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Interfaces, wetting, and capillary nematization of a hard-rod fluid:
Theory for the Zwanzig model
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We investigate interfacial and capillary phenomena in a simple model for a fluid of hard rods, viz.
the Zwanzig model, in which the orientations of rectangular blocks are restricted to three orthogonal
directions. The theory, which is based on an Onsager-like free energy functional, predicts local
biaxial ordering at the ‘‘free’’ interface between the coexisting isotropic and nematic phases. For an
isotropic bulk fluid in contact with a single planar hard wall, we find a continuous surface phase
transition from uniaxial to biaxial local symmetry, followed by complete wetting of the wall–
isotropic fluid interface by a nematic film with director parallel to the wall, as the reservoir density
approaches its value at bulk coexistence. For a fluid confined by two parallel hard walls we
determine a first-order capillary nematization transition at large wall separation, which terminates in
a capillary critical point when the wall separation is about twice the length of the rods. This
transition is the analog of the capillary condensation observed for simple fluids confined by
attractive walls but is purely entropy driven here. ©2000 American Institute of Physics.
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I. INTRODUCTION

Fluids of rodlike particles have attracted much attent
over the years. Experimental observations date back to
1920s and 1930s, when Zocher1 and Bawdenet al.2 investi-
gated colloidal systems of vanadiumpentoxide (V2O5) and
tobacco mosaic virus~TMV ! particles, respectively, an
found a phase transition from an isotropic fluid phase (I ) at
low concentrations to an orientationally ordered nema
phase (N) at higher concentrations. This density-driven is
tropic nematic~IN! phase transition in a homogeneous bu
fluid of rodlike particles was first tackled theoretically in th
1940s, when Onsager argued that these colloidal rods ca
modeled, under certains conditions, as mutually imp
etrablehard rods. He accounted for the IN transition in term
of a competition between the maximization of orientation
entropy and minimization of excluded volume.3 A key ingre-
dient of Onsager’s theory is the one-particle distribution a
function of the rod orientation, for which he derived a no
linear integral equation. This equation is exact when
length-to-diameter ratio of the rods tends to infinity. At lo
bulk densities the only solution to this equation is a unifo
constant, which describes the isotropic phase, while at s
ciently high densities nonuniform solutions of uniaxial sym
metry exist, which describe the nematic phase. Although
plicit calculation of these peaked nematic distributions
analytically intractable, this is numerically straightforwa
because the uniaxial symmetry reduces the problem to a
dimensional one in the polar angle of the rod orientation. T
IN bulk coexistence that follows from Onsager’s hard-r
7680021-9606/2000/113(17)/7689/13/$17.00
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theory is well established, with relative numerical uncerta
ties of about 1:104 for the coexisting densities and orde
parameters.4 Computer simulations in the 1980s showed th
hard-rod systems can also form the liquid crystalli
smectic-A phase.5 The bulk phase diagram of hard spher
cylinders has been determined as a function of density
length-to-diameter ratio by density functional theory6–8 and
by simulation.9,10 Apart from some details, the general agre
ment between theory and simulation is good. Noting the
perimental observation of the smectic-A phase in a high-
density TMV suspension,11 one can conclude that man
aspects of thebulk behavior of pure hard-rod fluids are rath
well understood by now.

More complex and much richer phenomena occur in
homogeneous hard-rod fluids. These include INinterfaces,
surfaceeffects arising from adsorption at an external wall,
capillary effects arising from spatial confinement. The ma
complication is caused by the simultaneous presence of
isotropy and inhomogeneity in the one-particle distributio
In the case of interest here, with a spatial inhomogeneity
the z direction only, generally the one-particle distributio
has a nontrivial dependence on the center-of-mass coord
z, the polar angleu, and the azimuthal anglew of the rod
orientation. In other words, the loss of translational inva
ance in thez direction may also break the uniaxial symmet
about the nematic director, and the resulting symmetry of
equilibrium distribution may bebiaxial. Taking into account
the simultaneous presence of inhomogeneity and biaxialit
computationally demanding, and workers often resort to
9 © 2000 American Institute of Physics
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7690 J. Chem. Phys., Vol. 113, No. 17, 1 November 2000 van Roij, Dijkstra, and Evans
proximations that simplify or discard either one or both
these features. For instance, Holyst and Poniewierski ass
the ‘‘free’’ IN interface of hard spherocylinders, of lengthL
and diameterD, to be sharp, i.e., a step function atz50,
such that the one-particle distribution is that of the coexist
bulk isotropic phase forz,0 and that of the bulk nemati
phase forz.0. Employing this approximation within an in
homogeneous generalization of Onsager’s theory for b
hard-rod fluids, they show that the IN interfacial tension i
minimum for a tilt angle of about 60°, independent
L/D.12 The tilt angle is the angle between the surface norm
and the bulk nematic director. This result is, however,
disagreement with more recent and extensive calculation
Moore and McMullen,13 Chen and Noorlandi,14 and Chen,15

who employ the same generalized Onsager functional
consider a wider class of variational profiles~smooth, finite
width! for the IN interface. The resulting surface tensions
up to 50% lower than those of Ref. 12, and the most fav
able tilt angle for long rods is found to be 90°, i.e., paral
to the surface.13–15In another study, Poniewierski and Holy
use the generalized Onsager functional to describe a flui
hard rods in contact with a planar hard wall located az
50.16 Here an approximation is made that gives rise to b
distributions forz.(L1D)/2. The surface tensions that fo
low from these approximate profiles, combined with those
the IN interface obtained in Ref. 12, imply that a nema
film with a director parallel to the surface wets complete
the hard wall–isotropic fluid interface as the bulk dens
approaches that of the IN transition.16 Interestingly, this con-
clusion points to an internal inconsistency since the appr
mation for the one-particle distribution does not allow for t
diverging thickness of a wetting film. Moreover, the appro
mation does not allow for the possibility of a biaxial profil
which is a prerequisite for the description of a nematic fi
with a director parallel to the wall. The issue of biaxiality
addressed in a more recent paper by Poniewierski, where
stability of uniaxial profiles close to the wall is studied b
means of a bifurcation analysis.17 The onset of biaxial sym-
metry occurs for profiles corresponding to a bulk dens
15% below that of the coexisting isotropic bulk fluid, dem
onstrating the relevance ofsurfacebiaxiality even for states
that are deep in the isotropic bulk phase. The nature of
uniaxial–biaxial transition~first order or continuous!, or that
of the wetting films, was not addressed in Ref. 17—this
quires a ~computationally costly! higher-order bifurcation
analysis and full numerical calculations of the biaxial pr
files. We are aware of only one study, by Chen and Cui, t
does describe full calculations of density inhomogenei
coupled to biaxiality.18 These authors study a fluid of hard
core semiflexible polymers near a hard wall, using a den
functional that resembles the inhomogeneous Onsager f
tional. They find a very weakly first-order uniaxial–biaxi
transition at a chemical potential substantially below the
bulk transition. They also find a~biaxially symmetric! nem-
atic film whose thickness diverges as bulk IN coexistenc
approached.18 This finding lends very strong support to th
conjecture that the hard wall–isotropic fluid interface is w
completely by a nematic phase with a director parallel to
wall. However, no attempt was made to confirm the conj
Downloaded 26 Aug 2002 to 131.211.35.187. Redistribution subject to A
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ture via surface tension calculations. Complete wetting
quires the wall–isotropic fluid tension to be the sum of t
wall–nematic fluid tension and the IN tension. Testing th
equality requires accurate calculation of all the three surf
tensions, which can be obtained but only by even larger co
putational efforts.

Even less work has been devoted to systems of confi
hard-rod fluids. Here we mention very recent work by Alle
on hard ellipsoids in external anchoring fields,19,20which de-
scribes theoretically determined biaxial profiles and simu
tion results as well. The focus of Ref. 19 is on elasticity a
anchoring of liquid crystals, and that of Ref. 20 on the stru
ture of the IN interface. The work of Refs. 19 and 20 is n
as is the present paper, concerned with phase transition
the confined fluid. Another recent study by Maoet al. is
concerned with hard spherocylinders confined by two pa
lel hard plates at separationH.21 The focus of Ref. 21 is on
the H dependence of the excess free energy, and on the
vation force exerted by the rod fluid on the plates. Their a
is to understand depletion interactions in colloidal system
Attention is restricted to the uniaxially symmetric low
density regime. By analogy with the single-wall results d
cussed above, one expects, as the authors of Ref. 21
point out, a uniaxial–biaxial surface transition to occur
both walls for high reservoir densities. Moreover, by analo
with the behavior of confined simple fluids22,23 and thermo-
tropic liquid crystals,24,25 it is tempting to speculate that th
analog of capillary condensation, i.e., capillary nematizati
should occur in the confined hard-rod system. Such a tra
tion corresponds to a shift of the bulk IN transition to a low
chemical potential or reservoir density, and should oc
provided the walls prefer the nematic phase. The spher
symmetry of the pair interactions in simple liquids, and t
assumed incompressibility of thermotropic liquid crysta
~resulting in homogeneous density profiles!, permit detailed
studies of interfaces between coexisting phases, wet
against substrates, capillary phenomena, and the inter
between them. Most of these investigations are within
framework of either density functional theory or Landau–
Gennes theory. It is our impression that quantitative stud
of the corresponding phenomena in density-driven hard-c
liquid crystals~or lyotropic liquid crystals! have been hin-
dered by the numerical difficulties in determining inhomog
neous biaxially symmetric equilibrium profiles. It is again
this background that we undertake the present study.

In this paper we consider a fluid of hard rods of recta
gular shape with orientations restricted to three~mutually
perpendicular! directions. The bulk IN transition of this
model was considered by Zwanzig in 1963,26 while the
nematic–smectic bulk transition was studied only recently27

Although a comparison of the results of the so-called Zw
zig model with those of models with continuous orientatio
is not entirely straightforward,28 these studies do show tha
the Zwanzig model captures the essential symmetries
mechanisms that underly the bulk phase transitions of m
sophisticated models of bulk hard-rod fluids. Moreover,
simplicity facilitates the~numerical! analysis considerably
Here we show that the determination of inhomogeneous
axial profiles is numerically straightforward, at least with
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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7691J. Chem. Phys., Vol. 113, No. 17, 1 November 2000 Interfaces, wetting, and capillary nematization
Onsager’s second virial free energy functional for the Zw
zig model. This allows us to make a quantitative and con
tent study of several aspects of inhomogeneous hard-rod
ids. We focus, within a single theory, on the IN interface, t
uniaxial–biaxial surface transition and wetting against
single hard wall, and capillary nematization for the fluid b
tween two parallel hard walls. A brief report describing som
of these results has been published elsewhere.29

II. DENSITY FUNCTIONAL FOR THE ZWANZIG MODEL

We consider a system of rectangular hard rods of s
L3D3D ~with L@D! in a three dimensional space spann
by the orthonormal unit vectorsx̂a with a51,2,3 represent-
ing x̂, ŷ, and ẑ, respectively. The position of the center
massr of a rod is continuous, while the allowed orientatio
of the three principal axes of each rod is restricted to dir
tions x̂a . Due to up–down symmetry and the degeneracy
the two short axes of a rod, its orientation can be represe
by the discrete variablea51,2,3, corresponding to the or
entation of the long axis of the rod alongx̂a . We are con-
cerned with the equilibrium one-particle distributionr(r ,a)
[ra(r ) and the phase behavior of this system of rods i
given external potentialV(r ,a)[Va(r ) at a fixed chemical
potentialm, the total volume of the system beingV. To this
end, we consider the grand-potential functional

V@r#5F@r#1 (
a51

3 E dr ra~r !~Va~r !2m!, ~1!

which is minimized by the equilibrium one-particle distrib
tion, the minimal value being the equilibrium grand potent
of the system.30 Here F@r# is the intrinsic free energy
functional,30 which we assume to be given by

bF@r#5 (
a51

3 E dr ra~r !~ ln~ra~r !L3!21!

2
1

2 (
a,a8

E dr dr 8 f aa8~r ,r 8!ra~r !ra8~r 8!, ~2!

whereb51/kBT, with T the temperature andL the thermal
wavelength. f aa8(r ,r 8) is the Mayer function, which for
hard-core interactions equals21 if the particles overlap and
is 0 otherwise. The functional Eq.~2! is the discrete and
inhomogeneous version of Onsager’s famous second v
functional used, e.g., in Refs. 12, 16, 17, 21, and 31 to
scribe bulk, surface and confining phenomena for fluids
freely rotating hard rods. By consideringra(r )5r(z)da3 ,
with d i j the Kronecker delta, Eq.~2! also reduces to the
second virial functional employed by Mulder in his studi
of the bulk nematic–smectic transition of perfectly align
hard rods.32 Moreover, this functional is identical to one use
by Ratón et al. to study the influence of the coupling o
orientational and positional ordering on the nematic–sme
transition.27 In this paper we donot consider crystalline,
smectic, columnar, or other spatially ordered bulk phase
hard-rod systems.33 We restrict our attention to external po
tentials of the typeVa(r )5Va(z). Thus, we only conside
profiles ra(r )5ra(z). The macroscopic interfacial area
the xy plane is denoted byA.
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Defining Sia5D1(L2D)d ia , which represents the
spatial extent in directioni 51,2,3 of a rod with orientation
a, we can can write the Mayer function of the rods explicit
as

f aa8~r ,r 8!52)
i 51

3

Q~ 1
2~Sia1Sia8!2ur i2r i8u!, ~3!

wherer i5r• x̂i andQ(t) is the Heaviside step function. Thi
particular factorization of the Mayer function, which resu
from the combination of particle shape and restricted ori
tations, is the key to the relative simplicity of the calculatio
that follow, compared to those of say spherocylinders w
continuous orientations. Introducing the dimensionless d
sitiesca(z)5L2Dra(z), we can rewrite Eqs.~2! with ~3! as

bF@c#L2D

A
5(

a
E dz ca~z!~ ln ca~z!21!

1
1

2 (
a,a8

E dz dz8Kaa8~z,z8!ca~z!ca8~z8!,

~4!

where we setL35L2D without loss of generality. The ker
nel K is symmetric,Ki j 5K ji , and satisfiesK225K11 and
K235K13 by symmetry, with

K11~z,z8!5
Ei

L2D

Q~D2uz2z8u!
2D

,

K33~z,z8!5
Ei

L2D

Q~L2uz2z8u!
2L

,

~5!

K12~z,z8!5
E'

L2D

Q~D2uz2z8u!
2D

,

K13~z,z8!5
E'

L2D

Q~ 1
2~L1D !2uz2z8u!

L1D
,

with Ei58LD2 andE'52D(L1D)2 the excluded volume
of a pair of parallel and perpendicular rods, respectively.
the limit D/L→0, which we adopt from now on, the diago
nal elementsKaa(z,z8) contribute terms that are smalle
than the off-diagonal elements by a factor of orderD/L.
Thus, theKaa contributions in Eq.~4! will be neglected.
Strictly speaking this approximation is only justified ifca(z)
is of the same order for eacha, i.e., in the isotropic phase
and in the nematic phase not too far above the isotrop
nematic transition density; it is no longer justified in th
perfectly aligned nematic phase. Recognizing th
limD→0Q(D2uz2z8u)/(2D)5d(uz2z8u), the Dirac delta,
and that limD/L→0E' /L2D52, the grand potential functiona
is from Eqs.~1!, ~4!, and~5!, given by

bV@c#L2D

A
5 (

a51

3 E dz ca~z!~ ln ca~z!212bm

1bVa~z!!12E dz~c1~z!c2~z!

1~c1~z!1c2~z!!c̄3~z!!, ~6!

where we introduced
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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7692 J. Chem. Phys., Vol. 113, No. 17, 1 November 2000 van Roij, Dijkstra, and Evans
c̄a~z!5
1

L E dz8QS 1

2
L2uz2z8u D ca~z8!

5
1

L E
z2L/2

z1L/2

dz8ca~z8!. ~7!

The scaling of the dimensionless densityc is such that the
right-hand side of Eq.~6! is independent ofD in the limit
D/L→0, so that the only relevant length isL. The Euler–
Lagrange equations resulting from the stationarity conditi
dV@c#/dca(z)50 can be cast in the form

ln c1~z!5bm2bV1~z!22c2~z!22c̄3~z!,

ln c2~z!5bm2bV2~z!22c1~z!22c̄3~z!, ~8!

ln c3~z!5bm2bV3~z!22c̄1~z!22c̄2~z!.

Below we solve this set of three coupled nonlinear equati
iteratively for fixed external potentialsVa(z) and chemical
potentialsm. In all numerical calculations we use an equid
tant z grid of at least 100 points perL, with some checks
using 200 or 500 points perL which give virtually identical
results. Convergence is assumed when the relative differe
between the results of iterationj and j 11 is smaller than
1027 for all values ofz in the grid; this proves sufficient fo
the required accuracy.

The interpretation of the numerical results and the d
vation of some analytic results is facilitated by consider
three independent combinations ofca(z), viz.

c~z!5c1~z!1c2~z!1c3~z!,

s~z!5
c3~z!2 1

2 ~c1~z!1c2~z!!

c~z!
, ~9!

D~z!5
c1~z!2c2~z!

c~z!
,

or reversibly

c1~z!5 1
3 c~z!~12s~z!1 3

2 D~z!!,

c2~z!5 1
3 c~z!~12s~z!2 3

2 D~z!!, ~10!

c3~z!5 1
3 c~z!~112s~z!!.

Clearly, c(z) represents the total density profile, whiles(z)
and D(z) are orientational order parameter profiles. Th
choice is such that:~i! s(z)5D(z)50 corresponds to a~lo-
cally! isotropic distribution; ~ii ! 2 1

2<s(z)<1 with D(z)
50 is a uniaxial distribution with symmetry axisẑ, where a
positive/negative sign ofs(z) signals preference/depletion o
particles oriented parallel to the symmetry axis;~iii ! 0
ÞuD(z)uÞu2s(z)u describes a distribution of biaxial symme
try, where a positive or negative sign ofD(z) signals pref-
erence for orientations parallel tox̂ or ŷ, respectively. If,
however,D(z)572s(z)Þ0, then the system is still~locally!
uniaxial, but with a symmetry axisx̂ ~minus:c2(z)5c3(z)!
or ŷ ~plus: c1(z)5c3(z)! instead of ẑ. In this case, it is
convenient to introduce the profiless8(z)52 1

2s(z)6 3
4D(z)

and D8(z)5s(z)6 1
2D(z), which then play the role of

uniaxial and biaxial order parameters, respectively. The d
Downloaded 26 Aug 2002 to 131.211.35.187. Redistribution subject to A
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nitions@Eqs.~9! and~10!# are such that the three independe
linear combinations of the Euler–Lagrange equations~8!
read

ln
c1~z!

c2~z!
52b~V1~z!2V2~z!!12c~z!D~z!,

ln
c1~z!c2~z!

c3
2~z!

52b~V1~z!1V2~z!22V3~z!!

2
4

3
c~z!~12s~z!!2

4

3L E
z2L/2

z1L/2

dz8 c~z8!

3~2114s~z8!!, ~11!

ln c3~z!5bm2bV3~z!

2
4

3L E
z2L/2

z1L/2

dz8 c~z8!~12s~z8!!,

which, for fixedbVa(z) andbm, form a closed set of equa
tions forc(z), s(z), andD(z) if one substitutes Eq.~10! into
the left hand-sides of Eq.~11!.

III. ISOTROPIC AND NEMATIC BULK PHASES

We consider first the homogeneous bulk fluid wi
Va(r )50 in the macroscopic volume of interest. The eq
librium profiles are then constant:c(z)5cb , s(z)5sb , and
D(z)50, wherecb and sb are the bulk values of the tota
density and the nematic order parameter, respectively, de
mined bybm, and where the biaxiality vanishes because
symmetry. Inserting these constant profiles into the Eul
Lagrange equations~11! reveals that the first equation is sa
isfied identically, while the second one can be rewritten a

lnS 112sb

12sb
D52cbsb . ~12!

It is easily determined that the isotropic distribution, wi
sb50, is a solution of Eq.~12! at anycb , and that additional
nematic distributions, with 0,sb,1, are possible at suffi-
ciently highcb . The relation between nonzerosb andcb can
be determined numerically from Eq.~12!. A simple estimate
of the minimum density required to obtain possible nonz
values ofsb involves the low-sb expansion: ln@(112sb)/(1
2sb)#.3sb , which equals the right-hand side of Eq.~12! at
the so-called bifurcation densitycb5cIN* 53/2. We stress,
however, that nonzero values forsb are also possible forcb

not too far belowcIN* .
In order to calculate the bulk phase coexistence of thI

and N phase, we consider the chemical potentialm and the
pressurep52V0 /V, whereV0 is the minimal value of the
functional Eq.~6!. Inserting the constant profiles under co
sideration into Eq.~6! and the third one of Eq.~11! yields,
after some algebra involving Eqs.~10!,

bpL2D5cb1 2
3 cb

2~12sb
2!,

~13!

bm5 ln cb1 ln
112sb

3
1

4

3
cb~12sb!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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7693J. Chem. Phys., Vol. 113, No. 17, 1 November 2000 Interfaces, wetting, and capillary nematization
Phase coexistence occurs between the isotropic statecb

5cI ~with sb50! and the nematic state atcb5cN @with sb

5sN.0 determined numerically from Eq.~12!# for which
m(cI)5m(cN) and p(cI)5p(cN). A straightforward nu-
merical calculation yields

cI51.258 224 86,

cN51.915 443 77, ~14!

sN50.914 986 27,

from which the values of the chemical potentialm IN and
pressurepIN at coexistence follow:bm IN50.808 722 7 and
bpINL2D52.313 645. These coexistence data are ident
to those reported by Zwanzig within the second vir
approximation,26 apart from an~irrelevant! shift of ln 3 in the
definition ofbm andbm IN in Ref. 26. For the latter referenc
we note that the numerical value ofpIN is substantially
smaller than the corresponding bulk coexistence pres
pIN

free of infinitely elongated, freely rotating hard spherocyli
ders ~with continuous orientation degrees of freedom!, i.e.,
bpIN

freeL2D514.11.4 Thus we havepIN /pIN
free.0.16. The rea-

son for this substantial difference is that the orientatio
entropy of the Zwanzig model is much reduced due to
restricted number of allowed orientations, which causes~i!
the IN transition to occur at a relatively low density, and~ii !
the orientational order of the coexisting nematic phase to
relatively high. This was also pointed out by Straley.28 Note
that the accuracy of the bulk coexistence data is higher t
that obtained for rods with continuous orientation degree
freedom. The difference arises from the fact that the stat
arity condition Eq.~12! is an algebraic equation, whereas
continuous counterpart is a nonlinear integral equation.3 That
we can obtain very accurate values for bulk coexistence
turns out to be relevant for the study of the interfacial pro
erties and phase behavior to be discussed in subsequen
tions.

IV. THE ISOTROPIC-NEMATIC INTERFACE

We can create a planar interface between the coexis
isotropic and nematic bulk phase by imposing arbitrar
weak external potentialsVa(z), and in this mean-field treat
ment we can determine the structure of the ‘‘free’’ interfa
by calculatingca(z) from Eqs.~8! with m5m IN andVa(z)
50, subject to appropriate boundary conditions. For a su
ciently largezm.0, we impose the coexisting isotropic bu
phase at positionsz,2zm by setting

ca~z!5 1
3 cI ~z,2zm , a51,2,3!, ~15!

with cI given in Eq. ~14!. At z.zm we impose a nematic
bulk phase at total densitycN . There are, however,two es-
sentially different possibilities for the relative orientation
the directorn̂ of this nematic phase: perpendicular (') or
parallel (i) to the interface, where we adopt the conventi
that n̂5 x̂ ~or equivalentlyn̂5 ŷ! is ‘‘parallel’’ to the inter-
face, whilen̂5 ẑ is ‘‘perpendicular’’ to the interface. Thes
two alternatives are represented by the boundary conditi
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i : c2,3~z!5 1
3 cN~12sN!, c1~z!5 1

3 cN~112sN!,

~z.zm!;
~16!

': c1,2~z!5 1
3 cN~12sN!, c3~z!5 1

3 cN~112sN!,

~z.zm!.

It is easily determined that the perpendicular geometry is
uniaxial symmetry, i.e.,s(z)5sN and D(z)50 for z.zm ,
while the parallel geometry is biaxial, i.e.,s(z)52sN/2 and
D(z)522s(z)5sN for z.zm . However, the nematic bulk
phases far from the interface are related by a trivial rotati
and therefore it is convenient to compare the combinati
c(z), s(z), andD(z) of the uniaxial interface (') with c(z),
s8(z), andD8(z) of the biaxial interface (i). These combi-
nations, see below Eq.~10!, are such thats8(z)5sN and
D8(z)50, for z.zm , i.e., the primed and unprimed profile
are identical far away from the interface. In Fig. 1 we p
these particular combinations of the profilesca(z) resulting
from an iterative numerical solution of the Euler–Lagran
equations~8! satisfying the boundary conditions, Eqs.~15!
and ~16!. The dashed and full curves represent the perp
dicular and parallel geometry, respectively. Calculation
the profiles was performed forzm /L510 on an equidistantz
grid of 100 points perL; calculations made using 200 poin
perL or zm /L520 gave indistinguishable results. Good co
vergence was only obtained by inputting very accurate b
values forcI , cN , andsN in the asymptotic regime; poore
estimates caused the interface to ‘‘wander away’’ fromz
50, thereby preventing convergence. It is seen from Fig
that the interfacial width is considerably larger for the pe
pendicular geometry, the profiles of which are relative
smooth and exhibit uniaxial character throughout sin
D(z)[0. In contrast, the case of parallel relative orientati
shows sharper features in all three profiles. There is a w

FIG. 1. Profiles characterizing the isotropic–nematic interface of the Zw
zig hard-rod fluid, as follows from solving the Euler–Lagrange equatio
~8! with m5m IN . The full and dashed curves denote perpendicular a
parallel orientation, respectively, of the nematic director in bulk (z→1`)
to the interfacial normal.c represents the total density,s is the uniaxial
order parameter, andD[0 the biaxial order parameter, for the perpendicu
case.s8 andD8 are the corresponding quantities for the parallel case.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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oscillation in the densityc(z) and a pronounced negativ
biaxiality D8(z) on the isotropic side of the interface. Th
biaxiality becomes slightly positive on the nematic side b
fore decaying quickly to zero. The negative sign ofD8(z) on
the isotropic side signals a local depletion of rods ‘‘sticki
through’’ the interface such that their end points enter
nematic side. This effect, and the equivalent sign chang
the biaxiality, were obtained by Chen for hard rods w
continuous orientations,15 although the amplitude of the bi
axial order parameter calculated in Ref. 15 is smaller. N
that the order parameter profiles8(z) increases much mor
rapidly than the density profilec(z) on the nematic side
This was also found by Chen.15

The calculated equilibrium profiles can be used to de
mine the interfacial tensionsg IN, i and g IN,' by inserting
them back into the functional of Eq.~6! to yield the equilib-
rium valueV0 of the grand potential of the system. Using t
general definition of the surface tension as the surface ex
grand potential per unit area,

g5
V01pV

A
, ~17!

we obtain with the bulk pressurep5pIN the numerical val-
ues

bg IN, iLD5~2.796060.0004!31022,
~18!

bg IN,'LD5~5.066060.0002!31022.

The smaller value, by almost a factor 2, is for the biax
‘‘parallel’’ configuration, which implies that a nematic direc
tor parallel to the IN interface is thermodynamically mo
favorable than a director perpendicular to the interface. T
is consistent with calculations of the IN surface tens
g IN

free(u t) of freely rotating hard spherocylinders as a functi
of the ~continuous! tilt angle u t between the surface norma
and the nematic director as presented in Refs. 12–14.
though these studies reveal a nontrivial, and possibly n
monotonic dependence onu t , they all find that for the angles
with an analog in the present model~parallel:u t590°, per-
pendicular:u t50°! g IN

free(90°),g IN
free(0°).12–14 It is also in-

teresting to compare the numerical value of the lower tens
g IN[g IN, i given in Eq. ~18! with the result g IN

free

[g IN
free(90°) for infinitely elongated freely rotating sphero

cylinders. Without making any parametrization of profil
within the Onsager theory, Chen obtainedbg IN

freeLD50.181
60.002.15 Thus our tension is substantially smaller th
g IN

free. Interestingly, however, the surface excess grand po
tial ratio g IN /g IN

free.0.15 is strikingly similar to the bulk
grand potential ratiopIN /pIN

free.0.16 determined in Sec. III
This is another indication that while the Zwanzig model do
indeed capture some of the essential physics of rod fluid
renormalizes the numerical values of thermodynamic qu
tities compared to models with continuous orientations.

Finally we remark that the fractional accuracy ofg IN,' is
better than forg IN, i—see Eq.~18!. This is due to the rela-
tively smooth uniaxial profiles, which are slightly less sen
tive to the discretez grid than the sharper biaxial profiles
This feature of the numerics is found throughout this wo
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V. THE FLUID IN CONTACT WITH A SINGLE HARD
WALL

In this section we consider a bulk fluid of rods~at chemi-
cal potentialm or bulk densitycb! in contact with a single
wall. Here we restrict attention to a planar hard wall of~mac-
roscopic! areaA, surface normalẑ, positioned atz50. It is
described by the external potential

bVa
(1)~z!5H ` for z,0 ~a51,2!

z,L/2 ~a53!,

0 otherwise,

~19!

wherez refers to the midpoint of a rod. The immediate co
sequence of such a wall is that rods oriented perpendicula
the wall, i.e., rods characterized bya53, cannot approach i
closer than a distanceL/2, thereby giving rise to orienta
tional order close to the wall for any bulk fluid in conta
with it. At low cb one expects this wall-induced orientation
order to preserve the symmetry betweena51,2, i.e.,c1(z)
5c2(z) for z,L/2. This symmetry will be refered to a
‘‘uniaxial’’ after its continuous analogue, the symmetry ax
being the surface normal. In the liquid crystal literature th
symmetry is often called ‘‘random planar.’’ At sufficientl
high cb one could expect that the tendency of rods to al
might break this uniaxial surface symmetry, and thenc1(z)
Þc2(z) for z,L/2. The symmetry close to the wall is the
referred to as ‘‘biaxial.’’ The uniaxial–biaxial~UB! transi-
tion occurs for a value ofcb well below the bulk transition
density cI . We can also enquire about the hard wal
isotropic fluid interface in the limitcb→cI

2 , i.e., the wetting
properties of the fluid of Zwanzig rods in contact with th
hard wall. Both topics are investigated in some detail belo

In order to study the possible onset of biaxiality, w
rewrite the first Euler–Lagrange equation~11! with Va(z)
5Va

(1)(z) as

ln
12s~z!1 3

2 D~z!

12s~z!2 3
2 D~z!

52c~z!D~z!. ~20!

Equation~20! has a trivial uniaxial solutionD(z)50, inde-
pendent ofs(z) andc(z). Nontrivial biaxial solutionsD(z)
Þ0 are possible ifc(z)>cUB(z), where the UB bifurcation
densitycUB(z) follows from a low-D expansion of the loga-
rithm in Eq. ~20! and is given by

cUB~z!5
3

2~12s~z!!
. ~21!

Note thatD(z)50 is the only solution of Eq.~20! when
c(z),cUB(z), i.e., below the local bifurcation density. Thi
feature of the UB bifurcation is qualitatively different from
the bulk IN bifurcation discussed earlier, where nematic
lutions continue to exist at densities~not too far! below the
bifurcation. The difference is caused by the different nat
of the broken symmetry in the two cases, as discusse
detail by Mulder.34 It follows from the third of the Euler–
Lagrange equations~8!, with Va(z)5Va

(1)(z), that c3(z)
50, and hences(z)52 1

2, for 0,z,L/2. Given that2 1
2 is

the minimum value fors(z), and thatcUB(z) decreases with
decreasings(z), we conclude that local biaxialityD(z)Þ0
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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starts to develop ifc(z)51, or c1(z)5c2(z)5 1
2, anywhere

in the interval 0,z,L/2. Inserting this condition in the firs
of Eqs.~8! at z50 we find that the corresponding chemic
potential bmUB512 ln 2.0.31,bm IN . Thus, the wall-
induced UB bifurcation occurs at bulk densitycUB* , which
from Eq. ~13! ~with sb50 since the bulk is isotropic! is
given by

ln
2cUB*

3
1

4cUB*

3
2150 ⇒ cUB* 51.031 1168 . . . . ~22!

It follows that cUB* /cI.0.819, which is similar to the corre
sponding ratio 0.847 for freely rotating, infinitely elongat
spherocylinders, extracted from Poniewierski’s analysi17

Note that the present analysis of the UB bifurcation is id
tical in spirit to that of Ref. 17, but is technically much le
demanding because of the relative simplicity of the Zwan
model.

We now turn attention to numerically determined pr
files c(z), s(z), and D(z) for a fluid of bulk densitycb

,cI in contact with a hard wall. These calculations invol
the iterative solution of Eqs.~11! with a boundary condition
ca(z)5cb/3 for z→` anda51,2,3. The actual calculation
were performed on a grid with at least 100 points perL for
0<z/L<10 or 20, which proved sufficient in all cases.
Fig. 2~a! we showc(z) for several bulk densitiescb,cUB*
~dashed curves! and cb.cUB* ~full curves!; in Fig. 2~b! the
corresponding order parameter profiless(z)(,0) andD(z)
3(>0) are shown. The sharp features atz5L/2 are caused
by the discontinuity ofc3(z), which forcess(z)521/2 for
z,L/2. For allcb,cUB* we findD(z)50 identically, even if
the initial profile of the iterative process is chosen to
biaxial. For cb.cUB* the z interval whereD(z) is nonzero
increases steadily for increasingcb , signifying the film with
in-plane nematic ordering has increasing thickness. The
set of biaxiality is seen to be sharp. Although the biax
character develops spontaneously for any initial profile of
iterative process ifcb.cUB* , it is also possible to enforce
uniaxial symmetry in the iterative process in this dens
regime. By comparing the interfacial tensions of these
forced uniaxial profiles with those of the spontaneou
formed biaxial profiles at the same value ofcb ~or m!, we
find that the latter are always smaller. In the limitcb→cUB* 1

the difference is vanishingly small, while the gradients of t
tensions as a function ofcb are identical~see also Fig. 6!.
Thus, within the numerical accuracy it is tempting to co
clude that the UB transition is of second order. This conc
sion is supported by expanding the logarithm in Eq.~20!. For
0,z<L/2 we find in the limit (cb2cUB* )→01 that D(z)
.A3(c(z)2cUB(z)), with s(z)521/2 andcUB(z)51. As-
sumingc(z) remains smooth in the vicinity of the origin thi
indicates standard mean-field behavior of the order par
eter at the transition. Our result differs from that of Ref. 1
where the UB transition of a system of semiflexible polym
near a hard wall is predicted to be very weakly first ord
Whether this signals a fundamental difference between
two models or whether it reflects a limited numerical reso
tion is not clear at this stage. Note that beyond mean field
do expect to find differences between models with restric
orientations, such as the Zwanzig model, and those with
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restrictions. Due to the absence of a soft mode, the in-pl
correlations in theB phase should be long ranged in the ca
of the Zwanzig model, whereas the soft mode that exists
systems with continuous orientations will, probably, destr
the long-range in-plane order. The UB transition has be
discussed for thermotropic liquid crystals within the conte
of Landau–de Gennes theory; it can be first order
continuous.35,36 Ascertaining the precise nature of this tra
sition in hard-rod models requires further investigation. It
also interesting to consider the similarities and differen
between the present UB transition and the prewetting tra
tion observed for simple fluids in contact with a sufficient
attractive wall.37 The two transitions are similar in the sen
that the surface ‘‘triggers’’ a phase transition~here the onset
of orientational ordering close to the wall; in a simple fluid
thin–thick transition of the liquid-like film close to the wall!
at a lower chemical potential than that required for the c
responding bulk transition~here the IN transition; in a simple

FIG. 2. Profiles of a hard-rod fluid in contact with a single hard wall loca
at z50. The bulk densitycb far from the wall takes valuescb50.25, 0.50,
0.75, and 1.00~dashed curves, uniaxial profiles! and 1.05, 1.10, 1.15, 1.20
and 1.25~full curves, biaxial profiles!. The profiles in~a! represent the total
densityc(z), and in ~b! the orientational order parameterss(z) andD(z).
Note thatD(z)[0 for uniaxial profiles, i.e., forcb,cUB* 51.031 116 8 and
that s(z)520.5, 0<z<L/2, for all values ofcb .
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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fluid the gas–liquid transition!. An important difference be-
tween the two transitions is that prewetting is first order~ac-
companied by a discontinuous jump of the film thickne
from a small nonzero value to a larger finite value!, while the
UB transition is continuous; the biaxial film thickness dev
ops from identically zero to nonzero values. This last poin
crucial for understanding the insensitivity of the UB tran
tion to confinement, as discussed later. Note also that pre
ting is a precursor of the wetting transition that occurs
bulk coexistence,37 whereas the UB transition is not int
mately related to any wetting transition.

It can be seen in Fig. 2~a! that the contact densityc(z
50) is smaller than the bulk valuec(z→`)5cb at low cb ,
but larger forcb>1.1. This signals a change in sign of th
~dimensionless! adsorptionG as a function ofcb , whereG is
defined as

G5
1

L E
0

`

dz~c~z!2cb!. ~23!

In Fig. 3 we plotG as a function ofcb,cI , i.e., in the
regime where the bulk fluid in contact with the wall is is
tropic. The full curve represents the uniaxial regimecb

<cUB* , and the symbols the biaxial regime. The inset of F
3, with the linearcb representation, displays the sign chan
at cb.1.1. The main figure indicates thatG diverges loga-
rithmically as cb→cI

2 . The straight line can be observe
over several decades because of the accurate determin
of cI . It can be fitted byG5A12A2 ln(cI2cb), with fit pa-
rametersA1.20.404 andA2.0.235. The result of this fit is
represented by the dotted line in Fig. 3. Combining the
sults of Figs. 2 and 3 suggests that a nematic film of incre
ing thickness~corresponding to an increasing adsorptionG!
develops ascb→cI

2 . The logarithmic increase ofG implies38

FIG. 3. AdsorptionG of a fluid of hard rods in contact with a single har
wall, as a function of the bulk densitycb approaching~from below! the bulk
isotropic–nematic coexistence densitycI . The straight line indicates a loga
rithmic divergence ascb→cI

2 . This is a signature of complete wetting o
the wall–isotropic fluid interface by a nematic film. The inset shows
results on a linearcb scale, and displays a change of sign ofG for cb

'1.10. Solid lines denote uniaxial profiles and the symbols denote bia
profiles. The dotted line is a fit to the data nearcI—see text.
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that complete wetting of the wall–isotropic~WI! fluid inter-
face by a nematic film should occur atcb5cI , where the
nematic director of the film is oriented parallel to the wa
This complete wetting scenario is confirmed by a calculat
of the contact angleq, defined by

cosq5
gWI* 2gWN,i*

g IN, i
, ~24!

where gWI* 5gWI(cb5cI) and gWN,i* 5gWN,i(cb5cN ;sb

5sN) denote the interfacial tension, defined in Eq.~17!, be-
tween the wall–isotropic fluid phase~with cb5cI! and the
wall–parallel nematic phase~with cb5cN and sb5sN!, re-
spectively;g IN, i is given in Eq.~18!. It is straightforward to
evaluategWN,i* by solving numerically the Euler–Lagrang
equations, with the appropriate boundary conditions, and
serting the profiles into Eq.~6! to obtainV0 . The tension
follows from Eq. ~17! with p5pIN . The result is
bgWN,i* LD5(2.184460.0004)31022. Due to the increas-
ing thickness of the nematic film ascb→cI

2 , we determine
gWI* by extrapolatinggWI(cb) calculated forcb,cI to cI .
The results for several values ofcb are represented by th
symbols in Fig. 4; the dotted line denotes the estimate of
limiting value, which isbgWI* LD5(4.98060.001)31022.
Insertion of these results into Eq.~24! gives cosq50.9999
60.0004. Within numerical accuracy, this result is cons
tent with a vanishing contact angleq, i.e., gWI* 5gWN,i*
1g IN, i , and, thus, with complete wetting of the WI interfac
by the nematic phase. It is also consistent with the profi
displayed in Fig. 5, which reveal the film increasing in thic
ness and exhibiting increasing bulk nematic character acb

→cI
2 . The dashed lines represent the values of the or

parameters of the coexisting nematic bulk phase. Note
extremely small deviations from the bulk coexistence valu
in the thickest film shown in Fig. 5. For clarity we prese
two ~equivalent! sets of linear combinations of the profiles
Fig. 5, viz. c(z), s(z), and D(z) in ~a!, and c(z), s8(z)

al

FIG. 4. The surface tensiongWI of the hard wall–isotropic fluid interface a
a function of the bulk densitycb far from the wall, withcb in the regime
slightly below the bulk isotropic–nematic transition densitycI . The limiting
value ~dashed line! is bgWI* LD5(4.98060.001)31022, which is the esti-
mate of the tension at bulk coexistence.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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52s(z)/213D(z)/4, andD8(z)5s(z)1D(z)/2 in ~b!. The
representation~a! shows directly the relation with the pro
files in the lowercb regime of Fig. 2@wheres(z) andD(z)
are a ‘‘natural’’ choice#, whereas the representation~b! al-
lows for an easier comparison with the parallel~biaxial! bulk
IN interface shown in Fig. 1. Clearly, the representations
the thick nematic films in Fig. 5~b! only show biaxial char-
acteristics (D8(z)Þ0) close to the wall (0,z,L/2) and in
the interface between the film and the isotropic bulk flu
Comparison with all three profiles in Fig. 1 shows that t
latter interface is virtually indistinguishable from the ‘‘free
IN interface between coexisting bulk phases, as expected
the case of complete wetting. Ascb→cI

2 the interface depins
from the wall. Note that the weak oscillation in the dens
c(z) observed at the isotropic side of the IN interface pers
for decreasing thickness of the nematic film.

FIG. 5. Profiles of the interface between a single hard wall and an isotr
hard-rod fluid at a series of bulk densitiescb51.25, 1.258, 1.258 224 5, an
1.258 224 85, showing an intruding nematic film whose thickness dive
as cb→cI51.258 224 86. The curves in~a! and ~b! are different represen-
tations~linear combinations! of the same profiles~see text!. The dotted lines
denote the values of the various order parameters in the coexisting
nematic phase. For the largest value ofcb the interface between the nemat
film and the isotropic bulk fluid@see~b!# mimics closely the free IN inter-
face shown in Fig. 1.
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VI. THE FLUID CONFINED BY PARALLEL HARD
WALLS

We now consider the effect of confinement bytwo par-
allel hard walls on the phase behavior of the hard-rod flu
Denoting the separation of these two walls byH, we char-
acterize the walls by the external potential

bVa
(2)~z!5H ` for uzu.H/2 ~a51,2!

1uzu.~H2L !/2 ~a53!,

0 otherwise.

~25!

Our goal here is to determine the phase diagram of the
tem as a function of the relative slit widthh[H/L andm, the
chemical potential of the reservoir of rods.39 We restrict our
attention tom<m IN , and use the corresponding bulk dens
cb<cI of the isotropic phase to characterize this chemi
potential; the one-to-one correspondence betweenm and cb

is given in Eq.~13! with sb50.
The results presented here are based on the nume

solution of the Euler–Lagrange equations~8! with the exter-
nal potentialVa(z)5Va

(2)(z) given in Eq.~25!. In order to
obtain the surface excess free energyg, the equilibrium pro-
files are again inserted into Eq.~6! to obtain V0 , and g
follows from Eq. ~17! with p5p(cb ,sb50) from Eq. ~13!
and volumeV5AH. In Fig. 6 we show the resulting surfac
excess free energyg as a function ofcb for h56. The dotted
and thin full curves representgU andgB , the surface exces
free energy for profiles with, respectively, uniaxial and bia
ial symmetry close to the wall. These decay toward an~es-
sentially! isotropic phase in the middle of the slit. For suffi
ciently low bulk densities,cb,cUB.1.0313, the only profile
satisfying the Euler–Lagrange equation is of uniaxial sy
metry, andgB is not defined. Whencb.cUB a significant
degree of biaxiality is possible close to the wall, and in th
regime we findgB(cb),gU(cb), indicating that the biaxial
phase is thermodynamically more favorable than the unia

ic

s

lk

FIG. 6. Surface excess free energyg of the uniaxial, biaxial, and capillary
condensed nematic phases of hard-rod fluid confined in a slit of rela
width h5H/L56 and in contact with an isotropic bulk reservoir at dens
cb . The vertical dashed lines atcb5cUB51.0313 andcb5cBC51.246 43
denote the location of the continuous uniaxial–biaxial and the first-or
capillary nematization transition, respectively. Note that bulk coexiste
occurs forcb5cI51.258 224 86, which is the maximumcb displayed.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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phase forcb.cUB . The difference betweengU and gB be-
comes vanishingly small ascb→cUB

1 , and so does the differ
ence between the gradients (]g/]cb) of both curves. The
reason for this is that the biaxialityD(z) vanishes in this
limit and, hence, the difference between the uniaxial a
biaxial profiles. Consequently, the UB transition atcUB is
continuous. This is completely equivalent to the one-w
situation considered in Sec. V. Our numerical estimatecUB

.1.0313 forh56 is actually the smallest value ofcb for
which we distinguish between a uniaxial and biaxial profi
and is therefore an upperbound; it is larger than the ana
cally determined quantitycUB* for a single wall~equivalent to
h→`! by about 0.02%. We regard this small difference b
tweencUB* andcUB at h56 as numerically insignificant, i.e.
the location of the UB transition has not been altered
confinement. Forcb.1.23 another type of profile emerges
a solution of the Euler–Lagrange equations. This profile
characterized by local biaxiality close to the wall, and a d
cay toward an~essentially! uniaxial nematic phase in th
middle of the slit. We associate this profile with the existen
of a capillary condensed nematic phase (C) in the confining
slit. The corresponding surface excess free energygC is rep-
resented by the thick curve in Fig. 6. Atcb5cBC.1.246 43
we find thatgC intersectsgB with the difference in slope
being nonzero. This signifies a first-order capillary nemati
tion transition atcb5cBC. In Fig. 7 we plot the coexisting
biaxial and condensed profilesc(z), s(z), andD(z) at this
transition forh56. For clarity we display the full interva
2h/2<z/L<h/2, although we exploit the mirror symmetr
about the midplanez50 in the actual calculations. It is clea
from Fig. 7 that the profile of theB phase hasD(z)Þ0 close
to the walls, but is virtually isotropic in the central regio
with total local densityc(z)'cBC. In contrast, the capillary
condensed nematic phase has a strong nematic characte
sisting throughout the central region, with a total local m

FIG. 7. Coexisting biaxial and capillary condensed nematic profiles for
hard-rod fluid in a slit of relative widthh5H/L56; the bulk ~reservoir!
density is cb5cBC'1.246. The two walls are atz56H/2. The biaxial
profile is virtually isotropic in the central region, with total local densi
c(z).cBC , while the condensed phase bears strong resemblence to th
existing nematic bulk phase withc(z).cN in the central region, and stron
orientational ordering throughout the slit.
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plane densityc(0)'1.79 slightly below the coexisting nem
atic bulk densitycN . We note that the capillary condense
nematic phase (C) is also biaxially symmetric close to th
wall, but we omit this descriptor for convenience.

The UB and bulk coexistence~BC! transitions were de-
termined for other values of the relative slit widthh, and the
phase diagram constructed as a function ofcb and 1/h is
shown in Fig. 8. Here the UB and BC transitions are rep
sented by the vertical dashed line and the full curve, resp
tively. For allh.1 the UB transition appears to be located
cb.cUB* , theh→` result. Although there are nonsystema
deviations from the single wall value, these are proba
insignificant being at most 0.4%. The capillary nematizat
is more interesting, sincecBC decreases significantly with
decreasingh. Moreover, the first-order capillary nematiza
tion ends, as we shall argue in more detail below, in a c
illary critical point at the critical slit widthh5hc.2.08
60.01; this critical point is denoted by the asterisk~* ! in
Fig. 8. In the limith→` we see that the BC phase bounda
approaches the isotropic bulk coexistence valuecb5cI lin-
early in 1/h. This linear limiting behavior can be derive
from the Kelvin equation, represented by the dotted line
Fig. 8. First we approximate the grand potentialVB of the
biaxial phase at a given chemical potentialm close tom IN ~or
bulk densitycb close tocI! by VB52gWI* A2p(m)V, and
that of the condensed phase byVC52gWN,i* A2p1(m)V.
The factors of two in the surface tension contributions st
from the fact that there are two walls now, andp1(m) is the
pressure of the metastable nematic bulk phase arising fom
,m IN .23 Using the results that cosq51 in Eq.~24!, and that
]p(1)(m)L2D/]m5cb

(1)(m), the density of the~metastable!
bulk system, one obtains from the coexistence condit
VB5VC that the value of the chemical potential at BC c
existence,mBC, satisfies

e

co-

FIG. 8. Phase diagram of hard rods in a slit of relative widthh and in
contact with a reservoir at bulk densitycb . The second order uniaxial–
biaxial ~UB! transition ~dashed vertical line! takes place atcb5cUB*
51.031, while the first-order biaxial–capillary nematization~BC! transition
~full curve! shifts to lowercb with decreasingh and ends in a critical point
~* !. The dotted line is the Kelvin approximation to the BC transition lin
valid at largeh ~see text!.
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m IN2mBC5
2g IN, iLD

h~cN2cI !
, ~26!

which is the Kelvin equation appropriate to the present s
tem. For sufficiently largeh the right hand side of Eq.~26! is
arbitrary small but positive. Hence, one can expand the l
hand side about cI , using (]bm/]cb)ucI

51/cI14/3
'2.1281 from Eqs.~13! and ~14!, to give bm IN2bmBC

'2.1281(cI2cBC). Combining this result with Eq.~26!, and
using the numerical values ofcI , cN , and g IN, i yields the
parameterisation 1/h5A0(cI2cBC), with A0.25.0, for the
Kelvin line shown in Fig. 8. A detailed comparison of th
prediction of the Kelvin equation with the full numerica
results reveals a relative difference inh21 of order 0.05 for
cBC51.2574 ~where h550!, and of order 0.4 forcBC

51.2525~whereh510!; for smallercBC ~or h! the Kelvin
equation becomes increasingly poor. Similar tests of
Kelvin equation have been made for simple fluids in s
pores23 and for a lattice model of the IN transition in finit
films with free surfaces.40

In order to gain more insight into both the large a
small-h regime of capillary nematization we consider an
ternative representation of the transition. This representa
involves the average~dimensionless! number densitŷ c& in
the slit, defined as

^c&5
1

H E
2H/2

H/2

dzc~z!5cb1
G

h
, ~27!

where the adsorptionG is defined as in Eq.~23! but with the
z-integration limits equal to6H/2. Converting the BC phas
boundary of Fig. 8 to thêc&-h21 representation yields th
two full curves in Fig. 9, where the low-^c& curve represents
the coexistingB phase and the high-^c& curve the corre-
spondingC phase. Obviously, the different values of^c& in
the coexisting phases arise from different values ofG, since

FIG. 9. The coexistence curve for the biaxial (B)—capillary condensed
nematic (C) phase transition plotted as a function of average number d
sity ^c& in the slit and relative slit widthh. The crosses (3) on the hori-
zontal axis denote the bulk coexistence densitiescI andcN , and the dotted
lines are large-h approximations for the biaxial and capillary condens
phases~see text!. The two branches of the coexistence curve intersect in
capillary critical point ath5hc52.08.
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cb andh are identical. The two dotted curves represent
rameterisations based on the following large-h approxima-
tions. For theB branch, we havecb→cI

2 and G→2@A1

2A2 ln(cI2cb)#, where the factor of 2 accounts for the co
fined case withtwo walls, and whereA1 and A2 are the fit
parameters for the single wall adsorption shown in Fig.
Combining this with the large-h parameterizationh21

.A0(cI2cb) which follows from the Kelvin equation as dis
cussed above, one obtains^c&→cI12(A11A2 ln(A0h))/h for
the large-h limit of the biaxial branch and this is shown i
Fig. 9 as a dotted curve. For largeh the condensed nemati
branch has the parameterization^c&→cN12GWN,i /h, with
GWN,i.0.135 the adsorption of the coexisting nematic bu
fluid at a hard wall in the parallel director geometry. We s
that for smallh21 the full curves of Fig. 9 are fairly well
approximated by these asymptotic results, especially for
C branch.

We focus now on the small-h regime of Fig. 9, where
the difference of average density between the coexistinB
andC phase becomes progressively smaller and vanishe
h→hc

1 and cb→cBC,c , with hc52.0860.01 and cBC,c

51.18460.001. Such a vanishing density difference impli
that the coexistingB andC phase coalesce in a critical poin
at a critical relative wall separationhc and a critical bulk
density cBC,c . That this is a genuine critical point is con
firmed by an analysis of the spatially integrated uniaxial a
biaxial order parametersS andD, respectively, atBC coex-
istence.S andD are defined by

S5
1

L E
2H/2

H/2

dz s~z!, D5
1

L E
2H/2

H/2

dzD~z!. ~28!

Our results show that not only the values ofG ~and hence
^c&! become indistinguishable in the two phases
h→hc

1 , but also those ofS andD. This implies that the two
phases are fully indistinguishable ash→hc

1 andcb→cBC,c .
The peculiar shape of the coexistence curve in Fig. 9,
particular the re-entrant features on both branches and
curvature near the critical point, shouldnot be interpreted as
indicating nonclassical behavior. The shape reflects the
that the difference in̂c& between the two phases was chos
as the order parameter. Other measures of the adsorption
instanceG as a function ofm at fixedh, lead to more con-
ventional shapes, with mean-field order parameter expon
b51/2. We anticipate, as in the case of simple fluids,23 that
in reality ~beyond mean field! the capillary criticality of the
Zwanzig model should lie in the two-dimensional Ising un
versality class since the order parameter is a scalar and
relations can only diverge in thex–y plane.

For slit widths h,hc no capillary nematization takes
place, and the slit ‘‘fills’’ continuously ascb is increased.
This is illustrated in Fig. 10 forh52, which is ~slightly!
below the critical slit width. In Fig. 10~a! the total density
profile c(z) is shown for various values of the bulk densi
cb in the range 1.05<cb<1.25. Figure 10~b! displays the
corresponding biaxiality profilesD(z). Note that the lowest
value of cb.cUB* so there is already a~thin! biaxial film
present on each wall. This grows in thickness with increas
cb . Although the character of the profiles appears to cha
significantly forcb in the range 1.17,cb,1.18, there is no
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discontinuous change. Forcb,cb* .1.1785, we havec(z
50)'cb andD(z50)50. The two separate regions of su
face biaxiality meet atz50 whencb5cb* , and forcb>cb* it
is seen thatc(z50) increases rapidly, eventually to be of th
order ofcN while D(z50) grows from zero to large value
characteristic of a nematic filling the slit. Consistent with t
absence of a phase transition, we were unable to findtwo
different profiles at the samecb for h,hc .

We note that our calculated phase diagram is consis
with that obtained in Ref. 25, where the effect of confin
ment on a lattice model of athermotropicliquid crystal was
considered. These authors investigated the phase behav
a function of the strengtha of the surface field; our result
correspond to a fixed, large value ofa if one substitutes the
coupling constantJ of their model for the chemical potentia
or cb of the present Zwanzig model.

VII. SUMMARY AND DISCUSSION

We have studied certain aspects of surface phenomen
hard-rod fluids by considering the simple Zwanzig model
the limit of length-to-diameter ratioL/D→`. The rectangu-

FIG. 10. Profiles of~a! total densityc(z) and ~b! biaxial order parameter
D(z) for confined hard rods, with relative slit widthh52, at the indicated
values of bulk reservoir densitycb . Sinceh,hc , no capillary condensation
takes place; rather the capillary ‘‘fills’’ continuously ascb increases.
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lar shape of the rods and their restricted orientations per
within the framework of the second virial free energy fun
tional, a straightforward numerical evaluation of the dens
and order parameter profiles that minimize the function
This is to be contrasted with equivalent treatments
~sphero!cylindrical or ellipsoidal rods with continuous orien
tation degrees of freedom, for which the determination
biaxially symmetric inhomogeneous profiles is numerica
demanding. The present model suffers, of course, from a
of realism compared with freely rotating hard rods, but w
feel that this drawback is compensated, to some extent
the accuracy with which the calculations can be perform
and, therefore, with which phase behavior can be de
mined. Moreover, on the basis of comparisons with previo
density functional results and with recent computer simu
tions of spherocylinders with continuous degrees
freedom,29,41 we argue that many predictions of the pha
behavior emerging from the Zwanzig model actually hold
a wider class of hard-rod systems.

Having made a straightforward but accurate determi
tion of the thermodynamic parameters specifying bulk
coexistence, we study the ‘‘free’’ IN interface. We find that
nematic director parallel to the IN interface is thermod
namically more favorable than a director normal to the int
face, consistent with earlier work on freely rotating ha
rods.12–15We also find significant biaxiality in the vicinity o
the IN interface, similar to that found in Ref. 15 for spher
cylinders. When the fluid of hard rods is in contact with
single planar hard wall, we find a continuous transition fro
uniaxial to biaxial symmetry near the wall at a densitycUB*
significantly below the IN bulk coexistence densitycI . Upon
increasing the bulk densitycb from cUB* towardcI our results
show a continuously thickening nematic film intruding b
tween the isotropic fluid and the wall, the nematic director
the film being parallel to the wall. The thickness of the fil
increases logarithmically with (cI2cb), as is expected for
short-ranged forces. Calculations of the three relevant
face tensions yield a contact angle that is zero, firmly est
lishing the complete wetting scenario, in agreement with p
vious findings for closely related models.16,18

In the final part of our study we consider a hard-rod flu
confined in a parallel slit of fixed widthH. Apart from the
continuous uniaxial–biaxial surface transition already se
in the one-wall system, we find a first-order capillary co
densation ~nematization! transition, provided the relative
plate separationh5H/L exceeds a critical valuehc.2.08.
This first-order transition is found to terminate in a capilla
critical point ath5hc , and forh,hc there is a continuous
‘‘filling’’ of the slit as a function ofcb , the reservoir density
To the best of our knowledge, this is the first prediction
the existence of capillary coexistence and the accompan
capillary critical point in a hard-rod fluid. This prediction ha
been confirmed recently by Gibbs ensemble Monte Ca
simulations of freely rotatingL/D515 spherocylinders.29,41

These results illustrate how rich the entropically driven s
face phase behavior is in such systems.
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