 + 3 —1=0 = c{g=1.0311168.... (22 B

In

It follows that c{jg/c;=0.819, which is similar to the corre- 05 | ]
sponding ratio 0.847 for freely rotating, infinitely elongated
spherocylinders, extracted from Poniewierski's analysis. A R bt el
Note that the present analysis of the UB bifurcation is iden- . . .
tical in spirit to that of Ref. 17, but is technically much less "o 1 2 3 4
demanding because of the relative simplicity of the Zwanzig
model.

We now turn attention to numerically determined pro-
files c(z), s(z), and A(z) for a fluid of bulk densitycy,
<c¢, in contact with a hard wall. These calculations involve A(z)
the iterative solution of Eqg11) with a boundary condition
c,(2)=c,/3 for z—« anda=1,2,3. The actual calculations 05t
were performed on a grid with at least 100 points befor
0=<2z/L=<10 or 20, which proved sufficient in all cases. In
Fig. 2(@) we showc(z) for several bulk densities,<c{jg
(dashed curvgsand c,>c{g (full curves; in Fig. 2(b) the 00 L
corresponding order parameter profiEz)(<0) andA(2z)
X(=0) are shown. The sharp featureszatL/2 are caused
by the discontinuity oftg(z), which forcess(z)=— 1/2 for s(2)
z<L/2. For allc,<c{jg we find A(z) =0 identically, even if
the initial profile of the iterative process is chosen to be ‘
biaxial. Forc,>c{jg the z interval whereA(z) is nonzero 0 1
increases steadily for increasiog, signifying the film with
in-plane nematic ordering has increasing thickness. The OrriG. 2. Profiles of a hard-rod fluid in contact with a single hard wall located
set of biaxiality is seen to be sharp. Although the biaxialat725:0- thc?uollk dhendSit)Cb far from th? Walfl_ takedslvglst)le?olioo-ﬁSOfgb
.Chara.lCter develop.s sporltangogsly for any Ir.“tlal profile of thé(il.nd ’1.azr]5(fulll gjri(ses,ebiacijixe;;olfji?;;x'll'ahep;?olﬁaeg in(r;l) répr'esént.the’ t(;taI’
lterative process 'bb>CUB' it is also possible to enforce densityc(z), and in(b) the orientational order parametes) and A(z).
uniaxial symmetry in the iterative process in this densityNote thatA(z)=0 for uniaxial profiles, i.e., for,<c}gz=1.031116 8 and
regime. By comparing the interfacial tensions of these enthats(z)=-0.5, 0<z<L/2, for all values ofc;,.
forced uniaxial profiles with those of the spontaneously
formed biaxial profiles at the same value @f (or w), we
find that the latter are always smaller. In the limjt—cg restrictions. Due to the absence of a soft mode, the in-plane
the difference is vanishingly small, while the gradients of thecorrelations in thé8 phase should be long ranged in the case
tensions as a function af, are identical(see also Fig. 6  of the Zwanzig model, whereas the soft mode that exists in
Thus, within the numerical accuracy it is tempting to con-systems with continuous orientations will, probably, destroy
clude that the UB transition is of second order. This concluthe long-range in-plane order. The UB transition has been
sion is supported by expanding the logarithm in Ef). For  discussed for thermotropic liquid crystals within the context
0<z=L/2 we find in the limit €,—c{jg)—0" that A(z) of Landau—de Gennes theory; it can be first order or
=3(c(2) —cyp(2)), with s(z)=—1/2 andcyg(z)=1. As-  continuous’>® Ascertaining the precise nature of this tran-
sumingc(z) remains smooth in the vicinity of the origin this sition in hard-rod models requires further investigation. It is
indicates standard mean-field behavior of the order paramalso interesting to consider the similarities and differences
eter at the transition. Our result differs from that of Ref. 18,between the present UB transition and the prewetting transi-
where the UB transition of a system of semiflexible polymerstion observed for simple fluids in contact with a sufficiently
near a hard wall is predicted to be very weakly first order.attractive walf’ The two transitions are similar in the sense
Whether this signals a fundamental difference between théhat the surface “triggers” a phase transitiimere the onset
two models or whether it reflects a limited numerical resolu-of orientational ordering close to the wall; in a simple fluid a
tion is not clear at this stage. Note that beyond mean field wéhin—thick transition of the liquid-like film close to the wall
do expect to find differences between models with restrictedt a lower chemical potential than that required for the cor-
orientations, such as the Zwanzig model, and those withoutesponding bulk transitiothere the IN transition; in a simple

1.0

----- uniaxial
—— biaxial

-0.5

2
ZL
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FIG. 4. The surface tensiop,, of the hard wall—isotropic fluid interface as
FIG. 3. Adsorptionl’ of a fluid of hard rods in contact with a single hard 2 function of the bulk densitg, far from the wall, withc, in the regime
wall, as a function of the bulk density, approachingfrom below the bulk  slightly below the bulk isotropic—nematic transition densify The limiting
isotropic—nematic coexistence dengity The straight line indicates a loga- Value (dashed lingis B§,LD = (4.980+0.001)< 10 %, which is the esti-
rithmic divergence as,—c; . This is a signature of complete wetting of Mate of the tension at bulk coexistence.
the wall-isotropic fluid interface by a nematic film. The inset shows the
results on a lineac, scale, and displays a change of signIoffor c,

~1.10. Solid lines denote uniaxial profiles and the symbols denote biaxial . . L.
profiles. The dotted line is a fit to the data nea—see text. that complete wetting of the wall—isotrop{wV1) fluid inter-

face by a nematic film should occur ef=c,, where the
nematic director of the film is oriented parallel to the wall.
fluid the gas—liquid transition An important difference be- This complete wetting scenario is confirmed by a calculation
tween the two transitions is that prewetting is first or@ir-  of the contact anglé), defined by
companied by a discontinuous jump of the film thickness x _ x
from a small nonzero value to a larger finite valughile the cosd= M, (24)
UB transition is continuous; the biaxial film thickness devel- YINI
ops from identically zero to nonzero values. This last pointisyhere y#,=ywi(co=c)) and iy = Ywi.(Co=Cn i Sp
crucial for understanding the insensitivity of the UB transi- — g ) denote the interfacial tension, defined in ELj7), be-
tion to confinement, as discussed later. Note also that prewefpeen the wall-isotropic fluid phasavith c,=c,) and the
ting is a precursor of the wetting transition that occurs atya||—parallel nematic phas@vith c,=cy and s,=sy), re-
bulk coexistencé] whereas the UB transition is not inti- spectively;y,y,, is given in Eq.(18). It is straightforward to

mately related to any wetting transition. . evaluateyy,y, by solving numerically the Euler—Lagrange
It can be seen in Fig.(d) that the contact density(z  equations, with the appropriate boundary conditions, and in-
=0) is smaller than the bulk valugz—=)=c, atlowc,,  serting the profiles into Eq(6) to obtain(Q,. The tension

bqt Iarggr forc,=1.1. This signals a.change in sign qf the follows from Eq. (170 with p=p,y. The result is
(dlr_nensmnlesbadsorptlonl“ as a function oty , wherel  is By, LD =(2.1844+0.0004)x 10 2. Due to the increas-
defined as ing thickness of the nematic film as—c; , we determine
o ywi by extrapolatingyy,(c,) calculated forc,<c, to c;.
I'= Ef dz(c(z) —cp). (23)  The results for several values of are represented by the
0 symbols in Fig. 4; the dotted line denotes the estimate of the

In Fig. 3 we plotl" as a function ofty,<c,, i.e., in the limiting value, which isBy3,LD=(4.980+0.001)x 102,
regime where the bulk fluid in contact with the wall is iso- Insertion of these results into E(R4) gives co9=0.9999
tropic. The full curve represents the uniaxial regimg  =0.0004. Within numerical accuracy, this result is consis-
<c{jg, and the symbols the biaxial regime. The inset of Fig.tent with a vanishing contact anglé, i.e., yy= %,
3, with the linearcy, representation, displays the sign change+ y,y , and, thus, with complete wetting of the W1 interface
at cp,=1.1. The main figure indicates thhtdiverges loga- by the nematic phase. It is also consistent with the profiles
rithmically asc,—c, . The straight line can be observed displayed in Fig. 5, which reveal the film increasing in thick-
over several decades because of the accurate determinatiness and exhibiting increasing bulk nematic charactez,as
of ¢,. It can be fitted byI'=A; — A, In(c,—cp), with fit pa- —c, . The dashed lines represent the values of the order
rametersA;= —0.404 andA,=0.235. The result of this fitis parameters of the coexisting nematic bulk phase. Note the
represented by the dotted line in Fig. 3. Combining the reextremely small deviations from the bulk coexistence values
sults of Figs. 2 and 3 suggests that a nematic film of increasn the thickest film shown in Fig. 5. For clarity we present
ing thickness(corresponding to an increasing adsorptldn  two (equivalent sets of linear combinations of the profiles in
develops as,—c, . The logarithmic increase dfimplies®  Fig. 5, viz. ¢(2), s(z), and A(2) in (a), andc(z), s'(2)
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FIG. 6. Surface excess free energyf the uniaxial, biaxial, and capillary
condensed nematic phases of hard-rod fluid confined in a slit of relative
width h=H/L=6 and in contact with an isotropic bulk reservoir at density
C,. The vertical dashed lines af,=cz=1.0313 andc,=cCpc=1.246 43
denote the location of the continuous uniaxial-biaxial and the first-order
capillary nematization transition, respectively. Note that bulk coexistence
occurs forc,=c,;=1.258 224 86, which is the maximumy displayed.

profile

VI. THE FLUID CONFINED BY PARALLEL HARD
WALLS

We now consider the effect of confinement toyo par-
allel hard walls on the phase behavior of the hard-rod fluid.
Denoting the separation of these two walls Hy we char-
acterize the walls by the external potential

o for |zZ|>H/I2 (a=1,2)

@)(z)= 1lizjl>(H-L)/2 (a=3
FIG. 5. Profiles of the interface between a single hard wall and an isotropic BV (2) | | ( ) ( ), (25
hard-rod fluid at a series of bulk densitigs=1.25, 1.258, 1.258 224 5, and 0 otherwise.

1.258 224 85, showing an intruding nematic film whose thickness diverges . . .
asc,—c,=1.258 224 86. The curves i@ and (b) are different represen- QUI goal here is to determine the phase diagram of the sys-

tations(linear combinatiorjsof the same profiletsee text The dotted lines  tem as a function of the relative slit width=H/L andu, the
denotg the values of the various order parameters in the coexisting _bUl&hemicaI potential of the reservoir of rotfsWe restrict our
T o s e i o e ' emaleatention (0= sy, and use the corresponding bulk densiy
face shown in Fig. 1. cp,=c, of the isotropic phase to characterize this chemical

potential; the one-to-one correspondence betweeamnd ¢,

is given in Eq.(13) with s,=0.

The results presented here are based on the numerical

solution of the Euler—Lagrange equatidi®s with the exter-
=—9(9)/2+3A(2)/4, andA'(2)=s(2) + A(2)/2 in (b). The  pa| potentialV,(z) =V?(z) given in Eq.(25). In order to
representatiorta) shows directly the relation with the pro- gptain the surface excess free enesgghe equilibrium pro-
files in the lowercy, regime of Fig. 2wheres(z) andA(z)  files are again inserted into E¢6) to obtain o, and y
are a “natural” choicé, whereas the representatidn al-  follows from Eq. (17) with p=p(cp,s,=0) from Eq. (13
lows for an easier comparison with the parallgibxial) bulk  and volumeV=AH. In Fig. 6 we show the resulting surface
IN interface shown in Fig. 1. Clearly, the representations ofexcess free energyas a function ot,, for h=6. The dotted
the thick nematic films in Fig. ®) only show biaxial char-  and thin full curves represent, and yg, the surface excess
acteristics A'(z) #0) close to the wall (6:z<L/2) and in  free energy for profiles with, respectively, uniaxial and biax-
the interface between the film and the isotropic bulk fluid.jal symmetry close to the wall. These decay toward(es
Comparison with all three profiles in Fig. 1 shows that thesentially isotropic phase in the middle of the slit. For suffi-
latter interface is virtually indistinguishable from the “free” ciently low bulk densitiesg,<cg=1.0313, the only profile
IN interface between coexisting bulk phases, as expected faatisfying the Euler—Lagrange equation is of uniaxial sym-
the case of complete wetting. Ag—c, the interface depins metry, andyg is not defined. Where,>cg a significant
from the wall. Note that the weak oscillation in the density degree of biaxiality is possible close to the wall, and in this
c(z) observed at the isotropic side of the IN interface persistsegime we findyg(cy) < yy(cp), indicating that the biaxial
for decreasing thickness of the nematic film. phase is thermodynamically more favorable than the uniaxial
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FIG. 7. Coexisting biaxial and capillary condensed nematic profiles for theF|G. 8. Phase diagram of hard rods in a slit of relative witltand in
hard-rod fluid in a slit of relative widtth=H/L=6; the bulk (reservoiy contact with a reservoir at bulk density,. The second order uniaxial—
density iscp=cCgc~1.246. The two walls are at=*+H/2. The biaxial  pjaxial (UB) transition (dashed vertical line takes place atc,=cjy
profile is virtually isotropic in the central region, with total local density =1 031, while the first-order biaxial—capillary nematizati®c) transition
¢(z)=cgc, while the condensed phase bears strong resemblence to the ¢yl curve) shifts to lowerc, with decreasing1 and ends in a critical point

existing nematic bulk phase witl(z)=cy in the central region, and strong  (x). The dotted line is the Kelvin approximation to the BC transition line,
orientational ordering throughout the slit. valid at largeh (see text

phase forc,>cyg. The difference between, and yg be-

comes vanishingly small ag— c;jg, and so does the differ- plane densityc(0)~1.79 slightly below the coexisting nem-
ence between the gradientgydc,) of both curves. The atic bulk densitycy. We note that the capillary condensed
reason for this is that the biaxialit(z) vanishes in this nematic phase() is also biaxially symmetric close to the
limit and, hence, the difference between the uniaxial andvall, but we omit this descriptor for convenience.

biaxial profiles. Consequently, the UB transition @Jg is The UB and bulk coexistend@C) transitions were de-
continuous. This is completely equivalent to the one-walltermined for other values of the relative slit width and the
situation considered in Sec. V. Our numerical estingjg  phase diagram constructed as a functioncgfand 1h is
=1.0313 forh=6 is actually the smallest value af, for ~ shown in Fig. 8. Here the UB and BC transitions are repre-
which we distinguish between a uniaxial and biaxial profile,sented by the vertical dashed line and the full curve, respec-
and is therefore an upperbound; it is larger than the analytitively. For allh>1 the UB transition appears to be located at
cally determined quantitg}s for a single walllequivalentto  c,=c{)z, theh— result. Although there are nonsystematic
h— ) by about 0.02%. We regard this small difference be-deviations from the single wall value, these are probably
tweenc(g andcyg ath=6 as numerically insignificant, i.e., insignificant being at most 0.4%. The capillary nematization
the location of the UB transition has not been altered byis more interesting, sincegc decreases significantly with
confinement. Foc,>1.23 another type of profile emerges asdecreasingh. Moreover, the first-order capillary nematiza-
a solution of the Euler—Lagrange equations. This profile idion ends, as we shall argue in more detail below, in a cap-
characterized by local biaxiality close to the wall, and a de-illary critical point at the critical slit widthh=h.=2.08
cay toward an(essentially uniaxial nematic phase in the *£0.01; this critical point is denoted by the asterisk in
middle of the slit. We associate this profile with the existence=ig. 8. In the limith—«~ we see that the BC phase boundary
of a capillary condensed nematic pha€® (n the confining approaches the isotropic bulk coexistence vaiye c, lin-

slit. The corresponding surface excess free enetgis rep-  early in 1h. This linear limiting behavior can be derived
resented by the thick curve in Fig. 6. 8f=cgc=1.24643 from the Kelvin equation, represented by the dotted line in
we find thatyc intersectsyg with the difference in slope Fig. 8. First we approximate the grand potentiy of the
being nonzero. This signifies a first-order capillary nematizabiaxial phase at a given chemical potenjiatiose towy (or

tion transition atc,=cgc. In Fig. 7 we plot the coexisting bulk densityc, close toc,) by Qg=2y3,A—p(x)V, and
biaxial and condensed profile$z), s(z), andA(z) at this  that of the condensed phase byC=27\7\,N"‘A—p+(,u)V.
transition forh=6. For clarity we display the full interval The factors of two in the surface tension contributions stem
—h/2<z/L<h/2, although we exploit the mirror symmetry from the fact that there are two walls now, apd(u) is the
about the midplane=0 in the actual calculations. It is clear pressure of the metastable nematic bulk phase arising for
from Fig. 7 that the profile of thB phase had (z) #0 close <y .2 Using the results that cas=1 in Eq.(24), and that

to the walls, but is virtually isotropic in the central region O"p(+)(M)L2D/(9,LL:CE)+)(,LL), the density of thémetastablp
with total local densityc(z) ~cgc. In contrast, the capillary bulk system, one obtains from the coexistence condition
condensed nematic phase has a strong nematic character p@z= () that the value of the chemical potential at BC co-
sisting throughout the central region, with a total local mid-existence ugc, satisfies
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0.50 : . - Cp, andh are identical. The two dotted curves represent pa-
rameterisations based on the following latyepproxima-
tions. For theB branch, we have,—c, and I'—2[A;
—A,In(c,—c,)], where the factor of 2 accounts for the con-
fined case withtwo walls, and whereA; and A, are the fit
parameters for the single wall adsorption shown in Fig. 3.
Combining this with the largé parameterizationh™?!
=Ay(c,—c,,) which follows from the Kelvin equation as dis-
cussed above, one obtaif —c, +2(A;+ A, In(Agh))/h for
the largeh limit of the biaxial branch and this is shown in
Fig. 9 as a dotted curve. For largethe condensed nematic
branch has the parameterizatior) — cy+ 21"y, /h, with
I'wn,1=0.135 the adsorption of the coexisting nematic bulk
) . ‘ ¢ fluid at a hard wall in the parallel director geometry. We see
12 14 <1c6> 18 20 that for smallh™* the full curves of Fig. 9 are fairly well
approximated by these asymptotic results, especially for the
FIG. 9. The coexistence curve for the biaxia)(—capillary condensed C branch.
nematic C) phase transition plotted as a function of average number den-  We focus now on the smali-regime of Fig. 9, where
sity (c) in the slit and relative slit widtth. The crossesX) on the hori-  the difference of average density between the coexidiing

zontal axis denote the bulk coexistence densitieandcy, and the dotted 504 nhase becomes progressively smaller and vanishes as
lines are largér approximations for the biaxial and capillary condensed

+ : _
phasegsee text The two branches of the coexistence curve intersect in the1—N¢  and cp,—Cpcc, W'th hc— 2-08# O-Ql and Cecc
capillary critical point ath=h,=2.08. =1.184+0.001. Such a vanishing density difference implies

that the coexistin@d andC phase coalesce in a critical point
at a critical relative wall separatioh, and a critical bulk
29, LD d.ensitycBC,c. That j[his is a gen.uine.critical point'is.con-
MIN_MBCZh(C—’—C)' (26)  firmed by an analysis of the spatially integrated uniaxial and
N biaxial order parametelS and A, respectively, aBC coex-
which is the Kelvin equation appropriate to the present sysistence.S and A are defined by
tem. For sufficiently largé the right hand side of Eq26) is
: e 1 [HR2 1 (HP2
arbitrary small but positive. Hence, one can expand the left- g— _f dzqz), A= _f dzA(z). (28)
hand side aboutc,, using (a,B,u/(?cb)|c|= 1/c,+4/3 L) LJ-np

~2.1281 from Eqs.(13) and (14), to give Bu—Busc  Our results show that not only the valuesBffand hence
~2.1281€,— cgc). Combining this result with Eq26), and  (c)) become indistinguishable in the two phases as
using the numerical values @, cy, andyy, yields the h_.h* put also those o8 andA. This implies that the two
parameterisation b= Aq(C, - Cpc), With Ag=25.0, for the  phases are fully indistinguishable bs+h! andc,—Cac..
Kelvin line shown in Fig. 8. A detailed comparison of the The peculiar shape of the coexistence curve in Fig. 9, in
prediction of the Kelvin equation with the full numerical particular the re-entrant features on both branches and the
results reveals a relative differencefin® of order 0.05 for  .yrvature near the critical point, shoutdt be interpreted as
cgc=1.2574 (where h=50), and of order 0.4 forcgc jndicating nonclassical behavior. The shape reflects the fact
=1.2525(whereh=10); for smallercgc (or h) the Kelvin - nat the difference ific) between the two phases was chosen
equation becomes increasingly poor. Similar tests of thgg the order parameter. Other measures of the adsorption, for
Kelvin equation have been made for simple fluids in slitinstancel” as a function ofu at fixedh, lead to more con-
pore$® and for a lattice model of the IN transition in finite ventional shapes, with mean-field order parameter exponent
films with free surface? B=1/2. We anticipate, as in the case of simple flfitithat

In order to gain more insight into both the large andin reality (beyond mean fieldthe capillary criticality of the
smallh regime of capillary nematization we consider an al'Zwanzig model should lie in the two-dimensional Ising uni-
ternative representation of the transition. This representatiooersa"ty class since the order parameter is a scalar and cor-
involves the averag&imensionlessnumber densityc) in  glations can only diverge in the-y plane.

0.40 |

0.30 |

1/h

0.20 |

0.10

the slit, defined as For slit widths h<h, no capillary nematization takes
1 (HR2 T place, and the slit “fills” continuously as, is increased.
(O=x fﬁlequZ):Cb"' e (27 This is illustrated in Fig. 10 foh=2, which is (slightly)

below the critical slit width. In Fig. 1@) the total density
where the adsorptioh is defined as in Eq23) but with the  profile c(z) is shown for various values of the bulk density
z-integration limits equal to- H/2. Converting the BC phase ¢, in the range 1.05c,<1.25. Figure 1(b) displays the
boundary of Fig. 8 to théc)-h~! representation yields the corresponding biaxiality profiled(z). Note that the lowest
two full curves in Fig. 9, where the loe) curve represents value of c,>c}jz so there is already &hin) biaxial film
the coexistingB phase and the higfe) curve the corre- present on each wall. This grows in thickness with increasing
spondingC phase. Obviously, the different values{(@) in  c,. Although the character of the profiles appears to change
the coexisting phases arise from different value$’ oince  significantly forcy, in the range 1.1%¢,<1.18, there is no
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lar shape of the rods and their restricted orientations permit,
@ within the framework of the second virial free energy func-
tional, a straightforward numerical evaluation of the density
and order parameter profiles that minimize the functional.
This is to be contrasted with equivalent treatments of
(sphergcylindrical or ellipsoidal rods with continuous orien-
tation degrees of freedom, for which the determination of
biaxially symmetric inhomogeneous profiles is numerically
demanding. The present model suffers, of course, from a lack
» S — of realism compared with freely rotating hard rods, but we

\/ feel that this drawback is compensated, to some extent, by

‘ / the accuracy with which the calculations can be performed

and, therefore, with which phase behavior can be deter-
-10 05 00 05 1.0 mined. Moreover, on the basis of comparisons with previous
density functional results and with recent computer simula-
tions of spherocylinders with continuous degrees of
freedom?®*! we argue that many predictions of the phase
behavior emerging from the Zwanzig model actually hold for
a wider class of hard-rod systems.

Having made a straightforward but accurate determina-
tion of the thermodynamic parameters specifying bulk IN
coexistence, we study the “free” IN interface. We find that a
nematic director parallel to the IN interface is thermody-
namically more favorable than a director normal to the inter-
face, consistent with earlier work on freely rotating hard
rods?~1®We also find significant biaxiality in the vicinity of
the IN interface, similar to that found in Ref. 15 for sphero-
cylinders. When the fluid of hard rods is in contact with a
¥ y single planar hard wall, we find a continuous transition from

ZL uniaxial to biaxial symmetry near the wall at a densifyg
FIG. 10. Profiles of(a) total densityc(z) and (b) biaxial order parameter significantly below the IN bulk coexistence densify. Upon
A(z) for confined hard rods, with relative slit width=2, at the indicated  increasing the bulk density, from c{j; towardc, our results
values of bulk reservoirden_sit;{,.“S_,in(’:’eh<hc, nocapilla_lry condensation  ghow a continuously thickening nematic film intruding be-
takes place; rather the capillary “fills” continuously ag increases. tween the isotropic fluid and the wall, the nematic director of

the film being parallel to the wall. The thickness of the film

discontinuous change. Far,<c}=1.1785, we havec(z  increases logarithmically withc{—cy), as is expected for
=0)~c, andA(z=0)=0. The two separate regions of sur- short-ranged forces. Calculations of the three relevant sur-
face biaxiality meet at=0 whenc,=c} , and forc,=c} it face tensions yield a contact angle that is zero, firmly estab-
is seen that(z=0) increases rapidly, eventually to be of the lishing the complete wetting scenario, in agreement with pre-
order ofcy while A(z=0) grows from zero to large values vious findings for closely related modéfs'®
characteristic of a nematic filling the slit. Consistent with the  In the final part of our study we consider a hard-rod fluid
absence of a phase transition, we were unable totfima  confined in a parallel slit of fixed widthl. Apart from the
different profiles at the samg, for h<h. continuous uniaxial—biaxial surface transition already seen

We note that our calculated phase diagram is consisten the one-wall system, we find a first-order capillary con-
with that obtained in Ref. 25, where the effect of confine-gensation (nematization transition, provided the relative
ment. on a lattice model of anermo.tropicliquid crystal Was  plate separatiom=H/L exceeds a critical valub,=2.08.
considered. These authors investigated the phase behavior s first.order transition is found to terminate in a capillary
a function of the §trengtl& of the surface field; our results critical point ath=h,, and forh<h, there is a continuous
correspond to a fixed, large value @fif one substitutes the “filling” of the slit funci fer th i densit

g” of the slit as a function of c,,, the reservoir density.

coupling constand of their model for the chemical potential To the best of our knowledge, this is the first prediction of

or ¢, of the present Zwanzig model. _ i . .
the existence of capillary coexistence and the accompanying
capillary critical point in a hard-rod fluid. This prediction has

VIl. SUMMARY AND DISCUSSION been confirmed recently by Gibbs ensemble Monte Carlo

We have studied certain aspects of surface phenomena §imulations of freely rotating /D =15 spherocylinder&*!
hard-rod fluids by considering the simple Zwanzig model inThese results illustrate how rich the entropically driven sur-
the limit of length-to-diameter ratib/D—o. The rectangu- face phase behavior is in such systems.

20

c(2) 15[

1.05

A2) o5t

0.0 &
~1.0
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