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Abstract

This paper discusses algorithms for labeling sets of points in the plane, where labels
are not restricted to some �nite number of positions. We show that continuously
sliding labels allows more points to be labeled both in theory and in practice. We
de�ne six di�erent models of labeling, and analyze how much better | more points
get a label | one model can be than another. We show that maximizing the number
of labeled points is NP-hard in the most general of the new models. Nevertheless,
we give a polynomial-time approximation scheme and a simple and eÆcient factor-12
approximation algorithm for each of the new models.

Finally, we give experimental results based on the factor-12 approximation algo-
rithm to compare the models in practice. We also compare this algorithm experi-
mentally to other algorithms suggested in the literature.

1 Introduction

Annotating sets of points is a common task to be performed in Geographic
Information Systems. Cities on small-scale maps are shown as points with
the city's name attached, points of altitude usually are small \+"-signs with
a value, and in point pattern analysis [2], points in a plot are labeled with
a sequence number. In (spatial) statistics [13], point sets are also common
in data postings of �eld measurements, scatterplots of principal component
analysis, and variograms, for instance. The ACM Computational Geometry
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Impact Task Force report [3] denotes label placement as an important research
area.

Generally it is assumed that a point label can be seen as an axis-parallel
rectangle; the bounding box of the text. Several algorithms for point feature
labeling have been described in the automated cartography literature and in
computational geometry (far too many to list; for bibliographies see [8,22]).
The more general problem of map labeling includes line feature labeling (roads,
rivers) and area labeling (countries) as well.

Good point labeling has two basic requirements. A label should be placed
close to the point, to which it belongs, and two labels should not overlap each
other. For high quality cartographic label placement, further requirements
have been formulated [12,23]. Given the basic requirements, an algorithm can
try to either label as many points as possible, or �nd the largest possible font
such that all points can be labeled. In general, both of these problems are
NP-hard [17,9].

Nearly all of the existing algorithms for point annotation limit the place-
ment of a label with respect to its point to a �nite number of possible positions.
Algorithms described before usually allow four label positions (the point is at
one of the four corners) [9,21,20], eight (many papers in the automated car-
tography literature), or any constant number [1]. We call restrictions of the
allowed label positions the model that is used by the algorithm. Models that
allow a �nite number of positions per label are �xed-position models.

In this paper we drop the restriction that a label can only be placed at a
�nite number of positions. Instead, we allow any position on the edges of the
rectangle to coincide with the point. Such a model is called a slider model.
We will study how many more labels can be placed with slider models than
with �xed-position models, and to what extent slider models require more
diÆcult algorithms. We generally assume that labels have equal height but
not necessarily the same width. This is a natural assumption if labels contain
text or numbers of a �xed font size. We consider the rectangle that represents
a label to be closed, which implies that labels are not allowed to touch.

Slider models have been used in two previous papers. In Hirsch's paper [11],
repelling forces are de�ned for overlapping labels and computes translation
vectors for them. After translation, this process is repeated and hopefully,
a labeling with few overlaps appears after a number of iterations. This is
completely di�erent from our approach, which is combinatorial. The paper
by Doddi et al. [7] contains a number of labeling problems and algorithms,
each using a di�erent labeling model. One of the problems is solved in a slider
model, where each label is allowed to rotate around the point to be labeled.
The labels must be equal-size squares (or other regular polygons); the objective
is to maximize the label size.

This paper is structured as follows. Section 2 introduces the six models |
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three �xed-position and three slider | that are compared in this paper. We
analyze how many more labels can be placed in one model than another, in
theory.

Point labeling has long been shown to be NP-complete for �xed-position
models [10,17,9,15]. However, this does not imply that label placement is also
hard for slider models. In Section 3 we show that this is the case; we prove
that it is NP-complete to decide whether a set of points can be labeled in the
four-slider model.

In Section 4, we show that the slider models allow a simple factor-1
2
ap-

proximation algorithm that uses O(n) space and O(n logn) time. This was
already known for the �xed-position models [1]. Our algorithm is greedy in
that it always places the label whose right edge is leftmost among the right
edges of all possible label placements. The algorithm uses a kind of generalized
sweep-line in order to select the next label. We remark that our algorithm can
be adapted to labels of varying height, but then the approximation factor does
not hold any more.

In Section 5, we give a polynomial time approximation scheme for each of
our slider models, showing that for any constant � > 0, there is a polynomial
time algorithm that labels a fraction of at least 1 � � of the optimal number
of labels that can be placed. Again, this result was already known for �xed-
position but not for slider models.

In order to support the practical relevance of the greedy algorithm, we do a
thorough experimental analysis in Section 6. We have implemented our greedy
algorithm for the six models. We test it on three data sets from di�erent
application areas. One contains 1000 cities of the USA, another contains a
data posting with 236 measurements, and the third contains 75 points in a
scatterplot near a regression line. Here the labels are the sequence numbers of
the points. We give tables showing how many points are labeled in each model
for a range of font sizes. It appears that the greedy algorithm produces about
10{15% more labels for a slider model than in the corresponding �xed-position
model. This improvement is signi�cant, because more labels are placed in dense
areas. We also compare our algorithm to a simulated annealing algorithm
proposed by Christensen et al. [4] on a sequence of randomly generated point
sets.

2 Comparing Labeling Models

In this section we introduce and then compare some common point-labeling
models. All of the algorithms we present in the following sections aim to label
as many points as possible according to the chosen model.

De�nition 1 (point labeling, size of a labeling, optimum labeling)
Given a set P of n points in the plane, and for each point p 2 P a set of
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Fig. 1. top-, two- and four-slider model

label candidates Lp, a point labeling is a subset P 0 � P and a function �
which maps every point p 2 P 0 to a label �(p) 2 Lp such that no two labels
intersect. The number of labeled points, i.e. the cardinality of P 0, is the size
of the labeling. An optimum labeling labels a subset P 0 � P of maximum
cardinality. We denote the size of an optimal labeling by kopt.

In this paper, we restrict ourselves to axis-parallel rectangular label can-
didates. If we require additionally that a label must be placed such that one
of its edges contains the point to be labeled, we get the following labeling
models.

De�nition 2 (slider models) In the four-slider model, a point p must be
labeled such that any edge of the label contains p. In the two-slider model,
either the label's top or bottom edge has to contain p. In the one-slider or
top-slider model, the bottom edge of a label must contain p.

For an illustration of slider models, see Figure 1. Note that in all of our
models we allow that a label contains other points which then of course cannot
be labeled. Our labels are closed, i.e., we disallow touching. One alternative
would be \half-open" labels as in [21]. In that paper all edges of a label which
are not adjacent to its point are allowed to touch other labels or points. This
would make sure that if every label is scaled down by a small amount with
its point as scaling center, then all labels are disjoint. When labels do not
touch, a map user can more easily match a label and the point to which it
belongs. The algorithms could be adjusted to this additional requirement, but
intensive case studying would be necessary to decide whether a label can be
placed when it touches other labels. The bounds of the following comparison
of models would still hold, but for the sake of simplicity we keep the number
of requirements to a minimum.

One alternative would be to consider labels open and thus allow touching
generally. In this case however, we were not able to keep the greedy algorith-
m's approximation guarantee of 50%, although the bounds of the comparison
below would hold.

We will compare the slider models introduced above to the following �xed-
position models.

Fig. 2. one-, two- and four-position model
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De�nition 3 (�xed-position models) Labeling in the four-position model
requires that the a point p is labeled such that one of the label's corners lies on
p. In the two-position model one of the label's bottom corners must lie on p
and in the one-position model the lower left corner of the label must coincide
with p.

For an illustration of �xed-position models, see Figure 2. Our measure for
comparing the models above is based on optimal labelings of point sets. Some
point sets allow a labeling of the whole set in all models. Such point sets are
not very interesting for a comparison, so we are mainly interested in point sets
where the size of an optimal labeling di�ers from model to model. We de�ne
the ratio of two models as follows.

De�nition 4 (ratio of two models) Given unit square label candidates and
two label-placement models M1 and M2, the (asymptotic) (M1 : M2)-ratio is

lim
n!1

max
P; jP j=n

size(optimal M1-labeling for P )

size(optimal M2-labeling for P )
:

This measure does not take into account aesthetical criteria as listed by
Imhof [12]. Since it is a purely quantitative measure and, moreover, only refers
to square labels, it doesn't apply directly to many practical label placement
problems. However, it gives a fair indication of how many more points can be
labeled in one model than in another in general.

Fig. 3. The ratio between the two- and the
one-position model can get arbitrarily bad for
labels of di�erent size.

1

"

"

Fig. 4. 3/2 is a lower bound on the
ratio between the two- or four-slider
and any �xed-position model

The reason why we only consider unit square labels in the de�nition above
and in the remainder of this section, is that otherwise some of the ratios
between two models would become arbitrarily bad, see Figure 3. All points
depicted there can be labeled in the two-position model, but only one point
can be labeled in the one-position model.

It is worth mentioning that the size of an optimal placement in a slider
model cannot be approximated arbitrarily well by a �xed-position model, no
matter at how many discrete positions a �xed-position label can be attached
to its point. Consider the six points marked by disks in Figure 4. The two
leftmost points have distance " from each other and distance 1 + 2" from the
corresponding rightmost points. These four points can be labeled in any model
that allows a label's corner to lie on the point to be labeled. The cross markers
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in the �gure indicate the discrete positions at which labels for the other two
points must be attached to their points in a given �xed-position model. If
we choose " smaller than half the minimum distance between any two such
positions, then we can place the last two points such that they can be labeled
in the two- or four-slider model, but not in the given �xed-position model. The
grey bars of length 2" centered at the cross markers in Figure 4 indicate the
regions, in which a point could be labeled in the given �xed-position model.
Repeating the group of six points yields a ratio of 3/2 between these models.

In this section a labeling model will always be one of those introduced in
De�nition 2 and 3. All of our comparisons of two such models M1 and M2 are
based on the following strategy. We want to bound the ratio � by which more
labels can be placed in the model with more freedom, say M1. We assume an
optimal label placement inM1. Then we canonically re-label the labeled points
by moving every label into a position that is valid in the more restrictive model
M2. This might cause some labels to intersect. We determine the maximum
number Æleft of M2-labels that intersect the leftmost M2-label l. Then we put
l into a set S of non-intersecting labels, remove l and all its con
icting labels
from the instance and repeat until no labels remain. At the end of the process,
S contains at least k1opt=(Æleft+1) non-intersecting M2-labels, where k

1
opt is the

size of the assumed optimal M1-placement. The size of S is a lower bound for
the size of an optimal M2-placement, thus Æleft + 1 is an upper bound for the
(M1 : M2)-ratio. Lower bounds for the ratio � are obtained by giving examples
of arbitrary size, for which any M2-placement is worse by a certain factor than
some M1-placement.

Since we do not want to compare every two models in isolation, we de�ne
two groups. They consist of pairs of models where one model can be 
ipped
and slid into the other, respectively.

De�nition 5 (
ipping) Given two di�erent label placement models M1 and
M2, and an axis-parallel vector v of unit length, model M1 can be 
ipped into
model M2 by v if any label position in M1 that is not allowed in M2 can be
translated by v into a valid M2-label position.

Example 6 The two-slider model can be 
ipped into the top-slider model by
(0; 1). Analogously, the four-position model can be 
ipped by (0; 1) into the
two-position model, while the two-position model can be 
ipped by (1; 0) into
the one-position model.

Lemma 7 For any two labeling models M1 and M2, for which M1 can be

ipped into M2, the (M1 : M2)-ratio is 2.

PROOF. Consider an optimalM1-labeling of an arbitrary instance of points.
Let M2 be a model into which M1 can be 
ipped by a vector v. Then the
canonical re-labeling mentioned above means translating by v all M1-labels
that are not valid in M2.
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l2

b1

b2

l1

1

=

l2

l1

b1 b2=

Fig. 5. If M1 can be 
ipped into M2 then the leftmost M2-label l2 (solid edges)
cannot intersect more than one M2-label b2. (The corresponding non-intersecting
M1-labels are shaded.)

We can assume that the vector by which we 
ip is (0; 1); the case (1; 0) is
symmetric. This means that an M2-label is either identical to the correspond-
ing M1-label or lies one unit above it. Let l1 be the M1-label corresponding to
the leftmost M2-label l2. We show that l2 can intersect at most one M2-label
whose M1-counterpart is not in con
ict with l1. As indicated above, this gives
us an upper bound of 2 for the (M1 : M2)-ratio �.

Suppose that l2 is identical to the corresponding M1-label l1; the other case
is symmetric, see the left and right part of Figure 5, respectively. Let I2 be
the set of all M2-labels intersecting l2 and let I1 be the set of their mutually
non-intersecting M1-counterparts. Then all labels in I2 must contain the lower
right corner of l2; otherwise, either their M1-counterparts intersect l1, or l2 is
not leftmost. This however forces all labels in I1 to contain a point at unit
distance below that corner (marked by a cross in Figure 5) in order not to
intersect l1. Hence jI1j = jI2j � 1 and � � 2.

In order to establish the lower bound of 2 for �, just take the four corner
points of an axis-parallel square of edge length less than one. For all models
M1 that we are considering and that can be 
ipped into a model M2 (see
Example 6), exactly twice as many of these points can be labeled as in the
corresponding M2-model. An instance can consist of arbitrarily many of such
groups of four points, separated suÆciently. 2

De�nition 8 (sliding) Given two di�erent label placement models M1 and
M2, and an axis-parallel vector v of unit length, model M1 can be slid into
model M2 along v if every label position in M1 can be translated by �v into a
valid M2-label position for some � 2 [0; 1]

Example 9 The four-slider model can be slid into both the two-slider and the
top-slider model along (0; 1). Along (1; 0) we can slide the two-slider into the
four-position model and the top-slider into both the two- and the one-position
model. Note that the four-slider model cannot be slid into the four-position
model.

Lemma 10 Let M1 and M2 be two (di�erent) labeling models, and assume
that M1 can be slid into M2. Then we have 2 � � � 3 where � is the (M1 : M2)-
ratio.
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PROOF. Again we consider an optimalM1-labeling of an arbitrary instance.
We assume that we can slide M1- into M2-label positions along (0; 1); the
case (1; 0) is symmetric. We canonically slide all M1-labels upwards until we
arrive in an M2-label position. We show that the leftmostM2-label l2 can then
intersect at most two other M2-labels. This yields the upper bound of 3 for �.

l2 A2

A1

Fig. 6. If M1 can be slid into M2 then the leftmost M2-label l2 cannot intersect
more than two M2-labels.

M2-labels intersecting l2 can only lie within area A2 in Figure 6 since l2 is
leftmost. The corresponding M1-labels are restricted to area A1. Every label
in A1 must contain one of the three grid points in the interior of A1 marked
by crosses in Figure 6. Thus A1 can contain only three non-intersecting M1-
labels including the M1-counterpart of l2. It follows that l2 cannot intersect
more than two M2-labels, and hence that � � 3.

p q

Fig. 7. IfM1 can be slid intoM2 then the (M1 : M2)-ratio is at least 2. Here we chose
M1 to be the two-slider model (shaded labels) andM2 to be the four-position-model
(solid edges).

For a lower bound of 2 refer to Figure 7. There are two rows of n points.
Two neighboring points of one row have x-distance 1� 1

n�1
+ " and y-distance

Æ, where 1
n�1

> Æ > " > 0. The upper row is a copy of the lower, shifted by
(Æ=2; Æ).

Comparing the top-slider model to the one- or two-position model is easy;
just consider one row. In order to compare the four- to the two-slider model,
the �gure must be rotated by 90 degrees. So let us focus on comparing the
two-slider to the four-position model here.

It is obvious that all points can be labeled in the two-slider model. For the
four-position model we can argue as follows. Whenever a four-position label is
attached to a point which (like p) does not lie at the extreme left or right, then
either the label contains at least one other point, or there is a point (like q)
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in the vicinity whose label is then forced to contain at least two other points.
2

Note that the proof above can be simpli�ed for closed labels. We chose to
give a proof that carries over to the case of open labels.

Lemma 11 Let �4S;4P be the ratio between the four-slider and the four-position
model. Then 2 � �4S;4P � 4

PROOF. In order to show the upper bound for �4S;4P , we assume an optimal
four-slider labeling and canonically re-label the points as follows. We slide a
label along its point either downwards or to the right until the point lies in
one of the four corners. We use similar arguments as in the proof of Lemma 10
to show that the leftmost label l4P in the resulting instance can intersect at
most three other four-position labels. Such labels can only lie within area A4P

in Figure 8 since l4P is leftmost. Let L4S be the set of the corresponding non-

l4P

A4P

B
A4S

Fig. 8. The leftmost four-position model label l4P cannot intersect more than three
other four-position model labels.

intersecting four-slider labels. Labels in L4S can lie at most one unit to the
left or above their four-position counterparts. Thus they are restricted to area
A4S in Figure 8. Let l4S be the four-slider counterpart of l4P . Since l4S was
slid either down or to the right (or not at all), it follows that l4S contains the
upper left corner of l4P . Consequently, no other label in L4S can intersect the
unit square region left and above the upper left corner of l4P , denoted B in
the �gure.

The interior of A4S�B contains four grid points, and can therefore contain
at most four non-intersecting labels of L4S including l4S itself. It follows that
l4P cannot intersect more than three four-position labels and that �4S;4P � 4.

The lower bound of 2 is shown as in the proof of Lemma 10, see Figure 7.
2

Lemma 12 Let �1S;1P be the ratio between the top-slider and the one-position-
model. Then 21

4
� �1S;1P � 3

PROOF. With Lemma 10 we get 2 � �1S;1P � 3. The example in Figure 9
raises the lower bound to 21

4
. 2
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Fig. 9. Sliding top-slider labels (shaded) to the right into one-position labels (solid
edges) can create 9-cycles in the resulting con
ict graph of one-position labels.

422
1
4
� �1S;1P � 3

2

2

2 � �1S;2P � �1S;1P

2 � �2S;4P � �1S;1P

2 � �4S;1S � 3 2 � �4S;4P � 4
2 � �4S;2S � �4S;1S

2

2 � �1S;4P � �1S;1P

Fig. 10. Ratios between some label placement models. From top to bottom:
the one-position, two-position, top-slider (left), four-position (right), two- and
four-slider model

Figure 10 summarizes our results. In some cases we can replace an upper
bound of 3 by the ratio between two other models like in the case of the
top-slider model: The ratio �1S;2P between the top-slider and the two-position
model is bounded from above by the ratio �1S;1P between the top-slider and
the one-position model since the two-position is more general than the one-
position model.

The reason for �2S;4P � �1S;1P is the following. We show �2S;4P � �1S;2P and
then argue as above. In order to establish a relationship to the ratio between
the one-slider and the two-position model, we take an arbitrary instance and
put a copy of every point at unit distance below. (To avoid trouble with
an original point at the same spot, we can move all copies upwards by an
in�nitesimal amount.) The optimal solutions in the one-slider and the two-
position model on this instance correspond one-to-one to optimal two-slider
and four-position solutions of the original instance, respectively. This trick is
also used to generalize our algorithms in the following sections from top-slider
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to two-slider labeling.

3 NP-completeness

The complexity of labeling points with axis-parallel rectangular labels from
a �nite set of label candidates is well established in the literature.

Independently, Marks and Shieber, and Formann and Wagner showed that
it is NP-hard to decide whether a set of points can be labeled with squares
in one of four positions [17,9]. The allowed positions are identical to those of
our 4-position model. Marks and Shieber note that their proof also holds for
models with an in�nite number of positions like that of Hirsch [11], where a
label must touch a circle of small radius centered on the point to be labeled.
However, their proof cannot be used for our slider model. Fowler et al. [10],
and Knuth and Raghunathan [15] have proved the NP-hardness of two other
labeling models.

Recently, Iturriaga and Lubiw have proven that it is NP-hard to decide
whether a set of points can be labeled with what they call left-right sliding
labels [14]. Their model is similar to our 2-slider model except that they allow
labels to touch both labels and sites of other labels. In their proof they use
axis-parallel rectangular labels of varying size.

Slider models are a generalization of those �xed-position models that force a
label to touch the point to be labeled. However, this observation does not yield
the NP-hardness of the slider models, since it is not clear how an instance for
a �xed-position model can be reduced to an instance of a slider model. Recall
for example that the NP-completeness of 0-1-integer programs does not apply
to their relaxation. Therefore we show that placing unit square labels in the
4-slider model is NP-complete.

Theorem 13 It is NP-complete to decide whether a set of points can be labeled
with axis-parallel unit squares in the 4-slider model.

PROOF. The problem is in NP for the following reason. We can guess (i.e.
compute non-deterministically) a permutation of the points and an integer
between 1 and 4 for each point. This number indicates which edge of a label
will be attached to the point. Then we go through the points according to the
permutation and check for each point whether we can label it such that its
label touches it on the chosen edge | given the labels we have already placed.
If the new point can be labeled, we move its label into a canonical position:
Depending on whether the pre-computed edge is horizontal or vertical, we
slide the label along this edge as far left or down as possible. If all points can
be labeled this way, we accept. Otherwise we discard the subset. The reason
why we can reject in this case is the following. If all points could be labeled,
we could push all labels in their canonical positions and name a permutations
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of the points, such that the procedure outlined above would produce the same
canonical label placement.

The proof of the NP-hardness is by reduction from planar 3-SAT. Lichten-
stein showed that this restriction of 3-SAT is NP-hard [16]. Our proof follows
Knuth and Raghunathan's proof of the NP-hardness of the metafont labeling
problem [15]. We encode the variables and clauses of a boolean formula � of
planar 3-SAT type by a set of points such that all points can only be labeled if
� is satis�able, i.e. if there is a variable assignment such that all clauses eval-
uate to true. The advantage of using a planar 3-SAT formula as opposed to
the general type is the following. In planar 3-SAT, the variables can always be
arranged on a straight line such that they are connected by non-intersecting
three-legged clauses, see [15, Figure 5].

Fig. 11. Label placements en-
coding true and false.

Fig. 12. Zig-zagging cluster patterns model a vari-
able; the labels its Boolean value.

The main observation leading to our proof is the following. Given a cluster
of four points (the corner points of a square with edges slightly longer than 1/2
and rotated by a small angle against the axes), there are two fundamentally
di�erent ways to label these points, see Figure 11. Under the condition that
all points have to be labeled, the points can only be labeled as on the left side
(which allows some sliding) or on the right side (where the labels are nearly
�xed) of Figure 11. Note that is impossible that some points are labeled as on
the left and others as on the right side. This gives us a means to encode the
Boolean values of a variable in the planar 3-SAT formula � that we want to
reduce to a set of points.

The building blocks (or \gadgets") of our reduction are the clusters for
variables, three-legged \combs" for clauses, and adapters connecting variables
to clauses. In order to be able to connect a variable to all clauses in which
it occurs, we model it not by one but by several four-point clusters in a zig-
zag pattern as shown in Figure 12. Then still all points have to be labeled
according to one of the two schemes mentioned above.

We model the clauses by point sets which resemble large combs with three
legs, see Figure 13. The fourth column of points from the right and the left
can be repeated as often as needed to reach the three variables belonging to
the clause. The legs can be extended by duplicating the bottom-most row of
points. Each leg is connected to a variable by an adapter. An adapter consists
of three points a, b, and c. There are two types of adapters, see Figure 15
and 16. Which type is chosen depends on whether the variable is negated in
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the instance has O(m2) points. Their position can certainly be computed in
polynomial time. 2

4 Greedy approximation algorithms

In this section we describe algorithms for point feature labeling in the slider
models. They apply to labels of �xed height but arbitrary width. We describe
an O(n logn) time algorithm for the slider models that approximates an opti-
mal solution in the following sense. If the maximum number of labels that can
be placed is kopt, then our algorithm places at least kopt=2 labels: a factor-1

2

approximation algorithm. In most data sets, however, we expect to come much
closer to the optimum.

For the �xed position models, a simple O(n logn) time, factor-1
2
approxi-

mation algorithm was described recently by Agarwal et al. [1]. We obtain the
same result for the slider models. We'll only describe the most general four-
slider algorithm; it is an extension of the top-slider and two-slider algorithms.
It is based on a greedy strategy. For convenience we'll �rst describe the al-
gorithm with labels allowed to touch, unlike in the previous sections where
labels were considered to be closed. Later we show that simple adaptations
can be made to obtain non-touching labels.

Given a set of points with labels that have already been placed, and a set
of points that don't have a label yet, de�ne the leftmost label to be the label
whose right edge is leftmost among all possible labels of unlabeled points.
So by de�nition, the leftmost label doesn't intersect any label that has been
placed.

Lemma 14 Given labels of �xed height and any of the slider models, the
greedy strategy of repeatedly choosing the leftmost label �nds a labeling of at
least half the number of points labeled in an optimal solution.

PROOF. Given a set P of points and a sliding model M, let Lopt be an
optimum M -labeling. Let Lleft be the set of labels computed by the greedy
strategy. The set Lleft is maximal in the sense that no label can be added to
it without intersecting another label in Lleft. So any label in Lopt must either
be in Lleft as well, or intersect some label in Lleft, whose right edge is at least
as much to the left. Charge each label in Lopt � Lleft to a label in Lleft that
lies as least as much to the left and intersects it. For any label in Lopt \ Lleft,
charge it to itself.

We claim that any label in Lleft is charged at most twice, from which the
lemma follows. For labels in Lopt \ Lleft the claim is obviously true. For any
other label l 2 Lleft, observe that a label of Lopt that charges l must intersect
the closed right edge of l. Since all labels have unit height, and the labels
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in Lopt don't intersect each other, there can only be two labels of Lopt that
intersect the closed right edge, and hence, charge l. 2

A brute-force algorithm for this simple strategy would need O(n3) steps.
In order to achieve an O(n logn) time bound, we must use some common
geometric data structures.

Let fp1; : : : ; png be the set of points that has to be labeled. The label of
pi is denoted li, and the reference point of a label is its lower left vertex. The
possible positions of the reference point of a point pi are represented by four
line segments. Two are horizontal, h2i�1 and h2i, and two are vertical, v2i�1

and v2i. Their position is exactly the position of the edges of the label li if it
were placed left and below pi. The width of li is denoted wi, and the height
is 1. We can always scale the y-coordinates to this situation.

If a label li has been placed, then no reference point position inside li is
possible. The same holds for reference points inside the rectangle l0i precisely
one unit below li (since any label extends one unit above its reference point).
The open rectangle that exactly covers li and l0i and their mutual bounding
edge is the extended rectangle ~li. Since labels are placed from left to right, no
reference point positions in nor to the left of ~li will still be accepted by the
algorithm. Suppose a subset of the points has already received labels by the
algorithm.

Fig. 17. Frontier of the placed labels (dark grey) and their lowered copies (light
grey).

The right envelope of all extended rectangles ~l for all labels l outlines all
reference point positions that are impossible, or cannot occur any more, see
the bold line in Figure 17. We call this right envelope the frontier and denote
it by F .

To determine the next leftmost label, we only have to consider the frontier
F and the segments h2i�1; h2i; v2i�1, and v2i of the points pi to the right of
F that don't have a label yet. Given a horizontal segment h and the frontier
F , there are three possibilities: (i) h lies completely left of F . Then h can be
discarded; a point on it cannot be a reference point for a label that doesn't
overlap another label. (ii) h lies completely right of F . Then the leftmost point
on h is a candidate for the next leftmost label. (iii) h intersects F . Then a point
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Hright Hint Vint;right

Fig. 18. The sets Hright, Hint, and Vint;right. The dashed lines in the middle picture
separate the segments of Hint that are in di�erent red-black trees Ti.

just right of the intersection point is the candidate. For a vertical segment v,
a similar situation occurs. If v lies left of F , it can be discarded; if v lies right
of F , any point on v can be chosen; and if v and F intersect, then any point
on v right of F can be chosen as a candidate.

Let H be the set of all horizontal segments that represent reference points
of the labels. Similarly, let V be the set of the corresponding vertical segments.
Let Hright � H be the subset of all horizontal segments that lie completely
right of F , see Figure 18. Let Hint � H be the subset of all horizontal segments
that intersect F . Let Hleft � H be the subset of all horizontal segments that lie
completely left of F (these cannot give a valid label any more). Let Vint;right �
V be the subset of all vertical segments that contain at least some point right
of F .

To maintain the frontier and the candidates for the best reference point
eÆciently, we need some data structures. Some of the data structures are
used to �nd the next leftmost label; other data structures are only used to
update the former ones eÆciently. The data structures are red-black trees T ,
heaps H, and priority search trees P [18]. These are also described in standard
textbooks on algorithms [5] and computational geometry [6].

4.1 Leftmost label query structures

We use three data structures to �nd the leftmost label position among the
ones represented by Hint, Hright, and Vint;right. They are:

1. For each segment in Hright we store the x-coordinate of its right endpoint.
This corresponds to the right edge of a label whose reference point is the
left endpoint of the segment. These values are stored in a heap Hright,
where the root stores the minimum.

2. The subset Hint is stored as follows. For each vertical segment fi of F , we
maintain a red-black tree Ti with the segments inHint that intersect fi (see
the middle picture of Figure 18). These are stored in the leaves sorted on
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y-coordinate. With each leaf we also store the width of the corresponding
label. We augment each red-black tree by storing at each internal node
the minimum width label in the subtree of that node [5]. We use a heap
Hint to have fast access to the segment in Hint that allows the leftmost
label placement. Hint stores for each Ti the sum of the x-coordinate of
fi and the minimum width of the segments in Ti. Thus the root of Hint

corresponds to the leftmost label among the labels represented by Hint.
3. For the vertical segments in V , we don't maintain the set Vint;right but

some set V 0 for which Vint;right � V 0 � V . The x-coordinate of each seg-
ment of V 0 is stored in a heap HV . The heap may return as the minimum
some segment that lies completely left of F , so it may also contain la-
bels that cannot be placed. After extracting the minimum from HV , we
test whether it is in Vint;right. If not, we discard it and extract the next
minimum from the heap, until we �nd one in Vint;right.

We query the three heaps described above. Among their answers, one cor-
responds to the leftmost label. This is the label we place.

4.2 Update assistance structures

After the leftmost label has been determined, we must update the frontier
F and several of the data structures described above. This is not so easy.
We'll use some more data structures that help to do the updating after the
frontier has changed. Let fnew be the right edge of the extended rectangle ~l of
the newly placed label l. The new frontier F is the right envelope of the old
frontier and fnew, see Figure 19.

fnew

T1

T2

T3

T4
T5

T6

T7

T8

T1

T2

T9

T10

T11

T7

T8

Fig. 19. When the fat horizontal segment s from Hint is chosen, the frontier becomes
the right envelope of fnew and the old frontier. The new label is dark grey. The grey
range (light and dark) is the one with which queries in the priority search trees are
done.

1a. To determine which segments move from Hright to Hint or Hleft when the
frontier changes, we use a priority search tree Pleft on the left endpoints
of segments in Hright. After placing a label, we query Pleft with the region
left of fnew (grey in Figure 19) to locate the left endpoints of all segments
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that are no longer in Hright. We delete these endpoints from Pleft, and we
delete the corresponding segments from the heap Hright. For each deleted
segment we test whether its right endpoint is right of the frontier. If so,
that segment is in Hint, and we insert it in the data structures for Hint.
If not, the segment is in Hleft and can be discarded.

2a. To determine which segments move from Hint to Hleft when the frontier
changes, we use a priority search tree Pright on the right endpoints of
segments inHint. After placing a label, we query Pright with the region left
of fnew (grey in Figure 19) to locate all right endpoints of segments that
have moved from Hint to Hleft. Then we delete the entries corresponding
to these segments from the trees Ti, from the heap Hint and from Pright

itself.
When the frontier changes, we must also reorganize the red-black trees

andHint as a whole. Recall that we use a red-black tree Ti for each vertical
segment of F . At most three new vertical segments can arise when the
frontier changes, but many more vertical segments may cease to exist.
We use the trees of the destroyed vertical segments of F to assemble the
at most three new red-black trees. This is done by the operations Split
and Concatenate, which are standard for red-black trees. In Figure 19
the trees T3, T4, T5, and T6 are reorganized to the new trees T9, T10, and
T11. The heap Hint is updated by removing the value of each destroyed
tree, and by inserting the value of each new tree.

3a. Due to the lazy deletion of segments from HV ,we don't need any addi-
tional data structures to update the heap on the vertical segments. How-
ever, we need to decide whether an extracted minimum from the heap
really is in Vint;right. We use an augmented red-black tree TV for this test.
The leaves of this tree store the vertical segments of the frontier sorted
from bottom to top. Each leaf also stores the x-coordinate of its segment.
Each internal node is augmented with a value that represents the mini-
mum x-coordinate in its subtree. For any query y-interval, a search in TV
reports the minimum x-coordinate of the frontier in this y-interval.

4.3 The algorithm

While there are still segments in any of the heaps Hint, Hright, or HV , do
the following steps:

(1) Let v be the vertical segment that corresponds to the minimum of HV .
Search with v in the augmented red-black tree TV to see if v has some
point right of F . If not, remove v from HV and repeat this step.

(2) Determine the smallest among the minima of the three heaps Hint, Hright,
and HV . Remove this minimum from its heap. Let li be the label position
of point pi corresponding to this minimum. Choose li as the next label
to be placed.

(3) Determine fnew, the right edge of the extended rectangle ~li. Update the
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frontier F with fnew. Update the augmented red-black tree TV (from 3a.)
with fnew.
Search with the region horizontally left of fnew (grey in Figure 19) in

the priority search trees Pleft and Pright (from 1a and 2a) and update
the structures Hright (from 1), Pleft(from 1a), Hint and Ti's (from 2), and
Pright (from 2a) as explained in the description of these structures.

(4) Remove all other reference segments corresponding to pi from the data
structures, in which they occur.

4.4 The analysis

The basic structures used by the algorithm are heaps, red-black trees, aug-
mented red-black trees, and priority search trees. All of these structures re-
quire O(n) space for a set of size n. Also, these structures can be updated in
O(logn) time per insertion or deletion, or extract-min for heaps. Red-black
trees allow Split and Concatenate in O(logn) time. The queries on the
red-black trees take O(logn) time, and the queries on the priority search trees
take O(k + logn) time, where k is the number of points found in the query
range.

The algorithm's runtime of O(n logn) follows from the following observa-
tions. Any vertical segment fnew creates one vertical edge in the frontier F ,
and shortens at most two of them. It follows that throughout the whole algo-
rithm, at most 3n� 2 di�erent vertical edges appear in F . Therefore, at most
3n�2 vertical edges can be destroyed in the whole algorithm (although many
can be destroyed when one vertical segment fnew is added to the frontier).
This bounds the total number of red-black trees Ti (from 2) that can appear,
the total number of Split operations, and the total number of Concate-
nate operations by O(n). Since Split and Concatenate operations take
O(logn) time each, at most O(n logn) time is spent on splitting and concate-
nating. The augmented red-black tree TV (from 3a) can also be maintained in
O(n logn) time for the same reasons.

For each new label placed, one query is done on each of the two priority
search trees Pleft and Pright. Such a query takes O(k + logn) time, where k is
the number of points in the range. These points are always deleted from the
priority search tree, so the algorithm cannot spend time on reporting these
points again later in the algorithm. The priority search trees are initialized
with one point for each horizontal segment, and we never add more points to
them. So in total, at most O(n logn) time is spent for initializing, querying
and updating the priority search trees.

So far we have only discussed the placement of labels that were allowed to
touch at the boundaries, that is, the disjoint placement of open rectangles. How
can the ideas be adapted to incorporate closed rectangles as labels? Firstly,
we let the frontier represent a closed region where reference points of labels
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cannot lie any more. But the real problem is that we cannot choose and place
the leftmost label, because this is not well-de�ned in the slider model with
closed rectangles. The solution is to make a distinction between a placement
of a rectangle at some position with x-coordinate �x and a placement at some
position with x-coordinate arbitrarily close to �x, but still strictly to the right
of it. Such a distinction can be made by using a symbolic value � > 0 that is
arbitrarily close to 0. In case of ties in x-coordinates of labels in the heap, one
of them may have been moved symbolically to the right, which resolves the
tie. If neither or both labels have been moved symbolically, there is a real tie
and we can choose either label as the leftmost. When the algorithm �nishes
and a set of labels has been selected, then the actual positions of these label
can be computed.

We conclude:

Theorem 15 Given n points in the plane, and for each point a rectangular
label with �xed height and some given width. Then for each of the �xed-position
and slider models, there is an O(n logn) time and linear space algorithm which
places at least half the maximum number of labels.

Remark 16 For �xed position models, the algorithm can be implemented us-
ing only one priority search tree and one heap. We initialize the priority search
tree with the reference points of all label positions. In the heap, we store the
sum of x-coordinate and label width for each reference point. When the la-
bel corresponding to the heap's minimum is chosen, we query in the priority
search tree with the appropriate range to �nd the reference points that are no
longer valid. We remove the entries of these reference points from heap and
priority search tree, and repeat by selecting the minimum from the heap.

5 A Polynomial Time Approximation Scheme

In this section we present schemes for approximating the number of points
we can label with unit height labels in all slider models. First we will only
consider the top-slider model and then show how these results can be gener-
alized to polynomial time approximation schemes for the two- and four-slider
model.

5.1 Top-slider model

Given a constant " 2 (0; 1) we show that there is an algorithm that �nds
a top-slider labeling of at least (1� ") � kopt points, where kopt is the number
of labeled points in an optimal top-slider solution. The algorithm has running
time O(n4="2).

We use line stabbing to split the problem into smaller units as suggested
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in [1]. We stab the unit height labels with horizontal lines of distance strictly
greater 1 such that each label is stabbed by exactly one line. This can be done
in O(n logn) time [1] and gives us a partition of the set of input points P into
disjoint sets P1; : : : ; Pm, where Pi contains all points whose label intersects
the i-th line, and m is the number of stabbing lines.

If we want to obtain an approximation ratio better than 1=2, we cannot
a�ord to discard every second subset Pi of input points. Instead, we have to
look at groups of t consecutive subsets. For 1 � i � t+ 1, let

P i = P �

bm�i

t+1
c[

j=0

Pi+j�(t+1)

be the set of points that we get from P if we discard every (t + 1)-st subset
starting with Pi. This makes sure that if we compute the optimal solution
for t consecutive lines, then we get an approximation for P i since solutions
for its blocks of t lines do not interfere with each other. The pigeon hole
principle guarantees that one of the t + 1 sets of type P i has an optimal
solution of size at least t

t+1
� kopt. In [1] this approach was taken, where the

optimal solution for the t-lines problem was solved by dynamic programming.
In the case of sliding labels one cannot take this approach because the number
of candidate label positions in the discretization is superpolynomial. We will
still arrive at a polynomial time approximation scheme for the original problem
by approximating the t-lines subproblem.

Suppose we �nd a k
k+t�1

-approximation for the t-line problem, then we can

approximate the original problem by a factor of 
 = k
k+t�1

� t
t+1

, which depends
on the two parameters t and k. Setting k = (t + 1)(t� 1) and t = d2="e � 2
then yields 
 = t=(t + 2) � 1 � ", the desired approximation factor. If the
instance needs less than d2="e � 2 stabbing lines, the solution of the problem
becomes easier. In this case we set k = (m � 1)(d1="e � 1) and approximate
the m-line problem directly with a factor of 
 = k

k+m�1
� 1� ". The running

time would then slightly improve to nk+1. So we can assume t � m from now
on.

It remains to show how we can approximate an optimal solution for t lines
by a factor of k

k+t�1
. The idea is simple and uses the geometrical 
avor of the

problem. We call a labeling of a set of points canonical if all points are labeled
and, going through the points from left to right, all labels have been pushed as
far left as possible, that is, until they nearly hit another label or have arrived
in their leftmost position. (Recall that labels are not allowed to touch each
other. As in Section 4 we treat the distinction between an x-coordinate and
a position slightly more to the right symbolically.) Now we just look at all
canonical label placements of k points. For each such placement we consider
the vertical line that goes through the right edge of its rightmost label. We
search for the canonical labeling of k points with the leftmost such line `left, see
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Figure 20. (We have not visibly drawn the in�nitesimally small spaces between
the labels.) We call this placement leftmost and compare it to the leftmost k

lleft

Fig. 20. Leftmost label placement for a subset of k = 4 points and t = 2 lines.

lopt

Fig. 21. An optimal solution for the same points as in the �gure above.

labels of the optimum. Let `opt be the vertical line that goes through the k-th
leftmost right label edge of the optimal solution, see Figure 21. Then we know
that `left is at least as far to the left as `opt. We would like to repeat this
process with all sets of k points to the right of `left. We must label them under
the restriction that their labels can only be placed to the right of `left. If we
do so, by how much do we get worse than the optimal solution?

By de�nition `opt touches one label of the optimal solution and intersects
up to t� 1 labels on the other t� 1 lines. Since `left is not to the right of `opt,
the constraint that our leftmost labeling exerts on the next group of k labels
is no stronger than the constraint de�ned by the labels of the optimal solution
touching or intersecting `opt, see the gray zones in Figure 20 and 21. Thus we
have placed our �rst k labels in at most as much `space' as the �rst k + t� 1
labels of the optimal solution. This makes sure that the next line like `left,
de�ned by the next (restricted) leftmost labeling of k points, will again be at
most as far to the right as the vertical line through the (2k+ t�1)-st leftmost
right label edge of the optimal solution. By repeating this process until all
points are used up, we get a k=(k + t � 1)-approximation for the number of
labeled points in an optimal solution since we always �t k labels in at most
as much space as k + t� 1 labels of the optimal solution. This shows that for
the appropriate choice of t and k, we obtain a (1� ")-approximation for the
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whole problem.

Let n0 be the number of points whose labels intersect a �xed set of t consec-
utive lines. What is the time we need to compute the �rst leftmost placement
of k out of these n0 points? We enumerate all

�
n0

k

�
choices of these k points.

For each choice we have to �nd its canonical labeling|if there is any. Observe
that labeling a point p1 can constrain the labeling of a point p2 to its left only
by not at all allowing to label it. Since we are only interested in subsets of k
points that can be labeled completely, it is enough to go through the points
in lexicographical order and try to place each of them leftmost. We can �nd a
label's leftmost position by going through the list of its predecessors once, so
�nding a canonical labeling can certainly be done in O(k2) steps. This means
that it takes us O((n0)k) steps to compute the �rst leftmost labeling. Thus we

need Tt�line(n
0) =

Pdn0=ke
j=0 O((n0 � jk)k) = O((n0)k+1) time for an approximate

solution of the t-line problem. In order to get the total running time Ttotal,
we must sum up Tt�line over all possible groups of t consecutive lines. In ev-
ery group there are at most n points and m, the number of stabbing lines, is
at most n as well. Hence Ttotal(n) = O(nk+2). Using k = (t + 1)(t � 1) and
t = 2="� 2 as above yields Ttotal(n) = O(n4="2).

5.2 Two and four sliders

This scheme for the top-slider model immediately translates into a poly-
nomial time approximation scheme for the two-slider model. As we have seen
in Section 2, for each point of the input set, we just have to place a copy at
unit distance below it. Then only one point of every such pair is labeled in the
solution. The running time increases only by a constant factor.

In order to use the ideas given above for the four-slider model, we have
to do a little more work. Since labels can now move up and down, the use
of stabbing lines is not appropriate any more. Instead, we partition the set
of input points into m strips of unit height. A strip contains all points be-
tween its two bounding horizontal lines and all points that lie on the upper
boundary. Similar to our approach above, we will approximate the solution of
t consecutive strips. This time, however, we have to drop the points of two
strips between two blocks to guarantee that solutions of one block do not in-
terfere with solutions of an adjacent block. The pigeon hole principle makes
sure that one of the t+2 di�erent sets we get by gluing blocks together has at
least cardinality n � t

t+2
. Suppose we have a k

k+t
-approximation for the t-strip

problem, then we could approximate an optimal solution of the whole instance
by a factor of 
 = k

k+t
� t
t+2

. Setting k = t(t+2) and t = d3="e� 3 would then
result in 
 = t=(t+ 3) � 1� ", the desired approximation factor.

The additional diÆculty in designing an approximation for the t-strip prob-
lem is that we do not know on which of its four sides a label in the optimal
solution is attached to its point. We can handle this by considering all four
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possibilities for each of the k points we have chosen. Now we de�ne a canonical
labeling as follows. If a label is to be attached to its point on the top or bottom
edge, we again push it as far left as possible. If however its point is going to lie
on the right or left edge, we push the label as far down as possible. The idea
with considering a special order of the points does not work in this setting, so
we try to label the k points in every of the k! possible orders, and for every
order we check each of the 4k possible kinds of placement: left, right, bottom,
or top. In this way we can again �nd a leftmost labeling and a line `left. The
constraint that the leftmost labeling exerts on the next group of k labels is
at most as strong as the corresponding constraint of the assumed optimal
solution. As above, the constraint of the optimal solution is de�ned by `opt
and the labels of the optimal placement intersected by `opt. Apart from the
label whose right edge de�nes `opt, at most t labels can intersect `opt without
intersecting each other since their points have to lie within a vertical strip of
height strictly less than t (the bottom borderline is excluded). Hence we have
a k

k+t
-approximation for the t-strip problem.

In the approximation algorithm for the four-slider model, we need
�
n0

k

�
k!4kk2

steps to compute the �rst leftmost labeling. This still yields an overall running
time of O(n4="2).

Theorem 17 For each of the slider models and for any constant " > 0, there
is a polynomial time algorithm which labels at least (1��) times the maximum
number of input points that can be labeled.

6 Implementation and test results

The greedy algorithm of Section 4 has been implemented for the �xed-
position and slider models and tested on three real world data sets from dif-
ferent application areas and on a large sequence of randomly generated point
sets. In this section we compare experimentally how many labels are placed
in each of the six models.

The algorithms were implemented in C++. For the data structures we made
use of the LEDA library [19]. We simpli�ed the implementation described in
Section 4 in three respects. Firstly, the red-black trees Tk can be expected to
contain only a few horizontal segments at any moment. So we used simple lists
for them. Secondly, LEDA doesn't have an implementation for priority search
trees; we used orthogonal range trees instead. Thirdly, the augmented red-
black tree HV doesn't pro�t much from the augmentation in practice. When
searching for the minimum x-coordinate of the frontier F in a y-interval, we
simply scan all leaves of the red-black tree in that interval. One can expect to
visit only a few leaves, since the y-interval is only twice the unit height.

The �rst of the three data sets contains 1000 cities of the USA that must be
labeled with their name. We used several di�erent font sizes, and determined
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the bounding boxes of the label text. The results are shown in Table 1. The
codes 1P, 2P, and 4P are shorthand for the 1-, 2-, and 4-position models. The
codes 1S, 2S, and 4S are shorthand for the corresponding slider models. The
values in the second table show the results in percentages with respect to the
4-position labeling.

No. of labels placed

model

font 1P 2P 4P 1S 2S 4S

5 851 950 971 990 993 999

6 777 910 952 967 982 986

7 705 852 901 932 964 972

8 686 845 896 918 952 958

9 607 758 817 836 890 902

10 554 704 769 787 853 872

11 520 657 721 735 805 831

12 500 637 709 719 796 813

13 448 570 638 649 716 734

14 433 557 624 637 695 712

15 382 494 550 556 627 645

Percentage w.r.t. 4-position model

model

font 1P 2P 4P 1S 2S 4S

5 87 97 100 101 102 102

6 81 95 100 101 103 103

7 78 94 100 103 106 107

8 76 94 100 102 106 106

9 74 92 100 102 108 110

10 72 91 100 102 110 113

11 72 91 100 101 111 115

12 70 89 100 101 112 114

13 70 89 100 101 112 115

14 69 89 100 102 111 114

15 69 89 100 101 114 117

Table 1
One thousand cities on a large map.

The second data set contains the 236 points of a data posting. The labels
are measurement values and come from a book on geostatistics [13]. Figure 22
shows the labeled data set and the number of labels placed in each model.

The third data set contains 75 points of a regression analysis. Here the
points are clustered near a regression line, and the labels are simply identi�-
cation numbers. Figure 23 shows the labeling.

The bottom tables of Figures 22 and 23 show that the 4-slider model some-
times places 10{15% more labels than the 4-position model. This improvement
is signi�cant, since it is always caused by a better labeling of the areas that are
diÆcult to label. We also created arti�cial, pseudo-random data sets where all
areas are hard to label. These sets were constructed by �rst placing all points
on a grid and after that they were moved randomly a slight distance away
from the gridpoint. Here we indeed found higher improvements: up to 92%.

EÆciency was not the main motivation for these experiments. Still it ap-
peared that the label placement was computed in a few seconds for all data
sets we tried, up to 2500 points. A plot shown on a computer screen seldom
contains more than 1000 labeled points.

Christensen, Marks and Shieber compared di�erent algorithms using ran-
dom point sets [4]. Their standard data sets were generated as follows. In-
side a grid of size 792 by 612 units, n points were randomly placed and
had to be labeled with labels of 30 by 7 units. We considered examples with
n = 100; 250; 500; 750; 1000; and 1500 points. For each example size, we gen-
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No. of labels placed

model

font 1P 2P 4P 1S 2S 4S

5 229 236 236 236 236 236

6 216 235 235 236 236 236

7 197 219 230 236 236 236

8 197 219 230 236 236 236

9 185 205 218 235 236 236

10 175 193 207 223 231 230

11 174 189 200 213 221 224

12 174 189 200 213 221 224

13 169 180 188 203 212 212

14 169 180 188 203 212 212

15 157 170 176 192 200 203

Percentage w.r.t. 4-position model

model

font 1P 2P 4P 1S 2S 4S

5 97 100 100 100 100 100

6 91 100 100 100 100 100

7 85 95 100 102 102 102

8 85 95 100 102 102 102

9 84 94 100 107 108 108

10 84 93 100 107 111 111

11 87 94 100 106 110 112

12 87 94 100 106 110 112

13 89 95 100 107 112 112

14 89 95 100 107 112 112

15 89 96 100 109 113 115

Fig. 22. Labeling of the data posting in 9pt font using the 4-slider model (scaled to
�t), and tables with the performance.

erated 25 �les. We ran the greedy algorithm for each of our six models on all
of the generated �les. The average percentages of placed labels over the 25
trials is shown in Table 2. Clearly the labeling model has a big in
uence on
the results.

In Figure 24 we extend the comparison of Christensen et al. by the results of
our algorithm for the four-position and the four-slider model. Our four-position
algorithm is always better than gradient descent, and the denser the map the
better it gets in relation to gradient descent. For 1500 points it is almost as
good as simulated annealing. The four-slider algorithm yields almost equal
results as simulated annealing for less than 750 points and is always better
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No. of labels placed

model

font 1P 2P 4P 1S 2S 4S

5 75 75 75 75 75 75

6 75 75 75 75 75 75

7 70 74 74 75 75 75

8 70 74 74 75 75 75

9 60 69 70 73 74 74

10 58 65 68 72 72 72

11 55 61 66 66 70 70

12 55 61 66 66 70 70

13 51 58 64 63 68 71

14 51 58 64 63 68 71

15 50 56 61 62 67 68

Percentage w.r.t. 4-position model

model

font 1P 2P 4P 1S 2S 4S

5 100 100 100 100 100 100

6 100 100 100 100 100 100

7 94 100 100 101 101 101

8 94 100 100 101 101 101

9 85 98 100 104 105 105

10 85 95 100 105 105 105

11 83 92 100 100 106 106

12 83 92 100 100 106 106

13 79 90 100 98 106 110

14 79 90 100 98 106 110

15 81 91 100 101 109 111

Fig. 23. Labeling of the scatterplot in 11pt font using the 4-slider model (scaled to
�t), and tables with the performance.
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beyond 750 points. The running time of our algorithm is generally only a few
seconds; even the four-slider algorithm needed just 12 seconds for the largest
data sets with 1500 points on a SUN Ultra Sparc. Simulated annealing takes
several minutes to label these point sets on the same machine.

Percentage of placed labels

number of points

model 100 250 500 750 1000 1500

1P 92.60 84.30 73.16 64.56 57.96 48.58

2P 99.56 97.39 90.24 82.22 74.73 62.75

4P 99.84 99.07 95.45 90.47 83.99 71.74

1S 99.72 98.42 93.80 87.80 81.92 71.04

2S 99.92 99.55 97.83 94.85 90.71 80.75

4S 99.96 99.58 98.02 95.37 91.68 82.68

Table 2
Random data sets (results are averaged over twenty-�ve trials).
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Fig. 24. Comparison of the four-position and four-slider algorithm to other labeling
algorithms.

7 Conclusions and open problems

This paper has extended several existing results on point set labeling by
allowing that the label touches its point anywhere on its boundary, not just
at a �nite set of positions. We have shown that removing this unnatural as-
sumption can lead to labelings where more points receive a label than with
the assumption, both in theory and in practice. We showed that simple and ef-
�cient greedy approximation algorithms, and polynomial time approximation
schemes can still be developed in these more general labeling problems.

In our paper we only attempted to optimize the number of points that
receive a label. The most important extension is to include other aspects of
good map labelings in the algorithms as well, like avoiding ambiguity. Another
extension is to deal with labels of varying height, and analyzing whether our
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results and algorithms extend to this case as well. Finally, cartographic label-
ing requires that linear features like rivers, and area features like countries,
receive a well-positioned label as well. This leads to a number of interesting
issues for further research.
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