1.E.1:Nuclear Physics 34 (1962) 1-324; © North-Holland Publishing Co., Amsterdam1DNot to be reproduced by photoprint or microfilm without written permission from the publisher

ENERGY LEVELS OF LIGHT NUCLEI. III

Z = 11 to Z = 20

P. M. ENDT and C. VAN DER LEUN Fysisch Laboratorium der Rijksuniversiteit, Utrecht

Received 20 November 1961

Introduction

MATERIAL

The present compilation of information on the energy levels of nuclei with Z = 11 to Z = 20 is the third version of an article of which the first and second edition appeared in 1954 (En 54a) and 1957 (En 57). It contains the experimental material received up to October 1, 1961[†]. In principle, the present version should make the use of the two earlier versions unnecessary. All important data contained in the latter are also given in the present paper. This does not mean that the present bibliography is complete. Papers which only have a historical interest and which are superseded by later, much more detailed work, have been omitted. In those cases a reference is given in the text to the 1954 or 1957 version.

Inevitably the present review has grown in volume compared to En 57 and En 54a. The number of known nuclei in the Z = 11-20 region has grown surprisingly little, from 73 in En 54a to 83. The number of known nuclear states in this region, however, has increased from 800 to about 3000 in those seven years, and the number of nuclear states with known spin and parity went up from 70 to 400.

Theoretical articles are quoted only briefly, and the bibliography is certainly incomplete on theoretical subjects. Apart from resonance information, little attention is given to cross section measurements; the reader is referred to the compilations on neutron cross sections (Hu 58) and charged particle cross sections (Sm 61c).

Many-particle reactions, e.g. the spallation reactions, are omitted altogether.

ARRANGEMENT

The nuclei are presented in order of increasing A, and nuclei of the same A in order of increasing Z.

† For more recent information, see Addenda, p. 325.

Generally, each nuclear reaction is treated under the heading of the final nucleus. Exceptions are reactions where resonances have been observed, which are treated under the compound nucleus, and the β decay of unstable nuclei, treated under the parent nucleus, and then as the first reaction. In all other cases, the order of the reactions is determined by the initial nucleus, starting with the lowest-A nuclei and of each group of isobers with the lowest-Z element.

Following the last reaction discussed, for each nucleus a list is given of reactions "Not reported", but which could, if observed, give additional information about the final nucleus. Only those reactions have been included which are in principle feasible with a stable initial nucleus and with a neutron, proton, deuteron, triton, ³He- or alpha-particle as ingoing or outgoing particle.

Discussions on the energy levels of a particular nucleus which do not fit naturally under the heading of a specific reaction leading to that nucleus have been given as "Remarks" at the end of the survey of that nucleus.

PRESENTATION

References are given for all the information given in the text, tables or figures. If the results of one experiment have been published in two or more articles or reports, usually only the most recent or most complete publication is cited. Entries for which no reference to litterature is given generally pertain to conclusions drawn from putting together the data from two or more sources. All electron capture and β decay ft values have been recomputed, using the weighted mean half-lives given in the text and the Q_m values (see below) given in the headings of the relevant reactions.

In a few cases in which the use of less familiar symbols, abbrevations or notations was inevitable, their meaning has been explained in the text.

For most of the nuclei a summary and synthesis of the experimental material is given in the first table for each nucleus and in the level diagrams.

FIGURES

The excitation and resonance energies given in the level diagrams are the weighted mean values of all determinations available. All energies are given in MeV; the number of decimals given is limited such that the error is at most five units of the last decimal. Bombarding energies indicated in the level diagrams are given in the laboratory system but plotted to scale in centre-of-mass coordinates. In this way the leaders, indicating resonances, and the corresponding energy levels in the compound nucleus will be found at equal heights.

Doubtful levels or transitions are marked by hatched lines. Uncertain excitation energies and uncertain spin and parity assignments are bracketed.

Reactions leading to a particular nucleus have been indicated in the corresponding level diagram only if experiments on that reaction have been

 $\mathbf{2}$

reported. An exception is made for n, p, d, or α -particle binding energies, which are always indicated, unless they exceed the energy range of the diagram.

For seven nuclei an additional figure with the γ decay scheme had to be made since the data could not be included in the standard level diagram.

As a novelty, half-lives of β -unstable nuclei and of a few long-lived isomeric states have been given in the level diagrams. Also E2/M1 amplitude mixing ratios have been indicated. It has not been tried to use a consistent sign convention for mixing ratios, which would require a large amount of work. The signs given here are those published in the original litterature.

MASSES AND Q VALUES

The nuclear mass excesses used throughout this compilation are listed in table 1. The first column gives the mass excesses, M-A in keV, measured in the new scale in which the atomic mass of ¹²C is equal to 12 units. The other column gives the mass excess in the old ¹⁶O scale for comparison with older data.

By far the most of these values have been taken from the table of Everling, König, Mattauch and Wapstra (Ev 60, Ev 61). The mass excesses of new nuclei and a few cr rections, mostly due to recent measurements, have been included. The reaction and decay energies used to compute these additions and corrections are listed at the end of the table. New "primary" Q values — essentially those of reactions connecting "central" nuclei — have not been used to correc the masses and errors given in Ev 60. Inclusion of these data would require a lengthy least-squares analysis and would not appreciably improve the precision of the already well-known masses of the central nuclei.

The reaction Q values calculated from the masses in table 1, $Q_{\rm m}$, and the binding energies in the compound nucleus of the bombarding particle, $E_{\rm b}$, given in the headings of the reactions, are quoted from the Nuclear Data Tables (Ev 61a), except for reactions pertaining to nuclei of which the mass has been corrected in table 1.

For some reactions a difference between the experimental Q value given in the text, and the Q_m value in the heading of the reaction, could be due to the fact that Everling *et al.* recalibrated several reaction energies before using them in the mass computations.

NATURAL ABUNDANCES AND NUCLEAR MOMENTS

The natural abundances of the isotopes in the mass range discussed in this compilation, are listed in table 2 together with the nuclear moments: the spin moment, J, the magnetic dipole moment, μ , and the electric quadrupole moment, q, as found from the hyperfine structure, from optical spectroscopy, nuclear resonance absorption or induction, atomic or molecular beam magnetic resonance, and/or microwave absorption. The values are taken from the "Table

of Isotopes" by Strominger, Hollander, and Seaborg (St 58b), except for the annotated additions.

OTHER REVIEW ARTICLES

Much use was made of several recent review articles on more specialized subjects covering the mass range of this compilation; especially of the survey and theoretical discussion of the reduced widths of individual nuclear energy levels obtained from stripping reactions (Ma 60d) and resonance reactions (La 60b). The neutron and charged particle cross section compilations (Hu 58, Sm 61c) have been mentioned above.

A general survey of nuclear reactions, levels, and spectra of light nuclei appeared in the Encyclopedia of Physics (Bu 57c); an exposition of the systematics of nuclei between ¹⁶O and ⁴⁰Ca in the Proceedings of the Kingston Conference (Go 60c).

The experimental data on nuclei between ⁵He and ²⁴Ne have been compiled by F. Ajzenberg-Selove and T. Lauritsen (Aj 59).

The following theoretical papers, covering a broad range of nuclei have not been quoted at all relevant places in the text: a discussion of nuclear level densities and temperatures in A = 18-34 nuclei (Ma 61b); calculations of *ft* values with *jj* and *LS* coupling for A = 16-41 nuclei (Wi 57a); a discussion of rotational levels in A = 16-25 nuclei (Ra 57): a *jj* coupling calculation of the binding energies of the calcium isotopes (Ta 57).

Finally, the "Nuclear Data Sheets" have been of great bonefit in checking and completing the list of references.

We are particularly grateful to the many physicists who sent their results in advance of publication.

The invaluable assistance of Miss Kitty van Bunnik and of H. M. van Zoest in the preparation of the manuscript has been much appreciated.

TABLE 1

Atomic Mass Excesses (M - A) in keV

	والمراجعة والمتناقلية والمبيرة فالمتحج ومناكرة ويترجع والمروان والمحاط والمحمد معريته والمراجع والمراجع والمحا	
	$(^{12}C = 0)$	$(^{16}O = 0)$
1n	8071.34 ± 0.41	8367.37
14	7288.73 ± 0.11	7584.76
2H	13135.26 ± 0.17	13727.42
311	1494907 ± 0.36	15837.15
311	14930.94 ± 0.26	15819.02
4110	949511 ± 0.35	3609 22
-116	2120.11 T 0.00	0000.22
12C	0	3552.33
14N	2863.60 ± 0.16	7007.98
16O	-4736.43 ± 0.26	0
16F	10904 <u>±</u> 12 ⁸	15641
17F	1954.5 ± 2.3	6987.0
18F	884.8 ± 4.0	6213.3
19F	-1486.1 ± 0.7	4138.5
20 F	-13.5 + 3.8	5907.1
21 F	$-26 {+} 25$	6191
-		
¹⁸ Ne	5314 ± 40 ^b	10641
¹⁹ Ne	1762 ± 5	7387
²⁰ Ne	-7041.3 ± 0.5	-1120.8
²¹ Ne	-5729.1 ± 1.6	487.5
22Ne	-8024.9 ± 0.6	-1512.3
23Ne	-5146 + 5	1662
²⁴ Ne	-5964 ± 40	1141
20Na	8280 + 300	14200
21 No	$-2199 + 17^{\circ}$	4018
22No	-51833 ± 4.6	1329.3
23No	-95262 + 15	-2717.6
24No	-84138 ± 27	-1309.2
25No	-9357 ± 1088	-1956
26Na	$-7700 - 300^{x}$	0
110		
²² Mg	-140 ± 80^{d}	6370
²³ Mg	$-5448 \pm 15^{\circ}$	1360
²⁴ Mg	-13930.1 ± 1.8	-6825.4
²⁵ Mg	-13189.4 ± 1.9	-5788.8
²⁶ Mg	-16215.5 ± 2.2	-8518.8
²⁷ Mg	-14581.2 ± 3.7	-6588.5
²⁸ Mg	-15015 - 6	-6726
²⁴ A1	90 ± 300	7190
²⁵ Al	-8928 ± 6	-1528
²⁶ A1	-12201.5 ± 4.7	-4504.8
27 <u>A1</u>	-17199.2 ± 2.0	-9206.4
²⁸ A1	-16851.5 ± 3.6	-8562.8
29A1	-18217 ± 6^{f}	-9632
³⁰ Al	-17150 ±250 ^{bb}	-8270

.

26Si	-7150 ± 80 ^g	550
275i	-12384 ± 8^{h}	-4391
28Si	-21491.0 ± 2.9	-13202.3
²⁹ Si	-21897.4 ± 3.4	-13312.6
30Si	-24410.3 ± 4.0	-15559.5
31Si	-22961.1 ± 4.6	-13784.3
³² Si	-24084 ± 15 cc	-14611
		000
28 P	-7690 ± 300	000
29 P	-16949 ± 81	
30P	-20192 ± 91	- 11312
81P	-24437.8 ± 1.5	- 15261.0
38B	-24303.2 ± 2.2	14830.4
33P	-26334.9 ± 3.4 k	16566.0
34P	-24830 ± 200	-14770
200	14000 1101	5340
305	-14220 ± 110^{4}	
815	$-18988 \pm 1/4$	9012 18599 9
322	-26011.7 ± 1.0	10008.0
335	-26582.9 ± 2.8	10014.V
345	-29932.4 ± 2.9	19807.4
355	-28842.9 ± 2.0	
365	-30653 ± 9	- 19990
875	-26980 ± 90	- 10020
385	-26800 ± 150	-15500
32C]	-13010 ± 300	3540
⁸³ Cl	-21008 ± 12	- 11239
³⁴ Cl	-24413 ± 21 n	14348
36Cl	-29010.2 ± 2.6	-18649.2
36CI	-29516 ± 5	18859
87C1	-31765.9 ± 2.1	-20812.9
38Cl	-29804 ± 8	
³⁹ Cl	-29803 ± 21	18258
40C1	-27500 ± 500	- 15700
95 A		
³⁵ Ar 36 A	-23040 ± 300	-12680
3"AI	-30227.0 ± 3.2	-19570.1
°'Ar	-30949.9 ± 2.5	-19996.9
38Ar	-34719.9 ± 2.3	-23470.9
39Ar	-33233 ± 6	-21688
40Ar	-35037.3 ± 0.8	-23196.2
41Ar	-33058 ± 11	-20921
⁴² Ar	-34423 ± 40 y	- 21990
³⁷ K		10050
38K		-13850
39 K		-17542
40K	- JJ 190, J ± 2,8 22504 F + 0.0	-22253.3
41K		-21683.4
42K	-33348.3 ± 4.3	-23411.2
43K		-22573
11 44 K	- 305/7 11	-23848
17	-35360 -200	-22330

					والجهيز والمسجوعا والرواسي فالمتالي ويواجهون المواد مانية التكالي وو
⁸⁹ Ca		-27300	± 409		- 15760
40Ca		34846.0	\pm 3.5		-23004.9
41Ca		-35135	± 8		
⁴² Ca		- 38535.9	\pm 4.2		-26102.8
48Ca		-38394.0	+ 4.5		-25664.9
44Ca		-41458.7	± 4.5		-28433.6
45Ca		-40807.0	+ 4.3		-27485.7
46Ca		-43136	$\frac{-}{+}$ 10		-29519
47Ca		-42334			-28420
48Ca		-44372	+ 138		- 30163
⁴⁹ Ca		-41445	± 14 ^t		-26940
4050		20000	.1. 200 dd		- 9050
4150			± 200		16503
4250			<u>+ 60z</u>		
4350		- 96174	± 11		
4450		- 30174	± 11		
4520		- 37811	± /		
-"DC 480-			± 4.V		- 21101.1
					20107 20416
**SC			± 9'		- 30410
495.0		49494	± 10		- 30284
** 3C		40520	± 40"		- 32010
•••20		-45100	±900		20200
4ªTi		-37656	± 12		-24631
45Ti		-39001	± 6		-25679
46Ti		-44119.2	\pm 3.5		-30502.0
47Ti		-44935	± 7		-31021
48Ti		-48483.6	\pm 3.4		-34274.3
49Ti		-48559.1	\pm 3.3		-34053.8
soTi		-51425.7	\pm 4.5		-36624.4
51Ti		-49716	± 20		34619
8.	14N(8He, n)16F	0 =	-1181-	12 keV	(see Ai 59)
Ъ	¹⁶ O(³ He. n) ¹⁸ Ne	$\tilde{\tilde{O}} =$	-3190+	40 keV	(A: 60)
c	$^{21}Na(B+)^{21}Ne$	$\tilde{O} =$	3522 +	30 keV	(Sc 52)
	210(p) 210	$\tilde{o} =$	3532 +	20 keV	(Wa 60a)
d	20Ne(8He, n)22Mg	$\tilde{\tilde{o}} =$	-40+	80 keV	(Ai 61)
e	²³ Na(p, n) ²³ Mg	$\tilde{O} =$	-4850÷	7 keV	(Ki 55a, Go 58f)
	23Mg(8+)23Na	$\tilde{0} =$	4110+	10 keV	(Wa 60a)
	24Mg/3He. a) "3Mg	$\tilde{\tilde{O}} =$	4048+	15 keV	(Hi 59a)
f	27 A1(t. D)29 A1	$\tilde{\tilde{O}} =$	8678+	6 keV	(Ia 60a)
g	24Mg(3He n)26Si	$\tilde{O} =$	80+	80 keV	(3160)
h	²⁷ Al(p, n) ²⁷ Si	$\tilde{O} =$	$-5585 \pm$	10 keV	(Ki 55a)
	····(P) ···)	$\tilde{0} =$	-5607+	8 keV	(Ma 55c as corrected
		~	enter		in Ev 61)
		Q =	- 5591 +	8 keV	(Br 59f)
	27Si(B+)27A1	$\tilde{o} =$	4870+	20 keV	(Wa 60a)
	28Si(3He. a)27Si	$\tilde{0} =$	$3405 \pm$	15 keV	(Hi 59a)
ŧ	28Si(p. 1)29P	$\tilde{0} =$	2760 +	13 keV	(Ok 60a)
		$\tilde{\tilde{0}} =$	2750	20 keV	(Va 60)
	28Si/8He d)29P	× - 0 -	$-2731 \pm$	12 keV	(Hi 60c)
	29P(B+)29Si	× - 0 -	4960 ±	10 keV	(Li 57b)
	1 (p) 11	~ — 0 —	4989 L	20 keV	(Wa 60a)
		¥ =	1004 T	au Rev	(114 004)

TABLE 1 (continued)

j	$^{27}Al(\alpha, n)^{30}P$	$Q = -2670 \pm 30 \text{ keV}$	(Ba 59a)
	29Si(D, 2)30P	$\tilde{Q} = 5570 \pm 30 \text{ keV}$	(Va 58a)
	³⁰ Si(p, n) ³⁰ P	$\tilde{Q} = -5005 \pm 30 \text{ keV}$	(Br 59f)
	$32S(d, \alpha)^{30}P$	$\tilde{O} = 4892 + 10 \text{ keV}$	(En 58 as corrected
	u(1) u)	~	in Ev 61)
k	33P(B-)33S	$Q = 248 \pm 2 \text{ keV}$	(see text)
1	30S(B+)30P	$\tilde{C} = 5930 \pm 150 \text{ keV}$	(Jo 60)
	- (*) -	$\tilde{Q} = 6010 \pm 150 \text{ keV}$	(Ro Cla)
m	${}^{31}P(p, n){}^{31}S$	$\tilde{Q} = -6253 \pm 20 \text{ keV}$	(Br 59f)
	31S(3+)31P	$\tilde{Q} = 5440 \pm 30 \text{ keV}$	(Li 57b)
	4° 7	$\tilde{Q} = 5410 + 30 \text{ keV}$	(Wa 60a)
n	$^{33}S(p, \nu)^{34}Cl$	$\tilde{Q} = 5120 \pm 30 \text{ keV}$	(Va 58d)
	34C1(B+)34S	$\tilde{Q} = 5520 \pm 30 \text{ keV}$	(Gr 56)
0	$^{35}Ar(\beta^{+})^{35}Cl$	$\tilde{Q} = 5980 \pm 40 \text{ keV}$	(Ki 56)
		$\tilde{Q} = 5950 + 50 \text{ keV}$	(Wa 60a)
ą	³⁷ K(β+) ³⁷ Ar	$\tilde{Q} = 6120 + 70 \text{ keV}$	(Su 58)
	₩° 7	$\tilde{O} = 6170 + 70 \text{ keV}$	(Wa 60a)
q	³⁹ K(p, n) ³⁹ Ca	$\tilde{Q} = -7044 + 70 \text{ keV}$	(Br 59f)
	${}^{39}Ca(\beta^+){}^{39}K$	$\tilde{Q} = 6600 + 100 \text{ keV}$	(Li 57b)
		$\tilde{Q} = 6512 + 25 \text{ keV}$	(Ki 58)
		$\tilde{Q} = 6450 + 60 \text{ keV}$	(Wa 60a)
	40 Ca(γ , n) 39 Ca	$\tilde{Q} = -15800 \pm 100 \text{ keV}$	(Su 53)
T	$47 Ca(\beta^{-})^{47} Sc$	$\tilde{Q} = 1996 \pm 16 \text{ keV}$	(see discussion
			of ^{A7} Ca decay)
8	48Ca(p, n)48Sc	$Q = -660 \pm 30 \text{ keV}$	(E1 58)
		$Q = -660 \pm 10 \text{ keV}$	(Jo 60a)
t	48Ca(d, p)48Ca	$Q = 2919 \pm 6 \text{ keV}$	(Br 56f as corrected
			in Ev 61)
น	40Ca(3He, d)41Sc	$Q = -4410 \pm 15 \text{ keV}$	(Hi 60k)
	40Ca(d, n)41Sc	$Q = -1145 \pm 15 \text{ keV}$	(Ma 61c)
	${}^{40}Ca(p, \gamma){}^{41}Sc$	$Q = 1090 \pm 20 \text{ keV}$	(Bu 61a)
v	${}^{47}{ m Sc}(\beta^{-}){}^{47}{ m Ti}$	$Q = 605 \pm 5 \text{ keV}$	(Li 57b)
W	$^{49}Ca(\beta^{-})^{49}Sc$	$Q = 5080 \pm 60 \text{ keV}$	(Li 57b)
	⁴⁹ Sc(β ⁻) ⁴⁹ Ti	$Q = 2050 \pm 50 \text{keV}$	(Ke 56)
x	26 Na(eta -) 26 Mg	$Q = 8500 \pm 300 \text{ keV}$	(Ro 61b)
У	⁴⁰ Ar(t, p) ⁴² Ar	$Q = 7046 \pm 40 \text{ keV}$	(Ja 61d)
z	${}^{89}{ m K}(lpha,n){}^{42}{ m Sc}$	$Q = -7160 \pm 60 \text{ keV}$	(Sm 61)
38	²³ Na(t, p) ²⁵ Na	$Q = 7492 \pm 12 \text{ keV}$	(Hi 61a)
• •	$^{26}\mathrm{Mg}(\mathrm{t},lpha)^{25}\mathrm{Na}$	$Q = 5664 \pm 10 \text{ keV}$	(Hi 61a)
pp	³⁰ Al(β-) ³⁰ Si	$Q = 7290 \pm 250 \text{ keV}$	(Ro 61)
ce	³⁰ Si(t, p) ³² Si	$Q = 7304 \pm 15 \text{ keV}$	(Hi 61g)
đđ	⁴⁰ Sc(β ⁺) ⁴⁰ Ca	$Q = 13950 \pm 200 \text{ keV}$	(Sc 59c)
			· ·

•

TABLE 1 (continued)

	Natural		Nuclear moments	
Isotope	abundance (%)	J	μ (nucl. magneton)	$q (10^{-24} \text{ cm}^2)$
¹⁹ F	100	1/2	+2.6275	
²⁰ Ne	90.92	0	<0.0002	
²¹ Ne	0.257	3	-0.66140	+0.09e
²² Ne	8.82	2	≈0	,
²² Na		3	+1.746	
²³ Na	100	.3.	+2.2161	+0.10
²⁴ Na		$\overset{\circ}{4}$	+1.69	
²⁴ Mg	78.7		≈ 0	
25Mg	10.1	5	0.8547	$+0.14^{b}$
²⁶ Mg	11.2	2	≈0	, 0111
27Al	100	<u>5</u> 2	+3.6385	+0.149
29Si	92.2	_		≈0
29Si	4.7	1	+0.5548	< 0.0001
³⁰ Si	3.1	2		≈0
81P	100	1	+1.1305	
3 2 P		1	-0.2523	
325	95.0	0		
885	0.76	3	+0.6427	-0.064
34S	4.22	2	,	< 0.002
85S		ar A	+1.0	+0.045
36S	0.014	2	<u> </u>	< 0.01
35Cl	75.53	용	+0.82091	-0.0789
36C1		$\tilde{2}$	+1.2859	-0.0168
37Cl	24.47	$\frac{3}{2}$	+0.6833	-0.0621
³⁶ Ar	0.337		≈)	
³⁸ Ar	0.063			
40Ar	99.600		≈ 0	
³⁹ K	93.08	$\frac{3}{2}$	0.3909	
40K	0.0118	4	-1.2964	-0.07a
41K	6.91	32	+0.2151	± 0.1
⁴² K		$\overline{2}$	-1.137	
43K		<u>3</u> đ	± 0.163 d	
⁴⁰ Ca	96.97		≈ 0	
⁴² Ca	0.64			
⁴³ Ca	0.145	72	-1.3153	
44Ca	2.06	-		
⁴⁶ Ca	0.0033			
⁴⁸ Ca	0.185			
44Sc		2°		
44Scm		6c		
45Sc	100	.7.	+4.749	-0.22^{t}

TABLE 2

Natural Abundances and Nuclear Moments

Natural	Natural		Nuclear moments	5
Isotope	abundance (%)	J	μ (nucl. magneton)	<i>q</i> (10 ⁻³⁴ cm ²)
46Ti	7.99			
47Ti	7.32	5.	-0.7871	
⁴⁸ Ti	73.99	2		
49Ti	5.46	7	-1.1023	
⁵⁰ Ti	5.25	2		
4 Bu 60c.				
^b Bl 61.				

TABLE 2 (continued)

e Ha 61b.

^d Pe 59b. ^e Gr 58d. f Fr 59.

²⁰Na

(Not illustrated)

A. ${}^{20}Na(\beta^+){}^{20}Ne$ $Q_m = 15320 \pm 300$ The half-life is 0.25 sec (Al 50a), 0.23 ± 0.08 sec (Sh 51b), 0.385 ± 0.01 sec (Bi 52a).

The decay, at least partly, proceeds to states of ²⁰Ne between 6.8 and 10.8 MeV which decay by α -particle emission. The possibility that the β^+ decay is super-allowed is discussed in Bo 55.

For a theoretical discussion of the ²⁰Na spin, see De 53a.

B. ²⁰Ne(p, n)²⁰Na
$$Q_m = -16100 \pm 300$$

The threshold, at $E_p = 16.9$ MeV, has been measured by α -particle detection (Al 50a).

C. Not reported:

²⁰Ne(³He, t)²⁰Na

 $Q_{\rm m} = -15340 \pm 300$

²¹Na

(Fig. 21.1, p. 12; table 21.1, p. 13)

A. ${}^{21}Na(\beta^+){}^{21}Ne$ $Q_m = 3530 \pm 17$

The weighted average of four half-life measurements is 22.8 ± 0.2 sec (Sc 52, Ph 53, Ar 58, Wa 60a).

The maximum positon energy is 2.50 ± 0.03 MeV (Sc 52), 2.51 ± 0.02 MeV (Wa 60a). A 0.347 MeV γ ray is observed with an intensity of 2.2 ± 0.3 percent (Ta 60c). No γ rays with $E_{\gamma} > 0.51$ MeV have been found (Sc 52).

The decay is super-allowed (log ft = 3.6), indicating that the spin of ²¹Na is the same as that of its mirror nucleus ²¹Ne, that is $J^{\pi} = \frac{3}{2}^{+}$. For the decay to ²¹Ne* = 0.35 MeV, log ft = 5.0.

E. ²⁰Ne(p, γ)²¹Na $Q_{\rm m} = 2446 \pm 17$

At $E_p = 400$ keV, the cross section is $(2.7 \pm 1.0) \times 10^{-2} \mu b$ (Pi 57).

One resonance, at $E_p = 1.165$ MeV, is found in the γ -ray yield for protons in the 0.5–1.3 MeV range (Br 47). See fig. 21.1 for the γ decay of the corresponding 3.56 MeV level (Be 61). A $J^{\pi} = \frac{3}{2}^+$ (or $\frac{5}{2}^+$) assignment follows from the angular distribution of the ground-state transition (Be 61). The level has $\Gamma_p \leq 0.7$ keV (Ta 59), and $(2J+1)\Gamma_p\Gamma_{\gamma}/\Gamma = 1.13\pm0.07$ eV (Th 60). Nonresonant capture has been investigated in the vicinity of this resonance (Ta 59).

Four resonances for the production of annihilation radiation from the decay of 21 Na, found for protons in the 1.35-4.4 MeV range, are indicated in table 21.2 (Va 53).

C. ²⁰Ne(p, p')²⁰Ne $E_{b} = 2446 \pm 17$

Elastic scattering studies indicate ten resonances in the range $E_p = 0.2-4.4$

Fig. 21.1. Energy levels of ²¹Na.

$E_{\mathbf{x}}$ (MeV)	J ^π	$\tau_{\frac{1}{2}}$ or Γ	Decay	Reactions
0	3+	22.8 ± 0.2 sec	β+	A, B, D, E, F,
0.34 ± 0.02	(3+), 5+		Y	B, D
1.72 ± 0.05			γ	B, D
2.42 ± 0.02	<u>1</u> +			D
$2.81 {\pm} 0.04$	-		(y)	B, D
3.56	$\frac{3}{3}$ +, $(\frac{5}{3}$ +)		Y	B, D
3.88 ± 0.05				D
4.17	3-	121 keV	р	C, D
4.31	5+	17 keV	р	C, D
4.44	-		p	С
4.48	3+	27 keV	γ, p	B, C, D
4.85 ± 0.06	-		• -	D
5.05		double	р	C, D
5.47	<u>.</u> ;+	80 keV	p	С
5.70	-	$\approx 20 \text{ keV}$	$(\gamma), \mathbf{p}$	В, С
5.83		$\approx 2 \mathrm{keV}$	2, P	B, C
5.84	3-	25 keV	γ , p	В, С
6.09	(3, 4)-	6 keV	p	С
6.26	14- 41		p	С
6.52	(3, 5)+	150 keV	p	С
7.45	12.21		p	С

TABLE 21.1 r levels of 21N

	•	
TABLE	2	2

Resonances in $0Ne+p$					
Ep (MeV)	²¹ Na* (MeV)	Decay ^g	Γ (keV)	$arGamma_{\mathtt{p}_{\mathfrak{o}}}/arGamma$	Jnd
1.165*	3.56	γ			
1.81 d	4.17	Po	180 ^d , 121 ^e	>0.7 d	$\frac{3}{2}$
1.95 3 a	4.31	po p1	6d, 17e	>0.7 ^d , 0.25 ^e	5 +
2.09 ^b	4.44	P 1			
2.135d, c	4.48	2 Po P1	17d, 27e	>0.7 ^d , 0.84 ^e	3+
2.73 ^b	5.05	Po Pi	doubled		
3.176 d	5.47	Po P1	110 ^d , 80 ^e	>0.7 d	<u>+</u> +
3.42ª, c	5.70	(γ) po p1	$pprox 20^{ m d}$	<0.1 ^d	
3.552d, c	5.83	γ Po Pi	$\approx 2^{d}$		
3.566d, c	5.84	2 Po Pi	25^{d}	>0.7d	3-
3.828d	6.09	Po Pi	6 ^d		<u>5</u> -, <u>7</u> -
4.00 ^b	6.26	P1			
4.28d	6.52	Po	150 ^d	>0.7 d	<u>3</u> +, <u>5</u> +
5.251	7.45	Po Pi			

^a Br 47, Be 61.

^b Co 54b.

6------

° Va 53.

d Ha 55a.

e Va 60d.

^f Od 59a.

\$ Resonances in the yield of capture γ rays or in the yield of ²¹Na β ⁺ activity are indicated by γ , resonances for elastic scattering by p_0 , and resonances in the yield of the 1.63 MeV γ ray from 20Ne(1) by p1.

MeV; see table 21.2 for energies, widths, spins, and parities (Ha 53, Ha 55a, Va 60d).

The resonances for inelastic proton scattering to ²⁰Ne^{*} = 1.63 MeV generally correspond to those for elastic scattering (Ga 53, Co 54b); two resonances, at $E_p = 2.09$ and 4.00 MeV, are found from inelastic scattering only (Co 54b). Resonance cross sections are given in Ga 53. See also So 61.

Angular distribution measurements of proton groups to ²⁰Ne(0) and (1) in the $E_p = 4.95-5.50$ MeV region indicate a resonance at $E_p = 5.25$ MeV (Od 59a).

See Aj 59 for levels in ²⁰Ne.

D. ²⁰Ne(d, n)²¹Na
$$Q_{\rm m} = 222 \pm 17$$

The ground-state Q value has been measured as 0.22 ± 0.03 MeV (Be 61), and 0.25 ± 0.05 MeV (Gr 61). Excited states have been observed at 0.33 ± 0.03 MeV (Be 61, Gr 61), and at 1.77 ± 0.05 , 2.42 ± 0.04 , 2.80 ± 0.06 , 3.61 ± 0.06 MeV (Be 61). See also Sw 52. From angular distribution measurements $l_{p} = (2,3)$ (Gr 61) is found for the ground-state transition, $l_{p} = 2$, $\theta_{p}^{2} = 0.011$ (Be 61; also $l_{p} = 2$ in Gr 61) for the transition to the 0.33 MeV level, and $l_{p} = 0$, $\theta_{p}^{2} = 0.17$ (Be 61) for the transition to the 2.42 MeV level.

A slow-neutron threshold has been observed with $Q = -2.201 \pm 0.007$ MeV, corresponding to ${}^{21}Na^* = 2.42$ MeV (Ma 56b). An earlier reported threshold with $Q = -1.24 \pm 0.02$ MeV (Ma 56b) has probably to be ascribed to ${}^{22}Ne(d, n){}^{23}Na$ (Gr 61).

Recent measurements with time-of-flight neutron spectroscopy, at $E_d = 2.4, 3.1, 4.6, \text{ and } 6.1 \text{ MeV}$, yield ²¹Na levels at 0.36 ± 0.04 , $1.68 \pm 0.05, 2.82 \pm 0.04, 3.88 \pm 0.05, 4.85 \pm 0.06, \text{ and } 5.00 \pm 0.05 \text{ MeV}$, in addition to the known states at 0, 2.42, 3.56, 4.17, 4.31, and 4.48 MeV (Aj 60a, Aj 61). An assumed Q_o value of 0.23 MeV instead of 0.22 MeV has been used in Aj 61; the excitation energies given above have already been corrected accordingly.

E. ²¹ Ne(p, n) ²¹ Na	$Q_{\rm m} = -4313 \pm 17$
Observed, Cr 40.	
F. ${}^{24}\mathrm{Mg}(\mathrm{p}, \alpha){}^{21}\mathrm{Na}$	$Q_{\rm m} = - 6867 \pm 17$
Observed, Br 48, Sc 52, Fu 60.	
G. Not reported:	

$^{19}F(^{3}He, n)^{21}$ Ja	0 - 7579 + 17
$^{20}Ne(^{3}He d)^{21}N_{2}$	$Q_{\rm m} = -7573 \pm 17$
20 Ne(α t) 21 No	$Q_{\rm m} = -3047 \pm 17$
21No(31To +)21No	$Q_{\rm m} = -17366 \pm 17$
$\frac{1}{29} \sqrt{-1} \frac{1}{29} \sqrt{-1} \frac{1}{29} \frac{1}{10} \frac{1}{10$	$Q_{\rm m} = -3548 \pm 17$
$-na(p, \tau)$ - na	$Q_{\rm m} = -14988 + 17$

²¹Na

^{22}Na

(Fig. 22.1, p. 16; table 22.1, p. 15)

 $Q_{\rm m} = 2841.5 \pm 4.6$

A. $^{22}Na(\beta^{+})^{22}Ne$

The half-life is 2.58 ± 0.03 years (Me 57).

The decay predominantly proceeds by β^+ emission to the 1.27 MeV level of ²²Ne. The β^+ end point is 542±5 keV (Ma 50a), 540±5 keV (Wr 53), 545±2 keV (Da 58), 547.4 ± 1.0 keV (Ni 61a); log ft = 7.4.

$E_{\mathbf{x}}$ (MeV \pm keV)	<i>J</i> ^π ; <i>T</i>	$ au_{rac{1}{2}}$ or $arGamma$	Decay	Reactions
0	3+; 0	2.58±0.03 yr	β+, EC	many
0.587 ± 4	1+; 0	$(0.266 \pm 0.010) \times 10^{-6} m sec$	Ŷ	B, D, I, J, K, L, M
0.660 ± 4	0+; 1	$<0.35 \pm 10^{-9}$ sec	2	B, D, K, L, M
0.892 ± 3	(1)+		Ŷ	B, D, J, K, L, M
1.532 ± 4	(≤4)+		2	B, D, J, K, L
1.942 ± 5			Ŷ	B, D, K, L
1.949 ± 10			Y	B, D, K, L
1.988 ± 5			Y	B, D, K, L
2.217 ± 5			γ	B, D, E, K, L
2.574 ± 5				D, K, L
2.973 ± 5				D, K, L
3.065 ± 5				D, K, L
3.527 ± 5				D, K, L
3.713 ± 8				D, K, L
3.949 ± 5				K, L
4.073 ± 10				K, L
4.323 ± 8				K, L
4.363 ± 10				K, L
4.473 ± 8				K, L
4.531 ± 10				K, L
4.595 ± 10				K, L
4.732 ± 10				K, L
4.778 ± 10				K, L
7.474 ± 5		≈6 keV	2	E
7.569		<2 keV	γ	E
7.707			γ	E
7.812			Y	E
7.903			Y	E
7.980			2	E
8.035			γ	E
12.07			р	С
12.38			р	С

TABLE 22.1 Energy levels of ²²Na

The γ -ray energy has been measured as 1.277 ± 0.004 MeV (Al 49), 1.2736 ± 0.0018 MeV (Si 59g). The internal conversion coefficient of the 1.27 MeV γ ray, (6.7 \pm 0.7) \times 10⁻⁶, indicates that the transition has E2 character (I.e 54).

The Fermi-Kurie plot is linear within the experimental error (Ma 50a,

The 22 I Shorgy levels of #Na.

Al 50b, Wo 54, Da 58, Ko 58b, Le 61b). Deviations from linearity, however, are reported in Ha 58c, Ni 61a, and discussed in Ku 59c. A small anisotropy, $A = -0.0027 \pm 0.0004$ (St 59a, St 58a), -A > 0.026 (Da 60a), observed in the β - γ angular correlation could be due to higher order effects. For a possible energy dependence of the anisotropy, see Su 61. See also St 51a.

Electron capture also occurs, with an intensity $EC/\beta^+ = 0.114 \pm 0.004$, averaged from 0.124 ± 0.011 (Kr 54), 0.110 ± 0.007 (Sh 54b), 0.122 ± 0.010 (Al 55), 0.109 ± 0.007 (Ko 58b). See also Ho 53b, Ma \pounds 4c, Se 54, Ch 55, Di 55. Theory yields 0.1135 (Ko 58b).

A β^+ transition to ²²Ne(0) has been observed with an intensity 0.062±0.015 percent of the transition to ²²Ne(1). The β^+ end point is 1.83±0.06 MeV; log ft = 13.1 (Wr 53). See also Mo 49.

The asymmetry parameter A of the $\beta - \gamma$ circular polarization correlation, $1+A \langle v/c \rangle \cos \vartheta$, is $A = +0.36 \pm 0.08$ (Ap 59; also Ap 58), $A = +0.35 \pm 0.02$, yielding the relation $C'_{\rm A} = (1.0 \pm 0.2) C_{\rm A}$ for the axial-vector coupling constants (St 59b).

Longitudinal polarization of positons, Pa 57b.

B.
$${}^{19}F(\alpha, n){}^{22}Na$$

$$Q_{\rm m} = -1949.0 \pm 4.7$$

Thresholds for the production of slow neutrons are observed at $E_{\alpha} = 2.33$ MeV (²²Na g.s.) and 3.04 MeV (²²Na^{*} = 0.59 MeV) (He 54b). The groundsta^{*} Q value has been measured as $Q_o = -1.950 \pm 0.015$ MeV (Bu 56c, as corrected in Wi 57), -1.959 ± 0.010 MeV (Wi 60). For α particles in the $E_{\alpha} = 3-6$ MeV range, neutron groups have been observed to the ²Na states indicated in table 22.3 (Ba 59a). See also Qu 56, Sz 60.

Gamma rays observed from this reaction, with relative intensities (at $E_{\alpha} = 4.9$ MeV) and assignments are listed in table 22.2 (Te 58, Ra 60). Gamma-gamma coincidence experiments indicate a ²²Na level at 666±4 keV, decaying

$E_{\gamma}^{\mathbf{a}}$ (MeV \pm keV)	$E_{\gamma}^{\mathbf{b}}$ (MeV)	E_{γ}^{c} (MeV \pm keV)	Intensity ^c (relative)	Transition in ²² Na (E _x in MeV)
0.073 ± 1		$0.073\pm~2^{d}$		$0.66 \rightarrow 0.59$
0.593	0.593	$0.586\pm4^{ m e}$	36	$0.59 \rightarrow 0$
		(0.666)	$<\!2$	$0.66 \rightarrow 0$
0.890 ± 10		0.892 ± 5	25	$0.89 \rightarrow 0$
	1.3			$1.95 \rightarrow 0.66 \ (+0.59)$
		1.530 ± 10	6	$1.53 \rightarrow 0$
	1.55			$2.22 \rightarrow 0.66 (+0.59)$

	TA	BLE 2	22.2	
Gamma	rays	from	¹⁹ F(α,	ny)22Na

⁸ Te 58; $E_{\alpha} = 3.9$ MeV.

^b Te 58; $E_{\alpha} = 5.7$ MeV; γ rays in this column are coincident with the 73 keV γ ray.

^c Ra 60; $E_{\alpha} = 4.9$ MeV; without Doppler correction.

^d Tc tal internal conversion coefficient, $(4.5\pm0.4) \times 10^{-3}$, indicates M1 character (Ra 60).

^e Total internal conversion coefficient, $(1.14 \pm 0.3) \times 10^{-4}$, indicates E2 or M2 character (Ra 60).

by an $E_{\gamma} = 73 \pm 1$ keV transition to ²²Na(1), which in turn decays to the ground state (Te 58). The $J^{\pi} = 0^+$, T = 1 assignment to the 0.65 MeV level (see reaction L), and the internal conversion coefficient of the 73 keV γ ray (table 22.2) yield $J^{\pi} = 1^+$ (and thus T = 0) for the 0.59 MeV level. These assignments are confirmed by the following data: the conversion coefficient of the 593 keV γ ray indicating E2 or M2 character (Ra 60); the half-life of the 0.59 MeV level, $\tau_4 = 0.266 \pm 0.010 \,\mu$ sec, ruling out a $J^{\pi} = 0^+$ (and thus T = 1) assignment to this level (Te 58; see also Ho 58b); the half-life of the 0.66 MeV level, $\tau_4 < 0.35 \times 10^{-9}$ sec, supporting a $\Delta T = 1$ assignment to the 73 keV transition (Ho 58b; see also Te 58).

See ²³Na for resonances.

C. ²⁰Ne(d, p)²¹Ne
$$Q_{\rm m} = 4534.4 \pm 1.5$$
 $E_{\rm b} = 11277.4 \pm 4.6$

The excitation function shows two resonances in the range $E_{c} = 0.8-1.1$ MeV, corresponding to ²²Na levels at 12.07 and 12.13 MeV (Go 55).

See Aj 59 for levels in ²¹Ne.

D. ²⁰Ne(³He, p)²²Na
$$Q_{\rm m} = 5784.2 \pm 4.6$$

Nine proton groups have been observed (see table 22.3). A γ ray, with $E_{\gamma} = 73$ keV, has been observed in coincidence with the proton groups to $^{22}Na^* = 0.66$ and 1.9-2.2 MeV (Te 58).

E. ²¹Ne(p,
$$\gamma$$
)²²Na $Q_{m} =$

$$Q_{\rm m} = 6743.0 \pm 4.9$$

Seven resonances have been reported, at $E_p = 775$ ($\Gamma \approx 6$ keV), 865 ($\Gamma < 2$ keV), 1010, 1120, 1215, 1296, and 1354 keV. At $E_p = 775$ keV, the main capture radiation proceeds to the ground state; at $E_p = 865$ keV, to $^{22}Na^* = 2.25$ MeV (Kr 60).

Other energy determinations of the first resonance give $E_p = 765$ keV (Br 47), 766.1±1.8 keV (Ku 59a).

F. O	²¹ Ne(d, n) ²² Na bserved. La 37.	$Q_{\rm m} = 4518.3 \pm 4.9$
G.	$^{22}Mg(\beta^+)^{22}Na$ See ^{22}Mg .	$Q_{ m m}=5040\pm80$
H.	²³ Na(y, n) ²² Na	$Q_{\rm m} = -12414.3 \pm 4.9$

The threshold has been measured as 12.05 ± 0.20 MeV (Sh 51a), and 12.47 ± 0.05 MeV (Ch 58). A search for isomeric states in ²²Na with half-lives in the 10^{-5} - 10^{-1} sec range was unsuccessful (Ve 56).

For yield curve, see Mo 53a.

I.
23
Na(p, d)²²Na $Q_m = -10189.3 + 4.9$

Differential cross sections of groups to ${}^{22}Na^* = 0$ and 0.59 MeV, measured at $E_p = 18$ MeV, yield $l_n = 2$ and $\theta_n{}^2 = 0.021$ for both groups (Be 58g, Ma 60d).

²²Na

J. ²³Na(d, t)²²Na $Q_{\rm m} = -6156.6 \pm 4.9$

At $E_d = 14.8$ MeV, triton groups have been observed to ²²Na^{*} = 0, 0.58, 0.89 and 1.53 MeV; $Q_0 = -6.211 \pm 0.040$ MeV. The angular distributions of all four groups are best fitted with $l_n = 2$ (Vo 58). Reduced widths, normalized to that of the ²³Na(p, d)²²Na ground-state transition (Be 58g), are: $\theta_n^2 = 0.021$, 0.007, 0.012 and 0.004, respectively (Vo 58, Ma 60d). For a theoretical discussion, see Ha 60a.

K. ²³Na(³He, α)²²Na $Q_{\rm m} = 8162.9 \pm 4.9$

At $E(^{3}\text{He}) = 8.45 \text{ MeV}$, 23 α -particle groups have been observed, corresponding to the ground state of ²²Na and excited states up to $E_{x} = 4.78 \text{ MeV}$ (Hi 60f); see table 22.3.

Energy levels in ²²Na (in MeV \pm keV) from ¹⁹F(α , n)²²Na, ²⁶Ne(³He, p)²²Na, ²³Na(d, t)²²Na, ²³Na(³He, α)²²Na, ²⁴Mg(d, α)²²Na, and ²⁵Mg(p, α)²²Na

TABLE 22.3

Hi 60f (³ He, α) and (d, α)	Br 59d (d, α)	Br 59d (p, α)	Te 58 (³He, p)	Vo 58 (d, t)	Ba 59a (a, n)
0	0	0	0	0	0
0.582 0.656	0.585 ± 5	$\begin{array}{c} \mathbf{0.582 \pm 6} \\ \mathbf{0.661 + 8} \end{array}$	0.60	0.58	0.59 ± 20
0.889	0.893 + 5	0.891 + 6	0.90	0.89	$0.89 \pm 2v$
1.527	1.533 + 5		1.55	1.53	1.54 ± 20
1.933	1.944 + 5				
1.949					
1.980	1.990 ± 5		2.0		$1.97{\pm40}$
2.210	2.219 + 5				
2.567	2.576 ± 5		2.6		
2.965	2.975 ± 5		• •		
3.060	3.066 ± 5		3.0		
3.532	3.526 ± 5		3.5		
3.712	3.713 ± 8		3.75		
3.951	3.949 ± 5				
4.073					
4.322	$\textbf{4.323} \pm \textbf{8}$				
4.363	—				
4.474	(4.472 ±8)				
4.531	· _ /				
4.595					
4.732					
4.778					
all $\pm 10 \text{ keV}$					

L. ${}^{24}Mg(d, \alpha){}^{22}Na$

 $Q_{\rm m} = 1963.5 \pm 4.9$

The α -particle groups, observed at $E_d = 5.0-7.5$ MeV (Br 59d), and $E_d = 5.70$ and 5.90 MeV (Hi 60f) are listed in table 22.3; $Q_0 = 1.954 \pm 0.007$ MeV (Br 59d).

²²Na, ²²Mg

20

The group to the 0.66 MeV state, with T = 1, has an intensity of 1-5 percent of the ground-state group (see also Br 59d). The second T = 1 level is expected at $E_x \approx 1.95$ MeV; none of the groups to $^{22}Na^* = 1.933$, 1.949, and 1.980 MeV, however, is weak (Hi 60f). Angular distribution measurements at $E_d = 15$ MeV, with D. W. B. A. analysis, yield L = 2 and 0 for the groups to $^{22}Na^* = 0$ and 0.89 MeV, respectively (Pe 61). The L = 0 assignment to the 0.89 MeV level entails $J^{\pi} = 1^+$.

For cross section, see Cl 46, Cl 46a.

M. $^{25}Mg(p, \alpha)^{22}Na$ $Q_m =$

$$Q_{\rm m} = -3142.5 \pm 5.0$$

At $E_p = 7.5$ MeV, α -particle groups have been observed to the ground state and to the three lowest levels of ²²Na, including the 0.66 MeV, T = 1 level; see table 22.3 (Br 59d).

For cross section, see Me 51, Ba 54, Co 54a.

N. Not reported:

20 Ne(t, n) 22 Na	$Q_{\rm m} = 5019.7 \pm 4.7$
20 Ne(α , d) 22 Na	$Q_{\rm m} = -12568.2 \pm 4.7$
²¹ Ne(³ He, d) ²² Na	$Q_{\rm m} = 1249.8 \pm 4.9$
$^{21}Ne(\alpha, t)^{22}Na$	$Q_{\rm m} = -13069.7 \pm 4.9$
²² Ne(p, n) ²² Na	$Q_{\rm m} = -3624.2 \pm 4.6$
²² Ne(³ He, t) ²² Na	$Q_{\rm m} = -2859.7 \pm 4.6$
$^{24}Mg(n, t)^{22}Na$	$Q_{\rm m} = -15624.5 \pm 4.9$
²⁴ Mg(p, ³ He) ²² Na	$Q_{\rm m} = -16389.0 \pm 4.9$

²²Mg

(Fig. 22.2, p. 21)

A. ${}^{22}Mg(\beta^+){}^{22}Na$

 $Q_{\mathrm{m}}=5040\pm80$

The decay should proceed to ${}^{22}Na^* = 0.66$ MeV, with $J^{\pi} = 0^+$, T = 1. From the well known ft value of this type of super-allowed $0^+ \rightarrow 0^+ \beta^+$ transitions, and the Q_m value derived from reaction B, a ${}^{22}Mg$ half-life of about 4 sec can be estimated.

The 0.13 sec half-life, observed from proton bombardment of natural magnesium with 23 MeV protons, and assigned either to 23 Al or to 22 Mg (Ty 54), then must be due to 23 Al.

B. ²⁰Ne(³He, n)²² Ig $Q_{\rm m} = -40 \pm 80$

At $E({}^{3}\text{He}) = 3.4$ and 4.5 MeV, neutron groups have been observed corresponding to ${}^{22}\text{Mg}(0)$, with $Q_{0} = -0.04 \pm 0.08$ MeV, and to ${}^{22}\text{Mg}^{*} = 0.99 \pm 0.04$ MeV. No other levels with $E_{x} < 2.5$ MeV have been observed (Aj 61). C. Not reported:

 $Q_{\rm m} = -21450 \pm 80$

ENERGY LEVELS OF LIGHT NUCLEI. III

Fig. 22.2. Energy levels of ²²Mg.

²³Na

(Fig. 23.1, p. 22; table 23.1, p. 23)

A.	(a) ¹⁹ F(α, n) ²² Na	$Q_{ m m}=-1949.0\pm4.7$	$E_{\rm b} = 10465.3 \pm 1.6$
	(b) ${}^{19}F(\alpha, p'){}^{22}Ne$	$Q_{\rm m} = 1675.2 \pm 0.8$	$E_{\rm b} = 10465.3 \pm 1.6$
	(c) ${}^{19}F(\alpha, \alpha'){}^{19}F$		$E_{\rm b} = 10465.3 \pm 1.6$

(a) Fifteen resonances have been found, for α particles in the energy range $E_{\alpha} = 2.5-3.5$ MeV, by measuring the yield of slow and fast neutrons and the yield of the 590 keV γ ray, from ²²Na (1); see table 23.2 for energies, widths, and cross sections (Wi 60; also Wi 57, He 54b).

See ²²Na for neutron groups and thresholds.

(b) Resonances in the yield of the 1.27 MeV γ ray, from ²²Ne (1), for $E_z = 0.6$ -2.8 MeV (Sh 54c), 1.5-3.4 MeV (He 54b), and 2.5-3.5 MeV (Wi 60), are given in table 23.2. See also De 58a.

See Aj 59 for proton groups.

(c) Resonances in the yield of 110 and 198 keV γ rays, from ¹⁹F* = 110 and 198 keV, are given in Sh 54c ($E_{\alpha} \approx 0.6-2.8$ MeV) and He 54b ($E_{\alpha} \approx 1.3-34$ MeV); see table 23.2.

See Aj 59 for levels in ¹⁹F.

The relative intensities of 18 resonances in the (α, α') , (α, p') , and (α, n') reactions have been reported in He 54b; and of 24 resonances in the (α, α) and (α, p') reactions in Sh 54c.

P. M. ENDT AND C. VAN DER LEUN

Fig. 23.1. Energy levels of ²³Na; for γ decay, see also fig. 23.2.

B. ²⁰Ne(
$$\alpha$$
, p)²³Na $Q_{\rm m} = -2378.7 \pm 1.5$

One proton group, $Q = -2.54 \pm 0.20$ MeV, has been found with ThC' α particles (Po 37 and Li 37). For the differential cross section, see Ya 60b. See ²⁴Mg for resonances.

C. ²²Ne(p,
$$\gamma$$
)²³Na $Q_{\rm m} = 8790.1 \pm 1.5$

Resonance energies for $E_p = 0.4-0.8$ MeV (Ku 59a), $E_p = 0.6-1.8$ MeV (Si 59e, also Si 59), and $E_p = 0.6-0.95$ MeV (Th 58) and the main modes of

$E_{\rm x}$ (MeV \pm keV)	J¤	$ au_{\mathbf{m}}$ or $arGamma$	Decay	Reactions
0	<u>3</u> +		stable	many
$0.4392\pm~0.8$	5+	(1.6 ± 0.3) × 10 ⁻¹² sec	γ	C, F, G, H, I, J, K, L, M, O, P
2.080 ± 3	$\frac{7}{2}$ +		Ŷ	C, F, G, H, I, P
2.391 ± 5	-		Ŷ	C, F, G. H, I
$\textbf{2.640}~\pm~\textbf{6}$	1 + (5+)		2'	C, F, G, H
2.705 ± 7	(<u></u> §)+		Ŷ	С, г, G, H, I
$\textbf{2.984}~\pm~\textbf{6}$	$(\frac{3}{5},\frac{5}{5})$ +		2	C, F, G, H, I
3.678 ± 7	(*, 5)+		Y	C, H, I
3.850 ± 8	(≤‡)+		Ŷ	C, H, I
3.915 + 10	1		v	С, Н, І
4.431 + 10			?	С, Н, І
4.778 + 10	글- (용+)		· v	С, Н,
5.5	3 (2)		•	I
6.27 + 50	¥+			E, I
7.21 -50	(३ ँ ५)+		γ	C, E, I
7.79 -20	(泉, 泉)+		•	E
8.431 + 10	(4, 2)			E
9.008 + 15				Е
9.202 + 2			γ	С
9.208 + 2			Ŷ	С
9.249 + 2			v	С
9.402 ± 2	.1()	$\approx 0.46 \pm 0.36 \text{ keV}$	v	С
9.424 - 2	2	and the second se	~	С
9.484 ± 2			, Y	C
9.612-10.543;	15 levels; se	ee table 23.3 and reaction	1	С
10.470-12.945;	49 levels; se	ee table 23.4 and reaction		D
11.552-13.333;	41 levels; so	ee table 23.2 and reaction	l	Α

TABLE 23.1Energy levels of 23Na

decay are summarized in table 23.3. See also Br 47. At $E_p = 640$ keV, the isotropic angular distribution of the ground-state transition γ_0 (Th 58) and its radiative width, $\Gamma_{\gamma_0} = 2.0 \pm 0.5$ eV, favour the assignment $J^{\pi} = \frac{1}{2}^{(-)}$. A resonance absorption measurement gives $\Gamma_{\gamma_0} = 2.7 \pm 1.1$ eV, and $\Gamma \approx \Gamma_p = 460 \pm 360$ eV (Mo 60). At $E_p = 854$ keV, angular distribution measurements exclude $J = \frac{1}{2}$ for the resonance level (Th 58).

From y-ray spectra, angular distributions, and $\gamma - \gamma$ angular correlations,

 $\mathbf{23}$

.2

E_2 (MeV)	²³ Na* (MeV)	Outgoing particle ^b	Refer- ences	$\frac{E_{z}}{(\text{MeV}\pm\text{keV})}$	²³ Na* (MeV)	Г (keV)	σ _n (mb)	Outgoing particle ^b	Refer- ences
1 315	11.552	D.	;	2.46 - 10	12.497			$p_1 \alpha_1 \alpha_2$	a, c, d
1 362	11.590	Г1 D,	с	2.498 + 3	12.528	8	3	n _o	8
1 408	11.628	D.	c	2.53 + 10	12.555			$\mathbf{p}_1 \alpha_1 \alpha_2$	a, c, d
1 455	11.667	D.	с	2.609 - 3	12.620	11	6	no	3.
1 501	11.705	ri D.	c, d	2.63 - 10	12.639			$\mathcal{D}_1 \alpha_1 \alpha_2$	a, c, d
1.662	11.837	FI De	с	2.730 - 3	12.721	6	14	n _o	8
1 70	11.869	Г1 D1	đ	2.738 - 3	12.728	9		$p_1 \alpha_1$	a , c
1.879	12.018	D,	с	2.76	12.745			$p_1 \alpha_1 \alpha_2$	e, d
1.914	12.047	D1	c, d	2.81 -10	12.786			р,	8.
1.948	12.074	D,	e	2.84 - 10	12.812		16	$p_1 n_0$	a, d
1.994	12.113	D1	c, đ	2.87 -10	12.836		2	n _o	8
2.017	12.130	D, 2,	с	2.90 -10	12.862		2	$p_1 \alpha_1 \alpha_2 n_0$	a , d
2 (183	12.187	D1	с	2.94 - 10	12.895		10	n _a	8
2.109	12.206	D, 2,	c, d	3.01 -10	12.953		3.5	$D_1 \alpha_2 n_2$	8, d
2.207	12.288	$D_1 \alpha_1 \alpha_2$	e.d	3.07 10	13.002		7	$\alpha_1 n_0$	8, d
2 257	12.329	U a. a.	c	3.12 -10	13.044		3.5		a
2.298	12.364	D, 2	e, d	3.15 - 10	13.067		25	$D_1 \alpha_1 \alpha_2 n_2 n_3$	a d
2.337	12.396	Ūα,	с	3.25 + 10	13.151		20	n, n,	ล้
2.383	12 434	$p_1 \alpha_1 \alpha_2$	e, d	3.30 - 10	13.193		25	$D_1 \alpha_1 \alpha_2 D_2 D_3$	8, G
2.428	12.471	P:	· c	3.36 + 10	13.241		25^{-5}	ri wi w2 w0 wi	a
		••		3.47 ± 10	13.333		17	$n_0 n_1$	8

Resonances in ${}^{19}F + \alpha$

a Wi 60.

^b Resonances in the yield of the 1.27 MeV (²²Ne^{*}), 0.110 MeV (¹⁹F^{*}), and 0.59 MeV (²²Na^{*}) γ rays are indicated by p_1 , $\alpha_1 \alpha_2$, and n_1 , respectively; U = unresolved.

^c Sh 54c. Correction for surface contamination might lower the resonance energies by 10 to 20 keV. ⁴ He 54b.

$E_{\rm p}$ (keV)	²³ Na* (MeV±keV)	Decay ^e	E _p (keV)	²³ Na* (MeV)	Decay
131.0 I.3a	9.202 2		1010b	9.756	<u> </u>
136.9 ± 1.34	9.208 ± 2		1280 ^b	10 014	71 V-
80.1 L.0*	9.249 <u></u> 2		1443 ^b	10.170	71 27.
139.8 - 1.6 s. b. c	$\boldsymbol{9.402\pm2}$	70	1500 ^b	10.225	71 27.
662.3 1.78	9.424 ± 2	-	1553 b	10.276	71 27.
725.5 1.24	9.484 - 2		159 3 b	10.314	21 27.
859b. c	9.612	20 21	1621 d	10.340	11
84 . 4 p. c	9.655	70 71	1628 d	10.347	
9330	9.682		1721 ^b	10.436	42.
(943)0	(9.692)		1833 d	10.543	/1
9540	9.702	7071			

TABLE 23.3 Resonances in ${}^{22}Ne(p, \nu){}^{23}Na$

* Ku 59a.

⁶ St 59r.

° TE 58.

4 Si 59.

* Si 59e (also Th 58); γ_0 and γ_1 indicate transitions to ²³Na^{*} = 0 and 0.44 MeV, respectively. Cascades through ²³Na^{*} = 2.08 and 2.39 MeV have not been observed.

ENERGY LEVELS OF LIGHT NUCLEI. III

Fig. 23.2. Gamma-ray branchings of ²³Na lower levels. Branchings of the 2.08, 2.39, 2.64, and 2.98 MeV levels are averages from values in Go 57b, Fr 58a, Si 59e, Kr 60a, Li 61, Br 61c. At the 2.71 MeV level the Kr 60a results are given; a γ_1 intensity of 100% is reported in Fr 58a and Br ...c. Branchings of levels above 3 MeV are from Br 61c.

at 5 resonances in the $E_{\rm p}=600{-}1030~{\rm keV}$ region, branchings of ²³Na lower levels up to $E_x = 5$ MeV, and spins and parities have been determined, as given in fig. 23.2 (Br 61c).

D.
$${}^{22}Ne(p, p'){}^{22}Ne$$

 $E_{\rm h} = 8790.1 \pm 1.5$

Resonances both for elastic scattering and for inelastic scattering to $^{22}Ne^* =$ 1.27 MeV have been observed at $E_p = 2.43$, 2.67, 2.83, 2.87, and 3.19 MeV (Ha 53, Ga 53).

Resonances in the yield of the 1.27 MeV γ ray, with relative yields, are listed in table 23.4 (Va 53).

E.
22
Ne(d,n) 23 Na $Q_{\rm m} = 6565.4 \pm 1.6$

At $E_d = 2.83$ MeV, neutron groups have been observed to ${}^{23}Na^* = 6.27$ ± 0.05 , 7.21 ± 0.05 , and 7.72 ± 0.05 MeV. Angular distribution measurements yield $l_{\rm p} = 0$, 2, and 2, and $(2J+1)\theta_{\rm p}^2 = 0.012$, 0.073, and 0.021, respectively (Gr 61).

Two slow-neutron thresholds, with $Q = -1.866 \pm 0.010$ and -2.443 ± 0.015 MeV, have been observed from deuteron bombardment of natural neon. The assignment to ²²Ne is based on the observed intensities (Ma 56b). A threshold

P. M. ENDT AND C. VAN DER LEUN

with $Q = -1.24 \pm 0.02$ MeV, earlier reported as to be due to ²⁰Ne(d, n)²¹Na (Ma 56b), has also to be assigned to the $^{22}Ne(d, n)^{23}Na$ reaction (Gr 61).

F.
$$^{23}Ne(\beta^{-})^{23}Na$$
 $Q_{\rm m} = 4\,380\pm 5$

The weighted mean of the half-life measurements is 37.6 ± 0.1 sec (Pe 57, Nu 58, Al 59a). Also Br 50d, Ri 58.

E _p MeV)	²³ Na* (MeV)	Relative yield	Ep (MeV)	²³ Na* (MeV)	Relative yield
1 PEE	10.470		3.435	12.075	70
E. / J.J. > 611 =	10.470	1	3.470	12.110	120
1.910	10.020		3.560	12.195	270
1.070 a 190	16.830	50	3.585	12.220	90
2.109 0 100	10.895	22	3.645	12.275	20
2.130 a gan	10.005	77	3.685	12.315	30
2.221	16.515	40	3.725	12.355	90
2.240	11.045	10	3.755	12.380	320
2.000	11.040	10	3.800	12.405	45
2.411-1 0 490	11.030	45	3.845	12.470	120
2.400	11.115	40	3.895	12.515	35
2.000	11.240	40	3.920	12.540	370
2.010	11.250	175	3 940	12.560	90
2.040	11.350	40	3 985	12.600	150
2.190	11.500	130	4 035	12.650	130
2.000 0.925	11.550	85	4 055	12.670	170
2.000	11.600	30	4.090	12.310	160
2.349	11.605	40	4 195	12.785	290
2.200	11.689	50	4 165	12.705	280
2.020	11.565	160	4 190	12.000	350
0.000 9.165	11.710	100	4.130	12.800	120
9.199 2 166	11.810	100	4.200 A 955	12.040	910
J.109 2 015	11.019	160	4.200 A 200	12.000	210 955
0.410 9.596	11.005	100	4.000	12.900	200
9.00U 9.900	11.370 19.095	00 305	4.040	12.940	300

TABLE 23.4

The β - branching, with end points, percentages, log ft values, and coincident 7 rays is given in table 23.5 (Pe 57, Ov 56, Ge 56, Ge 55).

The allowed character of the β transitions to ²³Na(0) and (1), with $J^{\pi} = \frac{3}{2}^{+}$ and $\frac{5}{2}$, respectively, limits the spin of ²³Ne to $J^{\pi} = \frac{3}{2}$ or $\frac{5}{2}$. The same possibilities follow from ²²Ne(d, p)²³Ne angular distribution measurement (Bu 56d).

The electron-neutrino angular correlation is consistent with pure axialvector interaction (Al 59a, Bo 59; see, however, Ri 58).

Resonance fluorescence measurements yield $\tau_m = (1.5 \pm 0.3) \times 10^{-10}$ sec (Bo 59), and $\tau_m = (1.5^{+0.3}_{-0.2}) \times 10^{-12}$ sec (Am 61) for ²³Na(1). The latter value is in good agreement with the value reported in Ra 59a (see reaction H).

23Na

G. ${}^{23}Na(n, n'){}^{23}Na$

The gamma rays from inelastic neutron scattering, listed in table 23.6, can be fitted into the ²³Na level scheme as indicated in the last column of this table (Fr 58a, Mo 56c, Wo 56, Li 61). Gamma rays of 0.15 and 0.61 MeV, observed

TABLE 23.5

The β^- decay of ²³ Ne							
End point E_{γ} Branching (MeV) (MeV \pm keV) (%) log ft^{a} References							
β0-	4.39±0.05 ^b		67 ±3	5.25	Pe 57		
β_1^-	$3.96 {\pm} 0.04$	$0.438\pm~3^{\circ}$	32 ± 2	5.38	Ge 55, Ge 56, Ov 56, Pe 57		
β_2	2.4 ± 0.1	1.647 ± 16 c, d	1.00 ± 0.15	5.88	Pe 57		
		> 2.0	< 0.2		Pe 57		
3.0 <0.06 Ov 56, also Ge 55, Ge 56							

⁸ A super-allowed branch (see Ki 55, Fe 55) does not occur; Pe 57.

^b This value is in better agreement with Q_m than the results of earlier measurements: 4.21 ± 0.01 MeV (Br 50d), and 3.9 ± 0.3 MeV (Ge 55, Ge 56).

^c The 0.438 and 1.647 MeV γ rays are coincident; their intensity ratio is 100: (3.0±0.3), Pe 57; see also Go 56. The 0.438 MeV γ ray is coincident with β_1 -, the 1.647 MeV γ ray with β_2 -.

^d In Ov 56, the 1.63 MeV γ ray is ascribed to the ²⁰F decay on the basis of a half-life measurement and a β - γ coincidence experiment.

Fr 58 $E_n = 0.5-3.7 \text{ MeV}$	$E_n = 0.5-3.2 \mathrm{MeV}$	$\begin{array}{l} \text{Mo 56c} \\ E_{n} = 5.1 \text{MeV} \end{array}$	Wo 56 $E_{\rm n} = 2.5 {\rm MeV}$	Assignment ^a
0.438 ± 5	0.44	0.439	$0.45\pm~20$	$0.44 \rightarrow 0$
		0.650		$2.71 \rightarrow 2.08$
1.643 ± 8	1.61	1.63	1.69 ± 20	2.08 ightarrow 0.44
1.954 ± 15	1.90			$2.39 \rightarrow 0.44$
2.088 + 15	2.05	2.07	2.2 ± 100	$2.08 \rightarrow 0$
2.27 + 20				$2.71 \rightarrow 0.44$
2.386 + 10	2.37			2.39 - 0
2.56 + 20				2.98 0.44
2.635 ± 15	2.64			2.64 -> 0
2.979 + 15	2.96	3.01		$2.98 \rightarrow 0$

TABLE 23.6 Gamma rays (MeV±keV) from ²³Na(n, n'γ)²³Na

^a Excitation energies in MeV.

at $E_n = 0.8$ MeV (Mo 56c), have not been found in other ²³Na(n, n')²³Na* experiments. See also Le 61a, An 60d.

The branching ratio of the decay to ${}^{23}Na(0)$ and (1) is 0.19 ± 0.04 for ${}^{23}Na^{*}(2.08)$, 3.0 ± 0.6 for ${}^{23}Na^{*}(2.39)$, and ≈ 1 for ${}^{23}Na^{*}(2.98)$ (Fr 58a); the values given in Li 61 are 0.11 for ${}^{23}Na^{*}(2.08)$ and 13 for ${}^{23}Na^{*}(2.39)$; see fig. 23.2.

At $E_n = 2.45$ MeV, an inelastic neutron group has been observed, corresponding to ${}^{23}Na^* = 0.46 \pm 0.05$ MeV (Cr 56a). The angular distribution and cross

section for inelastic scattering to ${}^{23}Na^{*}(0.44)$, at $E_n = 3.49$, 3.75, and 4.00 MeV, is given in Sh 59b; the cross section for scattering to the 0.44, 2.08, 2.39, 2.64 and 2.98 MeV levels is reported in Li 61. Elastic scattering angular distribution, La 57b.

For resonances, see ²⁴Na.

23Na(p, p')23Na H.

The levels in ²³Na, observed from inelastic proton scattering, are listed in table 23.7. Other values for the excitation energy of $^{23}Na(1)$ are 439 ± 1 keV (Do 53; electrostatic analysis), 437 ± 5 keV (Sc 56c; magnetic analysis), $444 \pm$ $5~{
m keV}$ (Ne 54; scint. spectrometer), and $450\pm10~{
m keV}$ (St 54; scint. spectrometer)

$^{22}Na^*(McV + keV)$					l
(p. p')a	(p, p') ^b	(d, d') ^e	(d, d') ^d	(d, d')e	(d, d') ^e
0.440 3	- na maatanan adam dhamada dhama		0.439		
2.078 - 4	2.10	1.9	2.073	2.07 ± 30	2
2.393 7	2.37		2.400	(2.41 ± 40)	
2.641 - 7				· ·	
2.705 7	2.69	2.6	2.609	2.71 ± 40	2!
2.983 - 7	3.01		2.997	3.00 ± 30	
3.678 = 7	3.70	3.75	3.689		
3.850 ± 3				3.83 ± 60	2
3.915 - 10	3.92		3.925	_	
4.431 - 10	4.45	4.45	4.457		
4.778 - 10	all ± 40		all + 40		
		5.5	-		
		6.3			
		7.2			

TABLE 23.7

* Bu 57 ; $E_p = 7.0-7.5$ MeV, magnetic analysis.

^b St 52 ; $E_p = 7.26$ MeV, scintillation spectrometer.

^c Bo 50 ; $E_d = 14$ MeV, Al-absorption.

^d Vo 58; $E_d = 14.8$ MeV, magnetic analysis.

* El 56a: $E_d = 8$ MeV, magnetic analysis.

The 0.44 MeV γ transition has been investigated at several resonances. The internal conversion coefficient is $\alpha = (4.9 \pm 0.6) \times 10^{-5}$, indicating that the transition is predominantly dipole (Be 56a). Gamma-ray angular distribution measurements yield $J^{\pi} = (\frac{3}{2}, \frac{5}{2})^{+}$ for ²³Na^{*} = 0.44 MeV (Ro 56b, Be 56a). The ratio of the Coulomb excitation cross sections for protons and α particles implies E2 excitation, and thus even parity for this level. The Coulomb excitation cross section yields the partial mean life for E2 decay, $\tau_m(E2) = 4.3$ $\times 10^{-10}$ sec (Te 56). The mean life of the level, $\tau_{\rm m} = (1.8^{+0.4}_{-0.3}) \times 10^{-12}$ sec, has been measured in a resonance fluorescence experiment (Ra 59a). See also Kr 56 $(\tau_m = 10^{-12} - 10^{-13} \text{ sec})$, Sw 56 $(\tau_m < 2.5 \times 10^{-11} \text{ sec})$. An E2/M1 mixing amplitude $x = \pm 0.056$ follows from these $\tau_m(E2)$ and τ_m values. The angular

23Na

distribution of the fluorescence radiation indicates that x > 0 (Ra 59a). Measurement of the angular distribution and polarization of the 440 keV γ ray yields $x = +0.045 \pm 0.015$ (Mi 60a).

The 2.08 MeV level in ²³Na is excited at the $E_{\mu} = 2.89$ MeV resonance. The branching ratio of the decay to ²³N₋(1) and (0) is about 20. The groundstate transition is anisotropic, excluding $J = \frac{1}{2}$ for ²³Na^{*} = 2.08 MeV (Go 57b).

The decay of ²³Na levels up to 4 MeV has been investigated with protons up to 6.4 MeV. The results are summarized in fig. 23.2 (Kr 60a, Fr 58a).

For resonances, see ²⁴Mg.

I. ${}^{23}Na(d, d'){}^{23}Na$

Deuteron groups corresponding to levels in ²³Na are listed in table 23.7 (Bo 50, El 56a, Vo 58). The angular distributions of the groups to ²³Na^{*} = 2.08, 2.71, and 3.85 MeV are compatible with l = 2, (El 56a). Theory, El 60.

J. ²³Na(³He,³He⁻)²³Na

The ratio of the radiation yield for ³He -and α -induced Coulomb excitation of the 0.44 MeV level, at $E(^{3}\text{He}) = 2.00$ MeV and $E_{\alpha} = 2.23$ MeV, is in agreement with the theoretical value for E2 excitation (Br 59c).

K. $^{23}Na(\alpha, \alpha')^{23}Na$

N.

 $^{24}Mg(\gamma, p)^{23}Na$

The angular distribution of the 0.44 MeV γ ray following Coulomb excitation with 2.5 MeV α particles eliminates the possibility of a $J^{\pi} = \frac{3}{2}^{+}$ assignment to ²³Na* = 0.44 MeV. This establishes the $J^{\pi} = \frac{5}{2}^{+}$ assignment to this level, J $= \frac{7}{2}$ is ruled out by a comparison of its mean life, $\tau_{\rm m}$, and its partial mean life $\tau_{\rm m}(E2)$, Te 56; see also reaction H.

For the yield ratio of ³He- and α -induced reactions: see reaction J (Br 59c).

L. ²³Na+heavy ions (¹⁴N, ¹⁶O, ²⁰Ne)

A 0.44 MeV γ ray has been observed from Coulomb excitation by 15.6 MeV ¹⁴N (Al 56), 9–11 MeV ¹⁶O (Go 60d), and 9–11 MeV ²⁰Ne ions (St 60).

The reduced transition probability B(E2) for excitation of ²³Na(1) is $(1.1\pm0.2)\times10^{-50}$ e²cm⁴ (St 60), 0.95×10^{-50} e²cm⁴ (Go 60d), yielding a partial mean life $\tau_{\rm m}(E2) = (6.2\pm0.6)\times10^{-10}$ sec, and 7.2×10^{-10} sec, respectively.

 $Q_{\rm m} = -11692.6 \pm 2.2$

М.	$^{23}Mg(\beta^+)^{23}Na$	$Q_{ extsf{m}} = 4078 \pm 15$
	See ²³ Mg.	

Cross section for 28 MeV bremsstrahlung, Jo 55. A theoretical discussion of the ratio of (γ, p) and (γ, n) cross sections is given in Mo 55.

O. ²⁴Mg(n, d)²³Na $Q_{\rm m} = -9467.8 \pm 2.2$

A 0.45 ± 0.02 MeV γ ray observed from a natural Mg target, at $E_n = 14$ MeV, is attributed to this reaction (De 60).

²³Na, ²³Mg

30

P. M. ENDT AND C. VAN DER LEUN

P. ${}^{25}Mg(d, \alpha){}^{23}Na$

 $Q_{\rm m} = 7047.1 \pm 2.3$

The measured value $Q_0 = 7.019 \pm 0.013$ MeV differs from the value computed from other mass links between ²³Na and ²⁵Mg. Levels in ²³Na at 0.427 ± 0.018 and 2.073 ± 0.015 MeV have been observed from this reaction (En 52).

O.
$${}^{27}\text{Al}(\gamma, \alpha){}^{23}\text{Na}$$
 $Q_{\rm m} = -10098.0 \pm 2.3$

Cross section for 21.5 MeV bremsstrahlung, To 58.

R. Not re	eported:
-----------	----------

²¹ Ne(t, n) ²³ Na	$Q_{\rm m} = 10674.9 \pm 2.1$
²¹ Ne(³ He, p) ²³ Na	$Q_{\rm m} = 11439.4 \pm 2.0$
$^{21}Ne(\alpha, d)^{23}Na$	$Q_{\rm m} = - 6913.1 \pm 2.0$
²² Ne(³ He, d) ²³ Na	$Q_{\rm m} = 3297.0 \pm 1.5$
$^{22}Ne(\alpha, t)^{23}Na$	$Q_{ m m} = -11022.6 \pm 1.5$
²⁴ Mg(d, ³ He) ²³ Na	$Q_{\rm m} = -6199.4 \pm 2.2$
$^{24}Mg(t, \alpha)^{23}Na$	$Q_{\rm m} = 8120.1 \pm 2.3$
$^{25}Mg(n, t)^{23}Na$	$Q_{\rm m} = -10540.9 \pm 2.4$
²⁵ Mg(p, ³ He) ²³ Na	$Q_{\rm m} = -11305.4 \pm 2.3$
$^{26}Mg(p, \alpha)^{23}Na$	$Q_{\rm m} = -1825.7 \pm 2.7$

REMARKS

The decay of ²³Na levels up to 5 MeV, as summarized in fig. 23.2, is consistent with the results of strong-coupling collective calculations. Proposed rotational bands are indicated in fig. 23.2 (Kr 60a, Br 61c). See also Pa 58a, Li 58c.

²³Mg

(Fig. 23.3, p. 31; table 23.8, p. 32)

A. ${}^{23}Mg(\beta^+){}^{23}Na$

$$Q_{\rm m} = 4078 \pm 15$$

The weighted mean of the reported half-lives is 12.04 ± 0.09 sec (Wh 39, Hu 43, Bo 51, Hu 54, Mi 58, Wa 60a; see also Ba 46, Ed 52).

The decay mainly proceeds to ²³Na(0); the β^+ end point is 2.99 ± 0.09 MeV (Bo 51), 2.95 ± 0.07 MeV (Hu 54), 3.09 ± 0.01 MeV (Wa 60a). The decay is super-allowed (log ft = 3.7), determining the spin and parity of ²³Mg as $\frac{3}{2}^+$.

Gamma-annihilation coincidence measurements indicate a $(9.1\pm0.5)\%$ branch to $^{23}Na^* = 0.44$ MeV (Ta 60c); log ft = 4.5. A $(6.5\pm2.5)\%$ intensity is reported in St 59d.

B. ²³Na(p, n ²³Mg
$$Q_m = -4861 + 15$$

A slow-neutron threshold has been observed at $E_p = 5.061 \pm 0.007$ MeV, giving Q = -4.850 MeV (Ki 55a, Go 58f).

Cross section, Ta 58. For resonances, see ²⁴Mg.

Fig. 23.3. Energy levels of ²³Mg.

C. ${}^{24}Mg(\gamma, n){}^{23}Mg$

 $Q_{\rm m} = -16553 \pm 15$

The threshold is measured as 16.4 ± 0.3 MeV (Be 47), 16.2 ± 0.3 MeV (Mc 49), and 16.55 ± 0.25 MeV (Sh 51a).

See ²⁴Mg for vield and resonances.

D.
$${}^{24}Mg(d, t){}^{33}Mg$$

 $Q_{\rm m}=-10296\pm15$

Differential cross sections, Vl 61.

E.
$${}^{24}Mg({}^{3}He, \alpha){}^{23}Mg$$

$$Q_{\rm m} = 4024 \pm 15$$

At $E({}^{3}\text{He}) = 5.7$ and 5.9 MeV, the ground-state Q value has been measured as 4.048 ± 0.015 MeV, and α -particle groups have been observed to ${}^{23}\text{Mg}$ levels at 0.451 ± 0.010 , 2.048 ± 0.010 , 2.356 ± 0.015 , 2.712 ± 0.010 , 2.768 ± 0.010 , $2.904 \pm$ 0.010, 3.792 ± 0.010 , 3.856 ± 0.010 , 3.968 ± 0.010 , and 4.353 ± 0.015 MeV (Hi 59a), and at $E({}^{3}\text{He}) = 5.23$ MeV, to levels at 0.449 ± 0.005 , 2.038 ± 0.008 , and 2.350 ± 0.008 MeV (De 59). At $E({}^{3}\text{He}) = 5.5$ MeV angular distributions have

3?

been measured of α -particle groups leading to ²³Mg(0) and (1). Interpretation in terms of stripping plus heavy particle pick-up leads to $J^{\pi} = (\frac{3}{2}, \frac{5}{2})^+$ for both states (Pa 61c).

F. Not reported:

20 Ne(α , n) 23 Mg	$Q_{\rm m} = -7240 \pm 15$
²¹ Ne(³ He, n) ²³ Mg	$Q_{\rm m} = 6578 \pm 15$
²³ Na(³ He, t) ²³ Mg	$Q_{\rm m} = -4097 \pm 15$
$^{24}Mg(p, d)^{23}Mg$	$Q_{\rm m} = -14328 \pm 15$
$^{25}Mg(p, t)^{23}Mg$	$Q_{\rm m} = -15402 \pm 15$

TABLE 23.8	
Energy levels of	²³ Mg

$\frac{E_{\rm x}}{({\rm MeV}_{\rm c}~{\rm keV})}$	J¤	$ au_{rac{1}{2}}$	Decay	Reactions
0	<u>3</u> +	12.04 ± 0.09 sec	β.	A, B, C, D, E
0.449 ± 4	(इ, ई)+			D, E
2.042 ± 6				D, E
2.351 ± 7				D, E
2.712 - 10				D, E
2.768 ± 10				D, E
2.904 - 10				E
3.792 ± 10				E
3.856 - 10				E
3.968 - 10				E
4.353 - 15				Е

23A1

(Not illustrated)

A 0.13 sec half-life, observed from bombardment of natural magnesium with 23 MeV protons, might be assigned to ²³Al; see Ty 54 and ²²Mg, reaction A.

Coulomb energy systematics yield an estimated ${}^{23}\text{Al}-{}^{23}\text{Mg}$ mass difference of 12.5 MeV. The ${}^{23}\text{Al}$ half-life calculated from this mass difference and from the log *ft* values found for the analog ${}^{23}\text{Ne}(\beta^{-}){}^{23}\text{Na}$ decay, is in reasonable agreement with the experimental half-life, if the possibility of ${}^{23}\text{Al}$ decay to higher excited ${}^{23}\text{Mg}$ states is taken into account.

²⁴Na

(Fig. 24.1, p. 34; table 24.1, p. 33)

A. (a) ${}^{24}Na(f^{-}){}^{24}Mg$

$$Q_{
m m} = 5516.3 \pm 2.7$$

The weighted mean of fourteen half-life determinations is 14.968 ± 0.009 hr (Wi 49, as corrected in Sr 51, So 50, Co 50a, Si 51, Sr 51, Bl 52, Lo 53, To 55c, Ru 56a, Wr 57, Ca 58a, Da 58, Po 59, Wo 60).

The decay predominantly proceeds to the 4.12 MeV level of ²⁴Mg followed

by two γ rays in cascade through the 1.37 MeV level. The β - end point is 1.391 ± 0.002 MeV (averaged from Si 46, Po 57, Da 58); log ft = 6.1. The allowed character of the decay has been confirmed experimentally by the linearity of the Fermi-Kurie plot (Si 46, Po 57; a small deviation from linearity

Ex (MeV + keV)	J¤	τ <u>;</u>	Decay	Reactions
			0	
0	4+	$14.968 \pm 0.009 \text{ hr}$	β^{-}	many
0.473 ± 3	1+	19.6 ± 0.4 msec	(β ⁻) γ	C, F, G, K
0.564 ± 8	(2)+		γ	C, F, G
1.347 ± 4	1+		Y	C, F, G
1.844 ± 8	$(1, 2)^+$		γ	C, F
1.884 ± 8	(≤4)+		γ	С, F
2.464 ± 8	(≤3)-		γ	С, F
2.561 ± 8	(≤4)+		γ	C , F
2.98 ± 20	(≤4)+			F
3.22 ± 20	(≤6)+			F
3.37 ± 20	(≤3)-			F
3.409 ± 8			γ	C , F
3.582 ± 9	(1, 2)+		(y)	C, F
3.623 ± 9	(≤4)+		γ	C , F
3.648 ± 9			(y)	C , F
3.738 ± 8				F
3.850 ± 8			γ	C , F
3.899 ± 8			(7)	C, F
3.929 ± 8	(≤3)-		(2.)	C, F
3.97 ± 20				F
4.184 + 8			(γ)	C, F
4.202 + 8	(≤3)~		(γ)	C, F
4.219 + 8	()		(γ)	C, F
4.44 + 20	(<3)-		Ŷ	C, F
4.53 + 20	$(<3)^{-}$		·	F
4.558 + 9	()		γ	C, F
4.62 + 20	(<3)-		•	F
4.69 ± 20	$(<3)^{-1}$			F
4.75 + 20	$(<3)^{-1}$		Y	C, F
4.95 ± 20	$(1, 2)^+$		•	F
513 ± 80	(-, -,		V	C. F
6.930 ± 4	2+		4	D
6.962- 7.78; 2	30 levels, see read	tions		D, C
11.95 -14.40;	12 levels, see read	tion		E

TABLE 24.1				
Energy	levels	of	²⁴ Na	

is reported in Da 58), and by the isotropy of the $\beta-\gamma$ angular correlation (Be 50, St 51a, St 58a, St 59a). A Compton-spectrometer determination of the γ -ray energies (Mo 59c) yields 2.7527 ± 0.0001 MeV (also He 52: 2.7535 ± 0.0010 MeV, and Kn 59: 2.750 ± 0.003 MeV), and 1.3676 ± 0.0002 MeV (also He 52: 1.3680 ± 0.0010 MeV, and Kn 59: 1.368 ± 0.001 MeV). The intensity

Fig. 24.1. Energy levels of ²⁴Na.

of a 4.12 MeV cross-over γ ray is $\leq 9 \times 10^{-4}$ percent (Gu 58a; also Bi 50).

A 3.85 ± 0.04 MeV γ ray with a 0.09 ± 0.02 percent intensity indicates a β -transition to the 5.22 MeV level of ²⁴Mg. The intensity of a 5.22 MeV γ ray to the ground state is $< 2 \times 10^{-5}$ percent (Ar 60; also Gu 58a, Tu 51, Be 51, To 55b). Log ft = 6.6.

A 0.003 percent high-energy β^- component, proceeding to the 1.37 MeV level (end point 4.17 MeV) has been reported (Tu 51; also Gr 50a). Log ft = 12.7.

The intensity of the 4.24 MeV γ ray, following the β - decay to ${}^{24}Mg^* = 4.24$ MeV, is $(1.5 \pm 0.5) \times 10^{-3}$ percent per disintegration (Ar 60). Log ft = 10.7.

Both the 2.75 and 1.37 MeV γ rays have E2 character. This follows from the polarization-direction correlation of the two γ rays (Es 56), the $\gamma-\gamma$ angular correlation (Wa 41, Br 50c, Ch 50), and the internal pair formation coefficients: $(7.1\pm0.2)\times10^{-4}$ for $E_{\gamma} = 2.75$ MeV (Bl 52; also Ra 49 Mi 50a, Cl 51, Sl 52) and $(0.6\pm0.1)\times10^{-4}$ for $E_{\gamma} = 1.37$ MeV (Bl 52, also Sl 52). The E2 character of $E_{\gamma} = 2.75$ MeV is also consistent with the shape of the internal pair spectrum (Bl 52), the angular correlation between e⁺ and e⁻ (Si 52), and the internal conversion coefficient $\alpha = 3 \times 10^{-6}$ (Si 50). The E2 character of $E_{\gamma} = 1.37$ MeV is confirmed by measurements of the mean life of ²⁴Mg(1); the results from different methods are compared in table 24.9. The experimental results summarized above and the $J^{\pi} = 4^+$ value (St 58b, table 2) of the ²⁴Mg = ...1.37 and 4.12 MeV. The same spin assignments can be obtained from the $\gamma-\gamma$ angular correlation measurements alone.

Measurements of the $\beta - \gamma$ circular polarization correlation (Sc 57, Bo 58, Ma 59, St 59b, Bl 61c), and of the electron-neutrino angular correlation (Bu 59a) are consistent with pure axial vector interaction. For longitudinal polarization measurements, see So 61a.

Theory, see Ga 57, Be 58d, Bo 59b, Bo 60b.

(b) ²⁴Na^m (β -)²⁴Mg: see reaction G.

B. ²²Ne(d,
$$\gamma$$
)²⁴Na $Q_{\rm m} = 13524.3 \pm 2.7$

At $E_d = 1.6$ MeV, no ²⁴Na activity has been observed from deuteron bombardment of natural neon; $\sigma < 0.4 \ \mu b$ (Al 55b).

C. ²³Na(n,
$$\gamma$$
)²⁴Na $Q_m = 6958.9 \pm 2.6$

Two thermal neutron capture cross section measurements are reported yielding 505 ± 10 mb, 536 ± 10 mb (see Hu 58); a recent measurement gives 531 ± 8 mb (Wo 60). Capture cross sections at different energies, ranging from $E_n = 25$ keV to 14.5 MeV, are given in Hu 58, Bo 58b, Ko 58d, Ly 59a. Incompletely resolved resonances have been found in the range $E_n = 20-1000$ keV (Ba 59).

TABLE S	24.	2
---------	-----	---

Gamma rays from thermal neutron capture in ²³Na

Gr 3808	Ki 51b		Mo 56a ^c		Bu 56e ^b		Gr 58c
$\frac{E_{\gamma}}{(\text{MeV}_{-\text{keV}})} I_{\gamma}^{e}$	$\frac{E_{\gamma}}{(\text{MeV}\pm\text{keV})}$	'e, f 7	$\frac{E_{\gamma}}{(\text{MeV}\pm\text{keV})}$	Iγ ^e	$\frac{E_{\gamma}}{(\text{MeV}\pm\text{keV})}$	Iγ ^e	Assignment ^g
6 96 <0.1					<i>a 1</i> 9 + 20	91	$C \rightarrow 0.56$
$6.400 \pm 15 - 22$	6.41 ± 30	13			0.42 ± 30	57	$C \rightarrow 1.35$
5.61 - 20 - 6	5.61 ± 30	5			5.02 ± 30	0.7	0 -7 1.00
					(5.33 ± 30)	(0.0)	$C \rightarrow 1.84$
(5.12 ± 50) 0.8	5.13 ± 30	1			(5.08 ± 50)	(1.2)	$C \rightarrow 1.04$
$(4.90 \pm 50) = 1.2$					(4.91 ± 70)	(1.0)	4 75 . 0
(4.70 _ 50) 0.9					(4.72 ± 50)	(1.3)	$4.13 \rightarrow 0$
4.50 = 40 2.1					(4.54 ± 50)	(1.3)	$C \rightarrow 2.40$
(4.30 - 50) 0.5					(4.29 ± 50)	(0.7)	$4.75 \rightarrow 0.47$
4.18 -40 2.1							$4.20 \rightarrow 0; 4.75 \rightarrow 0.56$
3.985 - 15 17.2	3.96 ± 30	8			$4.03\!\pm\!50$	14.6	$4.44 \rightarrow 0.47; 4.56 \rightarrow 0.56$
$3.86 \pm 40 = 5.9$	3.85 - 30	5					$3.90 \rightarrow 0; 4.44 \rightarrow 0.56$
(3.68 ± 50) 1.3							
3.617 ± 20	3.60 ± 30	7)	9 500 1 95	10	2 64 1 50	139	$C \rightarrow 341 \cdot 369 \rightarrow 0$
3.56 - 30 18	$\textbf{3.56} \pm \textbf{30}$	8	3.990±25	18	3.04 ± 50	10.4	$C \rightarrow 0.41, 0.02 \rightarrow 0$
,		,			3.40 ± 50	(2.3)	
3.30 - 20 = 5					(3.31 ± 70)	(5)	$C \rightarrow 3.62$
3.10 - 20 9.5	.		3.070 + 20	7	(3.11 ± 50)	(8.2)	$C \rightarrow 3.90; 4.44 \rightarrow 1.35$
2.84 - 20 7	Br 56ed				,		3.41 ightarrow 0.56
2.68 - 20 - 8.5							$C \rightarrow 4.20$
2.52 20 21	2.53 - 30	19	2.510 + 20	≈ 15			$C \rightarrow 4.4$
2.41 - 30 10.5					(2.36+50)	(13.5)	$C \rightarrow 4.56$
2.21 - 30 7.5			2.210 ± 15	8	(2.20+50)	(22.6)	$C \rightarrow 4.75$
2.020-15 11.5	2.02 ± 30	12	2.030 ± 10	13	(` '	
(1.95 - 30) = 4							$2.46 \rightarrow 0.47$
(1.87 - 30) = 5.5	5		1.900 ± 20	≈3			$C \rightarrow 5.13$; 1.88 $\rightarrow 0$
1.66 -10 7.5	5 1.66 + 50	5	1.630 ± 8	10			
1.35 -10 6.5	1.35 ± 30	6		•••			$1.84 \rightarrow 0.47$
0.875 - 10 44	0.86 ± 20	34	0.877 ± 5	30 ± 10			$1.35 \rightarrow 0.47$
$(0.790 \pm 15) = 4.3$	s	•-		00110			$1.35 \rightarrow 0.56$
(0.710 ± 15) 5	-						$2.56 \rightarrow 1.84$
0.475 ± 10 74	0.48 ± 20	60	0.473 ± 4	50 ± 10			$0.47 \rightarrow 0$
9.210 <u>19</u> 19 17	0.20 _ 20	00	~0.000	50 <u>7</u> 10			
			~ 0.030				0.00 -> 0.41

^a Magnetic Compton spectrometer.

^b Magnetic pair spectrometer.

^e Magnetic lens spectrometer.

d Two-crystal scintillation spectrometer.

" Intensities in gammas per 100 captures.

[†] As revised in Ba 58c.

^g The capturing state is indicated by C; excitation energies are in MeV.

The observed thermal neutron capture γ rays are listed in table 24.2, together with the intensities and the ²⁴Na levels between which they presumedly occur (Gr 58c, Ki 51, Bu 56e, Br 56e, Mo 56a). The 6.96 MeV ground-state transition has not been observed; its intensity is < 0.1 per 100 captures. Notable is the absence of the 0.56 MeV γ ray. The upper limit for its intensity is 3 per 100
captures. The 0.56 MeV level decays through the 0.47 MeV level (Gr 55a). A level at 4.44 MeV is proposed in addition to the levels known from 23 Na(d, p)²⁴Na; most of the observed γ rays can then be fitted in the 24 Na level scheme (Gr 58c). Later measurements on the 23 Na(d, p)²⁴Na reaction confirm the existence of a level at 4.44 ± 0.02 MeV (Da 61a). The 1.34 MeV level is not de-excited to the ground state; this would conflict with the spin assignments found from reaction G. For assignments see also Mo 56a.

The new levels recently found from the ²³Na(d, p)²⁴Na reaction (Da 61a) indicate that a revision of the Gr 58c γ -ray assignments would be desirable. In particular, it is probable that the strong 3.59 MeV γ ray excites, not the 3.41 MeV level, but the new odd-parity level at 3.37 MeV.

D.
$${}^{23}Na(n, n){}^{23}Na$$

 $E_{\rm b} = 6958.9 \pm 2.6$

For cross section, see Hu 58, La 60a.

With high resolution $(\Delta E_n \leq 0.5 \text{ keV})$ 230 resonances in the total cross section have been found for $E_n < 860 \text{ keV}$. The energies and probable values of J, Γ_n , and l_n are listed in Hi 60b (86 resonances with $E_n < 550 \text{ keV}$), Hi 61b (71 resonances in the range $E_n = 350-630 \text{ keV}$), and Hi 61i (73 resonances in the range $E_n = 630-860 \text{ keV}$). Below 250 keV, most of the levels are p-wave levels. Above 250 keV, the analysis shows a few s-wave levels, a small number of p-wave levels and a large number of d- and f-wave levels. A plot of the number of resonances with energies $\leq E_n$ as a function of the neutron energy shows an essentially linear distribution up to $E_n = 860 \text{ keV}$. The reduced neutron widths and the strength function are discussed (Hi 60b, Hi 61b, Hi 61i).

Only one resonance has been found for $E_n < 50$ keV. The shape of this resonance, with a peak cross section $\sigma = 600$ b, is best fitted with the parameters $E_n = 2.95$ keV, $\Gamma_n = 0.22$ keV, J = 2, and $l_n = 0$, if strong interference is assumed with a bound level located at $E_n = -30$ keV, with J = 2, $l_n = 0$ (Hi 60b). Earlier lower resolution experiments indicated $J^{\pi} = 1^+$, a lower cross section, a larger width, and $E_n = 2.85 \pm 0.04$ keV (Ly 58, Go 58a, Bl 58a); $\Gamma_{\gamma} < 0.34 \pm 0.01$ eV (Ly 58). The second resonance, at $E_n = 54.1$ keV, has J = 3, $l_n = 1$ and $\Gamma_n = 0.75$ keV (Hi 60b, Me 59a, Bl 58b, Cr 57).

In the energy range $E_n = 0.44-0.80$ MeV, the inelastic scattering cross section shows resonances at $E_n = 542$, 602, 633, 710, and 780 keV (Ha 56). See ²³Na for γ rays from inelastic scattering.

E. ²³Na(n, p)²³Ne $Q_m = -3597 \pm 5$ $E_b = 6958.9 \pm 2.6$ The cross section in the range $E_n = 3.3-8.2$ MeV shows poorly resolved resonances at $E_n = 5.21$, 5.60, 5.82, 6.03, 6.25, 6.42, 6.58, 6.94, (7.14), 7.27, (7.45), and 7.76 MeV, corresponding to ²⁴Na* = 11.95, 12.33, 12.53, 12.74, 12.95, 13.11, 13.25, 13.60, (13.80), 13.92, (14.10), 14.40, all ± 0.05 MeV (Wi 58, Bo ξ 7a). Cross section in the range $E_n = 5.7-20.4$ MeV (Bu 61b), and at $E_n = 14$ MeV (Al 61).

F. 23 Na(d, p)²⁴Na $Q_m = 4734.2 \pm 2.6$

The ground-state Q value is 4.731 ± 0.007 MeV (Sp 52), 4.723 ± 0.008 MeV (Mi 52), 4.731 ± 0.010 MeV (Pi 60), 4.736 ± 0.005 MeV (Te 61). At $E_d = 1.5-2.2$ MeV, nineteen levels in ²⁴Na have been found by magnetic analysis (Sp 52). Additional levels have been reported in Da 61a, El 60c; see table 24.3, also

²⁴ Na** (MeV±keV)	l _n	$\begin{array}{c} (2J+1)\theta_n^{2k} \\ \times 10^3 \end{array}$	²⁴ Na* ^a (MeV <u></u> keV)	l _n	$(2J+1)\theta_{n}^{21} \times 10^{3}$
0	2b, c, 2, f, g, h	320	3.850 ± 81.1		
$0.472 + 8^{1}$	2b, h; also f, g, d	210	3.899 ± 81		
$0.564 + 8^{1}$	0t, d, h; also f, g	80	3.929 ± 8]h, b	50
1.341 - 81	()b, c, f, g, h	270	3.97 ± 20	(1) ^h	(14)
1.844 + 81	Oh	220	4.184 ± 8^{1}	(2) ^h	(100)
1.884 + 81	2 ^h	160	4.202 ± 8^{1}]h,b	90
2.464 ± 8	lh .	10-25	4.219± 81		
$2.561 \pm 8^{i, 1}$	2 ^h	55	4.44 ± 20	lµ	25
2.98 ± 20	2 h	260	4.53 ± 20	լհ	40
3.22 ± 20	4 h	190	4.558 ± 9	(2) ^h , 1 ^b	(50)
3.37 ± 20] h(b)	250	4.62 ± 20	lp	14
3.409 ± 8	Op	400	4.69 ± 20	1 h	22
3.582 ± 9	0 h	120	4.75 ± 20]h, b	95
3.623 ± 9	2 h	150	4.95 ± 20	0 h	22
3.648 ± 9	(2) ^h	(90)	5.13 ± 80^{b}		
3.738 + 8	(3) ^h	(230)			

 TABLE 24.3

 Levels in 24Na from 23Na(d, p)24Na

- ^a Excitation energies with 8-9 keV error are from Sp 52 ($E_d = 1.5-2.2$ MeV); with 20 keV error from Da 61a ($E_d = 7.77$ MeV).
- ^b El 60c; $E_{d} = 8.6$ MeV.
- ^c Vo 58; $E_{d} = 14.8$ MeV.
- ^d Di 58; $E_{d} = 2.95$ MeV.
- e Ta 53; $E_{d} = 1.15$ MeV.
- ¹ Sh 54; $E_{\rm d} = 3$ MeV.
- * Br 54c; $E_{c} = 10$ MeV.
- ^h Da 61a; $E_d = 7.77$ MeV (preliminary).
- ⁱ In Da 61a the excitation energy is given as 2.52 ± 0.02 MeV.
- ¹ Levels at 3.850, 3.899, and 4.219 MeV have not been reported in Da 61a.
- ^k The ground-state reduced width has been given in Vo 58, Ma 60 d. The relative reduced widths reported in Da 61a have been normalized to this value.
- ¹ Recently reported excitation energies (in MeV \pm keV): 0.472 \pm 6, 0.568 \pm 4, 1.347 \pm 4, 1.847 \pm 8, 1.893 \pm 8, 2.563 \pm 10, 3.754 \pm 8, 4.191 \pm 10, 4.210 \pm 8 (Ja 61a).

for l_n values and reduced widths (Sc 61a, Da 61a, El 60c, Vo 58, Di 58, Br 54c, Sh 54, Ta 53). Recently reported excitation energies (Ja 61a) are given in a note of table 2 \cdot 3.

Absorption measurements, En 54a.

G.
$$^{24}Ne(\beta^{-})^{24}Na$$
 $Q_m = 2450 \pm 40$

The half-life of ²⁴Ne, produced in the ²²Ne(t, p)²⁴Ne reaction, is 3.38 ± 0.02 sec.

²⁴Na

The (92 ± 2) % branch to ²⁴Na*(0.473), with end point 1.98 ± 0.05 MeV, and the (8 ± 2) % branch to ²⁴Na*(1.35), with end point 1.10 ± 0.05 MeV are allowed; both have log ft = 4.4, and show linear Fermi plots (Dr 56).

The first level in ²⁴Na, de-excited by a 472 ± 5 keV (100%) γ ray is isomeric (Dr 56). Its half-life is 18.3 ± 0.6 msec (Gl 61c), 19.9 ± 0.3 msec (Sc 61b), 20 ± 1 msec (Al 60a), 20 ± 2 msec (Ca 59), establishing the character of $E_{\gamma} = 473$ keV as octupole (see also Dr 56, Po 59a). The allowed character of the β decay then gives $J^{\pi}(0.473) = 1^+$. The observed weak β^- branch, with end point ≈ 6 MeV, may be explained as a transition from this state to ²⁴Mg(0).

A $878 \pm 9 \text{ keV} (8 \pm 2)\% \gamma$ ray de-excites the 1.35 MeV level to ²⁴Na*(0.47). Upper limits of γ branchings to ²⁴Na* = 0 and 0.56 MeV are 1% and 0.5%, respectively. The decay is in agreement with a $J^{\pi} = 1^{+}$ assignment to this level following from the allowed character of the β decay ($J^{\pi} = 0^{+}$ or 1^{+}), and the ²³Na(d, p)²⁴Na angular distribution measurements ($J^{\pi} = 1^{+}$ or 2^{+}) (Dr 56).

The 0.56 MeV level probably has $J^{\pi} = 2^+$, since ²³Na(d, p)²⁴Na angular distribution measurements yield $J^{\pi} = 1^+$ or 2^+ , whereas a $J^{\pi} = 1^+$ assignment would imply an allowed β^- transition to this level.

H.
$${}^{24}Mg(n, p){}^{24}Na$$
 $Q_m = -4733.7 \pm 2.8$

At $E_n = 14$ MeV proton groups, corresponding to groups of levels in ²⁴Na, have been observed; angular distributions have been measured (Co 59°, Co 60b). For a comparison between the ²³Na(d, p)²⁴Na and ²⁴Mg(n, p)²⁴Na proton spectra, see Bl 57a.

For cross section, see Hu 58, Ke 59, De 60a, Ga 60b, Ha 61. Differential cross section, Ve 57, Za 59, Ha 61.

I. $^{25}Mg(\gamma, p)^{24}Na$ $Q_m = -12064.4 \pm 3.1$ The threshold has been measured as 11.5 ± 1.0 MeV (Mc 49). Cross section,

Ka 54, To 51.

J. $^{26}Mg(d, \alpha)^{24}Na$ $Q_m = 2908.6 \pm 3.5$ Cross section for E_d up to 14 MeV, Cl 46, Cl 46a.

K. ²⁷Al(n,
$$\alpha$$
)²⁴Na $Q_{\rm m} = -3139.1 \pm 2.9$

The cross section has been measured at several neutron energies in the range $E_n = 6-21$ MeV; Hu 58, and Ku 57, Ke 59, Ke 59b, Kh 59a, Po 59, Ce 60, De 60a, Ma 60b, Sc 61, Ba 61b.

L.	Not	reported
----	-----	----------

²¹ Ne(α, p) ²⁴ Na	$Q_{\rm m} = - 2178.9 \pm 3.1$
$^{22}Ne(t, n)^{24}Na$	$Q_{\rm m} = 7266.7 \pm 2.8$
²² Ne(³ He, p) ²⁴ Na	$Q_{\rm m} = 8031.2 \pm 2.7$
$^{22}Ne(\alpha, d)^{24}Na$	$Q_{\rm m} = -10321.3 \pm 2.7$

40

P. M. ENDT AND C. VAN DER LEUN

23 Na(t, d) ²⁴ Na	$Q_{\rm m} = 701.3 \pm 2.6$
$^{23}Na(\alpha, {}^{3}He)^{24}Na$	$Q_{\rm m} = -13618.2 \pm 2.6$
²⁴ Mg(t, ³ He) ²⁴ Na	$Q_{\rm m} = -5498.1 \pm 2.7$
²⁵ Mg(n, d) ²⁴ Na	$Q_{\rm m} = -9839.6 \pm 3.1$
²⁵ Mg(d, ³ He) ²⁴ Na	$Q_{\rm m} = - 6571.2 \pm 3.1$
$^{25}Mg(t, \alpha)^{24}Na$	$Q_{\rm m} = 7748.3 \pm 3.1$
${}^{26}Mg(n, t){}^{24}Na$	$Q_{ m m}=-14679.4\pm3.5$
²⁶ Mg(p, ³ He) ²⁴ Na	$Q_{ m m}=-15443.9\pm3.5$

REMARKS

A theoretical discussion of the ²⁴Na spin is given in De 53a, In 53, Hi 54, Sc 54c.

²⁴Mg

(Fig. 24.2, p. 41; table 24.4, p. 42)

A.	(a) ${}^{12}C({}^{12}C, \gamma){}^{24}Mg$	$Q_{\rm m} = 13930.1 \pm 1.8$	
	(b) ${}^{12}C({}^{12}C, n){}^{23}Mg$	$Q_{ m m} = - 2623 \pm 15$	$E_{\rm b} = 13930.1 \pm 1.8$
	(c) ¹² C(¹² C, p) ²³ Na	$Q_{ m m}=2237.5\pm~1.5$	$E_{\rm b} = 13930.1 \pm 1.8$
	(d) ${}^{12}C({}^{12}C, \alpha){}^{20}Ne$	$Q_{\rm m} = 4616.2 \pm 0.6$	$E_{\rm b} = 13930.1 \pm 1.8$
	(e) ${}^{12}C({}^{12}C, {}^{12}C){}^{12}C$		$E_{\rm b} = 13930.1 \pm 1.8$

The yields of these reactions have been measured in the $E({}^{12}C) = 9-27$ MeV range at several angles. Elastic scattering angular distributions were measured at several energies. The elastic scattering cross section and angular distribution are in accordance with Mott scattering up to $\Xi({}^{12}C) = 11$ MeV. Sharp resonances ($\Gamma_{lab} \approx 260$ keV) are observed at $E({}^{12}C) = 11.30$, 11.96, 12.64, and 13.00 MeV, corresponding to ${}^{24}Mg^* = 19.58$, 19.91, 20.25, and 20.43 MeV (Al 60, Al 60c, Br 60g, Br 60h). Analysis of the cross section, yields (8⁺) and (4⁺) for the 19.58 and 19.91 MeV states, respectively (Ku 60f). For the theoretical meaning of these quasi-molecular states, see Vo 60.

B.
$${}^{12}C({}^{16}O, \alpha){}^{24}Mg$$
 $Q_m = 6768.6 \pm 1.8$

From magnetic analysis at $E(^{16}\text{O}) = 24$ MeV, new levels, not found from the $^{23}\text{Na}(^{3}\text{He}, d)^{24}\text{Mg}$ reaction (Hi 60i), have been observed at $^{24}\text{Mg}^* = 6.44 \pm 0.02$, 11.08 ± 0.03 , and 11.73 ± 0.03 MeV (Hi 61). The angular distribution of the groups leading to the eight lowest ^{24}Mg states has been measured. Application of the rule stating that $\sigma(0^{\circ})$ must be zero for final states of anomalous parity, yield natural parity for all states up to $E_x = 7.35$ MeV except for the 5.22 MeV 3⁺ level (Hi 61f).

C. ${}^{20}\text{Ne}(\alpha, p){}^{23}\text{Na}$ $Q_m = -2378.7 \pm 1.5$ $E_b = 9313.9 \pm 1.9$ Has been observed at the $E_{\alpha} = 3.923$ MeV resonance (table 24.5). At the other

Fig. 24.2. Energy levels of ²⁴Mg; for γ decay, see also fig. 24.3.

P. M. ENDT AND C. VAN DER LEUN

TABLE 24.4

Energy levels of ²⁴Mg

$E_{\mathbf{x}}$ (MeV \pm keV)	J¤	$ au_{rac{1}{2}}$ of $arGamma$	Decay	Reactions
0	()+		stable	many
1.3676 ± 0.2	2+	(1.2 ± 0.2) × 10^{-12} sec	Y	many
4.1203 ± 0.2	4+	(/	Ŷ	many
4.232 + 8	2+		Ŷ	B, E, G, H, I, O, P, R, V, W, Y
5.224 + 8	3∻		Ŷ	B, E, G, H, I, J, N, O, P, W
6.005 + 8	4+		2'	B, E, H, O, W
6.44 + 20	0+		y	B, E, G, O, F.
7.350 + 8	2+		γ	B, E, H, W
7.561 + 10			•	H, W
7.620 + 10			Y	E, H, W
7.746 + 10			Ŷ	Е, Н
7.808 + 10			,	Н
8.120 + 10				Н
8.357 ± 10	(3+)		31	Н, Т
8.439 ± 10	(~)		v	E. H
8.654 ± 10			v	E. H
8.864 ± 10			Ŷ	E, H
9.004 ± 12			1 12	E. H
9.148 ± 12			1	H
9.282 ± 12				H
9.456 ± 12			(2)	н. Т
9.517 ± 12			(12)	, - Н. Т
9.826 12			17 17	E. H
9.960 ± 15			r v	E. H
10.025 ± 15			8 19	E.H
10.055 ± 15			8 19	E H
10.161 + 15			(97)	нк
(10.30 + 50)				H
10.353 + 20			17	EH
10.577 + 20			8	н
10.661 + 20			18	г. F H
10.723 + 20			,	н
10.822 + 20				н Н
10.916 + 20				н
11.010 +20				н
11.08 + 30				B
11.188 + 25				н
11.313 + 25				н
11.379 + 5	1-		~	л р н
$11.450~\pm~5$	0+		~	D H
11.516 + 5	2+		~	D, M D H
11.725 ± 5	0+	10 + 2 keV	~	B D
11.857 ± 5	1-	8 ± 2 keV	0. 01	D, D D H
11.933 ± 2			98	E E
11.968 ± 3	2+		r cr	D F
11.988 ± 2	2+		2/0/	ъ, ъ Г
12.017 ± 3			γ, α	E E
12.051 ± 2			y, ve 11	
12.183 ± 2	1		8	E E
			8	£

·····				
$E_{\rm x}$ (MeV±keV)	J^{π}	$ au_{\frac{1}{2}}$ or Γ	Decay	Reactions
12.259 ± 2	(2+, 3-)		ν, p, α	D. E
12.340 ± 2	3+		γ, ρ	E
12.388	0-	7 ± 2 keV	p	E
12.400 ± 2		_	y, p, x	E
12.405 ± 2			γ, p, α	Е
12.455 ± 5	1-	5 ± 2 keV	ρ, α	D, E
12.472 ± 5	2^{+}	4 ± 1 keV	p, α	D, E
12.504 ± 5	4+		p, æ	D, E
$12.528~\pm~2$		$7.5 \pm 1.0 \text{ keV}$	$\gamma, \bar{\mathbf{p}}, \alpha$	E
12.574 ± 5	2+	4 ± 1 keV	p , α	C, D, E
12.638 ± 2	4		γ	E
12.657 ± 2			γ, (p)	E
12.659 ± 2	3-		(p), α	E
12.669 ± 2	2-	5 ± 1 keV	γ, p, α	E
12.732 ± 2			γ, p, α	E
12.737 ± 2		5 ± 1 keV	ρ, α	E
12.779	0+	30 ± 5 keV	α	E
12.805 ± 2	2+	$1.2 \pm 0.2 \text{ keV}$	γ, p, α	E
12.816 ± 2	1+	$3.5 \pm 0.7 \text{ keV}$	γ, p, α	E
12.844 ± 2	(2-)	$0.3 \pm 0.1 \text{ keV}$	γ, p, α	E
$12.850~\pm~2$	(3+)	$0.4 \pm 0.1 \text{ keV}$	ρ, α	E
12.893 ± 2	1+	$0.4 \pm 0.2 \text{ keV}$	ρ, α	E
$12.920~\pm~2$	1-	$5.2 \pm 0.4 \text{ keV}$	γ, p, α	E
12.954 ± 2	3+	1.5 ± 0.3 keV	γ, p, α	E
12.963 ± 2		$2.8 \pm 0.6 \text{ keV}$	p , α	E
12.967 \pm 2		$3.0 \pm 1.0 \text{ keV}$	р	E
12.997 \pm 2	(0-)	0.8 ± 0.4 keV	р	E
13.027 ± 2	3+	$0.75\pm0.3~{ m keV}$	γ, p, α	E
13.049 ± 2	4+		γ, p, α	E
13.088 ± 2	3-	$7.5 \pm 1.0 \text{ keV}$	γ, p, α	E
For higher leve	is, see reacti	ions		A, E, F, L

TABLE 24.4 (continued)

²⁰Ne(α , α)²⁰Ne resonances in table 24.5 the proton width is smaller than 1°₀ of the α -particle width (Go 54c).

For non-resonance data, see ²³Na.

D. ²⁰Ne(
$$\alpha$$
, α)²⁰Ne

 $E_{\rm b} = 9313.9 \pm 1.9$

Thirteen sharp resonances have been observed in the neon elastic cross section at four different scattering angles for $E_{\alpha} = 2-4$ MeV. Eleven resonances are assigned to ²⁰Ne (table 24.5) and two to ²²Ne. The widths for α -particle emission to ²⁰Ne(1) and for proton emission to ²³Na(0) and (1) are smaller than 1% of the width for ground-state α -particle emission (except at the $E_{\alpha} = 3.923$ MeV resonance, see reaction C). Reduced widths, spins, and parities in table 24.5 follow from partial wave analysis (Go 54c).

Spin and parity assignments from 20 Ne+ α are generally in good agreement

$E_{\mathbf{x}}$ (MeV)	²⁴ Mg* (MeV)	Г (keV)	$ heta_{z}^{2}$	J ^π
	11.387	(0.5)	(0.06)	1-
4.400 0 579	11.458	(1)	(0.06)	0+
2.010 9.659	11.524	(0.5)	(0.08)	2+
2.092 9 QAS	11.733	10 ± 2	0.16	0+
2.000	11.865	8 ± 2	0.14	1-
3 184	11.967	(0.5)	(0.01)	2-
3 548	12.270	(1)	(0.03)	3-
3.780	12.463	7 ± 2	0.02	1.
3.801	12.481	5 ± 1	0.03	2
3.839	12.513	(1)	(0.08)	4
3.923	12.583	6 ± 1	0.03	2
1 ÷ 0.005				

TABLE 24.5

= the 20Ne(α α)²⁹Ne reaction (Go 54c) . .

with those from ²³Na+p (table 24.6); ²⁴Mg excitation energies from ²⁰Ne+ α are on the average about 8 keV high.

E.	(a) ${}^{23}Na(p, \gamma){}^{24}Mg$	$Q_{\rm m} = 11692.6 \pm 2.2$	
	(b) ${}^{23}Na(p, p){}^{23}Na$		$E_{\rm b} = 11692.6 \pm 2.2$
	(c) ${}^{23}Na(p, \alpha){}^{20}Ne$	$Q_{ m m}=2378.7\pm1.5$	$E_{\rm b} = 11692.6 \pm 2.2$

Resonances in these reactions, and in the yields of 0.44 MeV and 1.63 MeV γ rays from the ²³Na(p, p')²³Na(1) and ²³Na(p, α')²⁰Ne(1) reactions, are given in table 24.6. The table covers the region up to $E_{p} = 1.5$ MeV. For resonances in the $E_p = 1.5-2.5$ MeV region, see St 54. The yield of γ_0 and γ_1 has been measured in the $E_p = 4.0-11.0$ MeV region. Broad but pronounced resonances appear at $E_{p} = (4.6)$, 5.95, and 7.45 MeV (Ge 59), and 6.0 and 9.3 MeV; the latter shows considerable fine structure (Go 61b). The α -particle yield has been measured up to $E_{p} = 12$ MeV (Ad 61a).

For relative γ -ray yields, see references below table 24.6; also Te 54a, Ny 55. The γ -ray branching of the 308, 511, 591, 676, 738, and 743 keV resonances and of nineteen ²⁴Mg lower levels (Gl 61a) is shown in fig. 24.3. For other measurements of the γ spectrum at the 308 keV resonance, see Ca 53, Tu 53, Ca 54a, Hi 54a, Gr 55e, Lo 59. For spectra at other resonances, see also Gr 55e, Ne 54, Pr 56.

The spin and parity assignments at the 308, 511, 594, and 675 keV resonances (Gr 55e), and at the 1392 keV resonance (Ne 54) are based on measurements of γ -ray spectra, angular distributions, $\gamma - \gamma$ angular correlations, and partial widths. See also Si 59b, Si 59c. These investigations yield $J^{\pi} = 2^+$ for the 4.23 MeV ²⁴Mg level and J = 3 for the 5.22 MeV level. The spin and parity assignments given in St 54a are based on α_0 angular distribution measurements, those in Ba 56 mainly on p_0 and some on γ angular distribution measurements.

Fig. 24.3. Gamma-ray branchings of ²⁴Mg levels. The γ_0 upper limit at the 4.12 MeV level has been established from the ²⁴Na(β^{-})²⁴Mg decay. The branching of the 4.23 MeV level is an average of values given by many authors, e.g. Gl 61a, Ba 60, Mi 59b, Co 61d. The branchings of the 6.00 and 6.44 MeV levels are from Co 61d. Branchings of the 5.22 MeV level and of all higher levels are from Gl 61a.

P. M. ENDT AND C. VAN DER LEUN

TABLE 24.6

Resonances in ²³Na+p

E.	Ē,	Γ			Partial wy	in eV		jπ
(keV)	(MeV)	(keV)	γ ⁿ	Po f	P1	α ₀	α1	
950 7.40 28. C	11.933	< 0.02°	0.003					
287 -1.50	11.968 ^k		< 0.005 \{			0.2^{1}		
308 2 ± 0 28, b, c	11.988	<0.02°	0.36 ^h			$< 0.02^{1}$	0.04 h	9-p
338 ± 1.5^{d}	12.617		$< 0.01^{1}$			0.17^{1}		
373.6-0.3a, b, c	12.051	< 0.02°	0.0101					
311.4 + 0.38, b, c	12.183	< 0.05°	0.30h			< 0.081	< 0.003 h	1+b
591.3 = 0.4 b, c	12.259k	< 0.06 ^c	0.7 ^h	X		1701	0.14 ^h	2-p, 3-r
676.0-0.5b, c	12.340	< 0.074	2.0 ^h	×		<0.31	$< 0.01 \mathrm{n}$	3+p
7251	12.388	7 ± 2^{1}		×			_	6-1
738.1-0.4b, c, e	12.400	< 0.09°	0.34 ^h	Х	0.05 ^h		0.26 ^h	
743.3 -0.4b, c, e	12.405	< 0.1 °	0.45h		0.05 ^h		0.06 ^h	
7951, g	12.455 ^k	5 ± 2^{1}		×		110m		1-1
5131, g	12.472 ^k	4 ± 1^{1}		Х		60m		2+f
8461. g	12.504 ^k	$< 1^{t}$		X				4+f
871.5-0.6e	12.528	7.5 ± 1.0^{e}	131	Ж	< 0.2 j		$\approx 1^{j}$	1+t
9191, g	12.574 ^k	4 ± 1^{1}		Х		150 ^m		2+f
$986.0 \pm 0.6^{\circ}$	12.638	$< 0.4^{e}$	4.6 ^j		< 1.5J		$< 0.4^{j}$	4±1
$1006.5 \pm 0.5^{\circ}$	12.657	$< 0.35^{e}$	3j, f		1401 5			
1008.0 ± 1.0^{e}	12.659	< 0.7e			140., -	500 m	80j, f	3-s
$1019.0 \pm 0.6^{\circ}$	12.669	5.0 $\pm 1.0^{e}$	181	Х	1301		weak ^f	2-f
1084.8 ± 0.6^{e}	12.732	$< 0.55^{e}$	lì				41	
1089.7 ± 0.5^{e}	12.737	5.0 ± 1.0^{e}	$< 0.8^{j}$		60 j	700m	301	
1133f, g	12.779	30 ± 5^{f}				$\approx 500 \mathrm{m}$		0+g
$1161.0 \pm 1.0^{\circ}$	12.805	1.2 ± 0.2^{e}	2.71		1801	400 ^m	170 j	<u>2</u> +f, g
1172.4 ± 0.5^{e}	12.816	3.5 ± 0.7^{e}	131	×	91		weakf] +t
1201.8 <u>-</u> 1.0 ^e	12.844	0.3 ± 0.1^{r}	6.41	Х	weakf		weak ^f	(2 ⁻) f
$1207.6 \pm 1.0^{\circ}$	12.850	0.4 ± 0.1^{f}	< 1 '	X	1301		1101	(3+) f
1252.4 ± 0.6^{e}	12.893	0.4 ± 0.2^{e}	< 1 ^j	×	100 j		801	<u>]</u> +f, r
1281.0 ± 1.0^{e}	12.920	$5.2 \pm 0.4^{\circ}$	81	×	1300 j	750^{m}	£9	1-f, g
1316.7±0.7°	12.954	$1.5 \pm 0.3^{ m e}$	54 i	×	weakf		weakf	3+f
$1326.2\pm1.0^{ m e}$	12.963	2.8 ± 0.6^{e}	1 - 21	Х	17001		34 bi, k	
1329.7 ± 1.0^{e}	12.967	3.0 ± 1.0^{e}	1 < 3.	×	17003			
1360.8±0.7e	.2.997	0.8 ± 0.4^{e}	< 31	Х	100 j		< 2 j	(0-) f
1392.0 ± 1.0^{e}	13.027	0.75 ± 0.3^{e}	20 i	×	1501		weakf	3+1, j
$1415.1\pm0.8^{ ext{e}}$	13.049	$< 0.2^{e}$	701	×	80 i	100m	weakf	4+1
1456.3 0.8e	13.088	$7.5 \pm 1.0^{\text{e}}$	101	×	30001	400m	501	3-1

^a Ha 55c. ^b Ku 59a. ^c Wa 80. ^d Fl 54.

^e An 61. All energies relative to $E_{\rm L} = 990.8$ keV for ²⁷Al(p, γ)²⁸Si resonance.

¹ Ba 56, Pr 56. The \times in the p₀ column indicates that proton elastic scattering has been observed.

^g Corrected for a systematic difference (as observed at neighbouring resonances) with the more accurate values given in An 61.

h G161a.

ⁱ From relative yield: in Ha 55c and Wa 60 normalized to 0.36 eV at $E_p = 308$ keV.

¹ Ne 54. The quoted yields might be too large by a factor of \approx 5 compared to those given in Cl 61a; see relative yield curve in Pr 56, also Gl 61b.

^k Levels also observed from ²⁰Ne + α elastic scattering (see table 24.5).

¹ From relative yields in Fl 54 normalized to the absolute yields in Gl 61a.

^m From relative yield curve in Ba 56, normalized to 170 eV at $E_p = 591$ keV.

- ⁿ At the 308, 511, 591, 743, 871, 1161, 1172, and (1317) keV resonances ground-state γ transitions have been observed (Gl 61a, Ne 54).
- ^p Gr 55e. ^q Sr 54a. ^r Se 53.

 $\mathbf{46}$

The 1⁺ assignment to the 1252 keV resonance in Se 53 follows from an $\chi -\gamma$ angular correlation measurement. The odd parity assigned to the 591 keV resonance is in agreement with a polarization measurement of 10.8 MeV capture radiation (Hu 56). The angular distribution and internal conversion coefficient of the 0.44 MeV γ ray from ²³Na(p, p')²³Na have been measured at the 1281 and 1456 keV resonances (Be 56a, see ²³Na). For p₀ angular distribution measurements at the 871 and 919 keV resonances, see also De 56.

For non-resonance data, see Aj 59 (for ²⁰Ne) and ²³Na.

F.
23
Na(p, n) 23 Mg $Q_m = -4.861 \pm 15$ $E_h = 11.692.6 \pm 2.2$

Broad resonances in the ²³Mg activity yield have been observed at $E_p = 5.31$, 5.61, 6.00, 6.20, and 6.43 MeV (Bl 51). For threshold determinations, see ²³Mg.

G.
23
Na(d, n)²⁴Mg $Q_m = 9467.9 \pm 2.2$

For results from angular distribution measurements, see table 24.7.

²⁴ Mg* (MeV)	$l_{\mathbf{p}}^{\mathbf{a}}$	$(2J+1)\theta_p^{2c}$ absolute	lp ^b	$(2J+1) heta_{p}^{2}$ relative
0	_	weak		
1.37		weak		
4.12 4.23	2+0	0.044, 0.012	2+0	9, 1.7
5.22	· -	weak		
6.3	-	isotropic		
7.4	0 (2)	0.03 (0.07)	0	5.4
8.4	0	0.038	0 (+2)	10.1
10.5			0	32

TABLE 24.7 Neutron groups from ²³Na(d. n)²⁴Mg

^a Ca 55; $E_{d} = 7.75$ MeV; neutron detection with nuclear emulsions.

^b El 57; $E_d = 9.02$ MeV; neutron detection with a triple ionization chamber.

^e As computed in Ma 60d from Ca 55 and El 57, respectively. See also Ma 60d for theoretical comments.

At $E_d = 5$ MeV, γ rays from the deuteron bombardment of sodium have been observed with a magnetic pair spectrometer at $E_{\gamma} = 6.42 \pm 0.04$, 7.12 ± 0.03 , 7.34 ± 0.03 , 7.50 ± 0.03 , (7.9 ± 0.1) , 8.50 ± 0.03 , 8.64 ± 0.04 , (8.77 ± 0.04) , 9.02 ± 0.04 , 9.40 ± 0.04 , 9.86 ± 0.04 , (10.0 ± 0.1) , (10.4 ± 0.1) , and 10.72 ± 0.04 MeV. Most of these might result from the ²³Na(d, n)²⁴Mg reaction de-exciting known ²⁴Mg levels to the ground or first excited state (Ek 60).

P. M. ENDT AND C. VAN DER LEUN

H. ${}^{23}Na({}^{3}He, d){}^{24}Mg$ $Q_{m} = 6199.4 \pm 2.2$

The best survey of ²⁴Mg levels up to $E_x = 11.9$ MeV has been performed with this reaction. See table 24.8. The levels above 11.35 MeV check well with levels found from ²⁰Ne + α elastic scattering (see table 24.5).

I.
$$^{23}Na(\alpha, t)^{24}Mg$$
 $Q_{\rm m} = -8120.1 \pm 2.3$

Angular d stributions of several groups have been measured at $E_{\alpha} = 40$ MeV. The group to ²⁴Mg(1) is strong and has $l_{p} = 2$ (Vl 60).

J. $^{24}Na(\beta^{-})^{24}Mg$ $Q_m = 5516.3 \pm 2.7$ See ^{24}Na .

K. ${}^{24}Mg(\gamma, \gamma){}^{24}Mg$

In the fluorescence radiation from a Mg sample irradiated by betatron bremsstrahlung a γ ray is observed with $E_{\gamma} = 10.15 \pm 0.06$ MeV (To 60),

	Levels in ²⁴ Mg ($E_{\mathbf{x}}$ in MeV \pm keV) fro	m ²³ Na(³ He, d) ²⁴ Mg ^a	
	7.620 - 10	9.004 -12	10.025 15	10.916 ± 20
	7.743-10	9.148 ± 12	10.161 ± 15	11.010 ± 20
4.122 Datum	7.808 - 10	$9.252b \pm 12$	(10.30 ± 50)	11.188 ± 25
4.232 - 8	8.120 - 10	9.456 ± 12	10.353 ± 20	11.313 ± 25
5.224 - 8	8.357 - 10	9.517 ± 12	10.577 ± 20	11.380 ± 25
6.005 - 8	8.439 - 10	9.826 ± 12	10. j 61 ± 20	11.446 ± 25
7.350 - 8	8.654 - 10	9.960 -15	10.723 ± 20	11.511 ± 25
7.561 ± 10	8.864 - 10	10.025 - 15	10.822 ± 20	$11.861{\pm}25$

TABLE 24.8

^a Hi 60i. High resolution magnetic analysis at five angles; $E(^{3}\text{He}) = 8.47$ and 10.19 MeV. ^b Possibly a doublet.

 10.5 ± 0.14 MeV (Bu 60; see also Bu 60b), and 10.5 MeV (Se 60). From selfabsorption measurements the radiation width is determined as 4.8 ± 1.5 eV (To 60), and 180 ± 50 eV (Bu 60b), and the total width as 1.7 ± 0.4 keV (Bu 60b). The angular distribution points to dipole absorption (Bu 60).

For other ${}^{24}Mg(\gamma, \gamma){}^{22}Mg$ experiments, see ${}^{24}Na$, reaction A, and ${}^{24}Mg$, reaction O.

L.
$${}^{24}Mg(\gamma, n){}^{23}Mg$$
 $Q_m = -16553 \pm 15$

Two peaks in the activation cross section have been observed at $E_{\gamma} = 17.2 \pm 0.2$ and 19.2 ± 0.2 MeV (Ki 60; see also Ka 54). They check with peaks in the ${}^{23}\text{Na}(\text{p}, \gamma){}^{24}\text{Mg}$ cross section (Ge 59).

For theory on giant-resonance splitting, see Gl 61e.

M.
$${}^{24}Mg(e, e'){}^{24}Mg$$

From the differential cross section for inelastic scattering of 187 MeV electrons the radiation width of ${}^{24}Mg(1)$ has been determined as $\Gamma_{\gamma} = 0.34 \pm 0.03$ meV (He 56). For comparison with other results, see table 24.9.

²⁴Mg

1×

N. ${}^{24}Mg(n, n'){}^{24}Mg$

At $E_n = 2.56$ MeV, only one γ ray ($E_{\gamma} = 1.368 \pm 0.010$ MeV) from inelastic neutron scattering on Eg can be assigned to ²⁴Mg (Da 56c). See also Sc 54d, Ra 55, Pa 58b, An 60d, Le 61a. At $E_n = 14$ MeV many more γ rays are observed of which $E_{\gamma} = 2.78 \pm 0.02$ MeV ($E_x = 4.12 \rightarrow 1.37$ MeV) and $E_{\gamma} \approx 3.9$ MeV ($E_x = 5.22 \rightarrow 1.37$ MeV) may be attributed to ²⁴Mg(n, n')²⁴Mg (De 60).

The differential and integral cross section for elastic scattering (La 57b, Th 58b, Be 59) and for inelastic scattering (Cr 56a, Ma 57, Hu 58, Ma 58f, Th 58b, Cr 59, Ma 59a, Bc 61c, \cap 60a) has been measured at several neutron energies. For theoretical work or ²⁴Mg+n scattering, see Cu 56, Ma 59f.

The elastic scattering of polarized neutrons has been investigated at $E_n = 3.1$ MeV (Mc 57). The n'- γ ($E_{\gamma} = 1.37$ MeV) angular correlation has been measured at $E_n = 3.45$ MeV (Br 60f, Pr 60a).

For older references, see En 54a.

For resonances, see ²⁵Mg.

O. ${}^{24}Mg(p, p'){}^{24}Mg$

By electrostatic analysis the first level in ²⁴Mg has been determined at $E_x = 1.371 \pm 0.002$ MeV (Do 53); by magnetic analysis the second and third level at $E_x = 4.13 \pm 0.02$ and 4.24 ± 0.02 MeV, respectively (Ha 52). See also Od 60, Ty 58.

From ²⁴Mg(p, p' γ)²⁴Mg γ -ray angular distribution and $\gamma - \gamma$ angular correlation measurements it follows that the ²⁴Mg levels at 4.23, 5.22, 6.00, and 6.44 MeV have $J^{\pi} = 2^+$, 3⁺, 4, and 0, respectively. The branching percentages of the 4.23 MeV level to ²⁴Mg(0) and ²⁴Mg(1) are 74% and 26%, respectively (same branching ratio given in Mi 59b; 77% and 23% in Co 61d). The latter transition $(2^+ \rightarrow 2^+)$ has an E2/M1 amplitude mixing ratio of $x = +23 \pm 9$. The decay of the 5.22 MeV level to ²⁴Mg(1) is pure quadrupole (Ba 60, Br 60e, Go 60c, Br 61b, Br 61d). The branchings of the 6.00 and 6.44 MeV levels, reported in Co 61d, are shown in fig. 24.3. See also Li 58b, Wa 60c.

From resonant scattering and self-absorption of 1.37 MeV γ rays the width of ²⁴Mg(1) has been determined as $\Gamma = 0.42 \pm 0.15$ meV (Me 60b). For comparison with other results, see table 24.9. For the theory of this process, see Va 59.

The differential cross section for elastic scattering and for inelastic scattering leading to ²⁴Mg(1) has been measured at many different proton energies (Ki 56a, Co 57a, Gr 57b, Ya 58, Ya 58a, Ne 60, Ne 60b, Od 60, Hi 61c). For the theory of these reactions see Me 57a, Sa 58a, Ma 59f, Ro 61d. The $p'-\gamma$ ($E_{\gamma} = 1.37$ MeV) angular correlation (La 59, Se 59a, Yo 60, Br 61), and the polarization of elastically scattered protons (Ro 60, Sa 60a, Ya 60a, Ro 61c) have also been investigated.

For old :r references, see En 57, En 54a.

For resonances, see ²⁵Al.

aMed d'aMg р.

For elastic and inelastic differential cross-section measurements, see Ho 49, Gr 55. Ha 56c. Hi 57b. Sl 59. Bl 60b, Gr 60, Ne 60, Ne 60b, Ta 60e, Ba 61d, Bl 61a. Fr 61. Is 61. Ig 61, Ja 61c. For theoretical considerations, see Ko 58c, ie die Ed 44, El 60.

Q. "Mg He He "Mg

For a measurement of the elastic differential cross section at $E(^{3}\text{He}) = 5.5$ MeV, see Pa 61a.

R. "MELI"ME

For elastic and inelastic differential cross section measurements, see Bl 60b, Sh 59. Wa 56a. Gu 56. For the theory of this reaction, see Bu 57a, Ro 60b. See 1180 Bi 59a. (s 61.

For revenues ee =Si.

*Mg-beary was *N MO MNe *Ne) -

From heavy ion Coulomb excitation the width of 24Mg(1) has been measured as 0.25 meV (Go %)d . and 0.30 ±0.15 meV (An 60).

- $Q_{\rm m} = 14020 \pm 300$ T HI - HIE S. 28 4
- U. PMER D MAR

 $Q_{\rm m} = -7330.7 \pm 2.1$

For threshold and yield measurements, see Ka 54, Na 55, Mo 55, Ye 56,

 $Q_n = -5106.0 \pm 2.1$ V. PMEDERME

The differential cross section of demeron groups to 24Mg(0), (1), and (2-3) has been measured at $E_n = 17$ MeV. From stripping analysis $l_n = 2$ is found for these groups, and reduced widths of $\theta_n^2 = 0.0079$, 0.022, and 0.012, respectively Be 615. Ma 664 . See also Bi 58.

 $Q_{\rm T} = -1073.1 \pm 2.1$ W. WEE: WE

From magnetic analysis at $E_{\rm c} = 14.5$ MeV, triton groups to all ²⁴Mg states = to $E_1 = 7.69$ MeV except to $E_2 = 6.44$ MeV; were observed. From stripping inclusions of the differential cross sections $l_1 = 2$ is bound for groups to ²⁴Mg(0) through 3 with $f_1^2 = 5.3$ 17, 2.5, and 0.75, all $\times 10^{-3}$, respectively (Ha 60c, Ma foi . See also Ha foia VI fil.

 $\hat{\psi}_{m} = -18218.2 \pm 1.1$ N FARME Er dredd ani well er Welle.

$$Y_{\rm c} = 1594.5 \pm 1.1$$

The Q value has been determined by electrostatic analysis as 1.594 ±0.002 MeV

Mg

(Do 53), and by magnetic analysis as 1.585 ± 0.015 MeV (Fr 50b), 1.595 ± 0.007 MeV (Va 52a), 1.596 ± 0.006 MeV (Va 57d), 1.603 ± 0.007 MeV (Ma 60e).

The first level in ²⁴Mg is found at 1.366 ± 0.004 MeV (Do 53), 1.366 ± 0.006 MeV (Va 57d). The internal conversion coefficient of the 1.37 MeV γ ray has been determined as $\alpha = (1.3 \pm 0.3) \times 10^{-5}$ (Ra 58). Transitions to ²⁴Mg(2) and (3) have also been observed (Re 52).

For measurements of differential and integral cross section, see Fi 58, Fu 58, Ku 59, Fu 60, Og 60, Ad 61a.

For resonances, see ²⁸Si

Z. Not reported:

$^{21}Ne(\alpha, n)^{24}Mg$	$Q_{\rm m} =$	2554.8 ± 2.4
²² Ne(³ He, n) ²⁴ Mg	$Q_{\rm m} =$	12764.8 ± 1.9
$^{25}Mg(^{3}He, \alpha)^{24}Mg$	$Q_{\rm m} =$	13246.5 ± 2.1
²⁶ Mg(p, t) ²⁴ Mg	$Q_{\rm m} =$	-9945.8 ± 2.7

REMARKS

The lowest T = 1 state $(J^{\pi} = 4^+)$ in ²⁴Mg has not yet been located. A comparison of Coulomb energies of neighbouring nuclides shows that both the 9.46 MeV and the 9.52 MeV states are acceptable candidates.

For rotation bands in ²⁴Mg, see Pe 57a, Co 61d. The $K^{\pi} = 0^+$ and 2^+ bands are shown in fig. 24.3.

Results of ${}^{24}Mg(1)$ mean-life measurements are compared in table 24.9. Most

TABLE	24.9
-------	------

Mean lif	e detern	ninations c	of ²⁴ Mg*	==]	1.37	Me	ľ
----------	----------	-------------	----------------------	------	------	----	---

Method	$\tau_{\rm m}(10^{-12}~{\rm sec})$	Reference
$\beta - \gamma$ coinci ence	< 3000	En 53
$\beta - \gamma$ coincidence	36 ± 25	Co 55c
e scatt. cross section	1.9 ± 0.2	He 56
res. fluorescence	0.26 ± 0.02	Bu 59a
res. fluorescence	1.7 ± 0.4	De 58, De 581
res. fluorescence	0.9 + 5.1 - 0.4	Ar 59
res. fluorescence	1.1 ± 0.4	Of 59
Coul. excit. 14N, 16O, 20, 22Ne	1.3 ± 0.4	An 60
Coul. excit. ¹⁶ O	2.5	Go 60d
res. fluorescence	$1.6 \stackrel{+}{-} 0.8 \stackrel{-}{-} 0.4$	Ме 60b

results are in agreement with an average of $\tau_{\rm m} = (1.7 \pm 0.2) \times 10^{-12}$ sec, with the values given in Co 55c and Bu 59a deviating appreciably.

The J^{π} assignments to the 6.00 and 6.44 MeV levels follow from combining the data found from reactions B and O. The 2⁺ assignment to the 7.35 MeV

52

level follows from the experimental facts: a) that it shows a ground-state γ transition, b) that it is excited from the 3⁺ 12.340 MeV level (see fig. 24.3), and c) that it has natural parity (reaction B).

The parity of the 11.988 MeV level should be even and not odd (table 24.6) because it de-excites to 0^+ and 4^+ states (fig. 24.3).

The 12.259 MeV level, finally, should have $J^{\pi} = 2^+$ because it de-excites to 0^+ and 3^+ states (fig. 24.3) and emits α particles. This is in conflict with a γ -ray polarization measurement (Hu 56), yielding odd parity, and with the ${}^{20}Ne + \alpha$ elastic scattering experiment (reaction D), yielding $J^{\pi} = 3^-$.

24A1

(Not illustrated; see fig. 24.2, p. 41)

A. ${}^{24}\text{Al}(\beta^+){}^{24}\text{Mg}$ $Q_{\rm m} = 14\,020\pm300$

The half-life is 2.09 ± 0.04 sec (weighted mean of Bi 52, Gl 55, Br 54a). Positons with all end point of ≈ 8.5 MeV, and the γ rays listed in table 24.10.

have been reported. One per several thousand disintegrations proceeds through an excited state in ²⁴Mg which emits α particles with $E_{\alpha} \approx 2$ MeV (Gl 55).

The β^+ decay seems to be best explained by assuming a 30% branch to ${}^{24}Mg(4.12)$; a 55% branch to the 8.36 MeV level, with probably $J^{\pi} = 3^+$, deexciting to the 1.37 MeV ($J^{\pi} = 2^+$) and 4.12 MeV ($J^{\pi} = 4^+$) levels, through

	5		
$E_{\gamma}^{\mathbf{a}}$ (MeV)	Rel. intensity ^a	<i>E</i> _γ , ^b (MeV)	Transition in ²⁰ Mg (E _x in MeV)
1.39 ± 0.03	40	1.38 ± 0.04	1.37 → 0
2.73 ± 0.06	32	2.70 + 0.06	$4 12 \rightarrow 1.37$
4.22 ± 0.10	15	4.21 + 0.12	$8'36 \rightarrow 4.12$
$5.35{\pm}0.10$	6	5.37 ± 0.14	$9.5 \rightarrow 4.12$
7.12±0.10	7	(5.66 ± 0.18) 7.02 ± 0.20	$8.26 \rightarrow 1.37$

TABLE 24.10 Gamma rays from the 24 Al(β +) 24 Mg decay

^a Gl 55.

^b Br 54a,

7.12 and 4.22 MeV γ rays; a 15% branch to a 9.5 MeV level, de-exciting to the 4.12 MeV level through a 5.35 MeV γ ray; and finally a weak transition to a level at \approx 11 MeV, de-exciting through α emission (Gl 55).

The T = 0 member of the T = 1 triplet to which the ²⁴Na and ²⁴Al ground states also belong, is expected at about 9.5 MeV (see ²⁴Mg, "Remarks"). The γ -ray intensities indicate log ft = 3.8 for the β^+ transition to the 9.5 MeV level (Gl 55), which is consistent with the expected favoured character of this transition (Bo 55, Wi 56a). A possible $\beta - \gamma$ directional correlation in the ²⁴Al decay, as a consequence of a conserved vector current, is discussed in Be 58d. B. $^{24}Mg(p, n)^{24}Al$ $Q_m = -14\,800\pm 300$

The threshold is at 15.4 ± 0.3 MeV (Bi 52). Cross sections at $E_p = 18$ and 32 MeV, Ta 58. Neutron angular distribution at $E_p = 23$ MeV, Co 55b. Also Ty 54.

C. Not reported: ²⁴Mg(³He, t)²⁴Al

$$Q_{\rm m} = -14040 \pm 300$$

25Na

(Fig. 25.1, p. 54; table 25.1, p. 53)

A.
$${}^{25}Na(\beta){}^{25}Mg$$
 $Q_m = 3832 \pm 10$

The weighted mean of the reported half-life measurements is 59.6 ± 0.7 sec (Hu 44, Ri 44, Bl 47, Iw 55, Na 56; see also Ba 46, Pe 48a).

The main branch (65%, Go 56, Ma 55; 50%, Na 54b, Bl 47) proceeding to ${}^{25}Mg(0)$ has an end point of 3.7 ± 0.3 MeV (Bl 47), 3.65 ± 0.25 MeV (Na 54b), 4.0 ± 0.2 MeV (Ma 55).

		TABLE 25.1		
		Energy levels of	²⁵ Na	
E _x (MeV)	Ja	τ∦ (sec)	Decay	Reactions
0 0.090-5.746; 29	å+ levels, see table	59.6±0.7 e 25.4 and reactions	<i>β</i> -	A, B, C, D, E, T C, F

TABLE	25.2
-------	------

Gamma	ravs	following	the B	- decav	of	25 Na 8
	******	10110 wing	une p	uccay	U 1	a_

Iw 55	Ma 55	Na 56	Go 56	Assignment
410	384 ± 10 (44 ± 4)	370±10 (108)	400 (95-4)	$^{25}Mg(2) \rightarrow (1)$
590	576 ± 10 (59 ± 7)	580 ± 10 (135)	580(89+5)	$^{25}Mg(1) \rightarrow (0)$
980	$978 \pm 15 (100 \pm 15)$	975 (100)	980 (100 - 3)	${}^{25}Mg(2) \rightarrow (0)$
	1603 ± 20 (40 ± 7)		1610(33+3)	$^{25}Mg(3) \rightarrow (0)$
	• - •		1960 (< 2.4)	${}^{25}Mg(4) \rightarrow (0)$

^a Energies in keV; relative intensities bracketed (980 keV γ ray normalized to 100).

From the analysis of the γ spectrum (see table 25.2) and the $\beta - \gamma$ coincidence spectrum 3.5%, 25%, and 6.5% branches have been found to ${}^{25}Mg^* = 0.59$, 0.98, and 1.62 MeV, respectively (Ma 55). Investigation of the γ spectrum with a large NaI crystal shows, however, that the β - branching to the 0.59 MeV level is probably less than 1% (Go 56). See table 25.3 for branchings, log *ft* values, spins, and parities.

Fig. 25.1. Energy levels of ²⁵Na.

25Na

	TA	BLE	2	5.3	
The	β-	deca	y	of	²⁵ Na

²⁵ Mg*	7 🖛	Branching ratio $\binom{0}{20}$				Log ft
(MeV)	J.	(Bl 47)	(Na 54b)	(Ma 55)	(Go 56)	(Go 56)
0	<u>5</u> +	≈ 55	≈ 50	65	65	5.2
0.58	1+			3.5	<1	> 6.9
0.98	<u>3</u> +	≈ 45	≈ 50	25	30	5.2
1.61	$(\frac{1}{2})^+$			6.5	5	5.6
1.96	$\frac{5}{2}$ +				< l	> 5.9

The absence of a measurable transition to ${}^{25}Mg(1)$, with $J^{\pi} = \frac{1}{2}^+$, and the allowed character of the transitions to ${}^{25}Mg(0)$ and (2), with $J^{\pi} = \frac{5}{2}^+$ and $\frac{3}{2}^+$,

respectively, imply a $J^{\pi} = \frac{5}{2}^{+}$ assignment to ²⁵Na(0) (Go 56). A discussion of the possibility of favoured transitions is given in Ki 55, Fe 55. Beta branchings computed from the ²⁵Mg rotational band structure are discussed in Li 58c.

B. ${}^{22}Ne(\alpha, p){}^{25}Na$ $Q_m = -3532 \pm 10$ Observed (Ol 51). C. ${}^{23}Na(t, p){}^{25}Na$ $Q_m = 7491 \pm 10$

Thirty proton groups have been observed at $E_t \approx 6$ MeV. For the excitation energy of ²⁵Na levels, see table 25.4; $Q_0 = 7.492 \pm 0.012$ MeV (Hi 612).

D. ${}^{25}Mg(n, p){}^{25}Na$ $Q_m = -3049 \pm 10$

For cross section at $E_n \approx 14$ MeV, see Pa 53, Al 61. Sec also Hu 44, Ri 44.

Energy levels of ²⁵Na (E_x in MeV \pm keV) from ²³Na(t, p)²⁵Na and ²⁶Mg(t, α)²⁵Na (Hi 61a)

TABLE 25.4

(t, p)	(t, α)	Average	(t, p)	(t, α)	Average
0	0	0	4.339	4.340	4.340 7
0.090	0.091	0.090 ± 5	4.448	4.451	4.450 - 10
1.069	1.067	1.068 ± 7	4.709	4.712	4.710 ± 10
2.200	2.207	2.204 ± 7	4.797	4.804	4.800 ± 10
2.418	2.417	2.418 ± 7	4.964	4.960	4.962 ± 10
2.787	2.788	2.788 ± 5	5.144	5.149	5.146 ± 10
2.912	2.914	2.913 ± 5	5.185	5.194	5.190 ± 10
3.351	3.355	3.353 ± 5	5.223	5.223	5.223 ± 10
3.456	3.457	3.456 ± 7	5.344	5.350	5.347 ± 10
3.685	3.684	3.685 ± 7	5.378	5.378	5.378 ± 10
3.925	3.930	3.928 ± 7	5.463	5.467	$5.465{\pm}10$
3.952	3.953	3.952 ± 7	5.484		5.484 ± 12
3.996	3.995	3.995 ± 7	5.691	5.689	5.690 ± 12
4.137	4.136	4.136 ± 7	5.714	5.712	5.713 ± 12
4.285	4.288	4.286 ± 7	5.749	5.744	5.746 ± 12

²⁵Na, ²⁵Mg

56

P. M. ENDT AND C. VAN DER LEUN

E. ${}^{26}Mg(\gamma, p){}^{25}N_{\perp}$ $Q_m = -14148 \pm 10$ The threshold is at $E_{\gamma} = 14.0 \pm 1.0$ MeV (Mc 49). For yield curves and cross sections, see Ba 49, Mc 49, Ed 52, Ka 54. Discussion of relative (γ , p) and (γ , n) cross sections, Mo 55.

F.
$${}^{26}Mg(t, \alpha){}^{25}Na$$
 $Q_m = 5665 \pm 10$

Magnetic analysis of the α -particle groups at $E_t \approx 6$ MeV yields the ²⁵Na levels listed in table 25.4; $Q_0 = 5.664 \pm 0.010$ MeV (Hi 61a).

G. Not reported:

²⁵ Mg(t, ³ He) ²⁵ Na	$Q_{\rm m} = -3814 \pm 10$
$^{26}Mg(n, d)^{25}Na$	$Q_{\rm m} = -11923 \pm 10$
²⁶ Mg(d, ³ He) ²⁵ Na	$Q_{\rm m} = - 8655 \pm 10$
²⁷ Al(n, ³ He) ²⁵ Na	$Q_{\rm m} = -14702 \pm 10$

²⁵Mg

(Fig. 25.2, p. 57; table 25.5, p. 58)

A.	²² Ne(x, n) ²⁵ Mg	$Q_{\rm m} = -481.6 \pm 2.0$
----	---	------------------------------

In the range $E_x = 2.2-3$ MeV, a 0.58 MeV γ ray has been found in coincidence with neutrons (De 61c). See also Ol 51. For resonances, see ²⁶Mg.

B. ${}^{24}Mg(n, \gamma){}^{25}Mg$ $Q_m = 7330.7 \pm 2.1$

The thermal neutron capture cross section of natural magnesium is 63 ± 3 mb; those of ²⁴Mg, ²⁵Mg, and ²⁶Mg are 34 ± 10 , 280 ± 90 , and 27 ± 5 mb, and the abundances 78.6, 10.1, and 11.3%, respectively. Approximately 45% of the thermal neutron capture in natural magnesium should thus occur in ²⁴Mg (Hu 58).

Gamma rays from capture of thermal neutrons in natural magnesium are listed in table 25.6 with intensities and probable assignments (Ca 57b, Gr 58c, Br 56e, Ma 59c; see also Ki 51, Ki 53a).

The intensity of the γ rays feeding ²⁵Mg*(3.41) and the branching of the de-excitation γ rays lead to the assignment $J^{\pi} = \frac{3}{2}^{-1}$ to this level (Ki 54a). The angular correlations of two cascades through the 3.41 MeV level corroborate this assignment (Ma 59c). The comparatively large intensities of the γ rays feeding and de-exciting ²⁵Mg* = 4.28 MeV, suggest that this level is the analogue of ²⁵Al* = 3.85 MeV, with $J^{\pi} = \frac{1}{2}^{-1}$. This assignment would be in agreement with the (d, p) stripping results which indicate $l_n = 1$ (Ca 57b; reaction D).

Theoretical discussion on the relative yields of the (n, γ) and (d, p) reactions. Gr 58b, Bo 59a.

Cross section at higher $E_{\rm n}$, Hu 58, Be 58e.

ENERGY LEVELS OF LIGHT NUCLEI. III

²⁵Mg

P. M. ENDT AND C. VAN DER LEUN

TABLE 25.5

Energy levels of ²⁵Mg

$E_{\mathbf{x}}$ (MeV_keV)	J ^π	$ au_{\frac{1}{2}}$ or \varGamma	Decay	Reactions
0	<u>&</u> +		stable	many
0.584 + 4	2 18+	$(3.4\pm0.3) imes10^{-9}$ sec	Y	many
0.976 + 4	3+	$< 10^{-10}$ sec	Ŷ	many
1.611 + 4	(1)+	$(1.7 \pm 0.4) \times 10^{-14}$ sec	Ŷ	many
1.962 + 4	5+	· — ·	21	D, F, G, H, M, N
2.565 + 4	1 1 1 +		-	D, H, M, N
2.736 ± 4	2			D, H, M, N
2.803 ± 4	$(3, 3)^+$			D, M, N
3.399 + 4	(2+)			D, H, I, N
3.408 + 4	3-		21	B, D, H, I, N
3,903 - 5	(8, 8)+		F	D, H, N
3,969 - 5	(3, 2)			D, N
4.055 +- 5				D, N
4.270 - 5	$(\frac{1}{2})^{-1}$		7'	B, D, N
4.351-4 6	(2/		•	D, N
(4.436 - 10)				D
(4.482 ± 10)				D
(4.639 1-10)				D
(4.666 + 10)				D
4.704 + 10				D. N
4.717 5 7				D. N
$(4.946 \pm .0)$				D
5.010-+ 7			(-•)	B. D. N
5.113 + 7			(-,-)	B. D. N
(5.140 - 10)			\ `	D
(5.217 - 10)				D
5.244 - 10				D. V
(5.287 + 10)				D
5.455 - 10				DN
5.470 - 7	÷-			D N
5.512-10				BIN
5.5:3-7.365. ::	a levela see tab	le 25.9 and reactions		\mathbf{D}, \mathbf{N}
7.411 - 4		78 - 0.5 keV	n	C D N
7.435-16	2			D N
7.512-10				D, N D N
7 533 - 14				D, N D N
T				D, N D N
·	4-	×11) - 211 125V		D, N C D N
7 6:23 - 10	2		11	$\mathbf{U}, \mathbf{D}, \mathbf{N}$
7 19.241 [1]				D, N
7.744 .7	1:	36 6 65	*	D, N C D N
7 45 11 39 9	evels see tables	the part was and provide and	n	C, D, N
	··· ··, ···, ··· (*41995**	were our asto and reaction	3	C. D, N

1^{21} Mg(n, n)²⁴ Mg

 $E_{\rm b} = 7\,330.7\pm2.1$

Total cross-section measurements at neutron energies up to 82 MeV, Hu 58, Pe F0. Differential scattering cross section at $E_n = 14.7$ MeV, Be 58b, Cr 60. Resonances in the ²⁴Mg- n total cross section are listed in table 25.7. A large

$E_{\gamma}^{\mathbf{a}}$ (MeV \pm keV)	$\frac{E_{\gamma}^{a}}{\text{MeV}\pm\text{keV}} = \frac{I_{\gamma}^{a}}{I_{\gamma}^{a}} \qquad (\text{MeV})$		Ι _γ b	Final nucleus	Probable transition ^f
11.089 ± 25	0.03			²⁶ Mg	$C \rightarrow 0$
10.08 ± 20	0.04			²⁶ Mg	
9.282 ± 13	0.5	9.27 ± 30	1	$^{26}{ m Mg}$	$C \rightarrow 1.81$
8.93 ± 20	0.06			²⁶ Mg	
8.55 ± 20	0.06			²⁶ Mg	
8.149 ± 10	3	8.14 ± 30	3.5	²⁶ Mg	$C \rightarrow 2.94$
7.36 ± 30	0.06			(^{25}Mg)	$(C \rightarrow 0)$
7.16 ± 30	0.11			²⁶ Mg	$C \rightarrow 3.94$
6.735 ± 15	1.2			25Mg	$C \rightarrow 0.58$
6.440 ± 8	0.9			27Mg	$C \rightarrow 0$
6.358 4 8	2.4	6.36 ± 30	2	^{25}Mg	$C \rightarrow 0.98$
5.76 ± 20	0.6				
5.51 ± 20	0.6			(²⁵ Mg)	$(5.51 \rightarrow 0)$
5.442 ± 12	3			27Mg	$C \rightarrow 0.99$
5.05 ±20	1.7				
4 93 <u>-</u> 20	2.7	4.93 ± 30	3		
4.77 ± 30	0.6				
4.21 ± 20	2.5				
3.918 - 4	47	3.92 ± 20	30	^{25}Mg	$C \rightarrow 3.41$
$\textbf{3.552} \pm \textbf{14}$	8	3.58 ± 30	3	(27Mg)	$3.56 \rightarrow 0$
3.408 ± 15	5	3.41 ± 20	4	²⁵ Mg	$3.41 \rightarrow 0$
3.290 ± 10	9	3.31 ± 20	7	^{25}Mg	4.27 - 0.98
3.054 ± 12	9	$\textbf{3.06} \pm \textbf{20}$	7	25Mg	$C \rightarrow 4.27$
2.816 ± 15	24	2.82 ± 20 °	24; 49d	²⁵ Mg	$3.41 \rightarrow 0.58$
		2.43 ± 20	5	²⁵ Mg	$3.41 \rightarrow 0.98$
		1.83 ± 20 °	11; 22 ^d	^{26}Mg	$1.81 \rightarrow 0$
		1.14e	10.1	²⁶ Mg	$2.94 \rightarrow 1.81$
		1.0e	130	26Mg	$(3.94 \rightarrow 2.94)$

 TABLE 25.6

 Gamma rays from capture of thermal neutrons in natural Mg

^a Ca 57b; magnetic pair spectrometer. Intensities in gammas per 100 captures.

^b Gr 58c; Compton spectrometer. Intensities in gammas per 100 captures.

c See also Br 56e.

^d Br 56e; two-crystal scintillation spectrometer.

^e Coincident with $E_{\gamma} \approx 7$ MeV (Ma 59c).

¹ Excitation energies in MeV; C is the capturing state.

value for the left-right asymmetry in the scattering of polarized neutrons has been found at the 257 keV resonance (El 60b). For non-resonance information, see ²⁴Mg.

D. ${}^{24}Mg(d, p){}^{25}Mg$ $Q_m = 5106.0 \pm 2.1$

Sixty levels, with excitation energies up to $E_x = 7.64$ MeV, have been found from high resolution magnetic analysis. For energies, widths, and l_n values, see tables 25.8a and 25.9 (En 52b, En 54b, Hi 58, Hi 61d, Hi 61h, Mi 61a, Pa 61); $Q_0 = 5.097 \pm 0.007$ MeV (En 52b, En 54b), 5.112 ± 0.012 MeV (Ma 60e), 5.096 ± 0.012 MeV (Hi 61h). For a discussion of the doublet character of the 3.41 MeV level, see reaction N (Hi 61d). Earlier low-resolution measure-

	Resor	nances in ²⁶ Mg+n	total cross section		-
E _n (keV)	²⁵ Mg* (MeV)	σ _{peak} (barns)	Г (keV)	J¤	References
$\begin{array}{r} 84 \pm \ 3\\ 275 \pm \ 8\\ 430 \pm \ 5\end{array}$	7.411 7.595 7.744	≈ 65	$\begin{array}{rrrr} 7.8 \pm & 0.5 \\ 80 & \pm 20 \\ 30 & \pm 10 \end{array}$	3- 13- (32-)	a, b, c, (f) a, b, f a, f d, (e)
2290 ± 10 2680 + 10	9.530 9.900	3.8 5.53			d, (e)

TABLE 25.7

^a Hu 58.

^b Ne 59c.

° Bl 58b.

d Br 58e.

^e De 58c.

¹ Fi 51.

ments (Kr 55, Ho 53, Al 49a, Am 52) are generally in good agreement with the results summarized in these tables.

Proton-gamma coincidence experiments indicate transitions from the first four excited states of ²⁵Mg to ²⁵Mg(0), and from ²⁵Mg(2) and (4) to ²⁵Mg(1) (Mu 58b). For conclusions about J^{π} values from γ branching ratios, see reaction H.

The angular distribution of the proton group to ${}^{25}Mg^* = 3.41$ MeV, and the angular correlation between the proton and the resulting de-excitation γ rays, measured at $E_d = 2$ to 4 MeV, yields $J^{\pi} = \frac{3}{2}$ for the 3.41 MeV level (Co 57b). At $E_{a} = 15$ MeV, the angular distribution is in good agreement with the distorted-wave stripping theory (Ma 60a). The polarization of the proton group to ${}^{25}Mg^* = 3.41$ MeV is in agreement with the magnitude predicted from (d, $p\gamma$) angular correlation measurements (Jo 61, Is 61a).

For a discussion of the spins and reduced widths of the 3.90 and 3.97 MeV levels, see Mi 61a.

For a discussion of the reduced widths in ²⁵Mg and ²⁵Al found from (d, p), (p, p), (n, γ), and (d, n) reactions, see Gr 58b, Bo 59a, Ma 60d, Mi 61a; also Ne 59b.

E. ${}^{24}Mg(t, d){}^{25}Mg$	$Q_{\rm m} =$	1073.1 ± 2.1
-------------------------------	---------------	------------------

At $E_{d} = 5.5$ MeV, the angular distributions of the deuteron groups to $^{25}Mg^* = 0$ and 0.59 MeV yield $l_n = 2$ and 0, respectively (De 61b).

- F. 25Na(p-)25Mg $Q_{\rm m} = 3832 + 10$ See ²⁵Na.
- $^{25}Mg(n, n')^{25}Mg$ G.

~ ~ ~ ~

At neutron energies of about 3 MeV, γ rays have been observed of 0.38 ± 0.02 , 0.59 ± 0.02 (Sc 54d), 0.95 ± 0.025 (Pa 58b), 1.616 ± 0.016 (Da 56c), and

E _x a (MeV)	$E_{\mathbf{x}}^{\mathbf{b}}$ (MeV \pm keV)	$E_{\mathbf{x}}^{\mathbf{c}}$ (Mev \pm keV)	l _n	$(2J+1) heta_{ m n}^2 imes 10^3$
0	0	0	2e, f, g, h, i, m, n	57
0.579	0.595 + 4	0.582 + 6	()e, î, i, m, n	42
0.973	0.983 ± 4	0.976 ± 6	2e, î, m, n	29
1.609	1.620 ± 4	1.612 ± 6	(2) ^m	
1.962	1.977 ± 5	1.957 ± 6	2e, f, g, h, i, m, n	26
2.564	2.572 ± 5	2.565 ± 6	0e, m, n	19
2.737		2.742 ± 8	isotropic ^m	
2.800	2.815 ± 8	2.806 ± 7	2e, m, n	48
3.3980				
3.407 °		3.405 ± 7]e, î, i, j , m, n	76
3.900	$3.915 {\pm} 4$	3.899 ± 8	2g, (1,2)m	40
3.96 5	3.977 ± 4	3.972 ± 10	(2, 3) m, n. k	53 or 80
4.054	4.053 ± 4	(4.052 ± 10)		
4.268	4.282 ± 4	(4.265 ± 7)	le, m, n	22
4.351	4.352 ± 4			
$\pm 10 \text{ keV}$				

TABLE 25.8a Levels of ²⁵Mg, with $E_x < 4.4$ MeV, from ²⁴Mg(d, p)²⁵Mg

^a Hi 61h; $E_d = 5.5-6.0$ MeV.

^b Ja 61a.

^c En 52b, En 54b; $E_d = 1.8$ MeV.

^d Ma 60d, Hi 58; the relative reduced widths given in Mi 61a are in accordance with all values given in this column, except for the 2.56 MeV level, where 29 is found instead of 19. The 3.90 MeV level is not considered in Mi 61a to be formed by stripping; if it has $l_n = 2$, then $(2J + 1)\theta_n^3 \leq 0.007$. The absolute widths for ²⁵Mg(0) and (4) in Ha 60c are in good agreement with those tabulated.

- e Hi 58.
- ¹ Ho 53.
- ^g Ri 59a.
- ^h Ha 60c.
- i Co 57b.
- ^j Ma 60a.
- ^k Stripping analysis favours the $l_n = 2$ rather than the $l_n = 3$ assignment. The total cross section of the ²⁷Al(d, α)²⁵Mg α -particle group to this level favours $J = \frac{5}{2}$ (Mi 6la). This is in contradiction with the suggestion that this level is the analogue of the 3.72 MeV, $J^{\pi} = \frac{7}{2}^{-}$ level in ²⁵Al (Go 57d).Very recent D.W.B.A. analysis of the Mi 6la results, however, has shown that the 3.96 MeV level has $l_n = 3$, and not $l_n = 2$ (Dr. Hinds, Aldermaston, private communication). ^m Pa 61 (preliminary).

- n Mi 61a.
- ° Hi 61d; doublet at 3.398 ± 0.007 and 3.407 ± 0.007 MeV, distance 9 ± 2 keV. Observed at $E_d = 6.0$ MeV from the ²⁴Mg(d, p)²⁵Mg and ²⁷Al(d, α)²⁵Mg reactions.

 1.92 ± 0.04 MeV (Pa 58b). See also Pa 55, Ra 55, Ho 59a, Le 61a. At $E_n = 14$ MeV,

a 1.60 ± 0.01 MeV γ ray has been observed (De 60).

Cross section, Da 56c.

Resonances, see ²⁶Mg.

Exa	E _x b	$E_{\mathbf{x}}^{\mathbf{c}}$	E _x d (MeV-keV)
(MeV)	(MeV)	$(MeV \pm keV)$	(Mev ±kev
0	0	0	0
0.583	0.586	0.584 ± 6	0.584 ± 6
0.979	0.975	0.977 ± 10	0.976 ± 10
1.609	1.608	1.610 ± 10	1.616 ± 10
1.958	1.963	1.958 ± 10	1.973 ± 10
2.564	2.568	2.558 ± 10	2.572 ± 10
2.731	2.741	2.729 ± 10	2.741 ± 15
2.795	2.806	2.791 ± 15	2.815 ± 10
3.398e	8 404	9 404 (10	
3.407e	3.404	3.404 ± 12	
3.902	3.915	3.896 ± 15	
3.966	3.975	3.960 ± 15	
4.057	4.061	4.057 ± 15	
4.269	4.280		
4,350	$\mathrm{all}_{\pm} \approx 7 \mathrm{keV}$		
ll 10 keV	-		

TABLE 25.8b Levels of ²⁵Mg with E < 4 MeV, from ²⁷Al(d, α)²⁵Mg

^a Hi 61h; $E_d = 5.5-6.0$ MeV.

^b Sh 59c; $E_{d} = 7.5$ and 8.6 MeV.

^c En 52b, En 54b; $E_{d} = 2.1$ MeV.

d Ja 61a.

^e Hi 61d; doublet at 3.398 ± 0.007 and 3.407 ± 0.007 MeV, found from the ²⁷Al(d, α)²⁵Mg and ²⁴Mg(d, p)²⁵Mg reactions.

H. ${}^{25}Mg(p, p'){}^{25}Mg$

Observed inelastic proton groups are shown in table 25.10 (Ha 52, Sc 59a; also Fi 54).

Yields of the 1.96, 1.61, 0.98, and (0.40 ± 0.58) MeV γ radiation have been measured as functions of the proton energy in the 1.5 to 3.0 MeV range (Go 56). See also Mi 59b, $E_p = 4.0-5.4$ MeV. By comparing the γ spectra at different resonances, and by measuring $\gamma - \gamma$ coincidences, branching ratios of the levels at 0.98, 1.61, and 1.96 MeV have been obtained (see fig. 25.2). Spins and parities of the lower levels agree with these branching ratios, hyperfinestructure measurements, (d, p) angular distributions, log ft values in the decay of ²⁵Na and ²⁵Al, shell model predictions, and classification of corresponding levels in the mitror nucleus ²⁵Al (Go 56). Angular distribution and linear polarization measurements, at the $E_p = 1.91$ and 2.41 MeV resonances, yield the E2/M1 amplitude mixing ratios $x = \pm0.30\pm0.15$ and $\pm0.15\pm0.05$ for the 0.98 \rightarrow 0 and 0.98 \rightarrow 0.58 transitions, respectively (Mc 61a). A theoretical discussion of the rotational bands in ²⁵Mg has been given in Li 58c; see also ²⁵Al, "Remarks".

The first level, de-excited by a 588 ± 5 keV γ ray (Ka 55), has a half-life $\tau_{\frac{1}{2}} = (3.5\pm0.2) \times 10^{-9}$ sec (Fe 60a), $(2.1\pm0.7) \times 10^{-9}$ sec (Bi 59a). The reduced

63

ENERGY LEVELS OF LIGHT NUCLEI. III

E _x ª (MeV ≟keV)	E _x b (MeV)	l _n (d, p)	$\begin{array}{c c} (2J+1)\theta_n^{2c} \\ \times 10^3 \end{array}$	$E_{\mathbf{x}}^{\mathbf{b}}$ (MeV \pm keV)	<i>l</i> _n (d, p)	$(2J-1)\theta_{\rm n}^{20}$. 10 ³
4.436 <u>+</u> 9				6.558 ± 10	(2, d	
4.432 ± 4				6.668 ± 10		
4.639±:9				6.768 ± 10	Je, i	7.2
4.666 ± 6				$\boldsymbol{6.825 \pm 10}$	$> 1^{e}$	
	4.704	(2) đ		$\boldsymbol{6.872 \pm 10}$		
4.727 ± 4	4.712	хк		6.901 ± 10		
4.946 ± 4				6.944 ± 10		
5.020 ± 4	5.005		1	7.025 ± 10		
5.123 ± 4	5.108			7.076 ± 10	<u>2</u> i	4.9
5.140 ± 4				7.171 ± 10		
5.217 ± 9			i	7.215 ± 10	2 i	22
	5 244	x ^k		7.270 ± 10	3 i	\$8
5.287 ± 4			1	7.365 ± 10	<u>2</u> i	4.2
	5.454			$7.400\pm10^{ m g}$	le, i	48 ^j
5.479 ± 4	5.465	0e, i	71	$\textbf{7.486} \pm \textbf{10}$		
	5.512	1.1		7.512 ± 10		
	5.523	$(2)^{d}$		(7.538 ± 10)		
	5.738			7.564 ± 10		
	5.785	x ^k		7.57 ± 20^{h}	1 e	(42) ^j
	5.851		1	7.623 ± 10		
	5.967	•		7.640 - 10		
	6.032			7.85 ± 40^{f}		
	6.074			8.05°	2(1) ^e	(32) i
	6.159			8.62 ± 50^{f}		
	6.350			9.06 ± 40^{f}		
	6.423			$9.75 \pm 40^{ m f}$		
	6.457			$10.78 - 40^{\circ}$		
	all + 10 keV			11.89 ± 50^{f}		

TABLE 25.9 Levels of ²⁵Mg, with $E_r > 4.4$ MeV, from ²⁴Mg(d, p)²⁵Mg and ²⁷Al(d, α)²⁵M

^a Ja 61a; ²⁴Mg(d, p)²⁵Mg.

^b Hi 61h; ²⁴Mg(d, p)²⁵Mg and ²⁷Al(d, α)²⁵Mg, $E_d = 5.5-6.0$ MeV.

^c Relative reduced widths given in Mi 61a, adjusted to the value $(2J+1)\theta_n^2 = 0.048$ given in Ma 60d for the 7.40 MeV level.

^d Pa 61 (preliminary).

^e Hi 58; low resolution; level assignment not obvious in all cases.

^f To 52; ²⁷Al(d, α)²⁵Mg, $E_{d} = 10.8$ MeV.

^g $\Gamma = 13 \pm 3$ keV (Hi 61h), see also table 25.7.

^h $\Gamma = 80 \pm 20$ keV (Hi 61h), see also table 25.7.

ⁱ Mi 61a.

^j Ma 60d, Hi 58.

k The stripping states at 4.72, 5.27, and 5.79 MeV, reported in Hi 58, were not confirmed (Mi 61a).

transition probabilities of ²⁵Mg(1) and ²⁵Al(1) differ by a factor of 7; this is discussed in Fe 60a. The half-life of ²⁵Mg*(0.98) is less than 10⁻⁹ sec (Fe 60a). Resonance fluorescence experiments yield a mean life $\tau_m = 2.5^{+0.6}_{-0.4} \times 10^{-14}$ sec for ²⁵Mg* = 1.61 MeV, assuming $J = \frac{7}{2}$. The angular distribution of scattered radiation yields an E2/M1 amplitude ratio $x = -0.19 \pm 0.015$ and $B(E2)/B(E2)_{s,p} = 6.5$ (Ra 61a).

For resonances, see ²⁶Al.

E _x ^a (MeV)	E _x b (MeV)	E _x c (MeV)
0.61 ± 0.02		0.58
		0.98
1.62 ± 0.02	1.6	1.61
1.98 ± 0.02		
2.56 ± 0.02		
2.76 ± 0.02	2.8	
3.41 ± 0.02	3.4	3.40
3.91 ± 0.02	4.0	

TABLE 25.10

^a (p, p'); $E_p = 8$ MeV (Ha 52). ^b (p, p'); $E_p = 17$ MeV (Sc 59a).

c (d, d'); $E_d = 15 \text{ MeV}$ (Bl 61a).

²⁵Mg(d, d')²⁵Mg I.

Observed inelastic deuteron groups are listed in table 25.10. The only strong groups are those corresponding with levels at 1.61 and 3.40 MeV. It is suggested that this last group mainly excites, not the 3.409 MeV, $J^{\pi} = \frac{3}{2}$ level, but a $J^{\pi} = \frac{9}{2}^{+}$ ground-state rotational-band level which should appear at approximately this excitation energy (Bl 61a).

²⁵Mg(¹⁴N, ¹⁴N')²⁵Mg Τ.

By Coulomb excitation with 12.2, 16.8, 18.0, and 21.5 MeV ¹⁴N ions the partial E2 mean lives of $^{25}Mg(1)$, (2), and (3) have been measured as $(6.9\pm1.7)\times10^{-9}$, $(1.7\pm0.4)\times10^{-10}$, and $(9.0\pm1.6)\times10^{-13}$ sec, respectively (An 61f).

 $Q_{\rm m} = 4261 \pm 6$ Κ. $^{25}Al(\beta^{+})^{25}Mg$ See ²⁵Al.

L.
$${}^{26}Mg(\gamma, n){}^{25}Mg$$

 $Q_{\rm m} = -11097.4 \pm 2.7$

The threshold has been measured as 11.15 ± 0.20 MeV (Sh 51a). The cross section shows a maximum at $E_{\gamma} \approx 17~{
m MeV}~(\Gamma \approx 2.5~{
m MeV})$ (Ka 54). See, however, Na 55, Ye 56. Theoretical discussion of the observed cross section, Mo 55.

M.
$${}^{26}Mg(d, t){}^{25}Mg$$
 $Q_m = -4839.8 \pm 2.7$

1 riton groups observed at $E_{d} = 14.8$ MeV, the results of angular distribution analysis, and the extracted reduced widths are listed in table 25.11. From a comparison of the experimental widths to the predictions of the rotational model, an admixture of higher rotational bands was found in the 26Mg groundstate wave function (Ha 60c, Ma 60d). See also Vl 61.

Levels in ⁸⁵ Mg f	rom ²⁶ Mg(d, t) ²⁵ Mg	(Ha 60c, Ma 60d)
$\overline{E_{\mathbf{x}}}$ (MeV)	l _n	$\theta_n^2 \times 10^3$
0	3) 4	31
0.58	0	2.5
0.98	2	0.4
1.61	(4)	
1.96	2	1.8
2.57	0	0.7
2.74		
2.80	2	0.9

TABLE	25.			
-------	-----	--	--	--

N. ${}^{27}Ai(d, \alpha){}^{25}Mg$

 $Q_{\rm m} = 6700.5 \pm 2.2$

Observed levels are listed in tables 25.8b and 25.9 (Hi 61h, Hi 61d, Sh 59c, En 54b, En 52b, To 52, Sc 50; see also Sh 61a). The ground-state Q value has been measured as $Q_0 = 6.694 \pm 0.010$ MeV (En 52b, En 54b), 6.718 ± 0.005 MeV (Ma 60e), 6.687 ± 0.010 MeV (Sh 59c), 6.691 ± 0.012 MeV (Hi 61h). For excitation energies below 7.6 MeV, the results of low-resolution experiments have not been listed (see En 54a).

A detailed investigation of the 3.40 MeV level proves that this is a doublet of 9 ± 2 keV separation. The higher member is the well known $l_n = 1$ state observed in the ²⁴Mg(d, p)²⁵Mg reaction. A $J^n = \frac{9}{2}^+$ assignment for the lower member, suggested by mirror nucleus arguments, is supported by the observed relative intensities of the α -particle groups (Hi 61d).

Angular distributions of 44 α -particle groups, measured at $E_z = 10 \text{ MeV}$, yield total cross sections. For the states of known spin, the proportionality of the total cross section of the individual groups and (2J+1), is obeyed surprisingly well (Hi 61e). Gamma rays from deuteron bombardment of aluminium, see Be 55. Cross section measurements, Ci 61.

O. ${}^{28}\text{Si}(n, \alpha){}^{25}\text{Mg}$

$$O_{\rm m} = -2655.4 + 3.4$$

From the bombardment of a silicon surface barrier counter with $E_n = 5-8$ MeV neutrons, α -particle groups have been observed to the four known lowest states in ²⁵Mg (De 61d).

P. Not reported:

²³ Na(t, n) ²⁵ Mg	$Q_{\rm m} = 10540.9 \pm 2.4$
²³ Na(³ He, p) ²⁵ Mg	$Q_{\rm m} = 11305.4 \pm 2.3$
$^{23}Na(\alpha, d)^{25}Mg$	$Q_{ m m}=-~7047.0\pm2.4$
²⁴ Mg(a, ³ He) ²⁵ Mg	$Q_{ m m}=-13246.5\pm2.1$
$^{26}Mg(p, d)^{25}Mg$	$Q_{\rm m} = -$ 8872.7 ± 2.7
$^{26}Mg(^{3}He, \alpha)^{25}Mg$	$Q_{\rm m} = 9479.8 \pm 2.7$
²⁷ Al(n, t) ²⁵ Mg	$Q_{ m m}=-10887.5\pm2.3$
²⁷ Al(p, ³ He) ²⁵ Mg	$Q_{\rm m} = -11651.9 \pm 2.3$

25A1

(Fig. 25.3, p. 67; table 25.12, p. 66)

A.
$${}^{25}\text{Al}(\beta^+){}^{25}\text{Mg}$$
 $Q_m = 4261 \pm 6$

The half-life is 7.23 ± 0.03 sec (weighted mean of Ja 60a, Wa 60a, Mu 58, Ar 58; the value given in Hu 54b, 7.62 ± 0.13 sec, deviates appreciably; see also Br 48, Gr 54).

The decay almost entirely proceeds to the ²⁵Mg ground state; end point

$\frac{E_{\rm x}}{({\rm MeV}\pm{\rm keV})}$	ſ¤	$ au_{rac{1}{2}}$ or \varGamma		Decay	Reactions
0	<u>5</u> +	7.23 ± 0.03 sec		β+	A, B, D, E, F, G
$0.455\pm~2$		$(1.88\pm0.10) \times 10^{-9}$ sec		Y	B, D
0.949 ± 3	<u>3</u> +			γ	B, D
1.610 ± 20	$(\frac{7}{2})^+$			21	13
1.810 ± 20	$\frac{5}{2}$ +			Y	B, D
2.502 ± 6	<u>}</u> +	< 1.0	keV	Y	B, D
2.689 ± 6	3+	< 0.4	keV	Y	B, D
2.739 ± 10				Y	В
3.077 ± 6	$\frac{3}{2}$ -	1.3 ± 0	0.4 keV	γ. p	B, C, D
(3.424 ± 7)				γ	В
3.439 ± 6	(§+)	< 10	keV	γ	В
3.72	<u>7</u> -	0.3	keV	7. P	B, C
3.84	1-	36	keV	γ, p	В, С
3.88	5+ 3	0.1	keV	2. P	B, C
4.047 ± 9	(5, ⁹ / ₂)+	< 10	keV [°]	Y	B
4.22	3+2	> 0.12	keV	2. P	B, C
4.59	5+	> 047	keV	7. P	В, С
4.90	$\geq \frac{5}{2}$	< 10	keV	. p	С
5.06	출, (골+)	< 16	keV	P	С
(5.09)				p	С
5.10	(<u>5</u> +)	≈ 50	keV	P	С
5.30	<u>3</u>	200	keV	p	С
5.80	<u>्र</u> ज			p	С
6.13	출, (불 ⁺)			p	С
6.70				\mathbf{p}	С
7.14	$(\frac{3}{2})$			p	С
7.32		100 _{⊐.} 2	0 keV	p	С
(7.5)				p	С
7.78	(<u>3</u>)	340 ±5	0 keV	p	С

TABLE 25.12

Energy levels of ²⁵Al

 3.24 ± 0.03 MeV (El 55), 3.27 ± 0.03 MeV (Wa 60a; also Hu 54c); log ft = 3.6. A weak 1.58 ± 0.03 MeV γ ray has been detected, indicating that about 0.1% of the β^+ transitions go to ${}^{25}Mg^* = 1.61$ MeV (Ma 55). For this transition log $ft \approx 5.3$. Upper limits for transitions to ${}^{25}Mg^* = 0.98$ and 0.58 MeV arc

25Al

Fig. 25.3. Energy levels of 26 Al; for γ decay, see also fig. 25.4.

0.4% (Ma 55; also St 56, Ta 60c) and 0.9% (Ta 60c), respectively. See also El 55, Ch 56, Va 56b.

Longitudinal β^+ polarization measurements, Pr 58.

B. $^{24}Mg(p, \gamma)^{25}Al$ $Q_m = 2287 \pm 6$

Ten resonances in the γ -ray yield are listed in table 25.13. The listed energies of the lowest three resonances are weighted mean values of several precision measurements.

Measurements of γ -ray spectra, angular distributions, coincidence spectra, $\gamma - \gamma$ angular correlations, and γ -ray polarizations, yield decay modes, partial

Fig 25.4. Gamma-ray branchings in ²⁵Al (Li 56a, Go 58e, Li 59a).

widths, spins, and parities of the resonance levels (values and references in table 25.13; branching ratios in fig. 25.4). Levels below the proton binding energy 1 are been found at 455 ± 2 keV (Cr 56, Va 56b, Ag 56; Go 58e), 949 ± 3 keV (Go 58e), 1610 ± 20 keV, and 1810 ± 20 keV (Li 56a); for J^{π} values and branching 1 itos, see fig. 25.4. Delayed $\gamma-\gamma$ coincidence measurements yield a half-life $\tau_3 = (1.88\pm0.10) \times 10^{-9}$ sec for 25 Al* = 0.455 MeV (Go 60f). The resonance corresponding to the level at 2739 ± 10 keV has not been found; $(2J+1) \Gamma_{\gamma} \Gamma_{p}/\Gamma < 0.6$ meV. This level could be the fourth term ($J^{\pi} = \frac{1}{2}^{+}$) of the $K = \frac{1}{2}$ band on the first excited state (Go 58e); also "Remarks".

25<u>A</u>] 68

T	A	BT	E	25.	1	3
ж.	~	~~	وند ا	<i>w</i> .	л	- 22

Resonances in ²⁴Mg+p

E _p (keV)	²⁵ Al* (MeV)	Decay ^a	Г (keV)	${\Gamma_{\gamma}\Gamma_{\mathbf{p}}/\Gamma^{\mathrm{d}}\over(\mathrm{meV})}$	$(2J+1) \Gamma_{\rm p}\Gamma_{\rm p_1}/(eV)$	Γ^{d} J^{π}
223.8±0.8 ^b , p, r	2.502	γc, g, h, i, j	< 1.0m, q	13.7		1 - i
418.8±0.2 ^b , p, q, r	2.689	yc, d, s	< 0.49	14 ± 7		3+d, 8, v
823.1±0.5 ^p , q	3.077	yc, d, 1 poe	1.3± 0.49	110 ± 20		3-d, 1, n, v
$(1184 \pm 3)^{q}$	(3.424)	· · · · ·				-
1200 ± 19	3.439	y d	< 10 ^d	5.5 ± 1.1		(<u>9</u> +)d
1490°	3.72	2 ^{,d} Poe	0.3 n	12 ± 2		<u>;</u> -d, n
1620e	3.84	2,d poe	36 n	520 ± 100		1 - d, n
1660e	3.88	2t poe	0.1 ⁿ	45 ± 9		$\frac{5}{2}$ + d, n, t
1833 ±7 ^u	4.047	yu	< 10 ^u	$\approx 1^{u}$		$(\frac{5}{2}, \frac{9}{2}) + u$
2010d, e	4.22	yd pae pid, t	> 0.12 ^d	340 ± 70	120	$\frac{3}{2}$ + d, f
2400d, e	4.59	yd pae pid, t	> 0.47 d	60 ± 12	700	
2720ª	4.90	p ₁ d	< 10 ^d		40	$\geq \frac{5}{2}$ d
2890d	5.06	p, d, f	< 10 ^d		370	1/2, (3+) ⁸
(2920) d	(5.09)	p_1^d				
29 30 'a	5.10	p ₁ d, f	$\approx 50^{d}$		6700	(<u>5</u> ⁺)₫, t
3140 ^e	5.30	p _e e	200 n			3 - n
3660 e	5.80	$p_0^e p_1^f$				<u>3</u> -1
40000	6.13	$p_i^{f,\sigma}$				$\frac{1}{2}$, $(\frac{3}{2}^{+})$
4600 °	6.70	P10				
50500	7.14	p_1^0				(<u>3</u>) 0
5240 w	7.32	P3 W	$100 \pm 20^{\text{w}}$			
$\approx 5400^{\circ}$	≈ 7.5	P1 ⁰				
5720 w	7.78	(p1) ob3 o. w	340 ±50 ^w			$\left(\frac{3}{2}\right)$ w

^a The symbols γ , p_0 , p_1 , and p_3 refer to proton capture, elastic proton scattering, and inelastic scattering to ²⁴Mg^{*} = 1.37 and 4.24 MeV, respectively.

^b Hu 55.	h Cr 56.	n Ko 52.	s Va 58.
^c Ag 56.	i Va 56b.	° Mi 59b.	t Go 58e.
^d Li 56a.	j Ch 56.	^p Ku 59a.	^u Li 59a.
^e Mo 51.	¹ Gr 55c.	q An 59b.	v Su 60c.
f Le 56a.	^m Ta 46.	r Wa 59a.	w Ba 60.

g Ca 53.

C. ${}^{24}Mg(p, p'){}^{24}Mg$

 $E_{\rm b} = 2287 \pm 6$

Elastic proton scattering shows eight resonances in the energy range $E_p = 0.4$ to 3.9 MeV (Mo 51); partial-wave analysis (Ko 52) yields widths and J^n values of the corresponding levels; see table 25.13.

Eleven resonances for inelastic proton scattering to ²⁴Mg*(1.37) have been observed for protons in the energy range $E_p = 2$ to 5.5 MeV (Li 56a, Le 56a, Mi 59b). Yield curve up to $E_p = 7.0$ MeV, Se 59a. The angular distribution of $E_{\gamma} = 1.37$ MeV, measured at $E_p \approx 5.05$ MeV, yields $J = (\frac{3}{2})$ for the resonance level. Resonances in the yield of $E_{\gamma} \approx 4.23$ MeV, de-exciting ²⁴Mg(3), have been found at $E_p = 5.24 \epsilon$.nd 5.72 MeV (Ba 60; also Mi 59b); see table 25.13.

For non-resonance data, see ²⁴Mg.

P. M. ENDT AND C. VAN DER LEUN

D.
$${}^{24}Mg(d, n){}^{25}Al$$
 $Q_m = 62 \pm 6$

At $E_d = 4.0$ MeV, neutron groups have been observed to ${}^{25}\text{Al}^* = 0$ $(l_p = 2, \theta_p{}^2 = 2.8 \times 10^{-3}), 0.45 \pm 0.03$ $(l_p = 0, \theta_p{}^2 = 7.3 \times 10^{-3}), 0.95 \pm 0.03$ $(l_p = 2, \theta_p{}^2 = 3.0 \times 10^{-3}), 1.81 \pm 0.04, (1.94), 2.51 \pm 0.05, 2.70 \pm 0.05, (2.92),$ and 3.09 ± 0.06 MeV $(l_p = 1)$ (Go 53, Ma 60d). The ground-state Q value is 0.07 ± 0.06 MeV (Go 53).

E. ${}^{24}Mg(\alpha, t){}^{25}Al$ $Q_m = -17526 \pm 6$

Cross-section measurement at $E_{\alpha} = 48$ MeV, Go 60e.

F. ²⁵Mg(p, n)²⁵Al $Q_{\rm m} = -5044 \pm 6$

Threshold measured as $E_p = 5.1$ MeV (Bl 51), 5.25 ± 0.1 MeV (Sc 54b), and 5.289 ± 0.025 MeV (Ki 55a). For resonances, see ²⁶Al.

G. $^{27}Al(p, t)^{25}Al$ $Q_m = -15931 \pm 6$

Cross-section measurement at $E_p = 32$ MeV, Go 60e.

H. Not reported:

²⁴ Mg(³ He,d) ²⁵ Al	$Q_{\rm m}=-3206\pm6$
²⁵ Mg(³ He, t) ²⁵ Al	$Q_{\rm m}=-4279\pm6$
$^{28}Si(p, \alpha)^{25}Al$	$Q_{\rm m} = -7699 \pm 7$

REMARKS

The striking similarity of the excitation energies, γ -branching ratios, spins and parities of the low-lying levels in the mirror nuclei ²⁵Mg and ²⁷Al has been discussed in Li 56a, Go 56, Go 57d, Li 58c. The experimental γ -branching ratios in ²⁵Al agree with collective-model calculations if it is assumed that the levels below 4 MeV belong to four rotational bands with $K^{\pi} = \frac{5}{2}^{+}, \frac{1}{2}^{+}, \frac{1}{2}^{+}, \text{ and } \frac{1}{2}^{-}$, as given in fig. 25.4. Ground-state M1 transitions from levels of the $K^{\pi} = \frac{1}{2}^{+}$ bands are attenuated by factors of approximately 20 as compared to M1 transitions between levels in the same bands. In Bi 60 a modification of the Nilsson calculations has been discussed which in the case of ²⁵Mg appears to lead to ϵ better agreement with the observed decay scheme. A discussion concerning the half-life of the first excited state of ²⁵Mg relative to that of ²⁵Al has been given in Fe 60a.

Relations connecting the strenghts of γ transitions between corresponding states in mirror nuclei are derived in Mo 59a, and compared with the experimental data on the decay of ²⁵Mg and ²⁵Al states.

25_A1

²⁶Na

(Not illustrated; see fig. 26.1, p. 72)

A.
26
Na(β^{-}) 26 Mg $Q_{\rm m} = 8500 \pm 300$

At $E_n = 14.8$ MeV and $E_n = 24$ MeV, ²⁶Na has been produced in the reaction ²⁶Mg(n, p)²⁶Na. The half-life is 1.04 ± 0.03 sec (Nu 58), 1.03 ± 0.06 sec (Ro 61b). It decays by β^- emission to ²⁶Mg*(1.83); the end point, 6.7 ± 0.3 MeV, yields a ²⁶Na mass excess of -7700 ± 200 keV; log ft = 4.4. The intensities of β^- transitions to ²⁶Mg* = 0 and 2.97 MeV are less than 10% of the main branch (Ro 61b). The forbidden character of the β^- transition to the ²⁶Mg ground-state, together with the allowed character of the transition to the 2⁺ first excited state, suggests $J^{\pi}(^{26}Na) = (2,3)^+$.

B.
$${}^{26}Mg(n, p){}^{26}Na$$
 $Q_m = -7700 \pm 300$

Observed, see reaction A. Cross section at $E_n = 14$ MeV, Al 61.

C. Not observed: ${}^{26}Mg(t, {}^{3}He){}^{26}Na$ $Q_m = -8500 \pm 300$

26Mg

(Fig. 26.1, p. 72; table 26.1, p. 73)

A. ²²Ne(α , n)²⁵Mg $Q_{\rm m} = -481.6 \pm 2.0 \quad E_{\rm b} = 10615.8 \pm 2.3$

In the 2.2-3.0 MeV range, one resonance has been found at $E_{\alpha} = 2.88$ MeV (De 61c). See also ²⁵Mg.

B. ${}^{22}Ne(\alpha, \alpha){}^{22}Ne$

 $E_{\rm h} = 10615.8 \pm 2.3$

Thirteen sharp resonances in the neon elastic scattering cross section have been observed at four angles for $E_{\alpha} = 2$ to 4 MeV. Two of these resonances, at $E_{\alpha} = 3.245$ MeV ($\Gamma = 2.5 \pm 0.5$ keV) and 3.418 MeV ($\Gamma = 3.2 \pm 0.5$ keV), can be assigned to ²²Ne. Partial wave analysis yields $J^{\pi} = 3^{-}$ for the corresponding ²⁶Mg levels at 13.362 and 13.507 MeV (Go 54c).

C. ²³Na(
$$\alpha$$
, p)²⁶Mg $Q_{\rm m} = 1.825.7 \pm 2.7$

Conflicting experimental evidence for several low lying ²⁶Mg levels, as found with Al absorption and nuclear emulsion techniques, has been summarized in En 54a.

Fig. 26.1. Energy levels of ²⁶Mg.
		Energy levels of ²⁶ Mg		
$E_{\mathbf{x}}$ (MeV \pm keV)	J¤	$ au_{\mathbf{m}}$ or \varGamma	Decay	Reactions
0	0+		stable	many
(1.33 ± 20)				Q
1.805 ± 10	2+	$(6.0 \pm 1.3) > 10^{-13} \text{ sec}$	2	many
2.941 ± 10	2+		Ŷ	many
3.584 ± 10	0		Ŷ	D, G, J, K, O, P
3.943 ± 10	(3).⊬		2	C, D, E, G, J, K, P
4.319 ± 10			-	D, G, P
4.331 ± 10	2+		Y	C, D, G, J, K
4.350 ± 10			•	D, G
4.830 ± 10				D , G , K , P
4.896 ± 10				D, G, K, P
4.970 ± 10				D, G, P
(5.240 ± 11)				G
5.287 ± 10				D, G, K, P
5.472 ± 10	(≦5)+			D, G, K, P
5.686 ± 10				D, G, P
5.710 ± 10	(≦5)+			D. G. P
6.120 ± 10	$(2, 3)^+$		•	D, G, P
6.253 ± 10	$(2, 3)^+$			D, G, P
6.616 + 10	$(\leq 5)^+$			D. G. P
6.737 + 10	, <u> </u>			D. G. P
6.870 ± 10	(≤4)⁻			D, G, P
6.970 + 10	()			D. G. P
7.055-10.515	; 66 levels, see	tables 26.2a and b and read	tions	D, G, P
11.117	(3+)	$1.6 \pm 0.3 \mathrm{keV}$	n	F
11.174	2+	12 + 3 keV	n	F
11.198	2+	10 + 2 keV	n	F
(11.347)			n	F
13.05			n	А
13.362	3-	2.5+0.5 keV	01	В
13.507	3-	3.2 ± 0.5 keV	a	В

TABLE 26.1

At $E_{\alpha} = 7.8$ MeV, $p-\gamma$ coincidence measurements yield the γ -decay modes of four of the lowest ²⁶Mg levels. The 2.94 MeV level decays to ²⁶Mg^{*} = 0 and 1.81 MeV; intensity ratio 1:6; the 3.94 MeV level decays to the same two states, and the 4.33 MeV level to ²⁶Mg^{*} = 2.94 MeV (Ma 53b; also Al 48a, Br 55b).

The differential cross section for groups to the low lying states has been measured at $E_{\alpha} = 19$ MeV (Pl 60, Pl 61), and $E_{\alpha} = 30.4$ MeV (Hu 59a). For resonances, see ²⁷Al.

D. ²⁴Mg(t, p)²⁶Mg
$$Q_m = 9945.8 \pm 2.7$$

From magnetic analysis at $E_t = 5-6$ MeV, levels in ²⁶Mg have been observed up to $E_x = 9.37$ MeV, see tables 26.2a and b; $Q_0 = 9.930 \pm 0.012$ MeV (Hi 61h).

E.
$$^{25}Mg(n, \nu)^{26}Mg$$
 $Q_m = 11097.4 \pm 2.7$

The thermal neutron capture cross section is 280 ± 90 mb (Hu 58). From the neutron binding energies of ²⁵Mg, ²⁶Mg, and ²⁷Mg it follows that all thermal neutron capture γ rays in natural Mg with $E_{\gamma} > 7.4$ MeV, and those coincident with these high energy γ rays, must be assigned to ²⁶Mg. The observed γ -ray energies, intensities, and the proposed assignments are listed in table 25.6. The decay of the capturing state of ²⁶Mg mostly proceeds by multiple cascade transitions (Ca 57b, Gr 58c, Br 56e, Ma 59c).

F.
$${}^{25}Mg(n, n){}^{25}Mg$$

 $E_{\rm p} = 11097.4 \pm 2.7$

Resonances in the total cross section of samples enriched in ²⁵Mg have been found at $E_n = 20$ keV ($\Gamma_n = 1.6 \pm 0.3$ keV; $J^{\pi} = (3^+)$), 80 keV ($\Gamma_n = 12 \pm 3$ keV; $J^{\pi} = 2^+$), 105 keV ($\Gamma_n = 10 \pm 2$ keV; $J^{\pi} = 2^+$), and probably at 260 keV (Ne 59c).

For non-resonance data, see ²⁵Mg.

G. ${}^{25}Mg(d, p){}^{26}Mg$ $Q_m = 8872.7 \pm 2.7$

The ground-state Q value has been measured as 8.880 ± 0.012 MeV (En 52), 8.876 ± 0.012 MeV (Ma 60e), 8.861 ± 0.012 MeV (Hi 61h).

Proton groups to ²⁶Mg levels with excitation energies up to 8.62 MeV have been observed at $E_d \approx 6$ MeV (Hi 61h). The excitation energies of the ²⁶Mg levels below 5.5 MeV, found from magnetic analysis at $E_d = 1.8$ MeV (En 52), show a systematic difference of about 25 keV with those reported in Hi 61h. The excitation energies reported in Ja 61a are in agreement with the values from Hi 61h for $E_x < 4$ MeV. At higher energies, however, a systematic difference of ≈ 15 keV exists. See also Am 52.

The level energies (Ja 61a, Hi 61h, En 52), the l_n values from angular distribution measurements (Pa 61, Ho 53), and the reduced widths as given in Ma 60d (computed from the data in Ho 53), are listed in tables 26.2a and b. Theory, Sa 58.

Resonances, see ²⁷Al.

H. ${}^{2^{6}}Na(\beta^{-}){}^{2^{6}}Mg$ $Q_{m} = 8500 \pm 300$ See ${}^{2^{6}}Na$.

I. ${}^{26}M_{3}(n, n'){}^{26}Mg^{*}$

Inelastic scattering of 2.56 and 14 MeV neutrons on natural Mg gives a 1.820 ± 0.015 MeV γ ray which must be assigned to ²⁶Mg (De 60, Da 56c). See also Le 31a.

For resonances, see ²⁷Mg.

J.
$${}^{26}Mg(p, p'){}^{26}Mg^*$$

.

Magnetic analysis at $E_p = 8$ MeV gives levels at 1.83 ± 0.02 and 2.96 ± 0.02 MeV (Ha 52).

²⁶Mg

TABLE 26.2a

Levels in ²⁶Mg (MeV \pm keV) from ²⁵Mg(d, p)²⁶Mg, ²⁷Al(t, α)²⁶Mg, and ²⁴Mg(t, p)²⁶Mg; $E_x < 7.3$ MeV

2	⁵ Mg(d, p) ²⁶ M	g	²⁷ Al(t, α) ²⁶ Mg ²⁴	Mg(t, p) ²⁶ Mg	l_{n} (d	l, p)	$(2J+1)\theta_{n^{2}} \times 10^{3}$
En 52	Ja 6lu	Hi 61h	Hi	61h	Ho 53	Pa 61	Ho 53, Ma 60d
$E_{\rm d} = 1.8 { m MeV}$	V	$E_{\rm d} = 5-6~{\rm MeV}$	$E_t = 5$	-6 MeV	$E_{\mathbf{d}} = \mathbf{d}$	8 MeV	·
0	0	0	0	0	(2)	2	40
1.825 ± 15	1.804 ± 12	1.807	1.800	1.803	0+2	Û	19, 210
2.972 ± 10	2.935 ± 12	2.941	2.938	2.944	0		170
		3.5918	3.571a	3.588ª			
3.369 ± 10	3.941 ± 12	3.945	3.944	3.938	0	0	170
		4.321	4.316	4.318)		
4.353 ± 10	4.344 ± 12	4.331		4.332	0		190
		4.353		4.348)		
4.863 ± 11	4.852 ± 12	4.829	4.834	4.828			•
4.924 ± 11	4.906 ± 12	4.896	4.900	4.892			
		4.968	4.976	4.966			
$\boldsymbol{5.270 \pm 11}$							
5.322 ± 11	5.302 ± 12	5.287	5.290	5.285			
5.502 ± 11	5.487 ± 12	5.474	5.471	5.468		2	
		5.687	5.684	5.686			
		5.711	5.709	5.711		2	
6.147 ± 11	$\textbf{6.134} \pm 12$	6.121	6.120	6.118	0	0	(120)
		6.252	6.259	6.249		0	
		6.617	6.617	6.614		2	
		6.738	6.740	6.734		(0)	
		6.866	6.871	6.872		1	
		6.967	6.971	6.972			
		7.053	7.058	7.055			
		7.096	7.092	7.097			
		7.237	7.241	7.238)	
		7.251	7.252	7.249		}1	
		7.273		7.270)	
		all $\pm 15 \text{ keV}$	all ± 15 keV	all ± 15 keV			

^a This level has also been observed from ²⁶Mg(d, d')²⁶Mg and ²⁵Mg(d, p)²⁶Mg at $E_d = 15$ MeV, Bl 61a.

At three resonant proton energies ($E_p \approx 5$ MeV), ground-state γ transitions have been observed from ²⁶Mg* = 1.81, 2.94, (3.94), 4.33, and (4.83) MeV (Mi 59b), and transitions to the 1.81 MeV state from ²⁶Mg* = 2.94, 3.58, 3.94, and 4.33 MeV (Mi 59b, Br 60e). The branching ratio of the decay to the ground state and first excited state is 11:89 for the 2.94 MeV level and >3 for the 4.33 MeV level (Mi 59b). Gamma-gamma angular correlations yield J = 2 and 0 for ²⁶Mg* = 2.94 and 3.58 MeV, respectively. The 2.94 \rightarrow 1.81, $2 \rightarrow 2^+$ transition has a quadrupole/dipole amplitude ratio of $x = +0.12\pm0.02$ (Br 61d). A resonance fluorescence experiment yields $\tau_m = (7\pm3) \times 10^{-13}$ sec for ²⁶Mg* = 1.81 MeV (Ra 61a).

For resonances, see ²⁷Al.

TABLE 26.2b

Levels in ²⁶ M	$g (MeV \pm keV)$ from	²⁵ Mg(d, p) ²	²⁶ Mg, ²⁷ Al(t,	a) ²⁶ Mg, and	1 ²⁴ Mg(t, p) ²⁶ Mg;	$E_{\mathbf{x}} >$	7.3 MeV

²⁵ Mg(.l, p) ²⁶ Mg	27 Al(t, α) 26 Mg	²⁴ Mg(t, p) ²⁶ Mg	<i>l</i> _n (d, p)	$^{27}Al(t, \alpha)^{26}Mg$	²⁴ Mg(t, p) ²⁶ Mg
	Hi 61h		Pa 61	Н	i 6lh
$E_{\rm d} = 5-6 {\rm ~MeV}$	$E_t = i$	5-6 MeV	$E_{\rm d} = 7.8 \; {\rm MeV}$	$E_t =$	5-6 MeV
7 338	7.338	7.341	(1)	8.660	8.658
1.000	7.352	7.364		8.694	8.694
7 383	7.377	7.383		8.849	8.853
7 414	7.40	7.417		8.889	8.891
7 598	7 531	7.535	1	8.917	8.920
7.668	7.670	7.667) -		8.950
1.000		7.680	2	9.031	9.034
7 -14	7 716	7.712	(2)		9.045
7 761	7 762	7.761		9.101	9.102
7 808	7 816	7.807		9.157	9.155
7 842	1.0.0	7.834		9.225	9.224
7 945	7 948	7.940		9.242	9.246
8 020	8 030	8.022		9.294	9.296
8 040	0.000	0.022		9.366	9.370
8 175		8.169	1		
0,110	8 189	(8.186)	{ (1)	$\frac{{}^{27}\mathrm{Al}(t,\alpha)^2}{}$	^o Mg (H1 61h)
	01100	(8.215)	,	9.415	9.814 10.213
8.243	8.233	(8.225)	(0)	9.461	9.841 10.272
8.388	8.384	8.386	~ / /	9.528	9.895 10.316
8.451	8.448	8.446		9.564	9.931 10.358
8.494	8.488	8.491		9.615	9.970 10.40
8.524	8.518	8.521		9.674 1	0.028 10.419
8.565	9.566	8.576		9.707 10	0.090 10.483
8.617	8.611	8.615		9.760 10	0.118 10.515
	all ± 15 keV			all	$\pm 15 \text{ keV}$

K. ${}^{26}Mg(d, d'){}^{26}Mg$

At $E_{\rm d} = 15$ MeV a level at 3.614 ± 0.020 MeV has been observed in addition to the levels from ²⁵Mg(d, p)²⁶Mg reported in En 52. The differential inelastic scattering cross section for levels up to 5.50 MeV has been measured (Bl 61a).

L. ²⁶Mg+heavy ions (¹⁴N, ²⁰Ne)

From Coulomb excitation with 16.8 and 18.0 MeV ¹⁴N ions, and 25.8 MeV ²⁰Ne ions the ²⁶Mg(1) mean life has been measured as $(5.7 \pm 1.4) \times 10^{-13}$ sec (An 61f).

M. ${}^{26}\text{Al}(\beta^+){}^{26}\text{Mg}$ $Q_m = 4014.0 \pm 4.9$ See ${}^{26}\text{Al}$.

N.
$${}^{27}Al(\gamma, p){}^{26}Mg$$

 $Q_{\rm m} = -8272.4 \pm 2.8$

Threshold reported at $E_{\gamma} = 8.6 \pm 0.5$ MeV (Di 50). Cross section, Di 50,

Ha 51b, Ba 57a, Ch 60a. Angular distribution measurements, Da 56d, Mi 57, Ba 58a.

At $E_{\gamma} = 21.2 \pm 0.5$ MeV, the cross section shows a maximum with a half width of 5.4 ± 0.5 MeV (Ha 51b).

Discussion of relative (γ, p) and (γ, n) cross sections, Mo 55.

(.
$${}^{27}\text{Al}(n, d){}^{26}\text{Mg}$$
 $Q_{n} = -6047.7 \pm 2.8$

At $E_n = 14$ MeV, deuteron groups have been observed to the ²⁶Mg ground state and some known excited states (Ma 58g, Co 59b). A 1.80 ± 0.03 MeV γ ray has been observed (De 60).

Angular distributions of the deuteron groups to ${}^{26}Mg^* = 0$, 1.81, and 3.58 MeV yield $l_p = 2$, 2, and 2(+0), and reduced widths $\theta_p{}^2 = 0.011$, 0.024, and 0.045, respectively (Gl 61).

P.
$${}^{27}\text{Al}(t, \alpha){}^{26}\text{Mg}$$
 $Q_{\rm m} = 11540.3 \pm 2.8$

Alpha-particle groups, corresponding to ²⁶Mg levels with excitation energies up to 10.515 MeV have been reported, see table 26.2a and b; $Q_0 = 11.541 \pm 0.012$ MeV (Hi 61h).

Q. $^{29}\text{Si}(n, \alpha)^{26}\text{Mg}$ $Q_{m} = -35.7 \pm 4.0$

From the bombardment of a silicon surface barrier counter with $E_n = 5-8$ MeV neutrons, α -particle groups have been observed to the two known lowest states in ²⁶Mg. A third group leads to a ²⁶Mg level at $E_x = 1.33 \pm 0.02$ MeV, not observed from any other reaction (De 61d).

²⁵ Mg(t, d) ²⁶ Mg	$Q_{\rm m} = 4839.8 \pm 2.7$
²⁵ Mg(α, ³ He) ²⁶ Mg	$Q_{\rm m}=-9479.8\pm2.7$
²⁷ Al(d, ³ He) ²⁶ Mg	$Q_{\rm m} = -\ 2779.2 \pm 2.8$
²⁸ Si(n, ³ He) ²⁶ Mg	$Q_{ m m}=-12135.1\pm3.5$

REMARKS

Angular distribution measurements of protons from the ${}^{25}Mg(d, p){}^{26}Mg$ reaction limit the spin and parity of the 2.94 and 3.94 MeV levels to 2^+ or 3^+ . These levels belong to the same isobaric spin triplets as the 3.16 and 4.18 MeV levels of ${}^{26}Al$, with $J^{\pi} = 2^+$ and 3^+ , respectively. The $J^{\pi} = 2^+$ assignment to ${}^{26}Mg^* = 2.94$ MeV is strengthened by the observation of a ground-state γ transition.

The $J^{\pi} = 2^+$ assignment to ²⁶Mg*(1.81), found from the unique secondforbidden character of the ²⁶Al(β^+) transition to this level (see ²⁶Al, reaction A (a)), is in accordance with the $J^{\pi} = 2^+$ assignment to the analogous level at 2.07 MeV in ²⁶Al.

For a *jj*-coupling computation of the excitation energy of the first ${}^{26}Mg$ level, see Th 56.

26A1

(Fig. 26.2, p. 79; table 26.3, p. 80)

A. (a)
$${}^{26}\text{Al}(\beta^+){}^{26}\text{Mg}$$
 $Q_m = 4.014.0 \pm 4.9$

Measurements of the specific activity of bombarded magnesium samples, with mass-spectroscopic analysis, yield a half-life of $(7.38\pm0.29)\times10^5$ yr (Ri 58b), $(8\pm2)\times10^5$ yr (Fi 58a), in agreement with earlier less accurate estimates of the half-life following from the ${}^{25}Mg(d, n){}^{26}Al$ yield (Si 54), the comparison of the ${}^{26}Al$ and ${}^{22}Na$ yields from deuteron bombardment of Mg, and from the same comparison for proton bombardment (Ri 58b).

The β^+ branching fraction of the ²⁶Al decay is (84.6 ± 1.8) %. The β^+ decay entirely proceeds to ²⁶Mg* = 1.81 MeV (Ri 59). Scintillation-spectrometer determinations of the β^+ end point yield: 1.160 ± 0.008 MeV (Fe 58a), 1.17 ± 0.05 MeV (La 55); $\log ft = 14.17$. The unique second forbicken shape of the β^+ spectrum (La 55, Jo 57, Fi 58a; Fe 58a) determines $J^{\pi} = 2^+$ for ²⁶Mg* = 1.81 MeV ($J^{\pi} = 2^+$ or 3^+ follows from ²⁵Mg(d, p)²⁶Mg angular distribution measurements), and $J^{\pi} = 5^+$ for ²⁶Al(0) ($J \leq 5$ and even parily follow from shell model considerations). The energy of the γ ray de-exciting ²⁶Mg*(1.81) is 1.76 ± 0.10 MeV (La 55), 1.82 MeV (Ha 55b), 1.84 ± 0.01 MeV (Fe 58a), 1.83 ± 0.03 MeV (Ri 59); this γ ray is coincident with positons (Fe 58a).

The electron-capture branching fraction is (15.4 ± 1.8) % of which (11.4 ± 1.9) % to ²⁶Mg*(1.81) and (4.0 ± 0.3) % to ²⁶Mg*(2.94). The EC branch to ²⁶Mg*(1.81) has log ft = 13.33 (Ri 59; see also Ja 61, Fe 58a), and the branch to ²⁶Mg(2.94), log ft = 13.0.

The 2.94 MeV level mainly (91%) decays to ²⁶Mg*(1.81) by a 1.12 ± 0.03 MeV (Ri 59), 1.10 ± 0.05 MeV (Fe 58a) γ ray. The 9% direct ground-state transition has $E_{\gamma} = 2.96\pm0.05$ MeV (Ri 59). An observed 0.7 MeV γ ray (Ha 55b, Jo 57, Fe 58a) is instrumental (Fe 58a).

(b)
$${}^{26}\text{Alm}(\beta^+){}^{26}\text{Mg}$$
 $Q_m = 4243 \pm 6$

Eight half-life determinations, ranging from 6.28 ± 0.04 sec to 6.74 ± 0.03 sec, yield a weighted mean $\tau_1 = 6.47 \pm 0.06$ sec (Ka 51, Ha 54a, Hu 54b, Ar 58, Cl 58, Mi 58, Mu 58, Ja 60a).

The β^+ spectrum is simple and the Fermi plot is straight (Ka 55, El 55). The β^+ end point is 3.20 ± 0.05 MeV (Ka 55), 3.21 ± 0.03 MeV (El 55), 3.2 ± 0.1 MeV (Ha 54a); log ft = 3.3. The ft value of this super-allowed $0^+ \rightarrow 0^+$ transition has been used to determine the vector-interaction constant C_v (En 54c, Ka 55, Va 58d; corrections Ge 58a, Du 60).

An upper limit of 0.01% is given for a potential branch to ${}^{26}Mg^* = 1.81$ MeV (Ma 55).

26AI

26A1

TABLE 26.3Energy levels of 26Al

$\frac{E_{\mathbf{x}}}{(\text{MeV}\pm\text{keV})}$	J [#] ; T	$\tau_{\frac{1}{2}}$	Decay	Reactions
	5+.0	$(7.38 \pm 0.29) \times 10^5 \text{ vr}$	β+, EC	many
0 220 2	0+, U	6.47 ± 0.06 sec	ß+	many
0.229 - 3	0'; 1 9+. 0	$(1.93 \pm 0.05) \times 10^{-9}$ sec	r v	B. C. D. K. L. M. N
0.4180 ± 1.4	a, v 1≁. 0	(1.20 ± 0.00) × 10 000	v	B. C. D. I. L. M N
1.059 ± 2	1,0		7 17	B. C. D. M. N
1.760 - 3	21,0		8 18	B. C. D. M. N
1.852 ± 3	(2,3)		7 72	C. D. G. L. M. N
2.072 ± 3	2.		r N	D
(2.09 ± 30)	2^{7} ; 1 (3) 3) - : 0		2 2	B. C. D. M. N
2.301 ± 3	(2, 3) , 0		2	B. C. D. L. M. N
2.041 = 4			r	B. C. M. N
2.002 ± 4				B.C.M.N
2.740 = 3				BCMN
2.910 ± 0				BCMN
3.014 ± 3	01.1			C D N N
3.109 ± 3	21, 1		Y	C M N
$3.403 \pm$				C M N
3.507 ± 7				C M N
0.094 <u>+</u> i 9.6== 10				C D G M
3.073 ± 10 3.710 ± 10			V	C M
3.719 ± 10				C D M
3.740 ± 10			γ	C M
(3.918 ± 10)	,			C M
3.902 ± 10	94.1			C, M CDM
4.191 ± 10	ə"; 1		γ	C, D, 14.
4.202 = 10		ŧ		C M
4.342 ± 10				C, M
4.424 ± 10	· .		•	C M
4.541 ± 10	• •			C, M
4.541 ± 10	9+ 1			
4.000 ± 10	1, ' سَ		Y	
4.600 ± 10		·		
4.055 ± 10				
$\pm 0.00 \pm 10$,		* • •	C, M
$\frac{4.000}{5.002} \pm 10$				C, M
5.002 ± 10 5.196 ± 10		- · ·		
5.120 ± 10 5.143 ± 10		· · · ·	7 (a)	C D M
5.238 ± 10			(7)	C D M
5.390-6.541	7 levels see tahi	le 26 5 and reactions	, (Y).	С, D, M
6.605 + 5	3-	ie 20.0 and reactions		C, M C, D, M
6676 ± 5	(3)	· · ·	γ	C, D, M
6.720 ± 5	(\mathbf{a})		ν	C, D, M
6.778 ± 5	2()	•	ν	C, D, M
6.783 ± 5			γ	C, D, M
6.797 ± 5			γ	С, D, М
6.812 ± 5			γ	
6.815 ± 5			V	U, D, M D
6.836 - 5			7	U D
6.845 - 5	(4+)		γ.	
6.849 ± 5	(*)		Y	C, D, M
6.869 4 5	(A+)		γ	C, D, M
6 931-× 165 4	1 / /	$ac \frac{\partial k}{\partial t}$ and $b = 1$	γ	C, D, M
	- icveis, see tabl	cs 20.4a and D and reaction	S	D, F

B.
$$^{23}Na(\alpha, n)^{26}Al$$
 $Q_m = -2971 \pm 5$

The angle cut-off of neutrons at the $E_{\alpha} = 3492 \pm 3$ keV resonance yields $Q_0 = -2969 \pm 4$ keV (Wi 60). The threshold for slow neutrons, $Q = -2.9 \pm 0.2$ MeV, and for β^+ emission, Q = -3.2 MeV, indicate that the 0.23 MeV level is a β^+ emitter. Thresholds for slow neutrons, and the energies of neutron groups indicate ²⁶Al levels at 0.3, 1.0, 1.4, 1.8, 2.5, and 2.9 MeV, all ± 0.2 MeV (Do 56).

See ²⁷Al for resonances.

C. ²⁴Mg(³He, p)²⁶Al
$$Q_m = 5914 \pm 5$$

Magnetic analysis at $E({}^{3}\text{He}) = 5.8 \text{ MeV}$ yields the excitation energy of about 70 levels, see table 26.5; $Q_{0} = 5.928 \pm 0.015 \text{ MeV}$. A level at 2.09 MeV (see reaction D) has not been found (Hi 59b).

D. ${}^{25}Mg(p, \gamma){}^{26}Al$ $Q_m = 6301 \pm 5$

Resonances observed in the γ and/or β^+ yield and the resonance strengths as found from the thick target γ -ray yields are listed in tables 26.4a and 26.4b (enriched targets: Pr 61, Ba 59b, Ku 59a, Wa 59a, Bi 58a, Va 58d, Gr 56e, Hu 55, Kl 54; also Ny 60, Ka 55, Ta 54b; natural Mg targets: An 59b; also Sm 57, Ta 46, Cu 39). The branching of the γ decay to the ²⁶Al ground state and first excited state varies from resonance to resonance with corresponding large variation of the β^+/γ ratio; no β^+ emission has been observed at the 436 and 956 keV resonances. The excitation energies of the corresponding ²⁶Al levels (tables 26.4) have been calculated using the weighted mean values of the resonance energies. The resonances of which the γ decay has been analyzed are indicated (with references) in the last column of the tables 26.4. Prominent modes of decay of both resonance levels and lower lying states of ²⁶Al are given in fig. 26.2. Strong direct transitions to the ²⁶Al ground state have been observed at the 436, 1026, 1046, 1086, 1150, 1163, 1374, 1589, 1652, and 1724 keV resonances (Kl 54, Bi 58a, Mu 60, Pr 61). The first level at 0.23 MeV is fed directly at the 929 keV resonance only (Gr 56e).

The existence of several levels proposed to explain the decay spectra of 26 Al resonance levels (Kl 54, Gr 56e, Br 56i, Bi 58a, Mu 60), has been confirmed in the experiments listed in table 26.5 (Br 59a, Hi 59b, Ta 60b). The proposed doublet character of the 2.07 MeV level (Gr 56e), however, has not been confirmed. It has been shown that this doublet character is not strictly necessary to explain the observed γ -ray spectra. An alternate solution could be: direct transitions to 26 Al^{*} = 5.196 \pm 0.025, 5.27 \pm 0.03, and 5.606 \pm 0.025 MeV at the 811 and 956 keV resonances (Ba 60b). In the excitation range of the proposed levels at 2.32 MeV (decaying to the ground state, Gr 56e) and 2.39 MeV (not decaying to the ground state, Bi 58a), only one level has been found: 26 Al^{*} = 2.367 MeV (see table 26.5).

		$E_{\mathbf{p}}$ (keV)		4 P	26A1*	Γ	(2J+1)	$\Gamma_{\mathfrak{y}}\Gamma_{\gamma}/\Gamma(\mathrm{eV}); J^{\pi}$	References
Hu 55	Wa 59a	Ku 59a	An 59b	Average	(MeV)	(keV)	Va 58d	Mu 60	<i>p</i> -decay
316.7 1 7	310.1 1 0.5	316.4 -1.6	312	316.3 0.4	6.605 ^h	< 2.0	0.3; (3-)	$0.36 \pm 0.07; 3^{-}$	a, f ,
391.5 ± 0.5	389.3 ± 0.7	389.3 ± 1.7	390.2 ± 0.6	390.5 ± 0.5	6.676 ^h	< 1.0	0.7; (3-)	$0.64 \pm 0.13; (2, 3)^+$	8°.
136.5 ± 0.4	434.6 ± 0.8	435.2 ± 1.3		436.0 ± 0.5	6.720h		1.5; 4(+)	0.69 ± 0.14 ; (4)	8, 11, 1
495.6±1.6	496.5 ± 0.8	495.6 ± 1.4	$\textbf{495.2} \pm \textbf{1.0}$	495.8 ± 0.4	6.778 ^(h)	1 V	1.2		5° -
		501.4 ± 1.4	501.1 ± 1.0	501.2 ± 0.8	6.782 ^(h)	er V			
513.4 ± 0.7	514.8 ± 0.8	513.4 ± 1.5	513.3 ± 1.0	513.8 ±0.4	6.797	eı V	1.2		
530.4 ± 0.7		532.4 ± 0.6	532.0 ± 1.0	531.6 ± 0.6	6.812 ^h	וה \			
			535.0 ± 1.0	535.0 ± 1.0	6.315	61 V			
			556.0 ± 2.0	556.0 ± 2.0	6.836	ო V			
	567.2 ± 0.7	564.6 ± 1.5	565.4 ± 0.5	565.9 ± 0.7	6.845 ^(h)	< 0.5	2.7; (4+)		5° C
			570.0 ± 1.5	570.0 ± 1.5	6.849 ^(h)	ი V			-
	591.9 ± 0.7	592.3 ± 1.6	590.7 ± 0.5	591.2 ± 0.4	6.869 h	< 0.5	1.9; (4+)		a, u
		655.5 ± 0.9	654.0 ± 1.5	655.1 ± 0.8	6.931	5 7	0.6	Gr 56e	
	685.2 ± 1.0	684.7 ± 0.9	682.6 ± 0.5	683.4 ± 0.8	6.958	7 7	3.4	3.5; 3-	p, c
		722.9 ± 1.8	723.2 ± 0.5	723.2 ± 0.5	6.996	с 1 V		2.8; 3-	о , с
		774.7 ± 1.8	777.7 ± 0.5	777.5 ± 0.7	7.049	69 V		$1 \ 9; (2, 3)^{-}$	Ω,
		811.2 ± 1.3	811.0 ± 0.8	811.0 ± 0.7	7.081	ر دن		$1.2; \pi = -$	D, 8
			870 ±3		7.138				
			882.4 ± 0.7		7.149				
			890 ± 1.5		7.157				
l ³ r 61	Ba 59b	Ny 60	(902 ±4)		(2.168)				
	929 ± 3		928.6 ± 0.6		7.194			1.5; 1-	
956	957 ± 3	966	955 ±4	956 ± 2	7.220			3.8; (2, 3)-	D, C, C, Z, I
		970	969 ± 2		7.233				

TABLE 26.4a

^a Kl 54, En 54c; single spectra, relative intensities.

^b Gr 56e; single spectra, coincidence spectra, relative intensities, angular distributions.

^c Ka 55; single and coincidence spectra. ^d Br 56i; single spectra.

• Ny 60; single spectra. ¹ Mu 60; single and coincidence spectra, angular distributions.

Ba 60b; single, coincidence, and sum-coincidence spectar, intensities. ^h These levels have probably also been seen from the ²⁴Mg(³He, p)²⁶Al and ²²Al(³He, α)²⁶Al reactions, see table 26.5. ⁱ Pr 61.

26AI 82

P. M. ENDT AND C. VAN DER LEUN

T	`A	BLE	26	4h
		DLL	4 0	TY U

Resonances in $^{25}\mathrm{Mg} + \mathrm{p}~(E_\mathrm{p} > 980~\mathrm{keV})$

	$E_{\rm p}$ (keV)	an a	²⁶ A1*	Relativ	re Γ^{c}	170	D	References
An 59b	Ba 59b	Pr 61	(MeV)	intensit	y ^g (keV)	Jne	Decaya	γ -clecay
(985 ±1)	986 ±3	987	7.248	18	3.8	2-	2 Po	b, d, e, f
1026 ± 1	1029 ^h	1028	7.287				2	d, f
1042.6 ± 0.6	1045 ± 3	1046	7.304	22			Ŷ	b, d, f
1070 ±3			7.330				2	
1084 ± 2	1085 ± 3	1086	7.343	18	(2.4, 1.7)	(2, 3)-	γ Po	b, d, f
1104.7 ± 1.3	1100 ± 3	1105	7.362				2	d, f
11 36.1± 1.0	1137h	1138	7.393				2	J, f
1148 ± 3	1148 ± 3	1150	7.405	23	1.9	1-	2 Po	d, f
1163 ±2	1166 ^h	1166	7.419				2	d, f
(1184 ±3)	1185 ^h		7.439				$(\gamma)\mathbf{p_1}$	đ
1195.2 ± 0.7	1196 ± 3	1197	7.450	17			?' P1	d, f
	1208h	1207	7.462				2	d, f
1236.9 ± 0.8	1241 ± 3	1240	7.491	25			2 Po	đ, f
1283.4 ± 0.6	1288 ± 3	1285	7.537	20			2	d, f
1303.9 ± 0.5	1310 ± 3		7.555	35			2	đ
(1352 ±3)			(7.601)				2	
1373.5 ± 2.5	1377 ± 3	1377	7.622	48			7 Pi	d, f
	1432 ± 5		7.678	9			2	
	1531 ± 4	1527	7.771	10			7 P1	đ, f
	1573 ± 4		7.814	42			7	
	1592 ± 5	1589	7.831	24			7 Pi = 2	d, f
	1638 ± 4	1634	7.874	33			7 P1 P2	đ, f
	1652 ± 4	1652	7.889	ì			7 Pi	d, f
		1701	7.936				2	f
	1713 ± 4	1717	7.946	100			7 P1 P2	d, f
	1724 ± 4		7.959	100			7 P1	đ
	1748 ± 5		7.982	40			γpı	đ
	1768 ± 4		8.001	90			7 P1 P2	d
	1832 ± 5		8.063	130			7 P1 P2	đ
	1898 ± 5		8.126	600			$\gamma p_1 p_2$	d
	1938 ± 5		8.165	1200			$\mathbf{p_1}$	d

* Resonances in the yield of capture γ rays or β^+ activity are indicated by γ ; resonances for elastic scattering by p_0 , and resonances in the yield of the 0.58 and 0.98 MeV γ rays by p_1 and p_2 , respectively.

^b Ka 55.

^c Pr 60.

^d Bi 58a.

e Ny 60.

f Pr 61.

^g Ba 59b.

^b Bi 58a; these resonances have not been reported in Ba 59t.

Some γ -ray energies, measured with an accuracy comparable to that of the level differences from other reactions have been used in calculating the excitation energies given in table 26.3: $E_{\gamma} = 418 \pm 2$ keV and 827 ± 6 keV for the transitions (2) \rightarrow (0) and (3) \rightarrow (1), respectively (weighted mean of En 54c, Ka 55, Mu 60).

Most of the spins of ²⁶Al excited states, as given in fig. 26.2 and table 26.3, have been found from γ -ray angular distribution measurements (Gr 56e, Mu 60). Spin and parity assignments to ²⁶Al* = 1.06 and 2.37 MeV, probably $J^{\pi} = 1^+$ and (2,3)-, respectively, from intensity considerations. Isobaric-spin assignments from comparison with the ²⁶Mg level scheme. The odd parity resonances predominantly decay either to T = 0 or to T = 1 levels, in accordance with the EJ isobaric spin selection rule for self-conjugate nuclei, $\Delta T = \pm 1$ (Gr 56e). From delayed $\gamma - \gamma$ coincidence measurements the half-life of ²⁶Al* = 0.42 MeV has been determined as $\tau_{\frac{1}{2}} = (1.23 \pm 0.05) \times 10^{-9}$ sec (Go 60f).

E. ${}^{25}Mg(p, n){}^{25}Al$ $Q_m = -5044 \pm 6$ $E_b = 6301 \pm 5$ Resonances have been observed at $E_p = 5.47$, 5.80, 6.02, 6.31, and 6.49 MeV. They might, however, also be assigned to ${}^{26}Mg(p, n){}^{26}Al^m$ (Bl 51).

See ²⁵Al for threshold measurements.

F. ${}^{25}Mg(p, p){}^{25}Mg$

 $E_{\rm h} = 0.301 \pm 5$

The differential cross section for elastic scattering, measured at three resonances, yields the J^{π} values and widths given in table 26.4b (Pr 60). Inelastic proton scattering to ${}^{25}Mg^* = 0.58$ and 0.98 MeV, observed by

 γ -ray detection, shows 15 resonances in the range $E_p = 1.184-2.0$ MeV; see table 2t 4t (Bi 58a). At the 1185 keV resonance, the decay proceeds by at least 99%, through the ²⁵Mg(p, p')²⁵Mg reaction to ²⁵Mg*(0.58), but positons have also been observed (Ka 55).

In the range $E_p = 1.5$ -3.0 MeV, the inelastic scattering cross section shows more than 20 resonances (not tabulated). For $E_p > 2.3$ MeV, several resonances for inelastic scattering to ${}^{25}Mg^* = 1.61$ and 1.96 MeV have been found (Go 56).

For non-resonance data, see ²⁵Mg.

- G. ${}^{25}Mg(d, n){}^{26}Al$ $Q_m = 4076 \pm 5$ Observed, Sw 50. For resonances, see ${}^{27}Al$.
- H. $^{26}Mg(p, n)^{26}Al$ $Q_m = -4796.7 \pm 4.9$ $^{26}Mg(p, n)^{26}Al^m$ $Q_m = -5026 \pm 6$

A slow-neutron threshold has been observed at $E_p = 5.200 \pm 0.010$ MeV (also: 5.25 ± 0.01 MeV, Sc 54b), corresponding to $Q = -5.006 \pm 0.010$ MeV. The threshold corresponding to the ²⁶Al ground state has not been found (Ki 55a). Resonances, see ²⁷Al.

I. $2^{6}\text{Si}(\beta^{+})^{26}\text{Al}$ $Q_{m} = 5050 \pm 80$ See 2^{6}Si .

J.
$$^{27}Al(\gamma, n)^{26}Al$$
 $Q_{\rm m} = -13069 \pm 5$

The threshold for neutron emission has been measured as 12.98 ± 0.08 MeV

26<u>4</u>1

×4

(Ch 58), 12.75 ± 0.20 MeV (Sh 51a). The threshold for production of 26 Al^m activity as 13.26 ± 0.07 MeV (Ge 60a; see also Mc 49, Ha 54a).

Excitation curves have been measured up to $E_{\gamma} = 85$ MeV (Ba 61a, Pr 61a, Ch 60a, Fe 58, Mi 59, Ha 54a, En 54a; also Mo 55, theory). Neutron groups have been observed at $E_{\gamma} = 24$ and 30 MeV (Co 59d). Neutron angular distribution, Ku 59b.

K.
$${}^{27}Al(p, d){}^{26}Al \qquad \qquad Q_m = -10844 \pm 5$$

At $E_p = 18$ MeV, the angular distribution of deuterons proceeding to one or more of the three lowest ²⁶Al states, corresponds to $l_{\rm m} = 2$ (Re 56, also Se 56). Deuteron energy spectra at various angles at $E_p = 23$ MeV, Co 59.

L.
$$^{27}Al(d, t)^{26}Al$$
 $Q_m = -6811 \pm 5$

At $E_{\rm d} = 20$ MeV, the angular distributions of partly resolved triton groups yield the $l_{\rm p}$ values listed in table 26.5 (VI 59; see also Go 60e).

M.
$${}^{27}\text{Al}({}^{3}\text{He}, \alpha){}^{26}\text{Al}$$
 $Q_{\rm m} = 7508 \pm 5$

Magnetic analysis at $E({}^{3}\text{He}) = 5.8$ MeV yields seventy ${}^{26}\text{Al}$ levels, listed in table 26.5; $Q_0 = 7.523 \pm 0.015$ MeV. The 2.09 MeV level (Ka 55, Gr 56e) has not been found; if the members of the 2.07-2.09 MeV doublet are equally excited the spacing would have to be less than 4 keV (Hi 59b).

At $E({}^{\circ}\text{He}) = 5.2$ MeV, angular distribution measurements yield l_n values for the ground state and nine lowest excited states (see table 26.5); $Q_0 = 7.519 \pm 0.015$ MeV (Ta 60b).

N.
$${}^{28}Si(d, \alpha){}^{26}Al \qquad \qquad Q_m = 1420.7 \pm 4.2$$

Measurements at several deuteron energies in the range $E_d = 5.5-7.5$ MeV, yield the excitation energies of 16 levels, see table 26.5; $Q_0 = 1.428 \pm 0.004$ MeV (see also Ma 60e, $Q_0 = 1.410 \pm 0.012$ MeV). The angular distributions of the groups leading to ²⁶Al(0), (1), and (2) were obtained at $E_d = 7.03$ MeV. At this energy the total yield of the isobaric-spin forbidden reaction leading to ²⁶Al(1) is 10% of the yield to ²⁶Al(0). The second T = 1 level could not be observed; the group to the 2.07 MeV level is strong (Br 59a).

For resonances, see ³⁰P.

O. Not reported:

$^{24}Mg(\alpha, d)^{26}Al$	$Q_{\rm m} = -12438.9 \pm 5.0$
²⁵ Mg(³ He, d) ²⁶ Al	$Q_{\rm m} = 808 \pm 5$
$^{25}Mg(\alpha, t)^{26}Al$	$Q_{\rm m} = -13512 \pm 5$
²⁶ Mg(³ He, t) ²⁶ Al	$Q_{\rm m} = -4032.2 \pm 4.9$
$^{28}Si(n, t)^{26}Al$	$Q_{\rm m} = -16167.3 \pm 4.3$
²⁸ Si(p, ³ He) ²⁶ Al	$Q_{\rm m} = -16931.8 \pm 4.2$
²⁹ Si(p, α) ²⁶ Al	$Q_{\rm m} = - 4832 \pm 5$

86

P. M. ENDT AND C. VAN DER LEUN

TABLE 26.5

T	MUMALE DISAL	#Al(d, t)	**Al. **Al(*He,	a) ²⁶ Ak, and	$^{\mathfrak{ss}}\mathrm{Si}(\mathrm{d},\alpha)^{\mathfrak{ss}}\mathrm{Al}$
TGAGER III - JA RECOMM	and a sea to a sea				

5 Jul - 1036 3		l	1	$E_{\rm x}$ (MeV \pm keV)		
Er Sub b	Hi 395a	Ta 606¢	Ta 60bc	VI 59ª	Hi 59ba	Hi 59ba
			•)	1	4.342	5.842
()	E9	U"	-	2	4.424	5.875
6.556 ± 3	() and ()	0.234	- 10	e de la	4.477	5.910
0.418 ± 2	0.416		v 	۲ ۵	4.541	5.942
1.000 = 2	1.052	ē (8, 5, 8	2		4.595	6.020
1.762 = 3	1.7.55	8.7.88	<u> </u>		4 613	6.080
1.533 = 3	1.546	1.544	U	(A)	1 600	6.112
2073 = 3	2067	2 (164	-	(=)	4.000 A 766	6.188
2.368 = 3	2.362	all = W			4 025	6 236
2.348 = 4	~ ~~~			(1)	2.200	6 260
2.663 = 4	2633				0.002 = 102	6 2 2 5
2741- 3	- 6 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5				0.140	6 951
2916 - 6	2.910				ə.193 5 ədə	0.001 6 999
3073 - 6	202				5.238	0.386
3.100 - 1	3.155				5.390	0.424
3.407 - 6	3. 39%				5.424	6.487
3310-10	3. 沙山				5.450	0.544
3.396-10					5.485	6.593e
	5.15.5				5.506	6.670 ^e
	2.119				5.536	6.715e
	3.744				5.558	8.776e
	1915				5.580	6.805 e
	3.962				5.665	6.842 °
	2 141				5.690	6.865 e
	an and the second				5.715	all <u>+</u> 10
					all - 10	

 15 ²⁴M; ³He, p; ²⁵Al and ²⁷Al ³He, z) ²⁶Al; $E(^{3}He) = 5.8$ MeV.

o 55: d. 2. 5 AL. E. = 3.5-7.5 MeV.

 $c = 1.1^{13}$ He. $z_1 = 3.2$ MeV.

a = 21 d, c) = 21 MeV.

* These levels probably have also been seen as resonances in the ${}^{25}Mg(p, \gamma){}^{26}Al$ reaction; see , table 26.4a.

26Si

(Fig. 26.3, p. 87)

Y 3812-387

$$Q_{\pi} = 5050 \pm 80$$

The half-life is 2.1 ± 0.3 sec (Ro 60a). A 1.7 sec half-life has been observed from bombardment of Al with 23 MeV protons; this might be attributed to ²⁰S: produced through the ²⁷Al(p, 2p) reaction (Ty 54).

A 824 ± 15 keV y ray indicates a β^{\pm} transition to ${}^{26}\text{Al}(1.06)$. A more intense β^{\pm} branch proceeds to ${}^{26}\text{Al}(0.23)$: the end point of this transition is larger than 3.5 MeV (Ro #0a).

Observation of the transition to 26 Al(1.06) $(\log/t > 3.2)$, in competition with

the super-allowed β^+ transition to ²⁶Al(0.23) (log ft < 3.7) yields $J^{\pi} = (0,1)^+$ for the 1.06 MeV level. De-excitation of this level to the $J^{\pi} = 0^+$, 0.23 MeV level then uniquely determines $J^{\pi} = 1^+$ for ²⁶Al^{*} = 1.06 MeV.

B. ²⁴Mg(³He, n)²⁶Si
$$Q_m = 80 \pm 80$$

At $E({}^{3}\text{He}) = 5.52 \text{ MeV}$, three neutron groups have been observed, corresponding to $Q_{0} = 0.08 \pm 0.08 \text{ MeV}$, and to ${}^{26}\text{Si}^{*} = 1.78 \pm 0.06$ and 2.79 ± 0.08 MeV. The angular distribution is peaked in the forward direction for the neutron groups to ${}^{26}\text{Si}^{*} = 0$ and 1.78 MeV, and is isotropic for the group to ${}^{26}\text{Si}^{*} = 2.79 \text{ MeV}$ (Aj 60).

Fig. 26.3. Energy levels of ²⁶Si.

C. Not reported: ²⁸Si(p, t)²⁶Si

 $Q_{\rm m} = -22000 \pm 80$

REMARKS

The close correspondence of the excitation energies of ${}^{26}\text{Si}^* = 1.78 \text{ and } 2.79$ MeV with those of the lowest two levels of the mirror nucleus ${}^{26}\text{Mg}$ (1.81 and 2.94 MeV) suggests a $J^{\pi} = 2^+$ assignment to both levels (Aj 60).

88

27Mg (Fig. 27.1, p. 88; table 27.1, p. 89) $Q_{\rm m} = 2617.9 \pm 4.0$

A.
$${}^{27}Mg(\beta-){}^{27}Al$$

The weighted mean half-life is 9.46 ± 0.02 min (Ek 43, Sa 53, Da 53, Lo 53 Po 59).

Fig. 27.1. Energy levels of ²⁷Mg.

27Mg

A 58% (see, however, below) branch, end point 1.754 ± 0.011 MeV, proceeds to ²⁷Al(0.842); the energy of the coincident γ ray has been measured as 834 ± 8 keV; log ft = 4.75. A 42% branch, end point 1.592 ± 0.022 MeV, to ²⁷Al(1.013), is coincident with a 1015 ± 7 keV γ ray; log ft = 4.87 (Da 54a; see also Ma 54a).

The branching ratio reported above, is inconsistent with two independent measurements of the relative intensities of the 842 and 1015 keV γ rays, 70:30 (Ly 56, Mo 61). A 175±15 keV γ ray has been observed (relative intensity

$E_{\mathbf{x}}$ (MeV \pm keV)	J ^π	$ au_{rac{1}{2}}$ or $arGamma$	Decay	Reactions
$\begin{array}{c} 0\\ 0.984\pm 5\\ 1.692\pm 10\\ 1.936\pm 10\\ 3.109\pm 10\\ 3.423\pm 10\\ 3.423\pm 10\\ 3.470\pm 10\\ 3.484\pm 10\\ 3.555\pm 10\\ 3.757\pm 10\\ 3.757\pm 10\\ 3.782\pm 10\\ 3.880\pm 10\\ 4.146\pm 10\\ 4.394\pm 10\\ 4.549\pm 10\\ 4.549\pm 10\\ 4.549\pm 10\\ 4.816\pm 10\\ 4.982\pm 10\\ 5.017\pm 10\\ 5.169-6.643; \end{array}$	$\frac{\frac{1}{2}^{+}}{(\frac{3}{2}, \frac{5}{2})^{+}}$ $(\frac{3}{2}, \frac{5}{2})^{+}$ $(\frac{1}{2}, \frac{3}{2})^{-}$ $(\frac{3}{2}, \frac{5}{2})^{+}$ $(\frac{1}{2}, \frac{3}{2})^{-}$ $(\frac{1}{2}, \frac{3}{2})^{-}$ $(\frac{1}{2}, \frac{3}{2})^{-}$ 17 levels, see ta	9.46 ± 0.02 min	β-	A, B, C, E, F, G, H B, C, E, F B, E B, E B, E B, E B, E B, E B, E B, E
6.712 ± 10 6.807 - 7.031;	$\frac{1}{2}^{-}$ 6 levels, see ta	> 75 keV ble 27.2 and reaction	.1	B, D B

TABLE 27.1

Energy levels of ²⁷Mg

0.66%), indicating a 2.2% decay of the 1.013 MeV level to the 0.842 MeV level in ²⁷Al (Ly 56; see also ²⁷Al). These γ ray measurements imply a $(69\pm2)\%\beta^{-1}$ branch to ²⁷Al(1) and a $(31\pm2)\%$ branch to ²⁷Al(2).

A reported ρ^{-} branch to the ²⁷Al ground state (Da 53) has later been shown to be absent (Da 54a, Ma 54a, Ko 54a).

Calculation of the matrix elements of the observed β - transitions, Fe 55.

B.
$${}^{25}Mg(t, p){}^{27}Mg$$
 $Q_m = 9052.1 \pm 4.0$

By magnetic analysis at $E_t = 5$ -6 MeV, levels in ²⁷Mg have been observed up to $E_x = 7.03$ MeV, see table 27.2; $Q_0 = 9.045 \pm 0.012$ MeV (Hi 61h).

C.
$${}^{26}Mg(n, \gamma){}^{27}Mg$$
 $Q_m = 6437.1 \pm 3.1$

The thermal neutron capture cross section is 27 ± 5 mb (Hu 58). For the cross section at higher E_n , see Hu 58.

Gamma rays from thermal neutron capture in natural Mg are listed in table 25.4. The ²⁷Mg capturing state decays to ${}^{27}Mg^* = 0$ and 0.98 MeV (Ca 57b, Gr 58c).

At $E_n = 14.5$ MeV, the 0.85 ± 0.01 and 1.01 ± 0.02 MeV γ rays of ²⁷Al have

²⁶ Mg(d, p) ²⁷ Mg	²⁵ Mg(t, p) ²⁷ Mg		$l_{\rm p}({\rm d},{\rm p})$		(07 1 1)A	8 ~ 1038	$\frac{^{25}Mg(t, p)}{W}$	27Mg
Hi 61h		II. 59 Li 58 Pa 61		$\frac{(z_j + 1)}{z_j}$		Hi 6l	h	
$E_{\rm d} = 5-6$ (MeV)	$E_t = 5-6$ (MeV)	$E_{\rm d} = 8$	8.9	'7.8 MeV	Hi 58	Pa 61	$E_t = 0$ (MeV	7)
(,	0	0	0	0	45	47	(5.169)	6 8-46
0.982 b	0.981	2	2	2	48	43	5.292	6.912
1.694	1.690			2		26	5.365	6.978
1.939	1.934						5.405	7.007
3.106	3.112						5.618	7.031
3.420	3.426						5.742	
3.470	3.471		1.	_			5.762	
3.485	3.483		0	0	40	44	5.817	
3.556	3.554		´1	1	140	65	5.922	
3.756	3.758)				6.005	
3.782	3.782		2	2(+0)	90	55	6.074 ^c	
3.879	3.880		,				6.122	
4.147	4.145			(2)		6	6.152	
4.391	4.398			N° 7		-	6.306	
4.548	4.550						6.327	
4.759	4.767						6.499	
4.817	4.816		(1)	1		21	6.643	
4.982	4.982		x-7	-			6 712	
5.017	5.016			1		13	6 807	
all ±	10 keV			-		1.0	all ± 1	$5~{ m keV}$

TABLE 27.2 Levels in ²⁷Mg from the ²⁶Mg(d, p)²⁷Mg and ²⁵Mg(t, p)²⁷Mg reactions

^a The Hi 58 angular distribution measurements have been analyzed in Ma 60d. The relative reduced widths given in Pa 61 have been normalized by making the average value of the widths at the 0, 0.98, and 3.47+3.48 MeV states equal to that in Hi 58, Ma 60d.

^b Also 0.987 ± 0.006 MeV (En 52), 0.978 ± 0.012 MeV (Ja 61a).

^c With $i_n = 2$, $\theta_n^2 = 0.026$ (Pa 61).

been observed from bombardment of natural Mg, indicating capture in ^{26}Mg (De 60).

D.
$${}^{26}Mg(n, n){}^{26}Mg$$

 $E_{\rm b} = 6437.1 \pm 3.1$

A resonance has been found at $E_n \approx 300$ keV; $\Gamma > 75$ keV; $J^{\pi} = \frac{1}{2}$ (Ne 59c). For non-resonance data, see ²⁶Mg.

E. $^{26}Mg(d, p)^{27}Mg$ $Q_m = 4212.3 \pm 3.1$

The ground state Q value has been measured as $Q_0 = 4.207 \pm 0.006$ MeV (En 52), 4.215 ± 0.010 MeV (Ma 60e), 4.213 ± 0.012 MeV (Hi 61h).

Magnetic analysis at $E_d = 5-6$ MeV, yields 19 proton groups; see table 27.2 (Hi 61h). See also Am 52.

Angular distribution analysis yields the l_n values and reduced widths listed in table 27.2 (Pa 61, Hi 58; also Ho 53). For a theoretical discussion of the reduced widths given in Hi 58 and Ho 53, see Ma 60d.

Discussion of the ratio of stripping to compound nucleus formation, Ne 56.

F.
$${}^{27}\text{Al}(n, p){}^{27}\text{Mg}$$
 $Q_{\rm m} = -1835.3 \pm 4.0$

At neutron energies of about 14 MeV, proton groups have been observed to ${}^{27}Mg^* = 0$ and 1.66 MeV (Ja 60); to 0, 1.0, 1.6, 2.1, 2.8, and 3.5 MeV (Ov 59), and to 0, 1.0, 1.6, 3.5, 5.7, and 7.0 MeV (Ha 57a). The angular distributions of these groups have been measured (Ha 57a, Ov 59). See also Gl 61, Ha 61, Na 61, St 60a, Ma 58g, Co 59c, Co 58e, Co 57d, Br 57e, Al 57a.

For cross section and resonances, see ²⁸Al.

- G. 27 Al(t, 3 He) 27 Mg $Q_{\rm m} = -2599.8 \pm 4.0$ Observed at $E_{\rm t} = 6.5$ MeV (Po 52b).
- H. ${}^{30}\text{Si}(n, \alpha){}^{27}\text{Mg}$ $Q_{\rm m} = -4213 \pm 5$

Cross section at $E_n = 14.5$ MeV, Pa 53.

I. Not reported:

²⁶ Mg(t, d) ²⁷ Mg	$Q_{\rm m} = 179.4 \pm 3.1$
²⁶ Mg(a, ³ He) ²⁷ Mg	$Q_{\rm m} = -14140.1 \pm 3.1$
²9Si(n, ³He) ²7M♂	$Q_{\rm m} = -14175.8\pm4.9$

REMARKS

For a theoretical discussion of the ²⁷Mg level scheme in terms of the Nilsson model, Bi 60.

27A1

A. ²³Na(α , n)²⁶Al $Q_{\rm m} = -2971 \pm 5$ $E_{\rm b} = 10098.0 \pm 2.3$ Resonances have been observed at $E_{\alpha} = 3492 \pm 3$ keV ($\Gamma < 1$ keV), 3536, 3583, 3607, 3655, 3787, and 3832 keV, all ± 5 keV, corresponding to ²⁷Al levels at 13.073, 13.110, 13.150, 13.171, 12.212, 13.224, and 13.362 MeV (Wi 60). See also An 60c.

For Q value and ²⁶Al levels, see ²⁶Al.

B. ²³Na(α , p)²⁶Mg $Q_{\rm m} = 1825.7 \pm 2.7$ $E_{\rm b} = 10098.0 \pm 2.3$ Partially resolved resonances in the 1.81 MeV γ -ray yield, observed in the

P. M. ENDT AND C. VAN DER LEUN

TABLE 27.3

Energy levels of ²⁷Al

$E_{\mathbf{x}}$ (MeV \pm keV)	J¤	$ au_{ m m}$	Decay	Reactions
0			stable	many
0.8424 - 1.4	į÷	$(3.2\pm1.0) imes10^{-11}$ sec	Y	many
1.013 + 2	3+	$(2.0\pm0.8)\times10^{-12}$ sec	2	many
2.212 + 3	(2+)	$(4.5\pm0.7)\times10^{-15}(2/+1)$ sec	2	many
2.731 + 3	3 <u>+</u>		Ŷ	many
2.976 ± 3			2	E, L, M, O, S
3.000 ± 3	2		2'	E, L, M, O
3.674 ± 5	ł		2	E, G, L, S
3.951 ± 5	-		2	E, L , S
4.052 ± 5	12		y	E, L, S
4.403 ± 6	-		-	G, L
4.504 ± 5				L, S
4.576 ± 6				L
$4.805~\pm~6$				L, O
5.149 ± 5				L, S
5.240 ± 5				G, L, S
5.410 ± 6				G, L
5.424 ± 5				L, S
5.491 ± 6				L
5.543 ± 5				L, S
5.659 ± 6				L
5.745 ± 2				S
$5.821~\pm~5$				G, L, S
5.951 ± 5				I., S
6.074 ± 12				S
6.154 ± 12				S
6.264 ± 12				S
6.527 ± 12				S
6.596 ± 12				S
6.764 ± 12				S
6.812 ± 12				G, S
0.989 ± 12	/ • · · · · · · · · · · · · · · · · · ·			S
0.2 9 554 10 100. 4	(き,学) ^一 29 lancela au	4-11 00 4		G
0.004-10.102, .	20 levels, see	e table 27.4, reaction		E (and G)
11.1			р	F
11.10			Р	B
12.07			р	B, F
12.23			р	B
12.27			р	B
12.34			Р	В
12 46			p	B
1.2.68			р	B, F
12.71			P	a a
12.78			p	В D
12.84			P	ы С
12.87			P	D D
12.99			P	ם ת מ
13.073 ± 6			Р n, p	ь, г А, В

$E_{\rm x}$ (MeV \pm keV)	ſ¤	$ au_{ m m}$	Decay	Reactions
13.110 ± 6			n	A
13.15) ± 6			n, p	A, B
13.171 ± 6			n	A
13.212 ± 6			n	А
13.324 ± 6			n	А
13.362 ± 6	'		n	Α
13.5			р	F
(18.07)			n	D

TABLE 27.3 (Continued)

 $E_{\alpha} = 1.8-3.7$ MeV range, correspond to ²⁷Al* = 11.75, 11.91, 12.07, 12.23, 12.27, 12.34, 12.46, 12.68, 12.71, 12.78, 12.84, 12.87, 12.99, 13.07, and 13.14 MeV (Te 54).

For non-resonance information, see ²⁶Mg.

C.
$${}^{44}Mg(\alpha, p){}^{27}Al \qquad O_{m} = -1594.5 + 1.1$$

At $E_{\alpha} = 8.4$ MeV, proton groups have been observed to ${}^{27}\text{Al}^* = 0, 0.85 \pm 0.04$, 1.06±0.04, 2.17±0.04, and 2.64±0.10 MeV (Gr 57; see also Br 55b). For resonances, see ${}^{28}\text{Si}$.

D. ${}^{25}Mg(d, n){}^{26}Al$ ${}^{25}Mg(d, p){}^{26}Mg$ A resonance at $E_d = 0.965 \pm 0.015$ MeV has been observed from natural Mg target bombardments. Assignment to ${}^{25}Mg$ yields ${}^{27}Al^* = 18.07$ MeV (Al 48a). Assignment to ${}^{24}Mg$, however, seems more probable.

For non-resonance data, see ²⁶Al and ²⁶Mg.

E.
$${}^{26}Mg(p, \gamma){}^{27}Al$$
 $Q_m = 8272.4 \pm 2.8$

Resonances in the γ -ray yield are listed in table 27.4 (enriched targets: Ru 54a, Hu 55, Ba 59b, Ku 59a, Wa 59a; natural Mg targets: An 59b; see also Sm 54). The corresponding ²⁷Al excitation energies have been computed using the weighted mean values of the resonant proton energies. In the range $E_p = 0.8-2.36$ MeV, 35 resonances (not tabulated) have been observed (Al 57).

The decay scheme of the 338, 454, 661, and 719 keV resonances is given in fig 27.2. Measurements of the γ -ray spectra, angular distributions, and $\gamma - \gamma$ coincidences yield the strenghts of these resonances, the spin of the resonance levels (table 27.4), and of the following lower levels: ${}^{27}\text{Al}^* = 0.842$ MeV, $J = \frac{1}{2}$; 2.212 MeV, $J = (\frac{3}{2})$; 2.731 MeV, $J = \frac{5}{2}$; 2.976 and/or 3.000 MeV, $J = \frac{3}{2}$; 3.674 MeV, $J = \frac{1}{2}$; 4.052 MeV, $J = \frac{1}{2}$. The energies of the γ rays de-exciting ${}^{27}\text{Al}(1)$ and (2), are 840 ± 6 keV, and 1012 ± 8 keV, respectively (Va 56d).

The 648 keV resonance decays to ${}^{27}Al(0)$ and, indirectly, to ${}^{27}Al(1)$; $J^{\pi} = (\frac{5}{2})$ (No 61a). At the 809 keV resonance, angular distribution measurements of

P. M. ENDT AND C. VAN DER LEUN

Fig. 27.2. Energy levels of ²⁷Al.

27_{A1}

-			
'I A	BLE	27	

Resonances in ${}^{26}Mg(p, \gamma){}^{27}Al$

Ep ^a (keV)	²⁷ Al* (MeV)	Jπ	$\Gamma_{\rm p}\Gamma_{\gamma'}/\Gamma$ (eV)	Ep ^a (keV)	²⁷ Al* (MeV)	Intensity ^h (relative)
$\begin{array}{c} 292.3 \pm 0.7 \text{ c, d} \\ 338.3 \pm 0.1 \text{ b, c, d, e, f} \\ 453.5 \pm 0.1 \text{ b, c, d, e, f} \\ 647.5 \pm 0.8 \text{ b} \\ 661.1 \pm 0.4 \text{ b, c, d, f} \\ 718.5 \pm 1.2 \text{ c, f} \\ 809.0 \pm 0.4 \text{ b, c, f} \end{array}$	8.554 8.598 8.709 8.896 8.909 8.965 9.051	$\frac{3}{2} - i, j$ $\frac{1}{2}(-) j$ $\frac{5}{2}(-) k$ $\frac{1}{2}(+) j$ $\frac{3}{2}(+) j$ $\frac{3}{2}(+) j$	$0.4 \pm 0.1 \text{ m} \\ 1.4 \pm 0.3 \text{ m} \\ \text{k} \\ 0.7 \pm 0.2 \text{ m} \\ 0.21 \pm 0.05 \text{ m} \\ 1 \end{bmatrix}$	$\begin{array}{c c} 1251 \pm 4f, h \\ 1289 \pm 4f, h \\ 1417 \pm 1f, h \\ 1452 \pm 4f, h \\ 1554 \pm 4h \\ 1588 \pm 4h \\ 1615 + 4h \end{array}$	9.477 9.514 9.637 9.671 9.769 9.803 9.828	10 70 140 70 140 7.5 110 10
838.8 \pm 0.5 b, c, f 954 $\pm 10^{f}$ 989 \pm 7 ^f , g 1015 $\pm 10^{f}$ 1056 $\pm 10^{f}$ 1172 $\pm 10^{f}$	9.080 9.191 9.225 9.250 9.289 9.401	2 (72)+g		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.849 9.933 9.943 9.966 9.992 10.028 10.085 10.102	50 95 95 190 110 145 135 180 $ $

^a Weighted mean values. For $E_p < 840$ keV the energies from four precision measurements (An 59a, Ku 59a, Wa 59a, Hu 55) are in excellent agreement.

^b An 59a.

c Ku 59a.

d Wa 59a.

e Hu 55.

^f Ru 54a.

g Al 57.

^h Ba 59b.

¹ The odd parity follows from the El character of the γ ray de-exciting the 338 keV resonance to ²⁷Al(1), as determined by a polarization measurement (Hu 56).

¹ Parity assignments based on intensity considerations only (Va 58d).

^k No 61a; the γ -ray yield is about 10% of that at the 661 keV resonance.

¹ Sm 59; $\Gamma_{\gamma_{b}} \leq 0.15$ eV, resonance absorption measurement.

^m Va 56d.

the transitions to ${}^{27}Al(0)$ and (2) give $J = \frac{5}{2}$ for the resonance level (Sm 59).

Angular distribution measurements at some unspecified resonances yield $J = \frac{3}{2}$ for ²⁷Al(2), and very probably, $J = \frac{1}{2}$ for ²⁷Al(1). The 2.731 MeV level mainly (>90%) decays to ²⁷Al(2). Angular correlations measured at the 989 keV resonance are in agreement with $J^{\pi} = \frac{7}{2}^{+}$ or $\frac{3}{2}^{+}$ for the resonance level and $J^{\pi} = \frac{5}{2}^{+}$ for the 2.731 MeV level. The $\frac{7}{2}^{+}$ assignment to the resonance is favoured because no direct transitions to ²⁷Al(1) and (2) have been observed; their intensity is at most 3% of the ground-state transition (Al 57).

F. (a) ${}^{26}Mg(p, p'){}^{26}Mg$ (b) ${}^{26}Mg(p, n){}^{26}Al^{m}$ $E_{b} = 8272.4 \pm 2.8$ $E_{b} = 8272.4 \pm 2.8$

(a) At $E_p = 2.9$ and 3.8 MeV, resonances have been observed in the yield of the 1.81 MeV γ ray, and at $E_p = 4.4$, 4.95 and 5.45 MeV in the yield of the 1.13 and 1.81 MeV γ rays (Mi 59b).

For non-resonance data, see ²⁶Mg.

(b) Resonances at $E_p = 5.47$, 5.80, 6.02, 6.31, and 6.49 MeV, observed from the ³⁵Mg(p, n)²⁵Al reaction, might also be assigned to the ²⁶Mg(p, n)²⁶Alm reaction (Bl 51).

For threshold measurements, see ²⁶Al.

G.
$${}^{86}Mg(d, n)^{27}Al$$
 $Q_m = 6047.7 \pm 2.8$

Nuclear emulsion work at $E_d = 1.47$ MeV gives ²⁷Al levels at 0.88, 1.92, 2.75, 3.65, 4.33, 5.32, and 5.81 MeV, all ± 0.07 MeV (Sw 50). At $E_{d} = 1.0$ and 6.0 MeV, levels have been found at 1.0, 2.3, 2.9, 6.8, 8.2, 9.5, and 10.0 MeV. Angular distribution measurements yield $l_p = 0$ and 1 for the 6.8 and 8.2 MeV levels, respectively (Tr 56).

 $^{27}Mg(\beta)^{27}Al$ $Q_m = 2617.9 \pm 4.0$ H. See 27Mg.

I.
$${}^{27}Al(\gamma, \gamma){}^{27}Al$$

Resonance absorption measurements yield a mean life $\tau_{\rm m} = (4.1 \pm 2.0) \times 10^{-14} \, {\rm sec}$ for ${}^{2}Al^* = 1.013$ MeV (Va 60a; see, however, reaction L, Me 60b), and $\tau_m = 3.5 \times 10^{-14} g_2/g_1$ sec for ${}^{27}\text{Al}^* = 2.21$ MeV, where g_1 and g_2 are the statistical weights of the ground state and the 2.21 MeV level (Bo 61).

J.	$^{27}\text{Al}(\gamma, \text{ p})^{26}\text{Mg}$	$Q_{\rm m} = - 8272.4 \pm 2.8$
	$^{27}\text{Al}(\gamma, n)^{26}\text{Al}$	$Q_n = -13069 \pm 5$

The total absorption cross section in the range $E_{\gamma} = 10-30$ MeV does not show a resonance fine structure. The peak cross section, at $E_{\gamma} = 20$ MeV, is larger than the sum of the (γ , n) and (γ , p) cross sections (Zi 60; see also Mi 59). No resonance structure has been found at $E_{\nu} = 20-20.5$ MeV (Ca 60).

K.
$${}^{27}Al(n, n'){}^{27}Al^*$$

Gamma-ray energies and intensities from inelastic neutron scattering have been measured by scintillation counter. The weighted mean values of the reported γ -ray energies are $E_{\gamma} = 0.166 \pm 0.003$, 0.842 ± 0.005 , 1.021 ± 0.006 , 1.727 ± 0.015 , and 2.209 ± 0.007 MeV (I)a 56c, Ro 55a, Ho 59a, De 60, Mi 59c, Pa 58b, Cr 56a, Gr 55d, Ki 54, Sc 54d; see also As 61, Mo 56c, Ra 55, Pa 55, Ga 53a). The three first mentioned γ rays are ground-state transitions since the production thresholds are equal to the γ -ray energies (Ki 54). The 0.166 and 1.73 MeV gammas correspond to the 1.01 \rightarrow 0.84 and 2.73 \rightarrow 1.01 MeV transitions, respectively. Gamma rays of 1.19 MeV (Sc 54d, De 30), 1.33 MeV (De 60), 1.40 MeV (Mo 56c), and 1.91 MeV (Ro 55a) have not been found in other experiments. At higher neutron energies γ rays of 2.72 MeV (Mo 56c) and 3.10 ± 0.08 MeV (Gr 55d) have been reported. See also Ra 55a, An 60d, As 61.

27A1

Cross section for inelastic scattering, Hu 58, Ma 57, Ma 58f, To 59. Elastic scattering angular distribution, Li 55a, Be 56, Do 56a, La 57b, Na 57, Be 58b, Co 58b, Hi 58a, An 59a, St 59, St 59c, Yu 59, Lo 60.

For resonances, see ²⁸Al.

L. ${}^{27}Al(p, p'){}^{27}Al$

Levels derived from the observation of proton groups are listed in table 27.5 (Do 53, Br 54b, Va 57d, De 59a; also Sh 51, Re 52, St 52, Ba 52).

Elastic scattering angula distribution, Wi 41, Rh 50, Bu 51, Ba 52, Gu 52, Da 54, Hi 55, Da 56a, Ge 56a, Ki 56a, Sh 56, Wa 57, Gr 59, Ho 61a, Jo 61b. Ta 61a; theory, Gl 57, Me 57a. Angular dependence of the polarization of elastically scattered protons, Wa 59, Sa 60a, Ho 61a, Ya 60a, Ro 61c. Inelastic proton angular distributions at $E_p = 5$ MeV, De 59a, and at 6.6 MeV, Va 61a.

(p, p') ^a	(p, p') ^b	(p, p') ^c	(p, p'γ) ^d	(p, p') e	$(\mathbf{d}, \mathbf{x})^{\mathbf{f}}$	(p, p') ^b	(d, α) ^g
0.842 ± 3	0.842	0.843 ± 2	0.845 + 5	0.840 + 4	0.837 ± 16	5.425	5 4 19
1.013 ± 3	1.013		1.014 + 7	1.010 ± 1	1.007 ± 13	5.491	0.110
2.205 ± 4	2.213	$(\mathbf{d}, \boldsymbol{\alpha})^{\mathbf{g}}$	2.216 ± 10	2.219 ± 4	2.21 ± 30	5.5-	5.537
2.727 ± 4	2.732	2.729	-2.736+12	2.736 ± 6	2.74 + 20	5.659	
2.975 ± 4	2.977	2.971		2.980 ± 6		a terra a	5.745
2.998 ± 4	3.001		2.992 ± 15	3.002 ± 6		5.821	
	3.677	3.663				5.951	5.953
	3.954	3.940				all <u>+</u> 6	6.074
	4.054	4.044				-	6.154
	4.403						6.264
	4.505	4.499				1	6.527
	4.576						6596
	4.807						6.764
	5.150	5.145				1	6.812
	5.242	5.232					6.989
	5.410						all <u>-</u> 12
	all+6	$all \pm 12$					

TABLE 27.5

Levels of ${}^{27}Al$ (MeV \pm keV) from the ${}^{27}Al(p, p'){}^{27}Al$ and ${}^{29}Si(d, \alpha){}^{27}Al$ reactions

^a Va 57d; $E_p = 2-4$ MeV; magn. anal.

^b Br 54b; $E_{\rm p} = 5.6-8.4$ MeV; magn. anal.

^c Do 53; $E_p = 2.3$ MeV; electrost. anal.

^d Ra 58; $E_p = 2.4-4.4$ MeV; γ energies, lens spectrom.

^e De 59a; $E_p = 5$ MeV; magn. anal.

^l Va 52; $E_d = 1.8-2.0$ MeV; magn. anal.

^g Br 59a; $E_d = 7.0$ MeV; magn. anal.

Direct interaction analysis applied to the results in Va 61a, yields l = 2 for transitions to the 0.84, 1.01, 2.74, and 3.00 MeV states, and l = 3 for transitions to the 2.21 MeV state. See also Ty 58, Gu 54.

The yield of the 0.84 and 1.01 MeV γ rays from inelastic proton scattering shows 23 resonances in the range $E_p = 1.7-2.8$ MeV; see ²⁸Si. Angular distribu-

tion measurements at 15 resonances yield $J = \frac{1}{2}$ for ²⁷Al(1) and $J > \frac{1}{2}$ for ²⁷Al(2). Proton-gamma coincidence experiments indicate that the 1.01 MeV level also de-excites via a 0.170 ± 0.007 MeV γ ray to the 0.84 MeV level; intensity $(2.4 \pm 1.0)\%$ (Al 60b). Angular distribution and linear polarization measurements of the 1.01 MeV γ ray, at the $E_1 = 1.74$ and 2.13 MeV resonances yield the E2/M1 amplitude mixing ratio $x = -0.32 \pm 0.14$ or -1.1 ± 0.5 (Mc 61a).

Doppler corrected energies of the ground-state transitions from ${}^{27}\text{Al}^* = 0.84$, 1.01, 2.21. (2.73), and 2.98+3.00 MeV, and the $E_{\gamma} = 1.722 \pm 0.010$ MeV ${}^{27}\text{Al}(4) \rightarrow (2)$ transition, yield the excitation energies listed in table 27.5, column 4. Measurement of the internal conversion coefficients yields E2 for the (1) \rightarrow (0) transition, M1 for the (2) \rightarrow (0) transition, and favours M1 for (4) \rightarrow (2), and E1 for (3) \rightarrow (0) (Ra 58).

Self absorption and resonance scattering studies yield partial widths Γ_{2} for the ground-state γ transitions from ${}^{27}\text{Al}(2)$: $\Gamma_0 = (3.9 \pm 1.6) \times 10^{-4} \text{ eV}$, and from ${}^{27}\text{Al}(3)$: $\Gamma_0 = (g_1/g_2) (2.4 \pm 0.3) \times 10^{-2} \text{ eV}$, where g_1 and g_2 are the statistical weights of ${}^{27}\text{Al}(0)$ and (3), respectively. The angular distribution of the 2.21 MeV radiation, and the observed partial width rule out $J = \frac{1}{2}$ and $J^{\pi} = \frac{1}{2}$ assignments to ${}^{27}\text{Al}(3)$. This level branches for less than 2% to ${}^{27}\text{Al}(1)$ and/or (2). Comparison of the width of the 1.01 MeV level with its partial E2 width (see reaction P) yields an E2/M1 intensity ratio $x^2 = 0.1 \pm 0.05$ (Me 60b, Ra 61a).

For resonances, see ²⁸Si.

M. ${}^{27}Al(d, d'){}^{27}Al$

Inelastically scattered deuterons to ${}^{27}\text{Al}^* = 0.84$, 1.01, 2.21, 2.73 MeV, and the 2.98/3.00 MeV doublet have been observed at various deuteron energies between 5 and 15 MeV (Hi 56b, Ha 56c, Gr 49, Ho 49, Ke 51, En 54b). The angular momentum transfer l = 2 connected with the transitions to ${}^{27}\text{Al}^* = 2.21$, 2.73, and 2.98/3.00 MeV, determines the parity of these levels as even (Hi 56b). See also Ha 56c, Do 60, El 60.

Elastic scattering angular distribution, Sl 59, Ci 60, Ci 60a, Ta 60e, Go 61, Ba 61d, Ig 61.

N. ²⁷Al(³He, ³He)²⁷Al

Elastic scattering angular distribution at $E(^{3}\text{He}) = 31$ MeV, Ig 60; 29 MeV, Gr 61a; 5.5 MeV, Pa 61a.

O. 27 ₁ $(\alpha, \alpha')^{27}$ Al

Elastic scattering angular distributions, Bl 55a, Ig 56, Bl 56a, Ga 58, Ko 61a. Inelastic scattering has been observed to the first two ²⁷Al levels (unresolved) at $E_x = 19$ MeV, to ²⁷Al* = 2.69, 4.80, and 6.87 MeV at $E_x = 30$ MeV (Cr 60a) and 43 MeV (Yn 60), and to ²⁷Al* = (0.84+1.01), 2.21, and (2.7c+3.00) MeV at

27A1

 $E_{\alpha} = 22$ MeV (Be 61c). Inelastic scattering angular distributions at $E_{\alpha} = 40.2$ MeV, Ig 57.

Alpha-gamma coincidence experiments at $E_{\alpha} = 22$ MeV, establish a strong $3.0 \rightarrow 2.21$ MeV transition. This result is in accordance with the suggestion that one of the 3.0 MeV states and the 2.21 MeV state are the $J^{\pi} = \frac{5}{2}$ and $\frac{1}{2}$ members of a $K^{\pi} = \frac{5}{2}$ rotational band on the ground state. Ground-state transitions have been observed from ${}^{27}\text{Al}^* = 1.01$, 2.21, 2.73, and 2.98 and/or 3.00 MeV. The 2.73 MeV level mainly decays to ${}^{27}\text{Al}(2)$; a 10% transition to ${}^{27}\text{Al}(1)$ is not excluded (Be 61c).

P. ²⁷Al+heavy ions (¹⁴N, ¹⁶O, ²⁰Ne, ²²Ne)

Coulomb excitation with heavy ions at $E(^{14}N) = 16.3 \text{ MeV}, E(^{16}O) = 18.2 \text{ MeV},$ $E(^{20}Ne) = 23.1 \text{ MeV}, E(^{22}Ne) = .25.2 \text{ MeV}, \text{ yields partial mean lives}$ $\tau_{\rm m}(E2) = (3.2 \pm 1.0) \times 10^{-11} \text{ sec and } (1.3 \pm 0.4) \times 10^{-11} \text{ sec for } ^{27}\text{Al}^* = 0.84 \text{ and}$ 1.01 MeV, respectively (Al 59b). Also Go 60d: $\tau_{\rm m}(E2) = 5.3 \times 10^{-11} \text{ sec and}$ $2.4 \times 10^{-11} \text{ sec, respectively}.$

- Q. ${}^{27}\text{Si}(\beta^+){}^{27}\text{Al}$ See ${}^{27}\text{Si}$. $Q_m = 4.815 \pm 8$
- R. ${}^{28}Si(\gamma, p){}^{27}Al$

$$Q_{\rm m} = -11580.6 \pm 3.3$$

Cross section for 28 and 32 MeV bremsstrahlung, Jo 55, Cu 59; also Mo 55a, Sh 61b. No activity with a half-life in the μ sec or msec range has been found from the bombardment of natural silicon with 22 MeV bremsstrahlung (Ve 56a).

S.
$$^{29}Si(d, \alpha)^{27}Al$$
 $Q_m = 6012.0 \pm 3.6$

Magnetic analysis of α -particle groups yields ²⁷Al levels listed in table 27.5 (Va 52, Br 59a); $Q_0 = 5.994 \pm 0.011$ MeV (Va 52), 5.994 ± 0.012 MeV (Ma 60e).

T. ${}^{30}Si(p, \alpha)^{27}Al$

 $Q_{\rm m} = -2377.6 \pm 4.1$

Magnetic analysis at $E_p = 8.0$ and 8.6 MeV yields $Q_0 = -2.366 \pm 0.010$ MeV (Wh 60).

U.	Not reported:	
	²⁵ Mg(t, n) ²⁷ Al	$Q_{\rm m} = 10887.5 \pm 2.3$
	²⁵ Mg(³ He, p) ²⁷ Al	$Q_{\rm m} = 11651.9 \pm 2.3$
	$^{25}Mg(\alpha, d)^{27}Al$	$Q_{\rm m} = - 6700.5 \pm 2.2$
	²⁶ Mg(³ He, d) ²⁷ Al	$Q_{\rm m} = 2779.2 \pm 2.8$
	$^{26}Mg(x, t)^{27}Al$	$Q_{\rm m} = -11540.3 \pm 2.8$
	${}^{28}Si(n, d){}^{27}Al$	$Q_{\rm m} = -9355.9 \pm 3.3$
	²⁸ Si(d, ³ He) ²⁷ Al	$Q_{\rm m} = - 6087.5 \pm 3.3$
	$^{28}\mathrm{Si}(\mathrm{t}, \alpha)^{27}\mathrm{Al}$	$Q_{\rm m} = 8232.1 \pm 3.4$
	$^{29}Si(n, t)^{27}Al$	$Q_{\rm m} = -11576.0 \pm 3.6$
	²⁹ Si(p, ³ He) ²⁷ Al	$Q_{\rm m} = -12340.5 \pm 3.5$
	· ·	

77AL 75i

ういがい

P. M. ENDT AND C. VAN DER LEUN

REMARKS

The rotational collective model, with a prolate distortion for ²⁷Al, gives a good qualitative description of many of the properties of the low lying levels of #Al with the exception of the excitation energies. The 0.84, 1.01, and 2.73 MeV levels, with $J^{\pi} = \frac{1}{2}^+$, $\frac{3}{2}^+$, and $\frac{5}{2}^+$, respectively, are the lowest three members of the $K^{\pi} = \frac{1}{2}^{+}$ rotational band derived from the s_i shell model state. The 2.21 MeV level is a likely candidate for the second member of the $K^{\pi} = \frac{1}{2}^{-1}$ rotational band based on the ²⁷Al ground state; the required $J^{\pi} = \frac{1}{2}^{-1}$ assignment, however, conflicts with some of the experimental data (Al 60b). Old parity for the 2.21 MeV level follows from angular distribution measurements of inelastically scattered protons (De 59a, Va 61a). The internal conversion coefficient of the 2.21 MeV γ ray favours an E1 assignment to this γ ray and thus odd parity for the 2.21 MeV level, but M1 character is not completely excluded Ra 58. The angular distribution of the 2.21 MeV γ ray from the TAL p. p. TAL reaction excludes $J^{\pi} = \frac{1}{2} \pm$, $\frac{3}{2} -$ (Me 60b). The intensity of the : transitions to the 2.21 MeV level at two ${}^{26}Mg(p, \gamma){}^{27}Al$ resonances suggests $J = \frac{1}{2}$ Va 56d. Even parity for the 2.21 MeV level follows from the angular momentum transfer in inelastic deuteron scattering (Hi 56b), and from the allowed character of the ${}^{27}Si(\beta^+)$ decay to ${}^{27}Al^* = 2.21$ MeV. The strong 3.6 - 2.21 MeV y transition, observed from inelastic α -particle scattering, is in accordance with the suggestion that one of the 3.0 MeV states and the 2.21 MeV state are the $J^{\pi} = \frac{9}{2}^{+}$ and $\frac{1}{2}^{+}$ members of the $K^{\pi} = \frac{9}{2}^{+}$ band on the ground state. Finally, a $f^{\pi} = \frac{1}{2}^{+}$ assignment to the 2.21 MeV level would explain the small : branching $\langle 2^{0}'_{0}\rangle$ to 27 Al(1) and (2) (Me 60b). See also Bi 60.

²⁷Si

(Fig. 27.3, p. 101; table 27.6, p. 102)

$$Q_{\rm m}=4815\pm8$$

The weighted mean value of the half-life measurements, which are in rather bad agreement, is $\tau_1 = 4.19 \pm 0.05 \sec (\text{Su}53, \text{Hu}54, \text{Cl}58, \text{Wa}60a, \text{Ku}57a, \text{Mi}58, \text{Va}60f$. The β^- decay proceeding to the ²⁷Al ground state, with end point $3.52 \pm 0.05 \text{ MeV}$ (Ba 40, Bo 51, Hu 54, Wa 0a; see also Va 60f), is super-allowed $\log \beta^+ = 3.6$), determining $J^{\pi} = \frac{5}{2}^+$ for ²⁷Si(0). A 10% branch, with end point 1.45 ± 0.10 MeV proceeding to ²⁷Al* = 2.21 MeV has been reported (Va 60f); the intensity of the 2.21 MeV γ ray leads to a branching of $(6 \pm 3)^{\circ}_{0}$ (Pa 61d). This intensity, however, would give $\log ft = 3.3$.

The intensity of potential branches to ${}^{27}Al(1)$ or (2) is less than 0.2% (Ta 60c).

B. ${}^{24}Mg(x, n){}^{27}Si$ $Q_m = -7193 \pm 8$ Observed at $E_x = 15$ MeV (El 41).

C. ²⁷Al(p, n)²⁷Si $Q_{\rm m} = -5598 \pm 8$

Recent measurements of the threshold give $E_p = 5.792 \pm 0.010$ MeV (Ki 55a), 5.798 ± 0.008 MeV (Ma 55c), 5.800 ± 0.008 MeV (Br 59f); the weighted average yields $Q_0 = -5.590 \pm 0.005$ MeV.

Fig. 27.3. Energy levels of ²⁷Si.

Angular distribution at $E_p = 23$ MeV, Co 55b; at $E_p = 14$ MeV, Hi 601. Cross section, Ta 58, Al 61b. See also Ad 61.

For resonances, see ²⁸Si.

102

P. M. ENDT AND C. VAN DER LEUN

TABLE 27.6

Energy levels of ²⁷ Si					
\mathcal{L}_{s} (MeV±keV)	J¤	$\overline{t}_{\frac{1}{2}}$	Decay	Reactions	
$0 \\ 0.782 \pm 10$	<u>5</u> + 2+ 1+	$4.19{\pm}0.05$ sec	β+	A, B, C, D, E, F F	
0.958 ± 10 2.165 ± 10	$(\frac{3}{2}, \frac{5}{2})^+$			F F	

, n) ²⁷ Si

 $Q_{\rm m} = -17179 \pm 9$

F

F

F

F

F

F

The threshold has been determined as 16.8 ± 0.4 MeV (Mc 49) and 16.9 ± 0.2 MeV (Su 53). Cross section, Ka 54. See also Wa 48, Mo 55a (theory). No activity in the μ sec or msec range has been observed from bombardment of natural silicon with 22 MeV bremsstrahlung (Ve 56a).

E.
$${}^{28}Si(p, d){}^{27}Si$$

 2.651 ± 10

 2.866 ± 10

 2.908 ± 10

 3.540 ± 10

 3.800 ± 15

 (4.13 ± 20)

 $Q_{\rm m} = -14954 \pm 9$

Cross section, Se 56.

F. ²⁸Si(³He, α)²⁷Si

 $Q_{\rm m}=3399\pm9$

At $E(^{3}\text{He}) = 5.7$ and 5.9 MeV, α -particle groups have been observed to the nine excited states listed in table 25.7; $Q_{0} = 3.405 \pm 0.015$ MeV (Hi 59a). At $E(^{3}\text{He}) = 9.16$ MeV the angular distributions of the groups to $^{27}\text{Si}^{*} = 0$, 0.78, and 0.96 MeV yield $l_{n} = 2$, 0, and 2, respectively (Hi 60c).

G. Not reported:

²⁵ Mg(³ He, n) ²⁷ Si	$Q_{\rm m}=6054\pm 8$
²⁷ Al(³ He, t) ²⁷ Si	$Q_{ m m} = - 4834 \pm 8$
²⁸ Si(d, t) ²⁷ Si	$Q_{ m m} = -10921 \pm 9$
²⁹ Si(p, t) ²⁷ Si	$Q_{\rm m} = -17174 \pm 8$

²⁸Mg

(Fig. 28.1, p. 103; table 28.1, p. 104)

A. ${}^{28}Mg(\beta^{-}){}^{28}Al$	$Q_{\rm m} = 1837 \pm 5$
------------------------------------	--------------------------

The weighted mean of six half-life determinations is 21.43 ± 0.16 hr (Sh 54d, Li 53a, Ma 53a, Jo 53, Iw 53, Wa 53).

The β - spectrum is simple and has the allowed shape (Ma 53a, Ol 54). The end point as measured by A¹ absorption is 0.40 ± 0.06 MeV (Sh 54d), 0.3 MeV

(Jo 53), 0.39 ± 0.05 MeV (Wa 53); magnetic spectrometer determinations give: 0.418 ± 0.010 MeV (Ma 53a) and 0.459 ± 0.002 MeV (Ol 54). Log ft = 4.4.

The energies and intensities (in photons per disintegration) of observed γ rays are listed in table 28.2. The γ rays γ_2 , γ_3 , and γ_4 are coincident with γ_1 ; and γ_2

Fig. 28.1. Energy levels of ²⁸Mg.

with γ_3 . The delay between γ_4 and γ_1 is quite small ($\tau_m < 2 \times 10^{-9}$ sec). The conversion coefficient of γ_1 , $\alpha_K = 0.032 \pm 0.066$, confirms the M1 character of γ_1 (Sh 54d).

Gamma-ray energy and coincidence measurements indicate that the β -decay proceeds to the 1.37 MeV level in ²⁸ Al, which in turn decays through

²⁵Al* = 0.57 and 0.03 MeV. The isobaric-spin selection rule, excluding $J J = \pm 1$ $0^{-} \rightarrow 0^{-} \beta^{-}$ transitions, determines $J^{n} = 1^{+}$ for ²⁸Al* = 1.37 MeV. Assuming $J^{n} = 3^{-}$ for the ²⁸Al ground state and $J^{n} = 2^{+}$ for ²⁸Al* = 0.03 MeV, then haves the possibilities $J^{n} = 0^{+}$ and 2^{+} for the 0.97 MeV level to explain the absence of β^{-} decay to this level and the observed γ -ray branching from the ...37 MeV level.

	j=	$ au_{rac{1}{2}}$	Decay	Reactions
é.	ig~	21.430.16 hr	β-	A. B
			·	В
				В
4 614 - 12				В
1 1 2 2 2 2				В
4 ×74 - 15				В
5366 <u>-</u> 37				В
				В
				B
				B
1 AJZ - 15				B
r i j				B
				B
				B
6.416-15				B
65.6.15				B
1 - 15				B
5 IM-15				а Ц
				ы р
1774-17				В

TABLE 28.1 Energy levels of ²⁸Mg

TABLE 28.2

Gamma rays from $^{28}Mg(\beta)^{28}A1$

	5. 54		Wa 53		Iw 53	Probable
	/ MeV,	Kel int.	E_{γ} (MeV)	Rel. int.	E_{γ} (MeV)	assignment
. 2		0.96	0.0322	(≈ 0.70)		28 ()/ 1) (0)
, ' 2	0.4419 - 0.01	0.31		(~~ 0.10)	0 301 1 0 00=	$^{*0}\mathrm{Al}(1) \rightarrow (0)$
. 3	0.949 -0.01	0.29			0.091 ±0.000	$^{20}\mathrm{Al}(4) \rightarrow (2)$
1.16	1.346 - 0.01	0.70			0 95 1.35	${}^{26}\text{Al}(2) \rightarrow (1)$ ${}^{28}\text{Al}(4) \rightarrow (1)$

B. ²⁶Mgit, pj²⁵Mg

 $Q_{\rm m}=6459\pm7$

At $E_c = 6.0$ MeV, proton groups have been observed to the levels listed in table 28.1 (Hi 6ih).

C. Not reported:

39Si(a, 3He)28M3

 $Q_{\rm m} = -16285 \pm 7$

18.MEB

(Fig. 28.2, p. 106; table 28.3, p. 107)

A.
$${}^{28}\text{Al}(\beta){}^{28}\text{Si}$$
 $Q_{\rm m} = 4\,639.5\pm4.2$

The half-life is 2.28 ± 0.02 min (weighted mean of Ba 53a, Ek 43, Co 56, Va 58f).

The β - spectrum is simple v.ith allowed shape; end point 2.865 ± 0.010 MeV (Mo 52), 2.878 ± 0.014 MeV (O1 54). Log ft = 4.9. See also Va 58f. Each β -particle is followed by one γ quantum. Determinations of the γ -ray energy with lowest stated error: 1.782 ± 0.010 (Mo 52), 1.769 ± 0.010 MeV (Sh 54d). References to less accurate determinations of half-life, end point, and γ -ray energy, En 54a, Na 54a. See also Ma 54a.

Resonance fluorescence yields $\tau_{\rm m} = (7.3 \pm 2.2) \times 10^{-13}$ sec for ²⁸Si(1) (Of 59). For comparison with other measurements, see table 28.17.

B.
$${}^{25}Mg(\alpha, p){}^{28}Al$$
 $Q_m = -1201.5 \pm 3.9$

At $E_{\alpha} = 8.41$ MeV, proton groups have been observed to ${}^{28}\text{Al}^* = 1.00 \pm 0.04$, 1.57 ± 0.04 , 2.18 ± 0.04 , 2.54 ± 0.06 , and 2.96 ± 0.06 MeV; $Q_0 = -1.29 \pm 0.04$ MeV (Gr 57).

For resonances, see ²⁹Si.

C.
$${}^{27}\text{Al}(n, \gamma){}^{28}\text{Al}$$
 $Q_m = 7723.7 \pm 3.4$

The thermal neutron absorption cross section is 230 ± 5 mb (Hu 58). For the cross section at higher E_n , see Hu 58, Be 58e, Ko 58d, Ve 59.

A resonance in the ²⁸Al yield has been found at $E_n = 40$ keV, and many more partly resolved resonances in the range $E_n = 0.1-4.0$ MeV (see Hu 58). Comparison of (n, γ) and (d, p) yields and reduced widths, Gr 58b, Bo 59a.

Thermal neutron capture γ rays are listed in table 28.4. The last column gives the ²⁸Al levels between which the transitions possibly occur The strong 7.724±0.006 MeV γ ray represents the ground-state transition. Its great intensity is a notable exception to the rule that only E1 ground-state transitions are intense (Ki 52b). It is impossible to fit the γ rays uniquely into the complicated ²⁸Al level scheme. From the ²⁷Al(d, p)²⁸Al reaction, odd parity has been assigned to ²⁸Al* = 3.46, 3.59, 3.88, 4.03, 4.69, 4.77, 4.85, 4.91, and 5.14 MeV; see table 28.6. All but the two weakest γ rays in the energy range from 2.61 to 5.14 MeV can be explained as E1 transitions to and from eight of these nine levels (En 56). The two remaining γ rays ($E_{\gamma} = 4.43$ and 3.30 MeV) could form a cascade through ²⁸Al* = 3.29 MeV. Another odd parity state at 5.45 MeV (Ne 56b) could be used to explain an $E_{\gamma} = 2.28$ and 5.45 MeV cascade. The γ rays with energies of 5.21 MeV and higher, and with intensities above 1.5% could be explained as transitions from the capturing state to known low lying ²⁸Al levels.

Fig. 28.2. Energy levels of ²⁸Al.

TABLE 28.3

Energy levels of ²⁸Al

$E_{\mathbf{x}}$ (MeV \pm keV)	J^{π}	$ au_{rac{1}{2}}$	Decay	Reactions
0	3+	2.28 ± 0.02 min	β-	many
0.0312 ± 0.4	2+	$(2.2 \pm 0.2) \times 10^{-9} \sec$	γ	B, C, F, G, H, I, K
0.974 ± 4	(0+, 2+)		Y	B, C. F, H, I
1.017 ± 4	$(2, 3)^+$		-	B, F, G, I
1.375 ± 4	1+		γ	C, F, G, H, I
1.633 ± 4	$(2, 3)^+$		•	B, C, F, I
2.147 ± 4	$(2, 3)^+$		γ	B, C, F, G, I
2.209 + 4	(≦5)+		•	B, F, G
2.281 + 4	(≦5)+		γ	C, F, G
2.493 + 4	$(2, 3)^+$		•	B, C, F, G
2.592 + 4	$(\leq 5)^+$			B, F
2.667 + 4	$(\leq 5)^+$			F. G
2.988 + 5	(B. F
3.011 + 6	$(\leq 5)^+$			B, F
3.102	$(\leq 5)^+$,		F
3.294	$(\underline{=}^{\circ})^{+}$		~	- C. F
3.347	$(2, 3)^+$		1	F
3.461	$(\leq 4)^{-}$		v	C. F
3 537	(=-)		7	F
3 591	(<4)-		78	C. F
3 669	(=1) (2 3)+		7	С, 1 F
3 704	(2, 0)			F
3.878	(2, 0) $(< 4)^{-}$		1	C F
3 900			7	5, 1 F
3.035	(9 3)+			г Fi
1 030	(2, 0)		~ /	C F
4 115	(<5)+		Y	С, 1 F
1 9/2	$(\geq 0)^+$			F
4 915	$(2, 3)^+$			F
±.010 1 909	$(\geq 0)^{+}$			F
4.000				Г Г
+.400				F F
4.018				F
4.090	(() -			r C F
4.080	(≥4) (≤5)±		γ	C, F E
4.741	(≦))'			
+.101	(≥4) (≤4)=		γ	C, F E
4.840	(≦4)⁻			Г С. Б
4.900	(≦4)		γ	С, Г Е
4.928	();			r F
4.999	(≦5)+			r F
5.019	(2, 3)+			r C F
5.138	(≦4)-		21	U, F 12
5.168-7.700; 5	ov levels, see t	able 28.6 and reaction		
7.730 ± 4			11	D, F D
7.757-8.153;6	5 levels, see t	able 28.5 and reaction		D

197

Ki 51, Ki 53c,	Ki 51, Ki 53c, Ba 58c ^c		c d	En 56, Gr 58c	
$\frac{E_{\gamma}}{(\text{MeV}\pm\text{keV})}$	Ι.,ª	$\frac{E_{\gamma}}{(\text{MeV}\pm\text{keV})}$	I _y .a	Assignment ^b	
7.724 - 6	 20	7.730 ± 15	24	$C \rightarrow 0$	
7.34 - 40	0.45				
6.98 - 40	0.5				
6.77 ± 20	0.8	$6.76 \hspace{0.1in} \pm 20$	1.7	$C \rightarrow 0.97$	
6.61 ± 30	0.23				
6.50 - 30	0.3				
6.33 - 20	0.9	$6.35 \hspace{0.2cm} \pm 20$	2.3	$C \rightarrow 1.33$	
6.22 ± 30	0.3				
6.13 - 20	1.5	6.13 ± 20	3	$C \rightarrow 1.63$	
6.01 ± 50	0.44				
5.89 ± 40	0.5	(5.88 ± 30)	0.8		
5.78 - 30	0.8				
5.60 ± 20	1.2			$C \rightarrow 2.15$	
5.41 ± 30	1.2	5.45 ± 30	1.6	$(C \rightarrow 2 \ 28) \ (5.45 \rightarrow 0)$	
32 ± 30	0.55				
5.21 ± 20	1.5			$C \rightarrow 2.49$	
		5.140 ± 15	3.9	$5.14 \rightarrow 0$	
4.94 ± 50	0.8	4.91 ± 20	2.4	$4.91 \rightarrow 0$	
4.79 ± 20	4.3	4.730 ± 15	8	$4.77 \rightarrow 0$	
4.66 ± 50	2.5	4.66 ± 20	5	$4.69 \rightarrow 0$	
4.45 ± 20	1.4	÷ 42 ₌₌ 20	1	$C \rightarrow 3.29$	
4.29 ± 20	4.3	4.260 ± 15	6.1	$C \rightarrow 3.46$	
4.16 ± 20	3	4.13 ± 20	6	$\mathbf{C} \rightarrow 3$. (9)	
4.06 ± 40	2			4.03 - 0	
3.88 ± 20	4.4	3.88 ± 20	6	$C \rightarrow \hat{:} : \hat{:} 8 \rightarrow 0$	
		(3.30 ± 30)	1.3		
3.62 ± 20	2.5	3.600 ± 15	4.5	3.59 - , 0	
3.46 ± 20	1.5	3.470 ± 15	5.2	3.46 - 0	
3.29 ± 20	2	(3.32 ± 30)	0.6	3.90 - 0	
3.02 ± 50	10	3.04 ± 10	5.1	$C \rightarrow 4.69$	
		2.960 ± 15	8	C → 4.77	
2.84 ± 30	4.6	2.82 ± 20	≈ 2	$C \rightarrow 4.91$	
Br 56	ee	$2.61 \hspace{.1in} \pm 10$	5	$C \rightarrow 5.14$	
2.26 ± 30	14	2.28 ± 10	5.1	$(2.28 \rightarrow 0) (C \rightarrow 5.45)$	
		2.12 ± 20	3	$2.15 \rightarrow 0$	
0.97 ± 30	10			$0.97 \rightarrow 0.03$	

TABLE 28.4 Gamma rays from ${}^{27}Al(n, \gamma){}^{28}Al$

^a Intensity in gammas per 100 captures.

^b The capturing state is indicated by C; excitation energies are in MeV; 0 generally stands for ground state or 0.03 MeV level.

^c Magnetic pair spectrometer.

^d Magnetic Cor. pton spectrometer.

^e Two-cryst⁻¹ scintillation spectrometer.

Delayed coincidences yield a half-life $\tau_{\frac{1}{2}} = (2.3 \pm 0.2) \times 10^{-9}$ sec for 28 Al* = 0.03 MeV (Du 61).

The circular polarization of the 7.72 MeV γ ray produced by capture of polarized thermal neutrons has been measured (Ve 61).
D. ${}^{27}Al(n, n){}^{27}Al$

 $E_{\rm b} = 7723.7 \pm 3.4$

Sixty-six resonances in the total cross section for $E_n = 1-450$ keV have been observed in a high resolution experiment; see table 28.5 for energies, spins, and widths (Hi 59; see also Hu 58, Bl 58b, Go 58a, Cr 57, To 55a). Cross section at higher energies, Hu 58, Mc 60b, Pe 60. Theory, Lu 61.

For non-resonance data, see ²⁷Al.

E.
$${}^{27}\text{Al}(n, p){}^{27}\text{Mg}$$
 $Q_{\rm m} = -1835.3 \pm 4.0 \quad E_{\rm b} = 7723.7 \pm 3.4$

In the energy range $E_{\rm n}=3-7.5$ MeV, several resonances have been observed

Ē.	28 1 1*	Γ_			En	28A1*	$\Gamma_{\rm n}$		
(keV)	(MeV)	(keV)	ln	J	(keV)	(MeV)	(keV)	l _n	J
	(
5.6 ^b	7.729	0.(_b	1 b		259.5	7.965	3	2	0
35	7.757	1.7	0	3	257	7.972	5	1	1
84	7.805	5	1	1	266	7.981	1.5	2	0
86.6	7.807	2.4	0	3	271	7.986	1.5	2	· 0
89	7.810	2	1	1	278	7.993	5	0	3
91.5	7.812	4	0	2	284	7.998	2.5	1	1
120	7.839	ڹ	1	2	288	8.002	3	1	2
140	7.859	5	1	1	292	8.006	1.5	2	1
143.3	7.862	3.5	0	3	294.5	8.008	2	1	2
149	7.867	3	1	2	300	8.013	4	1	2
152	7.870	ق	1	1	305.5	8.018	2	1	2
158	7.876	4	1	4	309	8.022	2	1	2
163	7.881	2	1	1	311.8	8.024	4	0	3
166.5	7.885	1.8	1	1	316.5	8.029	1.5	2	0
169	7.887	2.5	2	0	329.5	8.041	1.5	2	0
172	7.890	2	1	1	342	8.053	1.5	2	0
175.5		3	2	0	349.5	8.061	1.5	2	0
179	7.897	2	1	1	366	8.077	5	1	.4
182	7.899	2	2	0	370	8.081	2	$\frac{2}{2}$	1
185.5	7.903	2.5	2	0	374	8.085	3.5	1	2
190.5	7.908	3	2	0	384.8	8.096	4	Ģ	2
195	7.912	2	2	0	404.5	8.114	0	2	1
204	7.921	7	1	2	407.5	8.117	$\overline{2}$	2	1
209	7.926	1.8	1	1	411	8.120	2	2	3
212	7.929	2	1	2	416.5	8.125	3.5	1	3
217	7.934	1.5	1	2	420.5	8.129	1.5	2	3
223	7.939	3	1	2	423	8.132	1.5	2	2
229	7.945	2	1	1	426	8.135	2.5	2	2
233	7.948	2	1	1	433	8.141	4	1	4
237.5	7.953	-1.5	1	1	437.5	8.146	1.5	2	2
240.5	7.956	1.5	1	1	439.5	8.148	1.4	2	2
243	7.958	1	2	1	442	8.150	1.5	2	3
245 5	7.960	1.5	1	1	445	8,153	1.5	2	3
#TU.0	1.000	A .G	-	-	1				

TABLE 28.5 Resonances in the ²⁷Al+n total cross section^a

* The parameters Γ_n , l_n , and J are probable values, obtained as best fit to the data (Hi 59).

^b Go 58a.

(Hu 58; see also Cu 61). Cross section in the range $E_n = 12-21$ MeV, Ma 60b, Ke 59b, Hu 59, St 60a, De 60a, Kh 59a, Po 59, Al 61, Ka 61, Mu 61, Po 61. For non-resonance data, see ²⁷Mg.

F. ${}^{27}Al(d, p){}^{28}Al$ $Q_m = 5499.0 \pm 3.4$

The ground-state Q value is 5.511 ± 0.005 MeV (Ma 60e), 5.502 ± 0.010 MeV (Bu 56), 5.494 ± 0.008 MeV (En 52a, En 54b).

One hundred ²⁸Al levels have been observed in a region of excitation up to the neutron threshold (table 28.6). See also Kr 55, Be 55. For a comparison of (d, p) and (n, p) energy spectra, see Bl 57a.

Results of angular distribution measurements are also given in table 28.6. See also Ne 56a, Ha 61a. Theory, Sa 58, Bo 59a, Ma 60d.

The ground-state doublet has the $(d_{\frac{1}{2}}, s_{\frac{1}{2}})$ configuration. For equal reduced widths the intensity ratio should be 1.4; experiment yields 1.95 (table 28.6), En 54b, En 54, En 56.

A 31.4 ± 1.0 keV γ ray has been observed by proportional counter and scintillation spectrometer (Sm 51). With a recoil method the mean life of ²⁸Al(1) has been measured as $(3.0 \pm 0.5) \times 10^{-9}$ sec (Se 56a).

The proton polarization of the unresolved groups leading to ${}^{28}\text{Al}(0)$ and (1) has been measured at $E_{d} = 15 \text{ MeV}$ (Is 61a).

G. ²⁷Al(t, d) ²⁸Al
$$Q_m = 1466.1 \pm 3.4$$

Angular distributions of deuteron groups to nine ²⁸Al levels have been observed at $E_t = 5.5$ MeV. The l_n values and peak cross sections are listed in table 28.7 (De 61b).

H. ${}^{28}Mg(\beta^{-}){}^{28}Al \qquad Q_{10} = 1837 \pm 5$ See ${}^{28}Mg$.

I.
$$^{28}Si(n, p)^{28}Al$$
 $Q_n = -3856.9 \pm 4.2$

For cross section, see Hu 58, Ke 59, Al 61. Prote 1 groups, Co 59c, De 61d, Bl 57a (theory). Angular distribution measurements, Ha 61, Co 61c.

For resonances, see ²⁹Si.

J.
$$^{29}Si(\gamma, p)^{28}Al$$
 $Q_m = -12334.6 \pm 4.4$

The cross section has a maximum at $E_{\gamma} = 20.5$ MeV with a half-width of 7.9 MeV (Ka 54).

K. ${}^{30}\text{Si}(d, \alpha)^{28}\text{Al} \qquad \qquad Q_m = 3121.4 \pm 4.3$

At $E_d = 1.8$ MeV, magnetic analysis yields $Q_0 = 3.120 \pm 0.010$ MeV (St 51). An α -particle group leading to ²⁸Al(1) has been observed at several deuteron energies up to $E_d = 2.0$ MeV (En 54b).

L. ${}^{31}P(n, \alpha){}^{28}Al$

$$Q_{\rm m} = -1940.1 \pm 3.8$$

Cross section at $E_n = 3-5$ MeV, Cu 61a; at $E_n = 14$ MeV, Pa 53; and at 12.4-17.8 MeV, Ke 59b, Ga 61.

.

TABLE	28.	6
-------	-----	---

²⁸ Al* (Me	$eV \pm keV$		l _n	$(2J+1)\theta_{n}^{2}\times 10^{3}$		
Bu 56ª	Ja 61a	En 56, En 56a,	En 57d ^b Ti 61 ^c	Ma 60d d	Ti 61°	
0	0	0	0	150	160	
0.0312	0.032	0	0	80	83	
0.973	0.976					
1.017	1.018	2 + 0	2 + (0)	130, 16	110, (14	
1.372	1.378	2	2		17	
1.633	1.632	0	2 + (0)		· 24, (5.4)	
2.143	2.152	0	0	50	5	
2.207	2.212	2	2	40	3 9	
2.279	2.284	2	2	110	89	
2.490	2.496	0 + (2)	0	10	6.3	
2.589	2.596		2		36	
2.663	2.672	2	2	110	100	
2.988	2.988					
3.011	all + 5 keV	2	2		6	
3.102		2	2		11	
3.294		0 + (2)	0	5	6.1	
3.347		0	0	4	5.2	
3.461		1 + (3)	1	80	57	
3.537						
3.591		1 + (3)	1	130		
3.669		0	0	2		
3.704		0	0	8		
3.878		1	(1)	30		
3.900		(2)				
3.935		0 + 2	0			
4.030		(3)	(2 or 3)			
4.115		2	(2 or 3)			
4.243		0	0	4		
4.315		2	(2 or 3)	30		
4.383			(3)			
4.466		(2)	(1 or 2)			
4.518		(0)				
4.595		(0)	(1 or 2)			
4.685		1	1	150		
4.741		2				
4.767		1 + (3)	1	120		
4.845		1				
4.906		1	1	80		
4.928						
4.999		2	(2)			
5.019		0				
5.138		1		80		

111

Levels in ²⁸Al from the ²⁷Al(d, p)²⁸Al reaction

TABLE 28.6 (Continued)

5.168	5,596	6.027	6.569	6.970	7.444
5.179	5.746	6.067	6.591	7.025	7.460
5.191	5.766	6.073	6.626	7.090	7.505
5.289	5.802	6.163	6.657	7.121	7.596
5.331	5.867	6.201	6.719	7.149	7.655
5.346	5.909	6.247	6.760	7.180	7.66
5.377	5.931	6.322	6.835	7.247	7.700
5.405	5.960	6.424	6.856	7.274	7.73
5.445	5.989	6.446	6.896	7.345	
5.525	6.012	6.485	6.934	7.408	

^a The error is 0.5 keV for the 31.2 keV level, and then ranges from 5 keV for the 0.973 MeV level to 16 keV for the highest levels. The corresponding Q values all have 10 keV errors.

^b $E_d = 6.0$ MeV. Angular distributions cover the $\vartheta = 5^{\circ}-60^{\circ}$ region. Possible $l_n = 3$ distributions or admixtures are uncertain because of this limited angular range.

^c $E_d = 7.8$ MeV; preliminary results.

^d The absolute reduced widths tabulated in Ma 60d have been obtained by normalizing the relative widths given in En 56, En 56a, En 57d, with the aid of the absolute widths of three ²⁸Al . levels given in Ho 53e.

Levels in ²⁸Al from ²⁷Al(t, d)²⁸Al (De 61b)

$E_{\mathbf{x}}$ (MeV)	l _n	Differential cross section (mb/sr) at c.m. angle shown
0	0	13.6(12°)
0.030	0	$8.7(12^{\circ})$
1.020	2	1.7(33°)
1.370	2	2.7(33°)
2.138	0	$2.0(12^{\circ})$
2.203	2	$0.7(23^{\circ})$
2.279	2	1.1(16°)
2.489	0	0.3(16°)
2.664	2	1.1(17°́)
lot reported:		
$Mg(t, n)^{28}Al$		Q = 75137 + 42

$^{26}Mg(t, n)^{28}Al$	$Q_{\rm m}=7513.7\pm4.2$
²⁶ Mg(³ He, p) ²⁸ Al	$Q_{\rm m} = 8278.2 \pm 4.2$
$^{26}Mg(\alpha, d)^{28}Al$	$Q_{ m m} = -10074.2 \pm 4.2$
$^{27}\text{Al}(\alpha, \ ^{3}\text{He})^{28}\text{Al}$	$Q_{\rm m} = -12853.5 \pm 3.4$
²⁸ Si(t, ³ He) ²⁸ Al	$Q_{\rm m} = -4621.4 \pm 4.2$
$^{29}Si(1, d)^{28}Al$	$Q_{\rm m} = -10109.9 \pm 4.4$
²⁹ Si(d, ³ He) ²⁸ Al	$Q_{\rm m} = -6841.5 \pm 4.4$
$^{29}Si(t, \alpha)^{28}Al$	$Q_{\rm m} = 7478.1 \pm 4.4$
$^{30}Si(n, t)^{28}Al$	$Q_{\rm m} = -14466.5 \pm 4.3$
³⁰ Si(p, ³ He) ²⁸ Al	$Q_{\rm m} = -15231.0 \pm 4.3$

112

М.

REMARKS

A discussion of the ²⁸Al levels up to 2.3 MeV in terms of the rotational model has been given in Sh 56a. Herein it is assumed that the $1d_3$ orbits make no significant contribution. The observed reduced widths, however, indicate that such an assumption is unjustified (Ma 60d).

Theoretical discussion of the ground-state doublet, In 53, Bi 60a, Ba 61c, Pa 61b.

28Si

(Fig. 28.3, p. 116; table 28.8, p. 114)

A. (a) ${}^{12}C({}^{16}O, \gamma){}^{28}Si$ (b) ${}^{12}C({}^{16}O, {}^{16}O){}^{12}C$ $Q_m = 16754.6 \pm 2.9$

The yield of these reactions has been measured up to $E(^{16}\text{O}) = 36$ MeV. The elastic scattering yield follows Mott scattering up to $E(^{16}\text{O}) = 22$ MeV. Some, not very pronounced, resonance structure is observed at higher energies in both reactions (Al 60c, Br 60h).

B. ¹⁴N(¹⁴N,
$$\gamma$$
)²⁸Si $Q_{\rm m} = 27218.2 \pm 2.9$

One resonance has been observed at $E(^{14}N) = 15.0$ MeV, corresponding to $^{28}Si^* = 34.7$ MeV (Al 60c).

C.
$${}^{24}Mg(x, \gamma){}^{28}Si$$
 $Q_{m} = 9986.1 \pm 3.3$

Resonances observed in this reaction for $E_{\alpha} < 3.25$ MeV are given in table 28.9. Spin and parity determinations are from γ -ray angular distribution and $\gamma - \gamma$ angular correlation measurements. Most resonances above $E_{\alpha} = 2.2$ MeV (except for the resonances at $E_{\alpha} = 2.38$ and 2.57 MeV) correspond to resonances in the ²⁷Al(p, α)²⁴Mg and/or ²⁷Al(p, γ)²⁸Si reactions (see tables 28.11 and 28.12). The ²⁸Si excitation energies found from the ²⁴Mg(α , γ)²⁸Si reaction are 11–19 keV higher. Apparently, all strong resonances have $J^{\pi} = 2^+$ or 4^+ ; they decay by pure or at least relatively strong E2 transitions (Sm 60a, Sm 61a).

D. (a) ${}^{24}Mg(\alpha, p){}^{27}Al$ (b) ${}^{24}Mg(\alpha, \alpha){}^{24}Mg$ $Q_m = -1594.5 \pm 1.1$ $E_b = 9986.1 \pm 3.3$ $E_b = 9986.1 \pm 3.3$

The yield of these reactions has been measured in the region $E_{\alpha} = 3.1-4.0$ MeV. Data on observed resonances are given in table 28.10. The spin and parity assignments follow from the observed ratio of maximum and minimum (α , α) cross section to Rutherford cross section ($\vartheta = 164^{\circ}$). On the average, the observed ²⁸Si excitation energies are ≈ 20 keV high; from a comparison of ²⁴Mg(α , p)²⁷Al and ²⁷Al(p, α)²⁴Mg (Sh 51) resonance energies, a Q value of 1.613 ± 0.010 MeV is found for the latter reaction. The ²⁴Mg(α , p)²⁷Al yields are proportional to those at corresponding ²⁷Al(p, α)²⁴Mg resonances as required by the principle of detailed balancing (Ka 52).

For non-resonance information from these reactions, see ²⁷Al, ²⁴Mg.

P. M. LNDT AND C. VAN DER LEUN

TABLE 28.8

Energy levels of ²⁸Si

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$E_{\mathbf{x}}$ (MeV \pm keV)	J ⁿ , T	$\tau_{\rm m}$ or Γ	Decay	Reactions
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0+		stable	many
1.112 ± 6 4.614 ± 6 4. γ F, K, Q, T, V 4.614 ± 6 0 7 K, Q T, V 4.975 ± 6 0 7 K, Q T, K, Q, T, V 6.880 ± 8 7 F, J, K, Q F, J, K, Q 6.880 ± 8 7 F, J, K, Q F, J, K, Q 7.798 ± 8 (2, 3)+ 7 F, K, Q 7.798 ± 8 2+ 7 F, J, K 8.328 ± 8 (1±, 2+) 7 F, K, Q 8.383 ± 8 7 F, K, T K 8.587 ± 8 3+ 7 F, K, T 8.641 ± 8 7 K, T K 9.167 ± 10 7 F, J, K, T K 9.314 ± 10 9.41 ± 14 K K 9.41 ± 14 K K K 9.702 ± 10 (1±, 2+) Y F, K 9.314 ± 10 (1±, 2+) Y K 9.41 ± 14 K K K 9.702 ± 10 (1±, 2+) Y F, K 9.314 ± 10 (1±, 2+) Y K	1772 - 5	2+	$(6.0+1.1) \times 10^{-13}$ sec	r	many
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.614 ± 6	4 +		r	F, K, Q, T, V
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.014 ± 0 4.975 ± 6	0		Ŷ	K, Q
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.272 ± 6	3+		γ	F, J, K, Q, T
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 880 1 8	Ū		γ	F, J, K, Q
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.889 ± 8			γ	F, J, K
7.4162 \pm 2+ 7 F, K, Q 7.4162 \pm 2+ 7 F, K, Q 7.932 \pm 2+ 7 F, K, Q 7.932 \pm 2+ 7 F, K 8.260 \pm 2+ 7 F, K 8.260 \pm 1/K 7 F, K 8.411 \pm 7 F, K, T 8.414 \pm 7 F, K, T 8.843 \pm 8 K 8.841 \pm 7 F, K, T 8.841 \pm 7 F, K, T 8.841 \pm 7 F, K, T 8.902 \pm 0 K 9.314 \pm 0 (3+) T = 1 7 9.379 \pm 0 2+ T = 1 7 F, K 9.379 \pm 0 2+ T = 1 7 F, K 9.41 \pm 10 (1±, 2+) 7 F, K 9.762 \pm 0 K K 10.85 \pm 0 K K 10.85 \pm 0 K K 10.85 \pm 0 1- Y	7.382 ± 8	$(1\pm 2^+)$		Ŷ	F, K, Q
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.002 ± 0 7.415 ± 8	2+		v	F, K, Q
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 708 8	(2 3) +		•	K
1.002 ± 0 2 j, k 8.280 ± 8 $(1\pm, 2\pm)$ 7 F, J, K 8.411 ± 8 7 F, K 8.411 ± 8 7 F, K 8.543 ± 8 3+ Y F, K, T 8.541 ± 10 Y F, K, T K 9.02 ± 10 K K K 9.167 ± 10 Y F, J, K, T K 9.314 ± 10 (3+) T = 1 Y F, J, K, T 9.314 ± 10 (1±, 2+) Y F, K 9.314 ± 10 (1±, 2+) Y F, K 9.40 ± ± 10 (1±, 2+) Y F, K 9.762 ± 10 (1±, 2+) Y F, K 9.322 ± 20 K K K 10.308 ± 20 K K K 10.308 ± 20 Y F K 10.308 ± 20 Y F K 10.308 ± 20 Y F K 11.29 ± 10 1 ⁻ Y C 11.40 ± 20 Y F F 11.51 ± 10 2 ⁺	7 039 4 8	9+		21	F, J, K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				r	J, K
0.305 ± 0 $(1-2)$ 7 F, K 8.411 ± 8 7 F, K K 8.543 ± 8 3^+ γ F, K, T 8.902 ± 10 K, T K, T 9.314 ± 10 $(3^+) T = 1$ γ F, J, K, T 9.314 ± 10 $(3^+) T = 1$ γ F, J, K, T 9.379 ± 10 $2^+ T = 1$ γ F, K 9.41 ± 14 K K 9.41 ± 14 K K 9.41 ± 14 K K 9.762 ± 10 $(1^\pm, 2^+)$ γ F, K 9.762 ± 10 $(1^\pm, 2^+)$ γ F, K 9.032 ± 20 K K K 10.308 ± 20 K K K 10.308 ± 20 K K K 10.71 ± 20 $(1^+, T = 1)$ γ F, K 10.91 ± 20 $1^ \gamma$ C 11.13 ± 20 $1^ \gamma$ C 11.13 ± 20 $1^ \gamma$ C	8 398 8	(1+2+)		<i>ور</i> م	F, J, K
0.341 ± 0 r K 8.543 ± 8 3^+ γ F, K, T 8.902 ± 10 K K 8.941 ± 10 K K 9.314 ± 10 $(3^+) T = 1$ γ F, J, K, T 9.314 ± 10 $(3^+) T = 1$ γ F, J, K, T 9.379 ± 10 $2^+ T = 1$ γ F, J, K, T 9.41 ± 14 K K K 9.41 ± 14 K K K 9.41 ± 14 K K K 9.700 ± 10 $(1^\pm, 2^+)$ γ F, K 9.700 ± 10 $(1^\pm, 2^+)$ γ F, K 9.700 ± 10 $(1^\pm, 2^+)$ γ F, K 9.032 ± 20 K K K 10.180 ± 20 K K K 10.375 ± 20 K K K 10.91 ± 20 $(1^+, T = 1)$ γ F 10.91 ± 20 $1^ \gamma$ C 11.13 ± 20 γ F F <	8.411	(1-, 2)		2	F, K
0.365 ± 8 3^+ γ F, K, T $8,587 \pm 8$ 3^+ γ F, K, T $8,902 \pm 10$ K K 9.167 ± 10 γ F, J, K, T 9.379 ± 10 2^+ $T = 1$ γ F, J, K, T 9.379 ± 10 2^+ $T = 1$ γ F, J, K, T 9.41 ± 14 K K K 9.762 ± 10 $(1\pm, 2^+)$ Y F 10.308 ± 20 K K K 10.308 ± 20 $(1^+, T = 1)$ Y	8543 ± 8			•	K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.587 L 8	3+		ν	F, K, T
6.302 ± 10 K 9.314 ± 10 (3^+) $T = 1$ Y F, J, K, T 9.314 ± 10 (2^+) $T = 1$ Y F, J, K, T 9.379 ± 10 2^+ $T = 1$ Y F, J, K, T 9.41 ± 14 Y F, J, K, T 9.491 ± 10 $(1^\pm, 2^+)$ Y F, K 9.702 ± 10 $(1^\pm, 2^+)$ Y F, K 9.762 ± 10 $(1^\pm, 2^+)$ Y F, K 9.932 ± 20 K K K 10.180 ± 20 K K K 10.308 ± 20 K K K 10.375 ± 20 Y F K 10.375 ± 20 Y F K 10.375 ± 20 Y F K 10.460 ± 50 Y F K 10.40 ± 20 Y F K 11.13 ± 20 1^+ , T^+ Y C 11.40 ± 20 Y F K 11.40 ± 20 2+ Y C 11.65 ± 10 2+ Y C <td>8 902 10</td> <td>0</td> <td></td> <td>,</td> <td>K, T</td>	8 902 10	0		,	K, T
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.94110				K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.041 ± 10 0.167 ± 10				К
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.314 ± 10	(3+) T - 1		3 4	F. J. K. T
9.41 ± 14 K 9.41 ± 10 $(1\pm, 2+)$ Y F, K 9.702 ± 10 $(1\pm, 2+)$ Y F, K 9.762 ± 10 $(1\pm, 2+)$ Y F, K 9.932 ± 20 K K 10.180 ± 20 K K 10.308 ± 20 K K 10.308 ± 20 K K 10.308 ± 20 Y F 10.308 ± 20 Y F 10.375 ± 20 Y F 10.31 ± 20 Y F 11.13 ± 20 Y F 11.13 ± 20 Y Y 11.41 ± 20 Y F 11.51 ± 10 2+ Y C 11.51 ± 10 2+ Y C 11.65 ± 10 2+ Y C 11.895 ± 3	9.379 ± 10	9+T = 1		y Y	F, J, K, T
0.41 ± 10 $(1\pm, 2\pm)$ γ F, K 9.700 ± 10 K K 9.762 ± 10 $(1\pm, 2\pm)$ γ F, K 9.932 ± 20 K K 10.180 ± 20 K K 10.273 ± 20 K K 10.375 ± 20 K K 10.375 ± 20 γ $F. K$ 11.31 ± 20 $(1\pm, 2\pm)$ γ C 11.13 ± 20 $1^ \gamma$ $C, N. O$ 11.40 ± 20 γ F γ 11.65 ± 10 2^+ γ C 11.65 ± 10 2^+ γ C, F 11.66 ± 10 2^+ γ C, F 11.797 ± 3	9.375 ± 10 9.41 ± 14			,	K
3.371 ± 10 $(1-, 2-)$ 7 7 9.700 ± 10 $(1\pm, 2+)$ 7 7 9.762 ± 10 $(1\pm, 2+)$ 7 7 9.332 ± 20 K K 10.180 ± 20 K K 10.273 ± 20 K K 10.375 ± 20 7 F 10.91 ± 20 $(1\pm, 2+)$ 7 F 11.13 ± 20 $1 7$ F 11.13 ± 20 $1 7$ 7 7 11.40 ± 20 $2+$ 7 7 7 11.58 ± 10 $3^ 7$ 7 7 11.66 ± 10 2^+ 7 7 7 11.78 ± 10	9.41 ± 10	(1+2+)		ν	F, K
9.762±10 $(1\pm, 2+)$ γ F, K 9.762±10 $(1\pm, 2+)$ γ F, K 10.180±20 K K 10.373±20 K K 10.308±20 Y F. K 10.308±20 Y F. K 10.375±20 Y F. K 10.375±20 Y F. K 10.71±20 $(1+, T=1)$ Y F 10.91±20 $(1\pm, 2+)$ Y C 11.13±20 Y F Y 11.13±20 Y F Y 11.13±20 Y Y C 11.40±20 1 ⁺ Y C 11.51±10 2 ⁺ Y C 11.55±10 2 ⁺ Y C 11.66±10 2 ⁺ Y C 11.78±10 Y F Y 11.864±3 Y F Y 11.895±3 4 ⁺ Y C, F 12.067±4 Y Y F 12.069±3 (1 ⁺) Y	9.701 ± 10	(1-, 2)		,	K
9.932 ± 20 K 10.180 ± 20 K 10.273 ± 20 K 10.308 ± 20 K 10.375 ± 20 Y 10.375 ± 20 (1 ⁺ , T = 1) 10.91 ± 20 (1 ⁺ , 2 ⁺) 11.13 ± 20 (1 ⁺ , 2 ⁺) 11.13 ± 20 1 ⁻ 11.29 ± 10 1 ⁻ 11.29 ± 10 1 ⁻ 11.51 ± 10 2 ⁺ 11.51 ± 10 2 ⁺ 11.65 ± 10 2 ⁺ 11.65 ± 10 2 ⁺ 11.78 ± 10 Y 11.78 ± 3 4 ⁺ 11.895 ± 3 4 ⁺ 11.971 ± 5 4 ⁺ 12.067 ± 3 2 ⁺ 12.069 ± 3 (1 ⁺) 12.069 ± 3 (1 ⁺) 12.171 ± 3 4 ⁺	9.760 ± 10	$(1\pm 2\pm)$		ν	F. K
10.180 \pm 20 K 10.273 \pm 20 K 10.308 \pm 20 K 10.308 \pm 20 K 10.375 \pm 20 Y 10.171 \pm 20 Y 10.180 \pm 20 Y 10.11 \pm 20 Y 11.13 \pm 20 Y 11.13 \pm 20 Y 11.13 \pm 20 Y 11.140 \pm 20 Y 11.151 \pm 10 2+ 11.51 \pm 10 2+ 11.51 \pm 10 2+ 11.65 \pm 10 2+ 11.65 \pm 10 2+ 11.78 \pm 10 Y 11.797 \pm 3 Y 11.864 \pm 3 Y 11.797 \pm 4+ Y 11.864 \pm 3 Y 11.971 \pm 4+ Y 12.007 \pm 4 Y 12.018 \pm 6 Y 12.069 \pm 3 (1+) 12.171 \pm 3 4+	9.702 ± 10 9.932 ± 20	(1-, 2)		,	ĸ
10.273 ± 20 K 10.308 ± 20 K 10.375 ± 20 Y F 10.60 ± 50 Y F 10.71 ± 20 $(1^+, T = 1)$ Y F 10.91 ± 20 $(1^\pm, 2^+)$ Y C 11.13 ± 20 Y F F 11.13 ± 20 Y F F 11.29 ± 10 1 ⁻ Y C 11.40 ± 20 Y F F 11.51 ± 10 2 ⁺ Y C 11.58 ± 10 3 ⁻ Y C 11.65 ± 10 2 ⁺ Y C 11.66 ± 10 2 ⁺ Y C 11.78 ± 10 2 ⁺ Y C 11.797 ± 3 Y F F 11.895 ± 3 4 ⁺ Y C, F $11.971 \pm \xi$ 4 ⁺ Y C, F 12.067 ± 3 2 ⁺ Y, \alpha C, F, I 12.069 ± 3 (1^+) Y F 12.171 ± 3 4 ⁺ Y F <td>10 180 20</td> <td></td> <td></td> <td></td> <td>К</td>	10 180 20				К
10.303 ± 20 K 10.375 ± 20 Y F 10.375 ± 20 Y F 10.01 ± 20 $(1^+, T = 1)$ Y F 10.71 ± 20 $(1^+, T = 1)$ Y F 10.91 ± 20 $(1^\pm, 2^+)$ Y C 11.13 ± 20 Y F 11.29 ± 10 1 ⁻ Y C, N. O 11.40 ± 20 Y F 11.51 ± 10 2 ⁺ Y C 11.51 ± 10 2 ⁺ Y C 11.55 ± 10 2 ⁺ Y C 11.65 ± 10 2 ⁺ Y C 11.66 ± 10 2 ⁺ Y C 11.78 ± 10 Y F T 11.864 ± 3 Y F T 11.895 ± 3 4 ⁺ Y C, F 11.971 ± 5 4 ⁺ Y C, F 12.067 ± 3 2 ⁺ Y F 12.069 ± 3 (1 ⁺) Y F 12.069 ± 3 (1 ⁺) Y F </td <td>10.73 ± 20</td> <td></td> <td></td> <td></td> <td>К</td>	10.73 ± 20				К
10.307 ± 20 γ F. K 10.60 ± 50 γ F 10.71 ± 20 $(1^+, T = 1)$ γ F 10.91 ± 20 $(1^\pm, 2^+)$ γ C 11.13 ± 20 γ F 11.29 ± 10 $1^ \gamma$ C, N. O 11.40 ± 20 $1^ \gamma$ C 11.51 ± 10 2^+ γ C 11.58 ± 10 $3^ \gamma$ C 11.65 ± 10 2^+ γ C 11.66 ± 10 2^+ γ C 11.68 ± 10 2^+ γ C 11.78 ± 10 γ γ F 11.864 ± 3 γ γ F 11.864 ± 3 4^+ γ C, F $11.971 \pm \xi$ 4^+ γ C, F 12.007 ± 4 γ γ Γ 12.069 ± 3 (1^+) γ F 12.069 ± 3 (1^+) γ F	10.210 ± 20 10.308 ± 20				K
10.60 ± 50 γ F 10.71 ± 20 $(1^+, T = 1)$ γ F 10.91 ± 20 $(1^\pm, 2^+)$ γ C 11.13 ± 20 γ F 11.29 ± 10 $1^ \gamma$ C , N. O 11.40 ± 20 γ F 11.51 ± 10 2^+ γ C 11.58 ± 10 $3^ \gamma$ C 11.65 ± 10 2^+ γ C 11.65 ± 10 2^+ γ C 11.66 ± 10 2^+ γ C 11.78 ± 10 γ C γ F 11.864 ± 3 γ F γ C 11.895 ± 3 4^+ γ C , F F 11.895 ± 3 4^+ γ C , F F 12.007 ± 4 γ C γ C 12.069 ± 3 (1^+) γ F T 12.069 ± 3 (1^+) γ F T	10.300 ± 20 10.375 ± 20			ν	F. K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.60 ± 50			v v	F
10.91 ± 20 $(1 \pm 2 \pm)$ γ C 11.13 ± 20 γ F 11.13 ± 20 γ F 11.29 ± 10 $1^ \gamma$ C, N. O 11.40 ± 20 γ F 11.51 ± 10 2^+ γ C 11.55 ± 10 2^+ γ C 11.65 ± 10 2^+ γ C 11.66 ± 10 2^+ γ C 11.78 ± 10 γ C 11.797 ± 3 γ F 11.895 ± 3 4^+ γ C, F $11.971 \pm \xi$ 4^+ γ C, F 12.007 ± 4 γ F γ, α C, F, I 12.069 ± 3 (1^+) γ F I 12.171 ± 3 4^+ γ F F	10.00 ± 00 10.71 ± 20	(1 + T = 1)		v	F
11.13 ± 20 γ F 11.13 ± 20 γ F 11.29 ± 10 1 ⁻ γ C, N. O 11.40 ± 20 γ F 11.51 ± 10 2 ⁺ γ C 11.53 ± 10 3 ⁻ γ C 11.65 ± 10 2 ⁺ γ C 11.65 ± 10 2 ⁺ γ C 11.66 ± 10 2 ⁺ γ C 11.66 ± 10 2 ⁺ γ C 11.78 ± 10 γ C γ 11.78 ± 10 γ C γ F 11.864 ± 3 γ F γ C, F 11.895 ± 3 4^+ γ C, F F 12.018 ϵ γ C γ C 12.069 3 (1^+) γ F F	10.91 ± 20	$(1\pm 2^+)$		v	C
11.29 ± 10 $1^ \gamma$ $C, N. O$ 11.40 ± 20 γ F 11.51 ± 10 2^+ γ C 11.58 ± 10 $3^ \gamma$ C 11.65 ± 10 2^+ γ C 11.66 ± 10 2^+ γ C 11.66 ± 10 2^+ γ C 11.78 ± 10 γ C 11.78 ± 10 γ C 11.797 ± 3 γ F 11.895 ± 3 4^+ γ C, F $11.971 \pm \xi$ 4^+ γ C, F 12.007 ± 4 γ F 12.067 ± 3 2^+ γ, α C, F, I 12.069 ± 3 (1^+) γ F 12.171 ± 3 4^+ γ F	11.13 ± 20	(1, 1, 2,)		v	F
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.29 ± 10	1-		v	C. N. O
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.40 ± 20	-		v	F
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.51 + 10	2^{+}		v	Ċ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.58 ± 10	3-		v	č
11.66 ± 10 2^+ γ C 11.78 ± 10 γ C 11.797 ± 3 γ F 11.864 ± 3 γ F 11.895 ± 3 4^+ γ C, F 11.971 ± 10 4^+ γ C, F 11.971 ± 100 4^+ γ C, F 11.0071 ± 100 4^+ γ C, F 12.007 ± 4 γ C 12.067 ± 3 2^+ γ, α C, F, I 12.069 ± 3 (1^+) γ F 12.171 ± 3 4^+ γ F	11.65 ± 10	2+		v	Ċ
11.78 ± 10 γ C 11.797 ± 3 γ F 11.864 ± 3 γ F 11.895 ± 3 4^+ γ C, F $11.971 \pm 12.007 \pm 4$ γ C, F 12.007 ± 4 γ C 12.067 ± 3 2^+ γ , α C, F, I 12.069 ± 3 (1^+) γ F 12.171 ± 3 4^+ γ F	11.66 + 10	2+		v	Ċ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.78 ± 10			้า	Č
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.797 + 3			v	F
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.864 ± 3			Ŷ	F
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.895 + 3	4+		~	- C. F
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.971 + 2	4+		r ny	C. F
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.007 + 4	-		2	-, - F
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.018 + 6			r Ji	Ċ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.067 ± 3	2^+		r nr cr	C F T
12.171 ± 3 4+ γ F	12.069 + 3	(1+)		y, u. nj	F
, .	12.171 ± 3	4+		2	F

114

.

$E_{\mathbf{x}}$ (MeV \pm keV)	<i>J</i> ^π , <i>T</i>	$ au_{ m m}$ or $arGamma$	Decay	Reactions
12.179 ± 7	1-		γ	С
12.190 ± 3	3-		Ŷ	C, F, I
12.212 ± 3	2		γ	F
12.234 ± 3	(3, 4)+		Ŷ	C, F
12.285 ± 3	2+		γ, α	C, F, I
12.290 ± 3	3+		Ŷ	F
$12.296\pm~3$	2+		Ŷ	C , F
12.313 ± 3	2^+		γ	F
12.320 ± 3	4+		γ	F
12.326 ± 3	1+	$9.0\pm$ 0.8 eV	· γ	F
12.434 ± 4	2+		γ, α	C, F, I
12.469 ± 3	4+		γ, α	C, F, I
12.484 ± 3	3-	$340 \pm 110 eV$	γ, α	F, I
12.536 ± 3	3+	$80 \pm 40 eV$	2	F
$12.546\pm~3$	4+		γ, α	C, F, I
12.568 ± 3			2	F
12.630 ± 3			γ	F
12.638 ± 3			2	F
12.658 ± 3		$800 \pm 80 eV$	· ~	F
12.710 ± 3			, 2	F
12.721 ± 3	2+	$710 \pm 130 eV$	γ, p, χ	C, D, F, I
12.736 ± 3		$6.3\pm$ 0.4 keV	2	F
12.749 ± 3			γ. α	F. I
12.796 ± 3			2. X	F,
12.809 ± 4	0+		γ, D, χ	D, F, I
12.849 ± 3	4+		γ. α	F, I
12.860 ± 3			v	F
12.894 + 3			v	F
12.895 + 3	2+	$\approx 1.1 \text{ keV}$	ν. υ. α	D. F. 1
12.911 + 3		700 - 50 eV	γ. 1	F
12.918 + 3	$(2^+, 3^-)$	290 - 70 eV	ν. D. α	D, F, I
12.97	0+	••••••••••••••••••••••••••••••••••••••	ρ, α	D
13.04-13.25: 7	levels, see table	28.10 and reaction	r,	D
13.26-14.26:15	levels, see react	ion		H

TABLE 28.8 (Continued)

E. ${}^{25}Mg(\alpha, n){}^{28}Si$

 $Q_{\rm m} = 2\,655.4 \pm 3.4$

See Na 53a, Cs 61.

F. $^{27}Al(p, \gamma)^{28}Si$ $Q_m = 11580.6 \pm 3.3$

Precision measurements (0.2% or better) of resonance energies are given in Br 47a ($E_p = 500-1400$ keV), Hu 53 ($E_p < 600$ keV), Ku 59a ($E_p \ll 800$ keV), An 59 ($E_p = 500-1400$ keV), Da 60b (six selected resonances in the $E_p = 600-1300$ keV region). Selected "best" values are presented in table 28.11.

P. M. ENDT AND C. VAN DER LEUN

Fig. 28.3. Energy 1 vels of ²⁸Si; for γ decay see also fig. 28.4.

²⁸Si

TABLE	28.9
-------	------

Levels in ²⁸Si from the ²⁴Mg(α , γ)²⁸Si reaction (Sm 60a, Sm 6Ja)

E_{α} (MeV \pm keV)	²⁸ Si* (MeV)	$E_{\mathbf{p}}$ (keV) of corresponding ²⁷ Al+p resonance	$(2J+1)\Gamma_{\alpha}\Gamma_{\gamma}/\Gamma^{a}$ (eV)	$\Gamma_{\gamma_0}/\Gamma_{\gamma_1}$	$\begin{array}{c} ({\rm E2/M1})\\ {\rm ampl.}\\ {\rm ratio \ for \ }\gamma_1 \end{array}$	J¤
1.534 ± 3	11.301		0.11	2.5		1-
1.791 ± 4	11.521		0.065	< 0.05	-3.2 - 0.5	2+
1.871 ± 4	11.590		0.05	< 0.05		3 -
1.956 ± 4	11.663		0.075	0.5		2+
1.971 ± 4	11.675		0.30	< 0.08	0.53 ± 0.05	2+
2.100 ± 5	11.786		0.045	< 0.05		
2.241 ± 5	11.907	326	0.025			
2.329 ± 5	11.982	405	0.05			
2.384 ± 5	12.029		0.035			
2.442 ± 5	12.079	504	0.40	6		2+
$2.572\pm\!6$	12.191		0.09]-
2.586 ± 6	12.202	632	0.18	< 0.10		3-
2.641 ± 6	12.250	(678)	0.38	< 0.05		4+
2.698 ± 6	12.299	731	0.05	< 0.15	0.60 - 0.05	2+
2.711 ± 6	12.309	(742)	0.035	< 0.20		
2.876 ± 6	12.451	884	1.25	10		2+
2.916 ± 6	12.486	922	2.0	< 0.07		4 -
3.008 ± 7	12.564	1001	0.68	< 0.05		4+
3.213 - 7	12.740	1183	5.3	3		2+

^a If the $\Gamma_{\gamma_0}/\Gamma_{\gamma_1}$ ratio is indicated, the radiation width in column four is taken equal to $\Gamma_{\gamma_0} + \Gamma_{\gamma_1}$. At the $E_{\alpha} = 2.24$ and 2.33 MeV resonances, however, the main decay proceeds to the 4.61 MeV ²⁸Si level; at the 2.38 MeV resonance it proceeds to the 6.88–6.89 MeV doublet: only those transitions are included in Γ_{γ} . At the 2.57 MeV resonance, γ_1 is obscured by a strong cascade through a new 10.91 ± 0.02 MeV level; γ_0 and this cascade are included in Γ_{γ} .

TABLE 28.10

Resonances in the ²⁴Mg(α , p)²⁷Al and ²⁴Mg(α , α)²⁴Mg reactions (Ka 52)

E_{α}	²⁸ Si*	Reaction		T
(MeV)	(MeV)	(α , p)	(α, α)	$\int n$
3.214	12.741	yes	yes	
3.31	12.83	weak	yes	0+
3.420	12.917	yes	yes	2+
3.448	12.941	yes	-	
3.502	12.988	yes	yes	0+
3.58	13.06	·	yes	(double?)
3.65 ^a	13.11	weak	-	
3.660	13.123	yes		
3.737	13.189	•	weak	
3.75ª	13.20	weak		
3.80	13.24		yes	(double)
3.827	13.266	yes	ves	· · · /

^a Estimated from published yield curve.

The Br 47a values are low compared to An 59, by an amount increasing from 2.5 keV at $E_p = 600$ keV to 7.5 keV at $E_p = 1400$ keV. The values in Ku 59a agree well with those in Hu 53 (except at the 442 keV resonance where the difference is 7.7 keV), and very well with those in An 59. The values in Da 60b agree very well with those in An 59 if the calibration energy in An 59 is changed from 990.8 keV to 992.0 keV (see below). See also An 57.

The strong and narrow resonance at 992 keV is particularly suited for generator energy calibrations. The weighted mean of five precision measurements is 992.0 ± 0.5 keV (Ma 61d). Recent measurements yield 992.2 ± 0.5 keV (Be 61f), 991.86 ± 0.10 keV (Ry 61), in good agreement with the Ma 61d average.

The spin and parity assignments in table 28.11 are all from γ -ray spectra, γ -ray angular distribution, and $\gamma - \gamma$ angular correlation measurements. The parity of the 654 keV resonance has been determined as odd by a γ -ray polarization measurement (Hu 56). For the γ spectrum at the $E_p = 992$ keV resonance see Go 57; also Ha 55, Br 59b, An 61d.

At the $E_p = 504$ and 773 keV resonances γ -ray resonant absorption measurements have been performed. The measured widths of the ground-state transitions are ≤ 0.35 eV (Sm 59) and 5.2 ± 0.5 eV (Sm 58) respectively; the recent increase in the (p, γ) yield values (No 61b) should also increase these numbers.

The γ -ray branching of fifteen ²⁸Si lower levels and of sixteen resonance levels is given in fig. 28.4. The data mainly are from En 60 and Ok 60, in good agreement with data in Ru 54.

At the 1117 keV resonance, the γ decay occurs (intensity > 60%) to new ²⁸Si levels at 10.60 ± 0.05, 11.13 ± 0.02, and 11.40 ± 0.02 MeV (No 60). From the γ decay at the 742 keV resonance a new level has been found at 10.71±0.02 MeV (En 60).

From γ -ray angular distribution and $\gamma - \gamma$ angular correlation measurements some J^{π} values of lower levels have been determined. To the levels at 4.61 MeV, the doublet at 6.88 MeV, and the 8.59 MeV level, $J^{\pi} = 4(^+)$, $(2^{\pm} \text{ or } 4^+)$, and 3^+ were assigned, respectively (Ok 60). The 4^+ and 3^+ assignments to the 4.61 and 8.59 MeV levels, respectively, are also given in Va 61c. In En 60, He 61, the 4^+ assignment to the 4.61 MeV level is confirmed, and 3^+ , 2^+ , 2^+ , and 2^- is assigned to the levels at 6.27, 7.42, 7.93, and 9.38 MeV, respectively.

Seventeen (p, γ) resonances in the $E_p = 1.4-2.6$ MeV region are given in Pl 40. A γ -ray yield curve up to $E_p = 4.1$ MeV is given in Sh 51; resonance energies for 64 resonances in the $E_p = 1.4-4.1$ MeV region have been computed from this curve (Al 50, En 54a). See also Go 54, Pa 54, Ma 57a. The yields of γ_0 and γ_1 have also been measured in the $E_p = 5-7.7$ MeV region. They show broad but pronounced resonances at $E_p = (6.1)$, 6.63, 6.87 (strong), 7.20, and (7.7) MeV (Ge 59). They have also been measured in the $E_p = 4.0-10.4$ MeV region (Go 61b), in the 5-13 MeV region (Ga 61b), and in the 7.5-14.7 MeV region (Ki 61).

	Lev	ets in $-Si$ nom $-Ai(p, \gamma)$		
E_n^a	28Si*	טין	$(2I+1)\Gamma_{r}\Gamma_{u}/\Gamma^{c}$	
(keV)	(MeV)	(eV)	(eV)	J^{π}
224.5 ± 0.7	11.797		0.00094	
294.1 ± 0.4	11.864		0.0042	(4 ⁻) i
326.0 ± 0.4	11.895		0.028	4(-)d, i
404.9 ± 0.4	11.971		0.15	4-d, f, i
442 ± 4	12.007		≈ 0.04	
504.5 ± 0.3	12.067	< 200	0.95	2+e, f, g
506.5 ± 0.3	12.069	< 170	0.95	(1+)e, g
612.4 ± 1.0	12.171	< 1000	0.11	4+e
632.3 ± 0.3	12.190	< 60	5.4	3-e, f, i
654.3 ± 0.3	12.212	< 60	3.2	2+e, $(2-)f$
677.6 ± 1.0	12.234	< 1000	1.0	3+e, f
730.6 - 0.3	12.285	< 160	4.0	2+e
735.6 ± 0.3	12.290	< 90	4.3	3+e
741.7 - 0.7	12.296	< 1000	0.4	2+e
759.4 -0.3	12.313	< 60	3.5	<u>2</u> +e
766.3 ± 0.3	12.320	< 80	4.1	4+e
772.8 ± 0.3	12.326	9.0 + 0.81	10.2 ± 3.0]+e
884 ± 2	12.434	< 1000	1.0	
921.7 ± 0.3	12.469	< 190	4.3	
936.3 - 0.3	12.484	340 - 110	4	
992.0 - 0.5	12.536	80 40	40	3+h
1001.5 ± 0.5	12.546	< 1000	1.0	
1023.9 - 0.3	12.568	< 240	9	
1088.6 0.3	12.630	< 110	1.0	
1096.4 0.5	12.638	< 1000	1.0	
1117.2 0.3	12.658	800 80	6.5	
1170.6 -0.4	12.710	< 250	2	
1182.6 ± 0.4	12.721	710 + 130	4.7 ± 1.5	
1198.0 ± 0.6	12.736	6300 +400	9	
1211.6 ± 0.4	12.749	< 210	10	
1260.7 ± 0.4	12.796	< 200	10	
1274 - 2	12.809	< 1000	1.0	
1315.2 ± 0.4	12.849	< 160	10	
1326.6 ± 0.4	12.860	< 160	10	
1362.0 ± 0.4	12.894	< 120	10	
1363.2 ± 0.4	12.895	≈ 1100	pprox 0.2	
1379.6 ± 0.4	12.911	700 ± 50	65	
1386.7 - 0.4	12.918	290 + 70	50	

TABLE 28.11 Levels in ²⁸Si from ²⁷Al(p, γ)²⁸Si

^a Weighted average of values in Hu 53 and Ku 59a for $E_p < 500$ keV; An 59 for $E_p > 500$ keV, except for $E_p = 992$ keV (Ma 61d, see text), and $E_p = 1363$ keV (An 61a). For An 59 energy calibration, see text.

^b All widths from An 59, except for the resonances at 773 keV (Sm 58), 991 keV (see Ma 61d), and 1363 keV (An 61a).

^c For $E_p = 224$, 294, 326, and 405 keV absolute yields given in Ok 60; for $E_p = 442$ keV relative yields in Ta 46, Br 47a, matched to 1.9 eV for the 504+506 keV resonances; for $E_p = 500-800$ keV relative yields in En 60, matched to absolute yield at $E_p = 773$ keV given in Sm 58 and rece: 'y corrected in No 61b; for $E_p > 800$ keV from relative yields in No 61 matched to 10.2 eV t $E_p = 773$ keV, except for the absolute yield at $E_p = 1183$ keV in No 61b. d Ok 60. e En 60, i.e 61. f Ru 54. g Sm 60. h Go 57. Va 61c.

¹ The recent correction (No 61b) to the Sm 58 yield measurement should also increase this number.

P. M. ENDT AND C. VAN DER LEUN

Fig. 28.4. Gamma-ray branchings of ²⁸Si levels. The data are from En 60, except for the branching at the 4.97 MeV level (Co 61d), the mixing ratio of the 6.27 \rightarrow 1.77 MeV transition (Br 61d), and the branching of the four resonances in the $E_{\rm p}=225-405~{\rm keV}$ region (Ok 60).

28 Si

In the latter work indications are found for giant resonance peaks at $E_p = 8.75$ and 10.13 MeV. Observation of giant resonance splitting, also in Ok 60b.

G. ²⁷Al(p, n)²⁷Si
$$Q_m = -5598 \pm 8$$
 $E_h = 11580.6 \pm 3.3$

Sharp resonances in the neutron yield have been observed up to several MeV above the threshold (Br 59f, Go 61b). Broad resonances in the ²⁷Si activity yield were found at $E_p = 6.17$ and 6.37 MeV (Bl 51).

For threshold determinations, see ²⁷Si.

H.
$${}^{27}Al(p, p'){}^{27}Al$$

 $E_{\rm h} = 11580.6 \pm 3.3$

28Si

121

Yield curves for elastic scattering in the $E_p = 1.4-4.1$ MeV region, and for inelastic scattering to the ²⁷Al 0.84 and 1.01 MeV levels in the $E_p = 2.3-2.6$ MeV region are given in Sh 51.

The $I(90^{\circ})/I(0^{\circ})$ yield ratio of the 0.84 and 1.01 MeV γ rays has been measured at the $E_{\rm p} = 1.74$, 1.77, 1.82, 1.94, 1.99, 2.13, 2.34, 2.39, 2.43, 2.47, 2.51, 2.56, 2.60, 2.70, and 2.78 MeV resonances (Al 60b). See also Me 60c. For non-resonance information, see ²⁷Al.

I.
$$^{27}\text{Al}(p, \alpha)^{24}\text{Mg}$$
 $Q_{\rm m} = 1594.5 \pm 1.1$ $E_{\rm b} = 11580.6 \pm 3.3$

Yields measured in the $E_p = 500-1400$ keV region are given in table 28.12. The spin assignments in An 61a are from α -particle angular distribution measurements. See also Ru 53 for the $E_p = 500-800$ keV region. Yield curves for the $E_p = 0.6-4.1$ MeV region, both for α_0 and for α_1 , are given in Sh 51. Yield curves up to $E_p = 12$ MeV, Ad 61a.

For non-resonance data, see ²⁴Mg.

TABLE 28.12

Levels in ²⁸Si from the ²⁷Al(p, α_0)²⁴Mg reaction

		-	•. •			
Ep	²⁸ Si*	$(2J+1) \Gamma_{\rm p}\Gamma_{\alpha}/\Gamma$ (eV)		$(2J+1) \Gamma_{\rm p} \Gamma_{\alpha} / \Gamma$ (eV)		Jπ
(keV)	(MeV)	Ku 60g	An 61a	An 61a		
504	12.067	0.8				
632	12.190	2.6				
731	12.285	3.1	5.9			
884	12.434		10			
922	12.469		4			
936	12.484		65	3-		
1001	12.546		2.4			
1183	12.721		940	2+		
1212	12.749		4.4			
1261	12.796		1.7			
1274	12.809		3.4			
1315	12.849		35	4+		
1363	12.895		1640	(2+, 3-)		
1387	12.918		206	(2+, 3-)		

$$I_{m} = 9355.9 \pm 3.3$$

Results from angular distribution measurements are given in table 28.13. At $E_{\gamma} = 4.6$ MeV, the following γ -ray energies have been measured with a magnetic pair spectrometer: $E_{\gamma} = 6.9 \pm 0.1$, 7.41 ± 0.05 , 7.58 ± 0.05 . 7.94 ± 0.03 , 8.31 ± 0.03 , 8.78 ± 0.03 , 9.11 ± 0.03 , 9.49 ± 0.07 , 9.91 ± 0.07 , and 10.8 ± 0.2 MeV. The assignment to the ²⁷Al(d, n)²⁸Si reaction is not certain (Be 55). See also Ek 60.

²⁸ 5i* ^a (MeV)	l _p b	$rac{(2J+1) { heta_p}^{2\mathrm{b}}}{ imes 10^3}$	∕ _p c	$(2J+1)\theta_{p}^{2}$ relative
0	2	39	2	1
1.77	0	6	0	0.37
6.27)		0	0.35
6.88	} 0		1.	0.90
6.89)		1	0.30
7.93	0	28	0	0.36
8.26)	
8.33	יין			
8.54				
8.59			J	
9.31	ام	910	10	1.95
9.38	ju	310	Ju	1.20

TABLE 28.13 Levels in ²⁸Si from the ²⁷Al(d, n)²⁸Si reaction

^a Excitation energies are from table 28.8. The identification of neutron groups given in Ca 55 may be in doubt. See also Ru 56.

^b Ca 55, Ma 60d; $E_{\rm d} = 9.0$ MeV; neutron detection with a triple ionization chamber.

^c Ru 57, Ma 60d; $E_d = 2.2$ and 6.0 MeV; neutron detection with nuclear emulsions. More groups have been observed, which had either bad statistics, or could not be fitted with any l_p value in stripping analysis.

K.
$${}^{27}\text{Al}({}^{3}\text{He, d}){}^{28}\text{Si}$$
 $Q_{m} = 6087.5 \pm 3.3$

Results from angular distribution measurements are given in table 28.14. This reaction has provided the most complete survey of ²⁸Si levels below $E_x = 10.4$ MeV.

L.
$${}^{27}\text{Al}(\alpha, t){}^{28}\text{Si}$$
 $Q_m = -8232.1 \pm 3.4$

The differential cross section has been measured for groups t_0 and t_1 at $E_z = 43$ MeV (Wa 57a, Go 60a, Go 60e).

M.
$$^{28}\text{Al}(\beta^{-})^{28}\text{Si}$$
 $Q_{\rm m} = 4\,639.5\pm4.2$
See ^{28}Al .

N. ${}^{28}Si(\gamma, \gamma){}^{28}Si$

Discrete γ rays have been observed in the scattered radiation from Si samples irradiated with betatron or linear accelerator bremsstrahlung; see table 28.15. The threshold determination (To 60) proves that the two γ rays

²⁸Si

TABLE 28.14

	Hi 60da		Fo 60 ^t)
$\frac{E_{\rm x}(^{28}{\rm Si})}{({\rm MeV}\pm{\rm keV})}$	l _p	$\frac{(2J+1)\theta_{p}^{2}}{\times 10^{3}}$	$\frac{E_{\mathbf{x}}^{(28}\text{Si})}{(\text{MeV}\pm\text{keV})}$	lp
4.617 (datum)	2	15	4.617 (datum)	
4.975 ± 8			4.979 ± 15	
6.276 ± 8	0	21	6.272 ± 15	0
6.880 ± 8	2 or 3		6.880 ± 15	3
6.889 ± 8	$\int or 2+3$			
7.382 ± 8			7.392 ± 15	
7.415 ± 8				
7.798 ± 8	0	26	$\textbf{7.807} \pm \textbf{15}$	3
7.932 ± 8	0	24	7.948 ± 15	
$8.260\pm$ 8	(2 or 3)			
8.328 + 8				
8.411 ± 8	(3)	(14)		
8.543 ± 8	weak			
8.537 ± 8	0	140		
8.902 ± 10				•
8.941 ± 10	_			
9.167 <u>+</u> 10	weak			
9.314 ±10	0	220 c		
9.379 - 10	0	91c		
9.41 ± 14				
9.491 410	(2 or 3)			
9.700 ± 10	(3)	(22)		
9.762 ± 10	(2)	(13)		
9.932 - 20				
10.180 -20				
10.273 -20				

^a $E(^{3}\text{He} = 5.7 \text{ and } 9.2 \text{ MeV};$ magnetic analysis.

^b $E(^{3}\text{He}) = 5.2 \text{ MeV}$; magnetic analysis.

^c Comparison with reduced widths observed in the ²⁷Al(d, p)²⁸Al reaction makes it probable that the 9.31 and 9.38 MeV states are the $T_z = 0$, T = 1 analogs of the ²⁸Al ground-state doublet, with $J = 3^+$ and 2^+ , respectively.

Nuclear fluorescence radiation from the ${}^{28}\text{Si}(\gamma, \gamma){}^{28}\text{Si}$ reaction

	Bu 61c	Se 60	То 60
E ₂₀ (MeV)	11.2 ± 0.05^{d}	11.2	11.40 ± 0.06 ^B
E_{ν_1} (MeV)		9.4	
Γ_{v_a} (eV)	115 ±30 ^ь		£.9 ±0.9℃
$\Gamma_{\gamma_{*}}^{\prime}$ (eV)	65 ± 30^{b}		
$\Gamma^{\prime 1}$ (eV)	330 ± 70^{b}		

^a From a threshold determination.

^b From self-absorption measurements.

^c From self-absorption measurements, assuming $\Gamma_{\gamma_0} = \Gamma$. ^d The γ_0 angular distribution is consistent with dipole radiation.

are transitions to ${}^{28}Si(0)$ and (1) from an 11.3 MeV ${}^{28}Si$ level. Energy, spin, and branching ratio suggest that the level can be identified with the 11.29 MeV 1-state observed from the ${}^{24}Mg(\alpha, \gamma){}^{28}Si$ reaction (table 28.9). For this level, see also reaction O.

With the same method the mean life of ${}^{28}Si(1)$ has been measured as 1.3×10^{-12} sec (Bo 61); the results from different methods are compared in table 28.17.

For other (γ, γ) work see also ²⁸Al, reaction A, and ²⁸Si, reaction F.

O. ²⁸Si(e, e')²⁸Si

From a measurement of the differential cross section for inelastic scattering of 187 MeV electrons the mean life of ${}^{28}Si(1)$ has been determined as $(6\pm1.5)\times10^{-13}$ sec (He 56); see table 28.17 for comparison with other measurements.

At $E_e = 40$ MeV the spectra of inelastically scattered electrons at $\vartheta = 132^{\circ}$ and 160° show a peak corresponding to $E_x = 11.6$ MeV, and a broad peak corresponding to the giant resonance at $E_x = 20$ MeV. The 11.6 MeV level has $\Gamma_{\gamma} = 1030^{+310}_{-210}$ eV (for E1 excitation) or 47^{+14}_{-9} eV (for M1 excitation) (Ba 60g). For this level, see also reaction N.

P. ${}^{28}Si(n, n'){}^{28}Si$

The only γ ray from inelastic neutron scattering (E_n up to 3.9 MeV) on natural Si, which can be assigned to ²⁸Si has an energy of $E_{\gamma} = 1.78 \pm 0.02$ MeV (Ro 55a, An 60d, Li 61). For the theory of inelastic neutron scattering on ²⁸Si, see Ma 59f.

Elastic scattering, La 61.

For resonances, see ²⁹Si.

Q. ²⁸Si(p, p')²⁸Si

Levels in ²⁸Si observed by magnetic analysis of inelastically scattered protons are given in table 28.16. See also Ty 58.

The γ decay of the levels at 4.61, 4.97, and 6.27 MeV mainly occurs through ²⁸Si(1), except for a $(8\pm4)\%$ 6.27 \rightarrow 4.61 MeV branch (Co 61d, see fig. 23.4).

Levels in ²⁸ Si from the ²⁸ Si(p, p') ²⁸ Si reaction			
Reference: E _p (MeV):	Br 54b 5.6-8.4	Wh 60a 7.5–8.6	Co 61b 10.0–12.3
$E_{\mathbf{x}}$ (MeV \pm keV):	1.777±10	$\begin{array}{c} 1.775 \pm 6 \\ 4.614 \pm 6 \\ 4.975 \pm 6 \\ 6.270 \pm 0 \end{array}$	$\begin{array}{r} 1.761 \pm \ 9\\ 4.602 \pm 16\\ 4.960 \pm 17\\ 6.242 \pm 21\\ 6.867 \pm 23\\ 7.359 \pm 25\\ 7.390 \pm 24\end{array}$

TABLE 28.16

²⁸Si

From $\gamma - \gamma$ angular correlation measurements spine are determined as I = 4, 0. and 3, respectively. The $6.27 \rightarrow 1.77 \text{ MeV} 3 \rightarrow 2^+ \text{ decay has a quadrupole/dipole}$ amplitude ratio of $x = -0.14 \pm 0.07$ (Br 60e, Go 60c, Br 61d).

Differential cross sections for elastic and inelastic scattering have been measured at many proton energies in the $E_p = 2.2-14.2$ MeV range, Co 57a, Gr 58a, Ok 58, Ya 58a, Od 59, Od 60, Ta 61. The p'- γ ($E_{\nu} = 1.77$ MeV) angular correlation (Bo 60e, Ha 60b, Ta 61), and the polarization of elastically scattered protons (So 58) have also been measured. For theoretical remarks, see Me 57a, Ma 59f. See also Sh 58, Wa 60c.

For resonances, see ²⁹P

R. ²⁸Si(d, d')²⁸Si

For the differential cross section of 8.9 MeV deuterons, see Hi 57b. For theoretical remarks. El 60.

S. $^{28}Si + heavy ions$ (14N, 16O, 20Ne)

From heavy ion Coulomb excitation the mean life of ²⁸Si(1) has been measured as 9.4×10^{-13} sec (Go 60d), and $(5\pm 2) \times 10^{-13}$ sec (An 60). For a comparison with the results from other methods, see table 28.17.

TABLE 28.17

Mean life determinations of $^{28}Si^* = 1.77$ MeV			
Method	$ au_{ m m}(10^{-13}~{ m sec})$	Reference	
e scatt. cross section	6 ± 1.5	He 56	
res. fluorescence	7.3 ± 2.2	Of 59	
Coul. e :cit. (¹⁴ N, ²⁰ Ne)	5 ± 2	An 60	
Coul. excit. (160)	9.4	Go 60d	
res. fluorescence	13	Bo 61	

 $^{28}P(\beta^+)^{28}Si$ T.

 $Q_{\rm m} = 13800 \pm 300$

See 28P.

U.	²⁹ Si(y, n) ²⁸ Si	$Q_{\rm m} = -$	-8477.7 ± 3.4
F	or threshold and cross sectio	$n \sin 5h 51a$	Ka 54

For threshold and cross section, see Sh 51a, Ka 54.

 $Q_{\rm m} = 1916.8 \pm 2.8$ V. $^{31}P(p, \alpha)^{28}Si$

The ground-state Q value has been measured as 1.909 ± 0.010 MeV (Va 52a), 1.911 ± 0.005 MeV (Va 56), and 1.909 ± 0.010 MeV (En 57a). Levels in 128Si have been observed at 1.771 ± 0.008 and 4.617 ± 0.008 MeV (En 57a). For resonances, see ³²S.

W. Not reported:

²⁶ Mg(³ He. n) ²⁸ Si	$Q_{\rm m} = 12135.1 \pm 3.5$
²⁹ Si(p, d) ²⁸ Si	$Q_{\rm m} = -6253.0 \pm 3.4$

P. M. ENDT AND C. VAN DER LEUN

²⁹ Si(d, t) ²⁸ Si	$Q_{\rm m} =$	-2220.1 ± 3.4
$^{29}\text{Si}(^{3}\text{He}, \alpha)^{28}\text{Si}$	$Q_{\rm m} =$	12099.5 ± 3.4
³⁰ Si(p, t) ²⁸ Si	$Q_{\rm m} =$	-10609.6 ± 4.5

REMARKS

For a computation of the excitation energy of ²⁸Si(1) from those of the lowest three ²⁹Si states, see La 57a.

28P

(Not illustrated; see fig. 28.3, p. 116)

A.
$${}^{28}P(\beta^+){}^{28}Si$$
 $Q_m = 13800 \pm 300$

The half-life, averaged from two measurements (Gl 55, Br 54a) in good mutual agreement, is 0.285 ± 0.007 sec.

The β^+ decay is complicated. The highest energy branch proceeds to ²⁸Si(1) with an end point of 10.6 ± 0.4 MeV, intensity (47 ± 15) %, log ft = 4.9. No delayed α particles have been found (Gl 55). Observed γ rays are given in table 28.18. Most of the high energy γ rays cannot be fitted uniquely. Some of the β^+ decay might occur to the 9.31-9.38 MeV doublet in ²⁸Si, which is then deexcited through ²⁸Si(1). The super-allowed character of such a β^+ transition (log ft = 3.4-3.7) would be in accordance with the T = 1 assignment to this doublet (Bo 55, Wi 56a, Hi 60d).

$$Q_{\rm m} = -14580 \pm 300$$

From ²⁸P yield measurements the threshold has been determined at

Gl a	55 Br 54a		Probable transition in ²⁸ S
E_{γ} (MeV)	Rel. int.	E_{γ} (MeV)	$(E_{\mathbf{x}} \text{ in MeV})$
1.79 ± 0.02	0.75	$1.78{\pm}0.04$	$1.77 \rightarrow 0$
(2.6 ± 0.2)		2.67 ± 0.08	4.61 ightarrow 1.77
		(3.01 ± 0.07)	
		(4.26 ± 0.12)	
4.44 ± 0.05	0.10	4.63 ± 0.10	$6.27 \rightarrow 1.77$
(4.93 ± 0.08)		4.89 ± 0.09	
		(5.16 ± 0.12)	
		(5.46 ± 0.10)	
6.14 ± 0.10	0.10	,	
6.70 ± 0.12	0.10	6.65 ± 0.11	$8.59 \rightarrow 1.77$
7.04 ± 0.08	0.10	7.10 ± 0.12	$8.90 \rightarrow 1.77$
7.59 ± 0.15	0.05	(7.44 ± 0.14)	$9.31 \rightarrow 1.77$
		(7.73 ± 0.14)	
		(8.12 - 0.21)	

TABLE 28.18

2851, 28P

127

 $E_{\rm n} = 15.6 \pm 0.3$ MeV (Gl 55), 15.4 ± 0.5 MeV (Br 54a). For the cross section at $E_{\rm n} = 18$ and 32 MeV, see Ta 58.

С. Not reported: $Q_{\rm m} = -13820 \pm 300$ ²⁸Si(³He, t)²⁸P

29 A 1

(Fig. 29.1, p. 128; table 29.1, p. 127)

 $^{29}Al(\beta^{-})^{29}Si$ $Q_{\rm m}=3680\pm7$ A.

Measurements of the half-life yield an average of 6.52 ± 0.05 min (He 39, Se 49; see also En 54a).

The β^- decay proceeds to ²⁹Si(1) and (3) which levels in turn de-excite by γ transitions to ${}^{29}Si(0)$; a ${}^{29}Si(3) \rightarrow (1) \gamma$ transition has not been observed (< 11 %). The intensity of a potential 2.03 MeV γ ray, $^{29}Si(2) \rightarrow (0)$, is less than 2%(Ro 55, Br 57, Na 54c, Se 49). The energies and relative intensities of the β^{-} branches and γ rays are listed in table 29.2. Log ft = 4.9, > 6.0, and 4.9 for transitions to ²⁹Si(1), (2), and (3), respectively (Br 57).

$E_{\mathbf{x}}$ (MeV)	J^{π}	$ au_{rac{1}{2}}$	Decay	Reactions
0	<u>5</u> .+	6.52±0.05 п	nin β^-	A, B, C, D, E
1.402	2		·	С
1.762				В, С
2.334				С
2.875				С
3.071				C
3.191				С
3.434				С
3.584	$(\leq \frac{9}{2})^+$			С
3.646-6.840	; 33 levels, see ta	ble 29.3 and react	tion	С
		TABLE	29.2	
		The ${}^{29}\mathrm{Al}(\beta^-){}^{29}$	Si decay	
Reference	E_{β_1} (MeV)	E_{β_3} (MeV)	E_{γ_1} (MeV)	E _{7's} (MeV)

TABLE 29.1 Energy levels of ²⁹Al

 2.35 ± 0.5 1.25 ± 0.2 Se 49 2.5; 70% 1.4; 30% 1.31 ± 0.05 2.42 ± 0.05 1.55 ± 0.1 Na 54c 2.43; $(9.4 \pm 2.1)^{\circ}$ 1.28; $(89 \pm 3.4)\%$ Ro 55 2.43; $(6.2 \pm 0.6)^{\circ}_{0.0}$ 1.28; 93.8%Br 57

$Q_{\rm o} = -2862 \pm 6$ $^{26}Mg(\alpha, p)^{29}Al$ Β.

At $E_{\alpha} = 8$ MeV, proton groups have been observed to ²⁹Al(0) and to a level at 1.69 ± 0.10 MeV; $Q_0 = -2.90 \pm 0.04$ MeV (Gr 57; see also Br 55b).

For resonances, see ³⁰Si.

P. M. ENLT AND C. VAN DER LEUN

Fig. 29.1. Energy levels of ²⁹Al.

C. ${}^{27}Al(t, p){}^{29}Al \qquad \qquad Q_m = 8678 \pm 6$

Forty-two proton groups have been observed by magnetic analysis at $E_t = 5.5$ MeV and at five different angles; $Q_0 = 8.678 \pm 0.006$ MeV. The excitation energies of the levels are listed in table 29.3. Angular distribution analysis

29A1

Energy levels (E_x in MeV) in ²⁹ Al from ²⁷ Al(t, p) ²⁹ Al (Ja 60b)					
1.402	3.584	4.411	5.190	5.869	6.469
1.762	3.646	4.646a	5.267	5.916	6.517
2.334	3.676	4.716	5.395	6.002	6.588
2.875	3.941	4.846	5.424	6.063	6.674
3.071	3.993	4.939a	5.561a	6.152	6.753
3.191	4.)64	5.024	5.654	6.358	6.840
3.434	4.228	5.154	5.732	6.412	

TABLE 29.3

^a Possibly double.

yields L = 0 for the group to ²⁹Al(0), thus $J^{\pi} = \frac{5}{2}$ for ²⁹Al(0), and L = 2 for the group to ²⁹Al^{*} = 3.584 MeV, thus even parity for this level (Ja 60b).

D. Cr	²⁹ Si(n, p) ²⁹ Al coss section Pa 53.	$Q_{\rm m} = -2898 \pm 7$
E. Cr	30 Si(γ , p) ²⁹ Al ross section, Ka 54, Hi 47.	$Q_{\rm m}=-13512\pm7$
F.	Not reported:	
	²⁹ Si(t, ³ He) ²⁹ Al	$Q_{\rm m} = -3662 \pm 7$

C III	
$Q_{\mathrm{m}}=-11287\pm 2$	7
$Q_{\rm m} = - 8019 \pm 10$	ĩ
$Q_{\rm m} = 6301 \pm 2$	7
$Q_{\rm m}=-13080\pm$	6
	$Q_{\rm m} = -11287 \pm 2$ $Q_{\rm m} = -8019 \pm 2$ $Q_{\rm m} = -6301 \pm 2$ $Q_{\rm m} = -13080 \pm 0$

29Si

(Fig. 29.2, p. 130; table 29.4, p. 131)

A. ${}^{25}Mg(\alpha, p){}^{28}Al$

 $Q_{\rm m} = -1201.5 \pm 3.9 \ E_{\rm b} = 11133.1 \pm 3.7$

Resonances in the yield of ²⁸Al activity have been found at $\Sigma_z = 5.4$, 6.1, and 6.9 MeV (Ch 37, Me 37, Fa 35).

For proton groups, see ²⁸Al.

B. ${}^{26}Mg(\alpha, n){}^{29}Si$ $Q_m = 35.7 \pm 4.0$

Analysis of γ -ray spectra at $E_{\alpha} = 4.5-5.5$ MeV yields ground-state transitions from ²⁹Si(1), (2), and (3). The 3.07 MeV level decays to ²⁹Si(2) and (1); intensity ratio as measured by sum-coincidence method, 25:70, with a groundstate transition < 5%, indicating $\sqrt{r} = \frac{5}{2}^{+}$ for the 3.07 MeV level. The 3.62 MeV level decays to ²⁹Si(2) (Li 58a).

At $E_{\alpha} = 4.5-5.0$ MeV, $n-\gamma$ angular correlation measurements yield E2/M1 amplitude ratios of the ground-state transitions from ²⁹Si(1), ($x = +0.25\pm0.05$

Fig. 29.2. Energy levels of ²⁹Si.

29Si

Energy levels of ²⁹Si

$E_{\rm x}$ (MeV \pm keV)	Jπ	ľ	Decay	Reactions
0	<u>1</u> +		stable	many
1.277 ± 4	- 3.+		Y	many
2.027 + 4	- <u>5</u> +		Ŷ	B, C, G, I, J, K, L, N, O
2.425 ± 4	<u>ş</u> +		2	B, D, G, I, J, K, L, N
3.067 + 4	<u>,</u> +		2	B, G, H, K, N
3.621 + 3	(ş, z)-		ν γ	B, G, H, K, N
4.078 ± 3	12- 47		•	G, K, N
4.736 + 4				G, K
4.836 + 3				G, K
4.893 + 3				G, K
4.931 - 3	3 -		γ	D, G, H, K, N
5.249 + 4	3		•	G, K
5.279 ± 4				G, K
6.649 + 4				G, K
5.809 ± 4				G, K
5.944 + 4				G, K
6.104 ± 4				G, K
6.195 ± 4	$(\frac{5}{2}, \frac{7}{4})^{-1}$			G, K
6.379 ± 4	1-		Y	D, G, K
6420 ± 5	2		,	G
6491 + 6				G. K
6.590 ± 4				G. K
				G. K
				G. K
6719 ± 5				D. G
0.714± 0				G
$0.701 \pm .7$				Ğ
0.900 ± 5				Ğ
				D. G
7.050 0 598 9	07 lavale see table ?	6 and rea	ction	G
9 590 1 5	1 100013, SCC table 2		n	E.G.
0.009 ± 0				G
8.000 ± 0				Ğ
8.001 ± 3				G
8.009 ± 8				Ğ
(0.044± 0)	1+		n	E.G.
8.009 ± 3	2			G
8.700 ± 3				Ğ
8.814 ± 3				Ğ
3.348 ± 3				G
5.500± 5				Ğ
8 000 P 2				G.
8.930± 5			n	Ĕ G
(9.013 <u>+</u> 5)	2 -		n	E. G
9.040 ± 8	2		11	G
9.053± 5				E COMPANY
13.91 - 50			P P	17
14.77 == 50			Ч	1
15.05 ± 50		000 1-12	P	A F
15.7 ± 100		hou kev	p	., L' \
16.4			P	.1
17.1			\mathbf{p}	.1

131

〒 - 1 2 - 4 5 平山田 pure 王山 nuc 平山さ (z) - 6.26 - 6.68 cr - 1.16 - 6.18。 二 30.

the the C. R. Br III D.: I.L.

At $E_s = 22$ MeV 1.22 and 2.14 MeV $_2$ rays have been observed, protably true this reaction. Be flux.

The thermal dension capture cross section of natural silicon is 160 ± 20 mb; the section trust methods of 351-365, and 351 are 80 ± 30 , 280 ± 90 , and 1.00 ± 1 with and their informationes 52.27, 6.68, and 3.05%, respectively (Hu 58). Non-unmately 30%, of the thermal-neutron captures in natural silicon should thus occur in 3%.

Adergues and untensmiss of γ rays from capture of thermal neutrons in natural onic on are instained in table 1965. We 51, We 53c, Ad 56a, Br 56e, Ba 58c]. The assognment of most γ transmome is based on comparison of the γ -ray energy with curving energies and encotation energies in 20Si, 20Si, and 31Si, as measured to magnetic analysis of charged-particle reaction products. The γ -ray spectrum of the 200 m γ 200 m γ 20Si reaction is dominated by cascades via 20Si* = 4.93 and 6.38 MeV canona quinting angular correlations of the 3.54-4.93 MeV and 2.09-6.38 MeV cascades are in agreement with pure dipole radiation for both transitions and $\gamma^{2} \approx 1$ and $\frac{1}{2}^{-1}$ for 20Si* = 4.93 and 6.38 MeV, respectively. The same experiment puelos the EUMI mixing ratio of the 7.19 MeV γ ray (Ma 59c).

The branching percentages of the capturing state, as given in fig. 29.2. are averaged from K: 51 as corrected in Ba 58c), Br 56e, and Ad 56a. The pranching ratios of the 5 53 and 5.35 MeV levels follow from the intensities and as againments on Ad 56a.

Comparison of d p and n, y reduced widths, Bo 59a, Gr 58b; see "Remarks".

 $E_{\rm h} = 8477.7 \pm 3.4$

Total neutron cross section of natural Si, Hu 58, Pe 60. The resonances at $E_1 = 55$, 159 $(J^{\pi} = \frac{1}{2})$, 540, and 570 keV $(J^{\pi} = \frac{3}{2})$ are assigned to ²⁸Si (La 61 Ne 56). Fi 51; Hu 58.

For resonances in the inelastic scattering to $^{28}Si(1)$, see Li 61. For non-resonance data, see ^{28}Si .

$$P_{\rm m} = -3856.9 \pm 4.2 \quad E_{\rm b} = 8477.7 \pm 3.4$$

In the range $E_n = 4.4-8.0$ MeV, broad resonances have been found at $E_n = 5.62, 6.51$, and 6.81 ± 0.05 MeV ($\Gamma \le 0.1$ MeV), and at $E_n = 7.45 \pm 0.1$ MeV ($\Gamma \le 0.3$ MeV), Hu 58.

i or non-resonance information, see 28Al.

E_{γ}^{a} (MeV \pm keV)	I _y ,b	$\frac{E_{\gamma}c}{(\text{MeV}\pm \text{keV})}$	Ι _γ ¢	Final nucleus	Probable transition ^d
10.601 ± 11	0.2	10.59 ±30	0.2	³⁰ Si	$C \rightarrow 0$
8.468 ± 8 ^g	2	3.482 ± 15	1.6	²⁹ Si	$C \rightarrow 0$
7.79 ± 50	0.8				
7.36 ± 80	0.7	(7.38 ±30)	0.5	⁸⁰ Si	
7.18 ± 30	8	7.22 ± 30	61	29Si	$C \rightarrow 1.28$
6.88 ± 30	0.4				
6.76 ± 40	1.5	6.758 ± 20	14	³⁰ Si	$C \rightarrow 3.79$
6.40 ± 30	11	6.354 ± 15	92	29Si	$6.38 \rightarrow 0$
6.11 ± 50	2 5	6.04 ± 50	1	²⁹ Si	$C \rightarrow 2.43$
5.70 ± 40	1				
5.52 ± 50	1				
		5.24 ± 30	0.8	(³⁰ Si)	$5.25 \rightarrow 0$
5.11 ± 40	8	5.118 ± 15	2.3	29Si	$6.38 \rightarrow 1.28$
4.933 ± 5	75	4.930 ± 10	37. 4	29Si	$4.93 \rightarrow 0$
4.60 ± 80	2.5				
4.20 ± 30	10	(4.30 ± 50)	2		
		3.976 ± 20	4.2	29Si	$6.38 \rightarrow 2.43$
		≈ 3 .3	≈ 3	³⁰ Si	$3.79 \rightarrow 0$
		$\textbf{3.667} \pm \textbf{20}$	3.2	²⁹ Si	$4.93 \rightarrow 1.28$
3.540± 68	6()f	3.547 ± 10	36.5	²⁹ Si	$C \rightarrow 4.93$
$2.65 \pm 30^{\circ}$	11e		< 1 h		
$2.13 \pm 30^{\circ}$	1-3e	2.10 ± 10	12.8	²⁹ Si	$C \rightarrow 6.38$
		1.95 ± 20	3.4		
		≈ 1.7	∕ ≈ 3	²⁹ Si	$(C \rightarrow 6.71)$
		≈ 1.5	~≈ 3	°9Si	$(C \rightarrow 7.02)$
1.26 -+ 30°	14e	1.28 - 10	16	29Si	$1.28 \rightarrow 0$

TABLE 29.5

Gamma rays from thermal neutron capture in natural silicon

^a Ki 51, unless marked otherwise.

^b Intensity in photons per 100 captures in natural silicon, Ba 58c.

^c Ad 56a; intensity in photons per 100 captures in natural silicon.

^d The capturing state is indicated by C; excitation energies are in MeV.

e Br 56e.

^f Br 56e reports 49 per 100 captures

^g Ki 53c.

h See Gr 58c.

G. ²⁸Si(d, p)²⁹Si

$$Q_{\rm m} = 6253.0 \pm 3.4$$

Magnetic analysis at $E_d = 7.0$ MeV and at several angles yields seventy proton groups, corresponding to levels with excitation energies up to 9.1 MeV (Br 60d; also Ja 31a), see table 29.6; $Q_0 = 6.246 \pm 0.010$ MeV (Va 52), 6.252 ± 0.010 MeV (Te 61). For earlier work at $E_d = 1.8-4.4$ MeV, see Va 52, Mo 50, Kr 55, Ne 56b. The excitation energies are in excellent agreement with those found from (d, c), (t, d), and (p, p') reactions.

Angular distributions of the most prominent proton groups yield the l_n values listed in table 29.6 (Ho 53a, Ho 53d, Te 58a, Za 59a, Bl 61b). Discussion of the reaction mechanism, Ku 60e, Bu 61; of reduced widths Bl 61b, Ma 60d, Ku 60e,

P. M. ENDT AND C. VAN DER LEUN

TABLE 29.6

Energy levels (MeV ± keV) of 29Si from 28Si(d, p)29Si and 29Si(p, p')29Si

aladar muslamot ita pagadara hanna ita m		میں مقد میں دور در معمود کر میں م		1 (d p) ($2J+1)\theta_n^{2e}$	(d, 1	o) d
(p, p') ^a	$(\mathbf{d}, \mathbf{p})^{\mathbf{b}}$	(d, p) ^c	(d, p) u	⁷ n (d, p)	× 10°		
0 1.278_6	0 1.276 ± 10	0 1.278±7		0e, 1, 1, k, h 2e, 1, 1, k, h 2e, 1	42 56 20	6.712 6.781 6.906	8.270 8.331 8.347
$2.027 \pm 6 \\ 2.424 \pm 6 \\ 3.064 \pm 6$	$2.034 \pm 10 \\ 2.429 \pm 15 \\ 3.076 \pm 10 \\ 2.425 \pm 10 \\ 3.076 \pm 10 \\ 3.075 \pm 10 \\ 3.0$	2.027 ± 7 2.426 ± 7 3.070 ± 7 3.623 ± 7	3.621	isotropic ^{e, 1} 2e, 1 3e, 1, 1	$< 1.2 \\ 22 \\ 100$	6.919 7.017 7.058 7.074	8.368 8.418 8.479 8.504
$\begin{array}{c} 3.620 \pm 6 \\ 4.079 \pm 6 \\ 4.735 \pm 6 \\ 4.922 = 6 \end{array}$	3.635 ± 10 4.089 ± 15 4.848 ± 10	4.078 ± 8	4.078 4.737 4.836	isotropic ^{e, m}		7.074 7.140 (7.164) 7.183	8.504 8.526 8.539 8.556
$\begin{array}{r} 4.833 \pm 0 \\ 4.891 \pm 6 \\ 4.930 \pm 6 \\ 5.244 = 6 \end{array}$	4.940 ± 10 4.943 ± 10	4.897 ± 8 4.934 ± 8	4.893 4.931 5.252	1 e. i. m	130	7.192 7.523 7.622	8.601 8.609g (8.644)g
5.274 - 7 5.346 - 7 5.804 - 7			5.282 5.650 5.812	ve 1m	6	7.648 7.693 (7.735) ^g	8.669 8.760 8.814
5.937 - 7 6.098 - 7 6.189 - 7	5.960_+10 6.115 _{\+1} 0	5.946 当 6.105 <u>出</u> 9	5.947 6.107 6.198	1 (2) m 30	43 62	7.766 7.787 7.892	8.848 8.860 8.908
6.380 _ 7 1 6.482 _ 7	6.399 ₋₁ 10	6,380 <u>:1:</u> 9	6.378# 6.420 6.495	1	(F 60	7.986 7.995 8.135	8.986 (9.013) 9.040g
6.513 7 6.609 7 6.693 7			6.522 6.614 6.695			8.159 8.208	9.053 all <u>4</u> ,5 ke∛

and a second starts **a** ${}^{sp}S_1(\mathbf{p}, \mathbf{p}){}^{sp}Si; E_p = 7.5, 8.0, and 8.6 MeV; Wh 60a.$

b 25 Su(d, p) 29 Si; Ja 61a.

c ²⁸Si(d, p)²⁹Si; $E_d = 1.8$ MeV. Va 52.

d ²⁸Si(d, p)²⁹Si: $E_d = 7.03$ MeV: Br 60d.

^e Bl 61b: $E_d = 15$ MeV: reduced widths in good agreement with Ho 53d, Ma 60d.

- (A 6.414 MeV level is not excluded.
- s skeV.

^h BI 53. $E_d = 14.3$ MeV.

- i Ho 53d: $E_d = 8$ MeV.
- 1 Za 39a: $E_d = 3-5$ MeV.

E Te 58a: $E_d = 4$ MeV.

 $m_{\rm M}$ 6001: $E_{\rm d} = 6.3$ MeV.

Bo 59a, Ca 56a, Fu 54; of l_n values and neutron capture probabilities, Ho 53a, Ho 53d, Al 60d.

Direct ground-state γ transitions have been observed from ²⁹Si^{*} = 1.28, 2.03. 2.43. 3.07. 4.93. and 6.38 MeV (Al 49a, Th 54, Go 58). The 2.03 MeV level decays almost entirely (99.5%) to the ground state; at the 2.43 MeV level the ground-state branch is $> 40^{\circ}_{0}$. Angular correlations of protons and γ rays corresponding to ²⁹Si(1) and (2). Ku 60d, Hi 58c, Al 56a. The polarization of

29Si

the p_0 group (Is 61a), and of protons leading to the p-states at 4.93 and 6.38 MeV (Ju 58) has been measured.

For resonances, see ³⁰P.

H. ²⁸Si(t, d)²⁹Si $Q_{\rm m} = 2220.1 \pm 3.4$

Angular distributions of deuteron groups to ${}^{29}\text{Si}^* = 0$, 1.271, 3.071, 3.630, and 4.936 MeV, yield $l_n = 0$, 2, 2, 3, and 1, respectively, in agreement with the l_n values found from reaction G; peak cross sections, De 61b.

- I. ${}^{29}\text{Al}(\beta^{-}){}^{29}\text{Si}$ $Q_{\rm m} = 3680 \pm 7$ See ${}^{29}\text{Al}$.
- J. ${}^{29}Si(n, n'\gamma){}^{29}Si$

Gamma rays with $E_{\gamma} = 1.28$, 2.02, and 2.41 MeV, corresponding to groundstate transitions from the three lowest excited states have been observed from inelastic scattering of neutrons with E_n up to 3 MeV (Li 61).

K. ²⁹Si(p, p')²⁹Si

Magnetic analysis at $E_p = 7.5-8.6$ MeV, yields twenty-two levels in ²⁹Si; see table 29.6 (Wh 60a).

Gamma rays of 1.28, 2.03, and 2.43 MeV have been observed from inelastic proton scattering. Angular distributions of the 2.03 MeV γ ray, measured at $E_p = 2.798$ and 2.934 MeV, yield P_4 terms, indicating that ²⁹Si(2) has $J = \frac{5}{2}^+$. About 0.5% of the decay of this level proceeds through ²⁹Si(1). Angular distributions of the 1.28 MeV γ ray at $E_p = 2.798$ and 2.922 MeV are consistent with the assignment $J^{\pi} = \frac{3}{2}^+$ to ²⁹S (1) (Br 57). An E2/M1 amplitude mixing ratio $x = +0.21\pm0.03$ or -4.7 ± 0.6 follows from angular distribution and linear polarization measurements at the $E_p = 2.80$ MeV resonance (Mc 61a).

For resonances, see ³⁰P.

L. ${}^{29}P(\beta^+){}^{29}Si$ See ${}^{29}P$. M. ${}^{30}Si(\gamma, n){}^{29}Si$ $Q_m = -10614.3 \pm 4.3$

Cross section, Ka 54.

N. ${}^{31}P(d, \alpha){}^{29}Si$

 $Q_{\rm m} = 8169.8 \pm 3.3$

Magnetic analysis at $E_d = 1.8$ MeV yields $Q_0 = 8.170 \pm 0.020$ MeV, and seven *x*-particle groups corresponding to ${}^{29}\text{Si}^* = 0$, 1.274 ± 0.010 , 2.032 ± 0.014 , 2.431 ± 0.015 , 3.072 ± 0.016 , 3.619 ± 0.017 , 4.078 ± 0.018 , and 4.937 ± 0.020 MeV (En 51a). Remeasurement gives $Q_0 = 8.158 \pm 0.011$ MeV (Va 52a). The excitation energies of the ${}^{29}\text{Si}$ levels given above have been corrected accordingly. See also Be 55.

Angular distribution of ground-state group, H1 60a.

29 Si, 29 P

136

P. M. ENDT AND C. VAN DER LEUN

 $^{32}S(n, \alpha)^{29}Si$ 0.

$$Q_{\rm m} = 1532.0 \pm 3.5$$

At $E_n = 3.7$ MeV, α groups have been observed to ${}^{29}Si^* = 0$, 1.28, and 2.03 MeV (Bu 55); $Q_0 = 1.8 \pm 0.4$ MeV (Mu 58a). The thermal neutron cross section is 1.8 ± 1.0 mb (Hu 58). Cross section for $E_r = 1.4-4.1$ MeV, Hu 58, Sc 58. For resonances, see ³³S.

P. N	ot 1	repor	ted	:
------	------	-------	-----	---

27A1(t. n)29Si	$Q_{\rm m} = 11576.0 \pm 3.6$
$^{27}Al(^{3}He, p)^{29}Si$	$Q_{\rm m} = 12340.5 \pm 3.5$
$^{28}Si(\alpha, ^{3}He)$. ¹³ Si	$Q_{\rm m} = -12099.5 \pm 3.4$
30Si(p, d)29Si	$Q_{\rm m} = - 8389.6 \pm 4.2$
³⁰ Si(d. t) ²⁹ Si	$Q_{\rm m} = -4356.6 \pm 4.2$
³⁰ Si(³ He, α) ³⁹ Si	$Q_{\rm m} = 9962.9 \pm 4.2$
$^{31}P(n, t)^{29}Si$	$Q_{\rm m} = -9418.1 \pm 3.3$
31P(p, 3He)29Si	$Q_{\rm m} = -10182.6 \pm 3.3$

REMARKS

The ²⁹Si ground state has $J^{\pi} = \frac{1}{2}^{+}$ (Ho 53d). Two possible J^{π} values for several excited states follow from (d, p) angular distributions. Selection of one of these two values is possible from angular correlation measurements for ²⁹Si^{*} = 1.28, 2.03, 4.93, and 6.93 MeV; see reactions B, D, and K. Gamma branching selects $J^{\pi} = \frac{1}{2}^{+}$ for $^{29}Si = 3.07$ MeV. The level at 2.43 MeV has $J^{\pi} = \frac{3}{2}^{+}$ since the β^{+} and β^{-} transitions from the ground states of ²⁹P ($J^{\pi} = \frac{1}{2}^{+}$) and ²⁹Al ($J^{\pi} = \frac{9}{4}$), respectively, are both allowed.

There is little doubt that in the ²⁸Si(d, p)²⁹Si reaction the strong $l_p \approx 3$. 1, and 1 transitions to the levels at 3.62, 4.93, and 6.38 MeV reveal relatively pure single-particle 1f_k, 2p_k, and 2p_k states, respectively (Ma 60d). The strong excitation of the 4.93 and 6.38 MeV levels in the $^{28}Si(n, \gamma)^{29}Si$ reaction is in agreement with this assumption.

A good over-all picture of both excitation energies and reduced widths of ²⁹Si levels below 3.5 MeV has been obtained by application of the collective model. Agreement with the experimental reduced widths cannot be obtained without taking account of the interaction between the two 1d, bands (Ma 60d; see also Br 57c, Kh 59).

See also In 53.

29P

(Fig. 29.3, p. 137; table 29.7, p. 138)

A.
$${}^{29}P(\beta^+){}^{29}Si$$

$$Q_{\rm m}=4.948\pm 9$$

The weighted mean of four half-life determinations, which are in rather bad agreement, is 4.23 ± 0.05 sec (Ja 60a, Wa 60a, Ro 55, Wh 41).

Fig. 29.3. Energy levels (f 29P.

P. M. ENDT AND C. VAN DER LEUN

TABLE 29.7

Fnergy	levels	of	29P
LICIAY	101010	••	-

E _x (MeV≟keV)	J¤	ry or <i>I</i>	Decay	Reactions
	<u></u>	4.23 0.05 sec	β+	A, B, D, E, 1
1389.1.5	94 8	an anna	γ	B, D, €
1.052 ± 0 1.055 ± 6	2 5 +		γ	B, D, E
2.300 ± 0	2			D
3 103 1 5	5+		Y	B, D
3.100 ± 0 3.47 ± 20	2			D
1 342 - 8	3 -	53 🚊 3 keV	γ, ρ	B, C
4.765.1.10	2 1 +	15.5 ± 1.0 keV	γ, p	B, C
4.968-118	5	< 4 keV	t p	С
5 30			р	С
5.53 +20	1-	425 – 450 keV	/ р	С
5.740 9	ş	12.5 🚊 0.7 keV	/ р	C
5.968 + 9	3 + 2	9.5 🗄 1.5 keV	/ р	С
6.195 ± 10	3-	95 🕂 6 keV	/ р	С
6.329 + 10	(3+), 3-	73 🚲 5 keV	/ р	С
(6.49)			р	С
6.54			р	С
6.590 ± 10	1+	200 <u>1</u> 20 keV	/ р	C
6.836 ± 14		4.9 4_ 0.4 keV	/ p	С
6.956 ± 14	<u>1</u> +	120 🔡 10 – keV	7 p	С
7.024 ± 14	<u>4</u>	100 🤐 8 - keV	Гр	С
7.25	-		Р	C
7.362 ± 14			р	С
7.463 ± 14	3-	8.4 🤤 0.7 - keV	ć p	С
7.513 ± 14	$(\frac{1}{3})$ +	7 🤃 3 keV	é p	С
7.62 ± 15	3+	165 - 25 keV	с р	С
7.74 15	(≦\$)+	< 2 keV	č p	()
7.92 ± 15	1 ···	14 <u> </u> 4 keV	/ p	С
$\textbf{7.97} \pm \textbf{15}$	(불, 불)	125 _{:E} 25 keV	/ p	С
8.08 ± 15	<u>.</u> ş_+	36 <u>+</u> 10 keV	/ p	С
8.20-14.43; 25	levels, see table	29.8b and reaction	-	С

A $(98.8\pm0.4)\% \beta^+$ branch proceeds to ${}^{29}Si(0)$, with end point 3.945 ± 0.005 MeV (Ro 55, see also Wa 60a). A $(98.5\pm0.2)\%$ intensity is given in Lo 61; log ft = 3.73. Gamma rays of 1.28 and 2.43 MeV have been observed in coincidence with positons. Branching ratios of transitions to ${}^{29}Si^* = 1.28$, 2.03, and 2.43 MeV are $(1.09\pm0.10)\% \leq 0.06\%$, and $(0.35\pm0.07)\%$ respectively. Log ft = 4.94, ≥ 5.5 , and 4.3, respectively (Lo 61; see also Ro 55).

The 2.43 MeV level of ²⁹Si mainly decays to ²⁹Si(0). Transitions to ²⁹Si(1) and (2) have an intensity less than 60 and 17% of the ground-state transition, respectively (Lo 61).

Longitudinal polarization measurement, Pr 58.

Theoretical discussion of β^+ - and γ -transition probabilities, Go 56b.

B. ${}^{29}\text{Si}(p, \gamma){}^{29}\text{P}$ $Q_m = 2747 = 9$

Proton capture has been observed at the lowest three resonances listed in table 29.8 (Ku 59a, Va 61, Ok 60a, Ne 60d, Ol 6), Se 60a, Oh 61). Fourteen resonances observed for $E_p = 1100-1650$ keV from proton bombardment of natural silicon targets and presumed to be due to the ²⁸Si + p reaction (Se 60a) have not been observed in other experiments (Oh 61, Ts 56). Two resonances are expected in the range of excitation between the lowest two resonances of table 29.8 from comparison with the ²⁹Si level scheme; see also reaction D. A search for these resonances between 700 and 1200 keV yields $(2J+1)\Gamma_{\gamma}\Gamma_{p}/\Gamma < 5$ meV (Ch 61). Two measurements of the decay scheme of the 369 keV resonance level are in excellent agreement (Va 61, Ok 60a; also Ol 60); see fig 29.3. Gamma-ray energies and angular distributions yield the following excitation energies (weighted mean values) and spins and parities: ²⁹P* = 0, 1.380 \pm 0.006, 1.953 \pm 0.007, and 3.102 \pm 0.006 MeV, with $J^{\pi} = \frac{1}{2}^{+}, \frac{3}{2}^{+}, \frac{5}{2}^{+}$, and $\frac{5}{2}^{+}$, respectively (Ok 60a, Va 61, Ol 60). For E2/M1 mixing ratios, see Ok 60a.

The γ decay of the 1652 keV resonance proceeds to ²⁹P(0) (88%) and to ²⁹P(1) (12%) (Va 60). Gamma-ray energy and angular distribution measurements yield $E_x = 4.341 \pm 0.012$ MeV, and $J^{\pi} = \frac{3}{2}$ for the resonance level (Ne 60d, Va 60). The strength of this resonance is limited by the radiative width; $\Gamma_{\gamma} = 1.85 \pm 0.40$ eV (Va 60), $\Gamma_{\gamma\gamma} = 1.75 \pm 0.35$ eV (Ne 60d). The total width is $\Gamma = 44 \pm 4$ keV (Va 61). 55.2 ± 2 keV (Ne 60d), 55 ± 8 keV (Vo 59a), 48 keV (Va 58g), 60 keV (Ru 59). The reduced widths listed in table 29.8 are from Vo 59a; see reaction C.

The 4.765 MeV level, corresponding to the 2090 ± 4 keV resonance, decays to ³⁹P(0) with a 4.74 ± 0.03 MeV γ ray (Va 60, Ne (0d). The resonance strength $\Gamma_{\gamma}\Gamma_{p}/\Gamma \approx \Gamma_{\gamma} = 0.43 \pm 0.08$ eV (Va 61), 0.45 ± 0.20 eV (Ne 60d). The total width $\Gamma \approx \Gamma_{p} = 15 \pm 3$ keV (Va 60), 18 ± 4 keV (Vo 59a), 14 ± 2 keV (Ne 60d), 13.5 keV (Va 58g), 30 keV (Ru 59), 16.2 keV (Be 61a).

A collective-model discussion of these results is given in Va 60.

C.
$${}^{28}Si(p, p'){}^{28}Si$$

 $E_{\rm b} = 2747 \pm 9$

Differential cross sections for elastic scattering and inelastic scattering to ²⁸Si(1) measured at four angles for proton energies between 1.4 and 3.8 MeV, show seven resonances for elastic scattering and four for inelastic scattering. Analysis of these data yields spins, parities, elastic, and inelastic scattering widths of seven resonance levels (Vo 59a). Similar work in the range $E_p = 2-5$ MeV yields eleven resonances with spins, parities, and widths (Be 61a). See table 29.8a. Except for the spin of the 6.33 MeV level, the results given in these two reports are in good agreement. At the 1.65 and 2.09 MeV resonances the results agree with those of Va 58g and of reaction B; see also Ru 59. The large reduced elastic scattering widths of the 4.34 ($J^{\pi} = \frac{3}{2}^{-}$) and 5.53 MeV ($J^{\pi} = \frac{1}{2}^{-}$) levels indicate that these levels are single particle $2p_{\frac{3}{2}}$ and $2p_{\frac{1}{2}}$ levels (Vo 59a,

				TABLE 29.8a					
			Re	sonances in ²⁸ Si+p ($E_{ m p}$ <	(5 MeV)				
$E_{\rm p}$ (MeV \pm keV)	29 P# (MeV)	Ĵπ	Decay	r (keV)	$\Gamma_{\rm p}\Gamma_{\gamma}/\Gamma_{ m (meV)}$	$\Gamma_{\mathbf{p}_{\bullet}^{\mathbf{r}}}^{\mathbf{r}}$ (keV)	$\Gamma_{\mathbf{p}_1\mathbf{r}}^{\mathbf{r}}$ (keV)	$9_{p_0^{3}r} \times 10^{3}$	$\theta_{\mathbf{p}_1}{}^{\mathbf{a}\mathbf{r}} imes 10^3$
0.3689 ± 0.7a, b, c, d, g 1.652 + 4a, c, f, g, h, i, J	3.103 1.342	5+8, b, g 2-8, c, f, i	۲ ۲ Da	53 - 3a, e, f, l, l	0.8± 0.1 ^{a, b} 1800 ±300 ^{a, f}	53 <u>+</u> 38		$> 1.2^{a}$ 300 ^a	
2.000 ± 4a. e. f. i. J. p	4.765	2 12+e, f, i, p	7 Pa	15.5 L 1.0a. e. f. i. j. p	430 -1 80a. f	17.5 1.08		1.58	
2.30 ± 15^{1}	4.968		P ₁	<4 ¹					
2.641	5.30		p1	narrow ¹		4956. D		970e, p	
2.000 ±2001 ± 2001 ± 2003 ± 2001 ± 20	0.00 5 740	2	he D- D-	420 ±00° . 19.5.± 0.7e, m, p		3.91	9.0t	20	≈ 1000
3.337 + 2e, m, p	5 968 5 968	2 3+e, p	14 °0.	9.5 ± 1.5 e. m. p		6.4t	2.0u	6.3	170
3.571 + 5e. B. P	6.195	2-e, p	D, D,	95 - 6e, m, p		20 u	78t	6.1	≈ 1000
3.710 ± 5e. m. p	6.329	z ∦−p, (3+)e	Pa Pi	73 ± 5e. m. p		lsa	564	5.6	800
(3.88) 1. 0	(6.49)	1	d	narrow ¹					
3.931	6.54		ď	narrow ¹					
3.980 ± 51, p	6.590	₫+₽	$p_{a}(p_{1})$	$200 \pm 20^{\mathrm{p}}$		200		4 I	
4.235 ± 10 m, p	6.836	4 + 1 1	pa p1	4.9±0.4₽. v		2.9	2.0	1.6	4
4.36 ± 10^{p}	6.956	4+5 **	00	$120 \pm 10^{\mathrm{p}}$		120		61 61	
4.43 ±10m, p	7.024	4-1 2-D	p ₀ p ₁	100 ± 8m. p		30	10	6.8	100
	7.25 m		ů,				:		
4.78 ±10 ^p	7.362		po pi			(small)	(small)		c c
4.884 ±10p. q. m	7.463	5 – D	po pi	$8.4 \pm 0.7 p$		2.9	5.5	3.5	90
4.936 ±10 ¹ , p. q	7.513		P1			(ou)	(small)		
^a Va 60. also Va 61.			1 Wi 56	anne					
t Ok 60a.			m Co 55						
e Ku 59a.			o Ba 61.						
^d Se 60a.			p Be 61:						
e Vo 59a.			a See al	so table 29.8b.					
r Ne 60d.			r Be 61a	a, unless indicated otherw	150.				
¢ Ol 60.			⁸ For re	ferences, see column Γ .					
h Oh 61.			t Width	s given in Vo 59a are in es	sential agreement wit	h these values.			
1 Va 58g.			10 18 10 24 E	sziven in Vo. 30. are abo	out a factor of two los	WPT.			
J Ru 59.			V Co 35						

P. M. ENDT AND C. VAN DER LEUN

29P

TABLE 29.8b

Ep (MeV)	29p+a (MeV)	rə (keV)	lp a	Ep (Me	b V)	29 P* (MeV)	Г ^ь (keV)
4.85e	7.43	12 <u>+</u> 3	3	8.	77 c	11.22°	≈ 100°
4.92e	7.50	7 ± 3	0, (2)	10.5	25	12.64	30
5.04	7.62	165 ± 25	0	10.3	32	12.71	30
5.17	7.74	≤ 2	2, (0)	10.4	10	12.79	40
5.35	7.92	14 ± 4	0	10.0	31	12.99	130
5.41	7.97	125 ± 25	1	10.9	38	13.28	150
5.52	8.084	36 ± 10	2	11.:	28	13.64	120
5.64	8.20	20 ± 4	2. (0)	11.	56	13.91	80
5.71	8.26	40		11.1	73	14.05	80
5.95	8.49	36 ± 10		12.	10	14.43	50
5.97	8.51	23 7	2, (0)				
6.08	8.62	10					
6.13	8.67	120 + 30	0				
6.22	8.76	14 + 3	()				
6.32	8.85	9 - 3	0				
6.36	8.89	33 6	0, (2)				
6.44	8.97	50					
0.54	9.06	23 + 5	0				
6.76	9.28	7 . 3					
6.83	9.34	4 -		i i			
6.86	9.37	13 = 5	0, (2)				
6 93	9.44	20 5	0	1			
all -1	15 keV	6					

Dector continue

^a Br 61a; yield measured of p₀ and p₁.

^b Co 61b; yield measured of p₁.

^c Od 60; yield measured of p₁.

d See also Ok 58, Ya 58a; J[#] = §*.

^e See also table 29.8a.

Va 58g, Ne 60d). Magnetic analysis of the proton groups to ²⁸Si(0) and (1) in the range $E_p = 4.8-7.0$ MeV yields 22 levels in ²⁹P with excitation energies from 7.43 to 9.44 MeV, with widths and l_p values. See table 29.8b.

Resonances in the yield of the 1.77 MeV γ ray from ²⁸Si(1) have been reported in Co 55a, Wi 56, Ok 58, Od 59, Ne 60d, Od 60, Co 61b; see also Ya 58a. See tables 29.8a and b for energies and widths. The 3.88 MeV resonance could be due to ³⁰S₁(p, p' γ), Ba 61. In the high energy range, $E_p = 10.0-12.3$ MeV, it is not certain that the compound-nuclear process predominates. Peaks could be due to interference between direct interaction and compound nucleus formation (Co 61b).

For non-resonance data, see ²⁸Si.

D.
$$^{28}Si(d, n)^{29}P$$
 $Q_m = 522 \pm 9$

Six neutron groups have been observed. For corresponding excitation energies, l_{p} values from angular distribution measurements, and reduced widths, see

142

TABLE S	29.9
---------	------

Levels in ²⁹P from ²⁸Si(d, n)²⁹P and ²⁸Si(³He, d)²⁹P

E _x a (MeV)	Ex ^b (MeV)	lp ^b	$ heta_{\mathbf{p}^{2}}^{\mathbf{a}} ext{ d} imes \mathbf{10^{3}}$	E _x e (MeV)	/pe
))	0	0	17	0	0
36-10.04	1.30	2	9	1.386 ± 0.010	2
1.94 + 0.04	1.92	2	5	1.960 ± 0.010	(2)
2.40 ± 0.03	2.5 c				
3.11 -+- 0.02	2.9c				
3.47 ± 0.02	3.5				

^a Ma 60; ²⁸Si(d, n)²⁰P, $E_d = 3.4$ and 4.0 MeV; excitation energies calculated with an assumed $Q_0 = 0.54 + 0.02$ MeV (cf. reaction E).

^b Ca 57; ²⁸Si(d, n)¹⁹P, $L_d = 9$ MeV.

c Also Gr 55f; 28Si(d, n)29P.

d Ca 57, Ma 60d.

e Hi 60c; 28Si(3He, d)291', E(3He) = 9.16 MeV.

table 29.9 (Ma 60, Ma 60d, Ca 57, Gr 55f); $Q_0 = 0.63 \pm 0.06$ MeV (Ma 60), 0.6 ± 0.1 MeV (Ca 57), 0.29 ± 0.04 MeV (Ma 52).

E. ${}^{28}Si({}^{3}He, d){}^{29}P$

$$Q_{\rm m} = -2746 \pm 9$$

Magnetic analysis at $E_{\rm d} = 9.16$ MeV, yields three deuteron groups. For corresponding excitation energies and $l_{\rm p}$ values, see table 29.9; $Q_0 = -2.731 \pm 0.012$ MeV (Hi 60c).

F.	²⁹ Si(p, n) ²⁹ P	$Q_{\rm m} =$	-5731 ± 9
	14 7 7		

Observed, Wh 41, Ty 54. See also Sa 56a.

G. Not reported:

²⁷ Al(³ He, n) ²⁹ P	$Q_{\rm m} = 6610 \pm 8$
${}^{28}Si(\alpha, t){}^{29}P$	$Q_{\rm m} = -17066 \pm 9$
²⁹ Si(³ He, t) ²⁹ P	$Q_{\rm m}=-4966\pm 9$
${}^{31}P(p, t){}^{29}P$	$Q_{\rm m} = -15149 \pm 8$
$^{32}S(p, \alpha)^{29}P$	$Q_{\rm m}=-4199\pm8$

30A1

(Not illustrated; see fig. 30.1, p. 144)

A. ${}^{30}Al(\beta){}^{30}Si$

 $Q_{\rm m}=7290\pm250$

A 3.27 ± 0.20 sec activity from fast neutron bombardment of natural silicon has been assigned to ³⁰Al. Gamma rays with energies of 2.26 ± 0.03 MeV (rel. int. 100) and 3.52 ± 0.03 MeV (rel. int. 64 ± 6) have been observed. The end point of the β - spectrum is 5.00 ± 0.25 MeV; the intensity of a potential branch with a 7.29 MeV end point is < 2%. Nuclear mass systematics make it robable that the observed end point corresponds to a β - transition to ³⁰Si(1). From the known γ branching of ³⁰Si(2) (see ³⁰Si) and from the observed γ intensities, the relative intensities of β - branches to ³⁰Si(1) and (2) are computed as $\approx 16\%$ and $\approx 84\%$, yielding log *ft* values of 5.2 and 3.9, respectively (Ro 61).

- B. ${}^{30}\text{Si}(n, p){}^{30}\text{Al}$ $Q_m = -6510 \pm 250$ See reaction A.
- C. Not reported: ³⁰Si(t, ³He)³⁰Al $Q_{\rm m} = -7270 \pm 250$

30Si

(Fig. 30.1, p. 144; table 30.1, p. 145)

A. ${}^{26}Mg(\alpha, p){}^{29}Al$ $Q_m = -2862 \pm 6$ $E_b = 10649.9 \pm 4.5$ With RaC' α particles and natural Mg targets, resonances in the ${}^{29}Al$ yield have been observed at $E_z = 5.3$ and 6.0 MeV (Me 37).

For proton groups, see ³⁰Si.

B.
$${}^{27}\text{Al}(\alpha, p){}^{30}\text{Si}$$
 $Q_{\rm m} = 2377.6 \pm 4.1$

At $E_x = 8$ MeV, nuclear emulsion work yields the ten levels listed in table 30.2; $Q_0 = 2.38 \pm 9.03$ MeV (Ha 56e). At $E_x = 10.4$, 13.7, and 14.7 MeV, the same ten levels have been found, plus groups to ${}^{30}\text{Si}^* = 5.70$, 7.76, 8.44, 8.80, 9.38, (9.70), 9.96, 10.60, and 11.06 MeV, all $\pm 0.08-0.10$ MeV (Ro 60c). At $E_x = 22$ MeV, Al absorption measurements yield levels at 5.61, 7.35, 8.37, 9.43, 10.04, and 11.03 MeV (Br 49).

Magnetic analysis at $E_x = 5$ MeV yields the excitation energies of four levels with small errors. Some of these values, however, are in disagreement with other accurate measurements; $Q_0 = 2.373 \pm 0.008$ MeV (De 59a; table 30.2). See also Hu 59a, Sw 61.

Angular distributions of the p_0 and p_1 groups, Vo 57a ($E_{\alpha} = 8$ MeV), Ko 61 ($E_{\alpha} = 22$ MeV), Hu 59a ($E_{\alpha} = 30.4$ MeV), Sw 61 (theory). Angular distribution of p_0 at $E_{\alpha} = 19$ MeV, Pl 61. Much of the older work on this reaction has been done with radioactive α -particle sources; for a summary, see En 54a.

Proton-gamma coincidence measurements yield ground-state γ transitions from ³⁰Si^{*} = 2.23 and (3.51+3.77+3.79) MeV. One of the levels at 4.8 MeV is probably de-excited (with a $1.28 \pm 0.06 \text{ MeV} \gamma$ ray) through the 3.51 MeV level, and for less than 15% through ³⁰Si(1) (Al 51, La 51). See also Be 48, Br 55b. For resonances, see ³¹P.

C. ${}^{28}Si(t, p){}^{30}Si$ $Q_m = 10609.6 \pm 4.5$

Levels found from magnetic analysis at $E_t = 5.97$ MeV are listed in table 30.2; $Q_0 = 10.586 \pm 0.015$ MeV (Hi 6lg).

Fig. 30.1. Energy levels of ³⁰Si.

³⁰Si
$E_{\mathbf{x}}$ (MeV \pm keV)	J^{π}	Decay	Reactions
0	0+	stable	many
2.232 ± 6	2+	Y	B, C, E, F, G, H, I, K
3.507 ± 6	2+	Ŷ	B, C, E, F, H, K
3.767 ± 6		r	С, Н
3.786 ± 6	U	r	B, C, D, E, H, K
4.808 ± 6		r	C, H
4.826 ± 6		r	В, С, Н
5.222 ± 7		(γ)	С, Д, Н
5.274 ± 10			B, C
5.366 ± 7			С, Н
5.480 ± 7			B, C, E, H
5.611 ± 7			B, C, E, H
5.948 ± 10			B, C
6.496 ± 5			C, E
6.528 ± 10			B, C
6.630 ± 5			C, E
6.735 ± 5			C, E
$\boldsymbol{6.860 \pm 10}$			С
6.908 ± 10			С
$\textbf{6.993} \pm \textbf{10}$			С
7.039 ± 10			С
7.070 ± 10			B, C
7.216 ± 10			С
7.248 ± 10			С
7.435 ± 10			B, C
7.497-10.760	2 levels, see t	able 30.2 and rea	actions B C F

TABLE 30.1

Energy levels of ³⁰Si

D. ${}^{29}Si(n, \gamma){}^{30}Si$

 $Q_{\rm m} = 10614.3 \pm 4.3$

The thermal neutron absorption cross section is 0.28 ± 0.09 b (Hu 58).

Thermal neutron capture γ rays are listed in table 29.5. The assignments to the ²⁹Si(n, γ)³⁰Si reaction are uncertain, except for the 10.599 \pm 0.011 MeV ground-state transition (Ki 53c, Ad 56a).

 $Q_{\rm m} = 8389.6 \pm 4.2$

Magnetic analysis at $E_d = 2.1$ MeV (Va 52) and 7.0 MeV (Br 60d) yields the levels listed in table 30.2; $Q_0 = 8.388 \pm 0.013$ MeV (Va 52), 8.413 ± 0.010 MeV (Ma 60e). The excitation energies of the three lowest levels are reported as 2.249, 3.520, and 3.790 MeV, all ± 12 keV (Ja 61a). For Al-absorption work at $E_d = 3.7$ MeV, see Mo 50.

Angular distributions of the groups to ${}^{30}Si(0)$ and (1), yield $l_n = 0$ and 2, and $\theta_n{}^2 = 0.29$ and 0.19, respectively (Su 59b, as corrected in Su 60).

F. ${}^{30}\text{Al}(\beta){}^{30}\text{Si}$ $Q_{\rm m} = 7290 \pm 250$ See ${}^{30}\text{Al}$.

P. M. ENDT AND C. VAN DER LEUN

TABLE 30.2

Levels in ³⁰Si (in MeV±keV) from the reactions ²⁷Al(*x*, *p*)³⁰Si, ²⁰Si(*t*, *p*)³⁰Si, ³⁰Si(*d*, *p*)³⁰Si, and ³⁰Si(*p*, *p*')³⁰Si

2	b	c	đ	e	a	Í
v	0	0	0	0	7.800 ± 10	
5.335	2.23 ± 20	2.258 ± 6	2.232 _ 6	2.239 ± 20	$\textbf{7.899} \pm \textbf{10}$	
3.510	3.52 ± 20	3.518 - 7	3.493 ± 6	3.515 <u></u> 16	8.094 ± 10	8.093
3.769	9.20 . 40		(3.765 - 6)		8.145 ± 10	8.143
3.788	3.80 - 40	3.798 = 9	3.785 <u>-</u> 6	3.786 ± 20	8.177 ± 10	
4.813			4.805 6		$\textbf{8.279} \pm \textbf{10}$	
4.823	4.83 ± 20	4.85 ± 10	4.827 - 6		8.319 ± 10	
5.225			(5.220 ± 7)		8.43 0 <u>+</u> 10	
3.274	5.28 ± 20			,	8.539 ± 10	
3.367			5.365 ± 7		8.584 ± 10	8.571
5.483	3.32 - 30		5.477 - 7	(5.497 ± 15)	8.632 ± 10	
3 612			3.610 7	(5.622 ± 15)	8.661 ± 10	
5. 94 5	5 94 - 40			1	8.720 ± 20	
6.562				6.494	8.785 ± 10	8.790
6.528	6.52 ± 30				$\textbf{8.881} \pm \textbf{10}$	8.890
0.632				6.630	8.927 ± 10	
5.739				6.734	8.950 ± 20	(8.947)
th. the h					9.021 ± 10	
is well					9.092 ± 10	9.098
6.993					9.120 ± 20	
: 0.Cm					9.152 ± 10	
7 () 7 i)	710 - 30				9.241 = 10	0 246
216	7 1144				9.296 ± 10	
7 245					9.338 ± 10	
7 433	7 38 - 3e)				9.396 ± 10	
(apr. T	~			1 491	9.418 - 20	
7 680				(7.613)	9,457 = 10	
7 664)				7.658		9 590
- [4] keV				all = 5 keV	,	10.760
						all .5 kal

• He flg: "Set $p_{1}^{m}Se = E_{1} = 3.97$ MeV, magn. anal.

³ Ha 36e; ²⁷ Al.z. $p^{-m}Si - E_z = S$ MeV: nucl. emulsions.

: De 58a: "Alor, p. "Si $-E_x = 5$ MeV: magn. anal.

² WE 60a: ³⁰Sup. p^{+}_{1} ³⁰St - $E_{p} = 7.5$, 8.0, 8.6 MeV; magn. anal.

* Vs 32: "Sid. parSi - $E_6 = 2.1$ MeV; magn. anal.

* Br 60d, 29St.d. p_{12} 29St - $E_{d} = 7.03$ MeV; magn. and

G. MSin. D"MSi

The yield of 2.23 MeV y rays from natural Si targets has been measured up to $E_x = 3.0$ MeV (Li 61).

H. ^{MSi}(p. p^r)^{MSi}

May, etic analysis at $E_p = 7.5$, 8.0, and 8.6 MeV, yields the levels listed in table 30.2; a level at 5.075 MeV (Va 52) has not been observed (Wh 60a). Angular distribution measurements of the 2.23 MeV γ ray yield $J^{\pi} = 2^+$

147

for ³⁰Si(1) (Br 60e, Ba 61). Gamma rays of 1.27 and 1.55 MeV have been observed in coincidence with the 2.23 MeV γ ray. A direct ground-state transition has been observed from the 3.51 MeV level, intensity $(46\pm5)\%$, but not from the 3.78 MeV doublet (Br 60b, Go 61a). Gamma-gamma angular correlations and angular distributions give $J^{\pi} = 2^{+}$ for ³⁰Si(2), and J = 0 for one of the components of the 3.78 MeV doublet. The E2/M1 amplitude ratio of the ³⁰Si(2) \rightarrow (1) transition amounts to $x = -0.18\pm0.05$, Br 60e, Go 60c, Br 61d. See also Ok 58.

For resonances, see ³¹P.

- I. ${}^{30}P(\beta^+){}^{30}Si \qquad Q_m = 4248 \pm 10$ See ${}^{30}P$.
- J. ${}^{31}P(\gamma, p){}^{30}Si$ $Q_m = -7286.2 \pm 4.0$

Energy spectrum and angular distribution of photoprotons from phosphorus irradiated with 32 MeV bremsstrahlung, Cu 59.

K. ³¹P(n, d)³⁰Si
$$Q_m = -5061.5 \pm 4.0$$

The angular distribution of the deuteron group to ${}^{30}Si(0)$ yields $l_p = 0$ (Ve 60a, Co 60a, Ha 59a $\theta_p{}^2 = 0.012$ and $Q_0 = -5.2 \pm 0.2$ MeV. Groups to ${}^{30}Si^{\circ} = 2.23$ and (3.5 ± 3.5) MeV have been observed (Ve 60a). See also Za 61.

L. ${}^{33}S(n, \alpha){}^{30}Si$ $Q_m = 3503.7 \pm 4.9$

Cross section, Mu 58a.

M. Not reported:

²⁹ Si(t, d) ³⁰ Si	$Q_{\rm m} = 4356.6 \pm 4.2$
²ºSi(a, ºHe)ªºSi	$Q_{\rm m} = -9962.9 \pm 4.2$
³¹ P(d, ³ He) ³⁰ Si	$Q_{\rm m} = -1793.1 \pm 4.0$
³¹ P(t, <i>x</i>) ³⁰ Si	$Q_{\rm m} = 12526.5 \pm 4.0$
⁸² S(n, ⁸ He) ³⁰ Si	$Q_{\rm m} = - 8430.9$: ±4.1

REMARKS

Collective model interpretation of ³⁰Si, Su 60. Prediction of a $(d_{\frac{3}{2}})^2$ level with $J^{\pi} = 0^+$ at $E_x \approx 2$ MeV, La 58a.

30P

(Fig. 30.2, p. 148; table 30.3, p. 149)

A. ${}^{30}P(\beta^+){}^{30}Si$ $Q_m = 4.248 \pm 10$

The half-life is 2.55 ± 0.02 min (weighted mean of Ko 54a, Mi 55, Ar 58, Cl 58; see also Ba 52a, St 53b, Gr 56, En 54a).

A magnetic spectrometer determination of the β^+ end point of the main branch to ³⁰Si(0), yields 3.24 ± 0.04 MeV (Gr 56), in good agreement with values

Fig. 30.2. Energy levels of 30 P; for γ decay see fig. 30.3.

30p

™s MeV±keV)	J^{π} ; T	τį	Decay	Reactions
0	1+; 0	2.55 <u>+0.02</u> min	β+	many
0.684 ± 3	0+; 1		2	B, E, I, K, N
0.705 ± 3	1+; 0		2	B, E, G, K, N
$\textbf{1.451} \pm \textbf{10}$	2+		2	B , E, G, N
1.972 ± 10	3+		Ŷ	E, G, N
2.538 ± 10	$(2, 3)^+$		2	E, N
2.723 ± 10	2+		Ŷ	E, N
2.839 ± 10			Ŷ	E, N
2.937 ± 10	21; 1		Ŷ	E, N
3.018 the 10	1 +		2	E, N
$\textbf{3.734} \pm \textbf{10}$			-	N
$\textbf{3.836} \pm \textbf{10}$				N
3.926 ± 10				N
4.141 ± 10				N
4.181 ± 10	2+; 1		2	E, N
4.230 ± 10				N
4.296 ± 10				N
4.342 ± 10				N
4.421 ± 10				N
$\textbf{4.501} \pm \textbf{10}$; 1		r	E, N
4.625 ± 10				N
$\textbf{4.734} \pm \textbf{10}$				N
4.929 ± 10				N
5.024 ± 10				N
5.200 ± 10				N
(5.233 \pm 10)				N
5.412 ± 10				N
5.504 ± 10				N
5.598 ± 10				N
5.700 <u>11</u> 10				N
5.790±10		••••••••••••••••••••••••••••••••••••••		N
5.900-7.253; 11	levels, see table	30.4 and reaction		E
8.11-8.48; 13 le	evels, see table 3	0.4 and reaction		F
14.8			р	c
15.3			р	C

TABLE 30.3

Energy levels in ⁸⁰P

of 3.31 ± 0.07 MeV (Hu 54a; scintillation spectrometer) and 3.23 ± 0.07 MeV (Ko 54a; Al absorption). Log ft = 4.84.

Although absence of γ rays in the ³⁰P decay is reported in St 53b, Ko 54a, and Gr 56, later a 2.24 MeV γ ray has been observed with 0.5% intensity (Mo 56d); log ft = 4.9. This uniquely fixes $J^{\pi} = 1^{+}$ for ³⁰P(0), since ³⁰Si(1) has $J^{\pi} = 2^{+}$.

B.
$${}^{27}\text{Al}(\alpha, n){}^{30}\text{P}$$
 $Q_{\rm m} = -2653 \pm 9$

At $E_{\alpha} = 3-6$ MeV, neutron groups have been observed to ${}^{30}P^* = 0, 0.70 \pm 0.03$,

and 1.45 ± 0.03 MeV; $Q_{\phi} = -2.67 \pm 0.03$ MeV (Ba 59a), $\geq -2.662 \pm 0.005$ MeV (Wi 60). See also Ya 60, Pe 48.

For resonances, see ³¹P.

C. (a) $\stackrel{\text{28}Si}{(d, z)} \stackrel{\text{28}Si}{(d, p)} \stackrel{\text{$

Strong resonance structure in the z-particle and proton yield has been observed for $E_4 = 5.5-10.7$ MeV, corresponding to ³⁰P excitation energies between 17.1 and 21.9 MeV (Br 59a, Ku 60e). At lower energies, the resonant character of the (d, p) reaction indicates ³⁰P levels at 14.8, 15.3, and 15.7 MeV (Ne 56b; see also Co 57b).

For non-resonance data, see *Al and *Si.

D. ²⁸Si⁽³He, p)³⁰P $Q_{m} = 6344 \pm 9$

Observed, Po 52b, Po 53.

E. $^{29}Si(p, \gamma)^{30}P$ $Q_m = 5584 \pm 10$

With targets enriched in ²⁹Si, the assignment to the ²⁹Si(p, γ)³⁰P reaction was established of the resonances listed in table 30.4, with corresponding ³⁰P excitation energies, spins, parities, isobaric spins, and resonance strengths (Ba 60f, Oh 60, Ku 59a, Si 59d, Va 58a, Gr 57a, Ts 56, Mi 55, Ta 46; see also Se 60a, Se 55).

The γ -ray energies measured at the four lowest resonances lead to $Q_0 = 5.57 \pm 0.03$ MeV (Va 58a). Results of the analysis of γ -ray spectra, $\gamma - \gamma$ coincidences, and angular distributions at the four lowest resonances (Va 58a), and at the six lowest resonances (Ba 60f), are in excellent agreement. See also Mi 55, Si 59d. Branching ratios of the resonance states and lower lying levels, and spins, parities, and isobaric spins found from this work are summarized in fig. 30.3 (Ba 60f). The 1307.5 keV resonance de-excites predominantly to $^{30}P^{*} = 0.68$ MeV; the 1331.5 keV resonance to $^{30}P(0)$ (Oh 61). The doublet character of the 700 keV level was demonstrated by measurement of γ -ray energies: 686 ± 4 and 686 ± 6 keV at the 415 and 730 keV resonances, and 703 ± 6 and 705 ± 5 keV at the 326 and 698 keV resonances (Va 58a). In Si 59d $E_{\gamma} = 690 \pm 5$ keV is reported at $E_{p} = 415$, 730, and 917 keV, and $E_{\gamma} = 708 \pm 5$ keV at $E_{p} = 698$ keV; see also Si 59f. Angular distribution measurements yield $J^{n} = 0^{+}$ and 1^{+} for the 684 and 705 keV levels, respectively; the first is the T = 1 analogue of 2 Si(0) (Va 58a, Si 59d, Ba 60f).

At the four lowest resonances some evidence is found for the operation of an E1 isobaric spin selection rule (Va 58a). Description of this nucleus in terms of a strong coupling version of the unified model is probably difficult (Ba 60f).

зор

1.54

TABLE 30.4

Resonances in ²⁹Si+p

E _p (keV)	³⁰₽* (MeV)	J¤	Decay	$(2J+1) \Gamma_{\rm p}\Gamma_{\rm r}/\Gamma$ (eV)
326.4 ± 1.28, d, e, 1	5.900	2-g; 1+, 2±h	γ	0.07±0.02g
415.3 <u>+</u> 1.3a. d. e. 1	5.986	1 ^{-g} ; 1 ⁻ (1+) ^h	Ŷ	0.23 ± 0.06 g; 0.23 i
697.5 ± 0.7 a, e, 1	6.258	(3+) ^f ; 2+h	Ŷ	$0.18 \pm 0.05^{g}; 0.11^{i}$
730.1 ± 1.2 a, e, 1	6.290	$3^{-g}; 3^+(3^-)^h$	r	0.15 ± 0.04 ^g ; 0.11 ⁱ
916.5 ± 0.5 b, e, 1	6.470	1+ (1-) h	Ŷ	
956 ±1b, e, 1	6.508	2+h	Ŷ	
1307.5 ± 3^{1}	6.848		Ŷ	
1331.5 ± 31	6.871		2	
1500c	7.034		r	
1648c, b	7.177		Ŷ	
1727 c	7.253		Ŷ	
2614 k	8.11		Pi	
2678 k	8.17		$\mathbf{p_1}, \mathbf{p_2}$	
2700 k	8.19		$\mathbf{p_1}, \mathbf{p_2}$	
2720k	8.21		P ₁	
2760 k	8.25		Pi	
2798 k	8.29		P1, P2	
2843 k	8.33		Pı	
2876×	8.36		P1, P2	
2922 k	8.41		Pı	
2934 k	8.42		$\mathbf{p_1}, \mathbf{p_2}$	
2058 k	8.44		$\mathbf{p_1}, \mathbf{p_2}$	
5085 R	8.47		P ₁ , P ₃	
2995 k	8.48		P1	
 ^A Ku 59a. ^b Ts 56. ^c Gr 57a. ^d Ta 46. ^e Mi 55. ^f Va 58d. ^g Va 58a. ^h Ba 60f. ⁴ Br 56h. 				
k Br 57.				
¹ Oh 61.				
F. ²⁹ Si(p, p') ²⁹ Si*				$E_{\rm b} = 5584 + 10$

In the range $E_p = 2.5-3.0$ MeV, resonances in the yield of 1.28, 2.03, and 2.43 MeV γ rays have been observed; see table 30.4 (Br 57).

For non-resonance data, see ²⁹Si.

G. ²⁹Si(d, n) ⁹P $Q_{\rm m} = 3359 \pm 10$

With enriched ²⁶C: targets, groups to ³⁰P* = 0, 0.75±0.06, 1.46±0.06, and 2.00±0.06 MeV have been found at $E_d = 1.4$ MeV; $Q_0 = 3.27 \pm 0.04$ MeV (Ma 52; see also Pe 48).

H. ${}^{30}Si(p, n){}^{30}P$ $Q_{m} := -5031 \pm 10$

Threshold measured at $E_p = 5.174 \pm 0.030$ MeV, yielding $Q_0 = -5.005 \pm 0.030$ MeV (Br 59f).

For resonances, see ³¹P.

Fig. 30.3. Gamma-ray branchings of ³⁰P states (Ba 60f).

I. ${}^{30}S(\beta^+){}^{30}P$ $Q_m = 5970 \pm 110$ See ${}^{30}S$.

J. ${}^{31}P(\gamma, n){}^{30}P$ $Q_m = -12317 \pm 9$

Recent threshold measurements give 12.33 ± 0.05 MeV (Ba 57b), 12.50 ± 0.05 MeV (Ch 58), $< 12.391 \pm 0.026$ MeV (Ge 60a), and 12.23 ± 0.04 MeV (Sa 61). See also Mc 49, Ka 51a, Sh 51a.

For breaks, see ³¹P.

Cross section measurements, see En 54a, Na 54.

K. ³¹P(p, d)³⁰P $Q_{\rm m} = -10092 \pm 9$

At $E_p = 18.6$ MeV, angular distribution analysis yields $l_n = 0$ for the deuteron groups to the ground state and the 700 keV doublet; reduced width $\theta_n^2 = 0.013$ for the ground state, and $\frac{1}{3}\theta_{J=0}^2 + \theta_{J=1}^2 = 0.012$ for the 700 keV doublet (Be 61b, Ma 60d).

L.
$${}^{32}S(\gamma, d){}^{30}P$$
 $Q_m = -18955 \pm 9$

Threshold reported at $E_{\gamma} = 19.15 \pm 0.20$ MeV (Ka 51a). For yield measurements, see Fo 61, Fe 60, Fa 59, Go 58d, Ri 55, Ka 51c.

M.
$${}^{32}S(n, t){}^{30}P$$
 $Q_m = -12697 \pm 9$

Cross section at $E_n = 14.6$ MeV, Ba 61f.

N. ${}^{32}S(d, \alpha){}^{30}P$ $Q_m = 4891 \pm 9$

Magnetic analysis, at $E_d = 6.0$ and 6.5 MeV and at several angles, yields $Q_0 = 4.887 \pm 0.010$ MeV, and levels at ³⁰P* = 0.680 ± 0.010 , 0.708 ± 0.008 , 1.451, 1.972, 2.538, 2.723, 2.839, 2.937, 3.018, 3.734, 3.836, 3.926, 4.141, 4.181, 4.230, 4.296, 4.342, 4.421, 4.501, 4.625, 4.734, 4.929, 5.024, 5.200, (5.233), 5.412, 5.504, 5.598, 5.700, 5.790, all ± 0.010 MeV. The intensity of the group to the 0.68 MeV level, relative to that to the 0.71 MeV level, at $\vartheta = 130^{\circ}$, is 0.20 at $E_d = 6.0$ MeV and 0.02 at $E_d = 6.5$ MeV, indicating that the 0.68 MeV level should be identified with the $J^{\pi} = 0^+$, T = 1 state at 686 keV found from the ³⁰Si(p. γ)³⁰P reaction. The violation of the isobaric-spin selection rule is more pronounced for the higher T = 1 levels, presumably at 2.937, 4.181, and 4.501 MeV. The intensities of the α -particle groups to these levels are about 50% of neighbouring groups corresponding to T = 0 final states (En 58). See also Le 56b.

In Ja 61a, groups are reported to ${}^{30}P^* = 0.711 \pm 0.008$, and 1.459 ± 0.012 MeV; $Q_0 = 4.888 \pm 0.010$ MeV (Ma 60e).

O. Not reported:

²⁸ Si(t, n) ³⁰ P	$Q_{ m m}=$ 5579 \pm 9
²⁸ Si(a, d) ³⁰ P	$Q_{\rm m} = -12009 \pm 9$
²⁹ Si(³ He, d) ³⁰ P	$Q_{\rm m} = 91 \pm 10$
²⁹ Si(α, t) ³⁰ P	$Q_{\rm m} = -14229 \pm 10$
³⁰ Si(³ He, t) ³⁰ P	$Q_{\rm m}=-4266\pm10$
³¹ P(d, t) ³⁰ P	$Q_{\rm m}=-~6059\pm~9$
³¹ P(³ He, α) ³⁰ P	$Q_{\rm m} = 8260 \pm 9$
³² S(p, ³ He) ³⁰ P	$Q_{\rm m}=-13461\pm 9$
³³ S(p, α) ³⁰ P	$Q_{\rm m}=-1527\pm 9$

30S

(Not illustrated; see fig. 30.2 p. 148)

A.
$$^{3}S(\beta^{+})^{30}P$$
 $Q_{\rm m} = 5970 \pm 110$

The half-life is 1.5 ± 0.1 sec (Jo 60), 1.35 ± 0.16 sec (Ro 61a). Coincidence in easurements indicate that the β^+ decay mainly proceeds to ${}^{30}P(1)$. The β^+ end p dut is 4.22 ± 0.15 MeV (Jo 60), 4.30 ± 0.15 MeV (Ro 61a); the γ -ray energy is 676 ± 8 keV (Jo 60), 677 ± 10 keV (Ro 61a); log ft = 3.6.

A β branch to ³⁰P(0) has also been observed. The calculated branching percentage (19%; log ft = 4.7) is not inconsistent with very crude estimates. No evidence has been found for a transition to ³⁰P*(0.704); < 25% (Ro 61a).

B. ²⁸Si(³He, n)³⁰S
$$Q_{\rm m} = -410 \pm 110$$

At $E(^{3}\text{He}) = 3$ and 8 MeV, ^{30}S has been produced (Jo 60, Ro 61a).

C. Not reported:

$$Q_{\rm m} = -19450 \pm 110$$

31SI

(Fig. 31.1, p. 155; table 31.1, p. 156)

A.
$${}^{31}\text{Si}(\beta){}^{31}\text{P}$$
 $Q_{\rm m} = 1476.7 \pm 4.6$

The weighted mean value of the half-life is 157.3 ± 0.4 min (Ci 38, Lu 50, We 51, De 52, Mo 52a, Gu 58b).

The β^- spectrum is simple and has the allowed shape. The end point has been measured as 1.471 ± 0.008 MeV (Mo 52a) and 1.486 ± 0.012 MeV (Wa 52); log ft = 5.5. A 1.26 MeV γ ray (intensity 0.07%) has been detected by scintillation spectrometer. The corresponding β^- transition is allowed (log ft = 5.2), Ly 54.

The allowed character of the β^- branch to ${}^{31}P(0)$ with $J^{\pi} = \frac{1}{2}^+$ yields $J^{\pi} = \frac{1}{2}^+$ or $\frac{3}{2}^+$ for ${}^{31}Si(0)$, of which the first value is excluded by ${}^{30}Si(d, p){}^{31}Si$ angular distribution measurements (see reaction C).

Theoretical remarks concerning the ³¹Si decay, Go 56b.

B. ²⁹Si(t, p)³¹Si
$$Q_{\rm m} = 8724 \pm 5$$

By magnetic analysis at $E_t = 5-6$ MeV, levels in ³¹Si have been observed at $E_x = 0.754$, 1.692, 2.314, 2.799, 3.141, 3.534, 3.877, 4.264, 4.386, 4.688, 4.716, 4.9±0, 4.964, 5.272, 5.312, 5.439, 5.594, 5.605, 5.655, 5.675, 5.730, 5.816, 5.868, 5.955, 5.982, 6.068, 6.107, 6.248, 6.340. 6.450, 6.468, 6.576, 6.650, 6.810, 6.874, all ± 0.010 MeV; $Q_0 = 8.715 \pm 0.015$ MeV (Hi 61g).

305, 31 SI

Fig. 31.1. Energy levels of ³¹Si.

C. ${}^{30}Si(n, \gamma){}^{31}Si$ $Q_n = 6592.1 \pm 3.8$

The thermal neutron capture cross section is 110 ± 10 mb (Hu 58). For the cross section at higher E_n , see Hu 58, Bo 58b, Ko 58d.

D.
$${}^{30}Si(d, p){}^{31}Si$$
 $Q_m = 4367.4 \pm 3.7$

By magnetic analysis at deuteron energies up to 2.1 MeV, proton groups have been found to ${}^{31}Si^* = 0$, 0.757 ± 0.007 , 1.699 ± 0.007 , 2.319, 2.791, 3.140, 3.539, and 4.384 MeV, all ± 0.008 MeV; $Q_0 = 4.364 \pm 0.007$ MeV (Va 52), 4.364 ± 0.010 MeV (Ma 60e). At $E_d = 7.0$ MeV, magnetic analysis yields groups

		Energy for ous of the		
$\frac{E_{\mathbf{x}}}{(\mathrm{MeV}\pm\mathrm{keV})}$	Jn	ť :	Decay	Reactions
0		157.3 ± 0.4 min	β-	A, B, D, E, F
0.756 ± 6			·	B, D, E
1.697 ± 6				B, D -
2.319 ± 5				B, D
2.791 ± 5				B, D
3.139 ± 5				B, D
3.536 ± 5				B. D
3.877 ± 10				13
4.264 ± 10				B
4.385 ± 5				B, 🤉
4.688 + 10				В
4.722 + 6				B, •)
4.940 + 10				в
4.964 ± 10				В
5.272 ± 10				13
5.312 ± 10				13
5.444 ± 6				B, D
5.594-6.874; 19) levels, see re	action		13

TABLE 31.1

Energy levels of ³¹Si

to ${}^{31}Si^* = 2.322$, 2.788, 3.137, 3.535, 4.386, 4.725, and 5.447 MeV, all ± 0.006 MeV (Br 60d).

Angular distribution analysis of the groups to ³¹Si(0) and (1) gives $l_n = 2$ and 0, and thus $J^{\pi} = (\frac{3}{2}, \frac{5}{2})^+$ and $\frac{1}{2}^+$, respectively. The reduced widths are $\theta_n^2 = 0.11 (J^{\pi} = \frac{3}{2}^+)$; see reaction A) and 0.06, respectively (Su 59b, as corrected in Su 60; Ho 53d).

E. ³¹P(n, p)³¹Si $Q_{\rm m} = -694.1 \pm 4.6$

With D(d, n) neutrons, a ³¹Si level at 0.7 MeV has been found; $Q_0 = -0.97 \pm 0.13$ MeV (Me 48).

For cross section and resonances, see ³²P.

F.	³⁴ S(n, α) ³¹ Si	$Q_{\rm m} = -$	1325 ± 6
----	--	-----------------	-------------

Cross section, Hu 58.

G. Not reported:

³⁰ Si(t, d) ³¹ Si	$Q_{\rm m} = 334.5 \pm 3.7$
³⁰ Si(a, ³ He) ³¹ Si	$Q_{\rm m} = -13985.0 \pm 3.8$
³¹ P(t, ³ He) ³¹ Si	$Q_{\rm m} = -1458.6 \pm 4.6$
³³ S(n, ³ He) ³¹ Si	$Q_{\rm m} = -10481 \pm 5$

REMARKS

For a collective model interpretation of the ³¹Si level scheme, see Su 60.

(Fig. 31.2, p. 158; table 31.2, p. 159)

A. ²⁷Al(α , n)³⁰P $Q_{\rm m} = -2653 \pm 9 \qquad E_{\rm b} = 9663.8 \pm 2.4$

Resonances in the ³⁰P activity have been observed at $E_x = 3.42$, 3.58, 3.68, 3.72, 3.76, 3.81, 3.90 (Wi 60), 3.95, 4.53, 4.70, 4.84, 5.12, and 5.3 MeV (Sz 39). With natural α -particle sources, 13 resonances have been found for $E_x = 5.29$ to 8.62 MeV (Fu 38). See also En 54a.

For Q value and neutron groups, see ³⁰P.

B.
$${}^{27}\text{Al}(\alpha, p){}^{30}\text{Si}$$
 $Q_{\rm m} = 2377.6 \pm 4.1$ $E_{\rm b} = 9663.8 \pm 2.4$

With natural α -particle sources, resonances have been found at $E_{\alpha} = 4.0$, 4.44, 4.86, 5.25, 5.75, and 6.6 MeV; for references, see En 54a.

For Q value and proton groups, see ³⁰Si.

C.
$${}^{28}Si(\alpha, p){}^{31}P$$
 $Q_{\rm m} = -1916.8 \pm 2.8$

At $E_a = 19$ MeV, the angular distributions of the p_0 , p_1 , p_2 groups indicate l = 0, 2, and 2, respectively (Pl 60, Pl 61). The same result has been obtained at $E_a = 22$ MeV (Ko 61).

D. (a) ${}^{30}Si(p, \gamma){}^{31}P$ (b) ${}^{30}Si(p, p'\gamma){}^{30}Si$ $Q_m = 7286.2 \pm 4.0$ $E_b = 7286.2 \pm 4.0$

Capture resonances for $E_p < 1$ MeV, with strengths, spins, parities, and the excitation energies of the corresponding ³¹P levels are listed in table 31.3a. The resonance energies listed are those reported in Ku 59a and Oh 61. Other less accurate measurements are in good agreement with these values (Ta 46, Ts 56, Tu 57, Br 58c, Ho 58c; see also Se 55, Se 60a). Resonances at $E_p = 367$ keV (Ta 46), and at $E_p = 717$, 800, and 895 keV (Ts 56) have not been observed in other work.

Investigation of the γ -ray spectra, $\gamma - \gamma$ coincidences (including sum-coincidence measurements), angular distributions, and $\gamma - \gamma$ angular correlations at the lowest five resonances of table 31.3a (Ho 58c), and at all ten resonances of this table (Br 58c), yields branching ratios, spins, and parities of the resonances and lower lying levels. In addition to the levels known from reaction K, levels at 6.55, 6.43, 6.25 (or 5.26), and (6.05) MeV are necessary to explain the observed γ -ray spectra (Br 58c).

The branching ratios reported in Br 58c and Ho 58c are in good agreement; the averages are given in fig. 31.3; the few discrepancies are mentioned in the figure caption.

Spins and parities of the resonance levels are listed in table 31.3a. Spin and parity assignments $J^{a} = \frac{1}{2}^{+}$, $\frac{3}{2}^{+}$, $\frac{5}{2}^{+}$, $\frac{3}{2}^{+}$, $\frac{3}{2}^{+}$, $\frac{3}{2}^{+}$, $\frac{1}{2}^{+}$, $\frac{3}{2}^{+}$, $\frac{3}{2}^{+}$, $\frac{3}{2}^{+}$, $\frac{3}{2}^{+}$, $\frac{1}{2}^{+}$, $\frac{1$

Fig. 31.2. Energy levels of ³¹P; for γ decay see fig. 31.3.

31P

			~ •		
I A	BI	E	31	. 2	

Energy levels of ³¹P

E_{x} (MeV \pm keV)	J¤	$ au_{ m m}$ or \varGamma	Decay	Reactions
0		v te selle en elle Miller Mandelands and environment for a sellenge en engelse very reger parter	stable	many
1.265 ± 3	3+	$(4.6\pm2.3) imes10^{-13}~{ m sec}$	Y	many
2.232 ± 4	3+	· _ /	Ŷ	C. D. F. J. K
3.133 ± 4	3+		~	D, K
3.292 ± 4	3 + 2		2'	D, K
3.414 ± 5	-		•	F. K
3.505 ± 5	3+		~	D. K
4.188 ± 5	<u>.</u>		~	D. K
4.257 ± 5	L			K
4.430 ± 5				K
4.590 ± 5	(2)		~	D. K
4.633 + 5			4	K
4.784 + 5			~	ĸ
5.912 ± 5	(1, 2+)		~	D. K
(6.05)	(e· 2 /		* ~;	D
(6.25)			~,	D
6.43			~	D
6.55			~	D
7.768 - 4	÷4		~	D
7.886 - 4	2	40 7 eV	~	D
7 034 1 4	3 +		<i>i</i>	D
8 021 4 4	9 9		<i>Y</i>	D
8 038 1.4	9 .1 4		<i>y</i>	D D
8 002 1 4	9 5 +		<i>i</i> ′	\mathbf{D}
8 201 1 5	2 .1 +		Ŷ	D
Q 017) C	9		7	D
0.2175.0 0.000 i m	s i		2	D
0.200 11 0			2	D D
0.241 (0)	57 107		7	D
0.340-11.381;	ivi y- and/or	p-emitting ievels; see tables a	ana c	T)
and reaction	o			
12.58-17.17;	24 n-emitting l	evels; see reactions		A, E, I D
13.2-15.4;61	p-emitting leve	ls; see reaction		В

and correlation measurements (Br 58c). The assignments reported in Ho 58c, as far as these are unique, agree with these values; in addition $J^{\pi} = \left(\frac{1}{2}\right)$ and $\left(\frac{1}{2}, \frac{3}{2}^{+}\right)$ are given for ${}^{31}P^{*} = 4.59$ and 5.01 MeV, respectively. See also Si 59a, Si 59b. The E2/M1 mixing ratios of the γ rays de-exciting the resonance levels (all with $\pi = +$), and of a few lower energy γ rays are given in Br 58c, Ho 58c.

For protons with $E_p > 1$ MeV, 107 (p, γ) and (p, p' γ) resonances have been found in the proton energy range up to 4.25 MeV, corresponding to ³¹P levels up to 11.4 MeV; see tables 31.3b and c (Ba 61, On 61, Sm 61b, Va 61d; see also Pa 56, Gr 57a, Se 60a). For $E_p = 3.0-4.3$ MeV, inelastic proton scattering to ³⁰Si(1) is more prominent than the competing proton capture (Ba 61). The γ decay of some resonances up to $E_p = 1.52$ MeV is given in fig. 31.3.

Ep ^a (keV)	E _p b (keV)	31₽* (MeV)	Jя	$\Gamma_{\rm p}\Gamma_{\gamma}/\Gamma^{\rm h}$ (meV)	∏ ⁱ (eV)	$\Gamma_{\gamma_0}^{i}$ (meV)
1983-110	501	7.768	3+c, d	45± 4		
619.6 ± 1.2	620	7.886	1+c, d, e	1610 ± 120	40 ± 7	1520 ± 120
669.8 ± 1.0	670	7.934	<u>ş</u> +d	32 ± 3		
759.3 ± 0.9	759	8.021	<u>ş</u> +c, d	24 ± 3		
776.4 + 1.0	776	8.038	ર્ફ્રે+c, d, f	182 ± 16		140 ± 40
834.2 ± 1.3	835.5	8.093	<u>5</u> +C			
	945	8.201	§+c, g			
	961.5	8.217	≥∮¢			
	982	8.236	≥ § °			
	986.5	8.241	8 + 0			
	$all \pm 3$					

	TABL	.e 31.3a			
Resonances in	30Si(p,	γ) ³¹ P (E_n	≦	1000	keV)

^a Ku 59a.

^b Oh 61.

^c Br 58c.

d Ho 58c.

^e Angular distribution measurements (Br 58c, Ho 58c) yield $J^{\pi} = \frac{1}{2}^{\pm}$; the partial widths as found from resonance absorption measurements make even parity most probable (Sm 58a).

¹ A γ polarization measurement indicates that the ground-state transition is predominantly E2 (Su 60c).

 \mathcal{C} Spin assignment from angular distribution measurement; parity from γ polarization (Tu 57).

^h Ho 58c; obtained by standardizing on the value $\Gamma_p \Gamma_y / \Gamma = 1010 \pm 120$ meV for the 620 keV resonance (Srn 58a).

¹ Sm 58a, Sm 59; resonance absorption measurements.

Spins and parities of resonance levels, and the methods of investigation, are listed in tables 31.3b and c. Angular correlation measurements give $J^{n} = \frac{6}{2}^{+}$ and $\frac{3}{2}^{+}$ for $^{31}P(2)$ and (1), respectively. The 2.23 MeV level predominantly (>97%) decays to the ground state (Li 59, Pa 56).

E. ${}^{30}\text{Si}(p, n){}^{30}\text{P}$ $Q_{m} = -5031 \pm 10$ $E_{b} = 7286.2 \pm 4.0$ The cross section above the threshold shows resonance structure (Br 59f).

For threshold, see ³⁰P.

F.
$${}^{30}\text{Si}(d, n){}^{31}\text{P}$$
 $Q_m = 5061.5 \pm 4.0$

At $E_d = 1.4$ MeV, neutron groups have been observed to ³¹P* = 0, 0.33, 1.19, 2.22, and 3.41 MeV, all ± 0.04 MeV, Ma 52. See also Pe 48.

The set $^{31}\text{Si}(\beta^{-})^{31}\text{P}$ $Q_{\text{m}} = 1476.7 \pm 4.6$ Set $^{31}\text{Si}.$

H. ${}^{31}P(\gamma, \gamma){}^{31}P$

Resonance fluorescence measurements yield $\tau_m = (4.6 \pm 2.3) \times 10^{-13}$ sec for ³¹P(1) (Bo 60f).

TABLE 31.3b

Ep ^a (keV)	Е _р ь (keV)	E_{p}^{c} (keV)	Ep ^d (keV)	31₽* (MeV)	Relative intensity ^d	J^{π}
1103	1094	allenger Marine an andre andre an andre andre andre andre andre andre and an andre and an andre and an andre an	1096	8.346	0.7	ું ક, તે
1186	1179.5	1177	1178	8.426	0.2	
1212	1209.5	1204	1205	8.453	0.7	<u>.</u> ສູ້ (+) 8, d
1294	1290.5		1292	8.536	0.1	j+8
1304	1300			8.544		1 2+8
1307	1302	1302	1302	8.546	0.3	(<u>3</u>)8
1328	1324.5	1322	1326	8.567	2.5	<u>.</u>
1339				8.578		<u>.5</u> 8
1397	1394.5	1387	1393	8.633	2.1	<u>ş</u> a, d
1406	1403	1296	1402	8.642	2.5	<u></u>
1483	all 3	1476	1482	8.719	2.5	<u></u>
1492	-	1487	1491	8.728	1.7	<u>3</u> 8
1516		1507)	8.751	1.9	<u>5</u> +8
1524			1516	8.759		(į, ş)a, o
all + 3		1591	1599	8.830	0.3	
		1657	1665	8.893	0.4	
		1665	1672	8.901	0.6	
		1693	1697	8.926	1.3	3 + e
		1768	1774	9.000	2.0	-
		1806	1811	9.037	1.1	1.44
		1815	1820	9.046	1.1	2 2 1

⁶ Sm 61b; J^{π} assignments from γ -ray angular distributions and $\gamma - \gamma$ angular correlations.

^b Oh 61.

^e Ba 61; a qualitative indication of the γ decay at most resonances is also given.

^d Va 61d; I^{π} assignments from γ -ray angular distributions.

e Li 59.

f Pa 56.

I. ${}^{31}P(\gamma, n){}^{30}P$ $Q_m = -12317 \pm 9$

Breaks in the ³⁰P yield curve, not corresponding to known levels in ³⁰P, have been observed at $E_{\gamma} = 12.58 \pm 0.07$, 12.75 ± 0.08 , 12.90 ± 0.08 , 13.18 ± 0.10 , and 13.38 ± 0.10 MeV (Ba 57b), and at 12.37, 12.47, 12.68, 12.78, 12.83, 12.98, 13.18, and 13.32 MeV, all ± 0.04 MeV (Sa 61). For a possible correspondence of these breaks with strong ³⁰Si(n, p)³⁰P resonances, see Sa 61. The ³¹P excited state, corresponding to a break at about 12.59 MeV has a width $\Gamma \approx 80$ keV (Ge 60a).

For cross section and threshold measurements, see ³⁰P.

I.
$${}^{31}P(n, n'){}^{31}P$$

At several neutron energies between 2.45 and 3.5 MeV, γ rays have been observed from the first two excited states in ³¹P, with $E_{\gamma} = 1.266 \pm 0.011$ and 2.23 ± 0.03 MeV (weighted average of Mi 59c, Bo 53a, Cr 56a). See also Sc 54d, An 60d. No γ rays have been observed at $E_n = 1.2$ MeV (Va 56a). From

Enb	En ^c	Rel.	ınb≉	an 1944 an 1947	Ep ^b	Epc	Rei.	81 P \$
(keV)	(keV)	int.c	(MeV)		(keV)	(keV)	int. ^c	(MeV)
1696	1835	9.9	9.059		2311	2317	1.5	9.525
1020	1881	4.0	9,103		2350	2355	1.3	9.563
1674	1001	210	9.117			2362	1.0	9.570
1800	1898	1.0	9.121			2378	1.1	v 585
1017	1925	1.4	9.145		2390	2394	0.5	9 601
1939	1945	0.7	9.165		2510	2506	3.1	9.713
1970	1977 d	0.4	9.196			2545	2.0	9.751
1990	1997	0.3	9.216		2552	2550	5.5	9.755
2004	2011	1.2	9.229			2554	1.5	9.758
2019	2024	0.9	9.243		1	2590	1.1	9.792
2057			9.280		1	2610	1.3	9.812
2087	2093	0.5	9.309		2616	2615	1.0	9.817
	2125	0.4	9.340			2620	1.1	9.821
2129	2136	1.0	9.350			2630	1.1	9.831
2183	2187	60	9.400		2633	2635	2.6	9.835
	2193	12	9.406		2647			9.848
2215	2217	1.0	9.430		-	2660	1.1	9.860
	2225	2.2	9.438		2668	2665	1.0	9.866
2300	2305	1.9	9.515			2701	4.0	9.871
Enb	31 P#	Enb	a1D#		Enb	a1D#	Epb	31]>¢
(keV)	(MeV)	(keV)	(MeV)	$J^{\pi b}$	(keV)	(MeV)	(keV)	(MeV)
2730	9.928	3154	10.338	(3-, 3+)	3558	10.729	3886	11.046
2753	9.950	3204	10.387	13 - 3 /	3606	10.776	3920	11.079
2828	10.023	3223	10.405		3634	10.803	3980	1.137
2856	10.050	3267	10.477	5	3667	10.835	4012	11.168
2883	10.076	3307	10. 186	3-	3677	10.844	4055	11.210
2901	10.093	3323	10.502	3-	3689	10.856	4090	11.244
2910	10.102	3348	10.526	(3, 3)-	3714	10.880	4110	11.263
2926	10.117	3434	10.609	3-	3740	10.905	4121	11.274
2952	10.143	3453	10.627	(š=)	3772	10.936	4143	11.295
3006	10.195	3467	10.641	3-	3820	10.983	4172	11.323
3022	10.911	3500	10.673	(§, §)-	3846	11.008	4184	11.335
	1	3525	10.697	$(\frac{3}{2}, \frac{5}{2})^{-}$	3869	11.030	4202	11.354
	1						4232	11.381
	i				1			

Resonances in the ³⁰Si+p γ -ray yield ($E_p > 1825 \text{ keV}$)^a

TABLE 31.3c

^a Below $E_p = 2.5$ MeV all resonances are from ³⁰Si(p, γ)³¹P; above $E_p = 3.0$ MeV the ³⁰Si(p, p' γ)³⁰Si, $E_{\gamma} = 2.23$ MeV γ ray is predominant.

^b Ba 61; J^{α} assignments from angular distributions of the inelastic scattering 2.23 MeV γ ray. A qualitative indication is given of the γ decay of some resonances below $E_{\rm p} = 2.4$ MeV. ^c Va 61d.

^d In Va 61d $E_p = 1987$ keV is given for this resonance; examination of the yield curves in Ba 61 and Va 61d makes $E_p = 1977$ keV more probable.

coincidence measurements it is concluded that $^{31}P(2)$ has a 40% ground-state transition (Bo 58a); see, however, reaction D.

Elastic scattering angular distributions, La 57b.

ENERGY LEVELS OF LIGHT NUCLEI. III

Fig. 31.3. Gamma decay of ³¹P levels. The branchings of all levels below $E_x = 8.3$ MeV are average values from Br 58c and Ho 58c, except for the following annotated transitions: $a \approx 3\%$ (Br 58c); b > 85% to 1.27 MeV level (Ho 58c); c de-excitation to 2.23 MeV level only (Br 58c); d this branch proceeds to the 3.41 MeV level (Br 58c); c de-excitation to 3.41 MeV level in Br 58c. The mixing ratio of the 1.27 MeV γ ray is from Mc 61a; the 4.78 \rightarrow 3.13 MeV transition is from Wa 60d. Branchings of levels above $E_x = 8.3$ MeV are from Va 61d.

31P

For cross section, see Hu 58, Ri 60, Cu 60b. For resonances, see ³²S.

K. ${}^{31}P(p, p'){}^{31}P$

Levels found from this reaction are listed in table 31.4 (En 57a, Va 57a). In addition to γ rays observed from the ${}^{30}Si(p, \gamma){}^{31}P$ reaction, an intense 1.65 MeV γ ray has been observed, corresponding to a 4.78 \rightarrow 3.13 MeV transition (Wa 60d).

From angular distribution and linear polarization measurements of the $E_{\rm p} = 1.26$ MeV γ ray, at the $E_{\rm p} = 2.70$ and 2.87 MeV resonances, the E2/M1 amplitude mixing ratio has been determined as $x = -0.25 \pm 0.15$ or $+6 \pm 4$ (Me 61a). For elastic scattering differential cross-section measurements, see Ki 55a; for calculations, Me 57a.

For resonances, see 325.

$\frac{E_{x} a}{(\text{MeV} + \text{keV})}$	$\frac{E_{\mathbf{x}}\mathbf{b}}{(\mathrm{MeV}\pm\mathrm{keV})}$	$\frac{E_{\mathbf{x}}^{\mathbf{b}}}{(\text{MeV}\pm\text{keV})}$
1.264 - 4	1.267	4.257
2.230 - 5	2.234	4.430
3.134 - 6	3.133	4.590
3.292 - 5	3.293	4.633
	3.414	4.784
	3.505	5.012
	4.188	all <u>-</u> -5
	all ÷5	,

TABLE 31.4Levels in ³¹P from ³¹P(p, p')³¹P

* Va 57a, $E_p = 3.72$ and 4.62 MeV, * En 57a, $E_p = 7.04$ MeV,

L. ³¹P(²⁰Ne, ²⁰Ne)³¹P

By Coulomb excitation at $E({}^{20}Ne) = 28$ MeV the partial mean life for E2 emission of ${}^{31}P(1)$ has been determined as $\tau_m(E2) = (4.8 \pm 1.4) \times 10^{-12}$ sec (An 61e).

M.	siz ₍₃ -)sip	$Q_{\rm m} = 5450 \pm 17$
	Sec 315.	
N.	25(:: P)31P	$Q_{\rm m} = -8862.6 \pm 1.6$
Ċ	ross section. Jo 55. 1	Ri 55. Mo 55a, Go 56c, Cu 59, Fo 61.
0.	\$25(n. d. ³¹ P	$Q_{\rm m} = -6637.8 \pm 1.7$
D	itterential cross secti	on Ho 590 Anoplan distribution of

Inferential cross section Ha 59a. Angular distribution of ground-state group yields $l_x = 0$ (Co 60a) and $\theta_y^2 = 0.011$ (Ve 60a). See also Za 61.

P. $^{35}C(\gamma, z)^{51}P$ $Q_m = -6997.5 \pm 2.9$

Cross section for 32 MeV bremsstrahlung, Er 57.

31P 164

Q.	Not reported:	
	²⁹ Si(t, n) ³¹ P	$Q_{\rm m} = 9418.1 \pm 3.3$
	²⁹ Si(³ He, p) ³¹ P	$Q_{\rm m} = 10182.6 \pm 3.3$
	${}^{29}{\rm Si}(lpha,{\rm d}){}^{31}{\rm P}$	$Q_{\rm m} = -8169.8 \pm 3.3$
	³⁰ Si(³ He, d) ³¹ P	$Q_{\rm m} = 1793.1 \pm 4.0$
	³⁰ Si(a, t) ³¹ P	$Q_{\rm m} = -12526.5 \pm 4.0$
	³² S(d, ³ He) ³¹ P	$Q_{\rm m} = -3369.4 \pm 1.6$
	$^{32}S(t, \alpha)^{31}P$	$Q_{\rm m} = 10950.1 \pm 1.7$
	³³ S(n, t) ³¹ P	$Q_{\rm m} = -9022.8 \pm 3.1$
	³³ S(p, ³ He) ³¹ P	$Q_{\rm m} = -9787.2 \pm 3.1$
	$^{33}S(d, \alpha)^{31}P$	$Q_{\rm m} = 8565.2 \pm 3.1$
	$^{34}S(p, \alpha)^{31}P$	$Q_{\rm m} = -$ 630.9±3.3

REMARKS

A possible interpretation of the 31 P level scheme in terms of the unified model is discussed in Br 59. With oblate deformation a reasonable interpretation of the spins and positions of the first six excited states can be obtained. The branching ratios and E2/M1 mixing ratios predicted by the Nilsson wave functions which would be required by this interpretation are at variance with experimental values (Br 59). Also, Th 60a. For a discussion of the energy level spacing, see Gr 61b.

There is a striking resemblance between the properties and decay of the low lying levels in ³¹P and ²⁹Si (Ho 58c).

зıs

(Fig. 31.4, p. 166; table 31.5, p. 166)

A. ${}^{31}S(\beta^+){}^{31}P$

$$Q_{\rm m} = 5450 \pm 17$$

The weighted mean of seven half-life determinations is 2.61 ± 0.03 sec (Ha 52a, Hu 54, Cl 58, Mi 58, Ja 60a, Li 60a, Wa 60a).

The decay mainly (99%) proceeds to ${}^{31}P(0)$; end point 4.50 ± 0.10 MeV (Hu 54), 4.39 ± 0.03 MeV (Wa 60a). See also Wh 41, El 41. The transition is super-allowed (log ft = 3.7), giving $J^{\pi} = \frac{1}{2}$ for ${}^{31}S$.

A (1.1 ± 0.1) % branch to ³¹P(1) has been found by detection of the 1.27 MeV γ ray (Ta 60c); log ft = 5.0.

B. ${}^{28}Si(\alpha, n){}^{31}S$ $Q_{n} = -8149 \pm 17$

Threshold, see Ne 61.

C. ³¹P(p, n)³¹S
$$Q_{\rm m} = -6232 \pm 17$$

At $E_p = 17.2$ MeV, neutron groups have been observed to ${}^{31}S^* = 0$, 1.15 ± 0.15 , 2.28 ± 0.20 , 3.35 ± 0.20 , 4.51 ± 0.15 , 5.94 ± 0.30 , and 6.41 ± 0.20 MeV;

Fig. 31.4 Energy levels of ³¹S.

ΤΑΙ	3LE	31	.5	
Energy	leve	els	of	31S

E _x (MeV)	J¤	T	Decay	Reactions
0	ş-	2.61 ± 0.03 sec	β+	A, B, C, D
1.15 ± 0.15			•	С
2.28 ± 0.20				С
3.35 ± 0.20				С
4.51 ± 0.15				Ċ
5.94 ± 0.30				Č
6.41 ± 0.20				ċ

 $Q_0 = -6.06 \pm 0.20$ MeV (Ru 56b). The threshold, at 6.456 ± 0.020 MeV, yields $Q_{\psi} = -6.253 \pm 0.020$ MeV (Br 59f).

Cross section at $E_p = 18$ and 32 MeV, Ta 58.

D.
$${}^{32}S(\gamma, n){}^{31}S$$
 $Q_m = -15095$

The threshold has been measured as 15.0 ± 0.1 MeV (Ha 52a; also Mc 49. Be 47). Cross section, Fe 60, Fa 59, Mo 55a; for references to older work, En 54a,

 ± 17

31S

E.	Not reported:	
	²⁹ Si(³ He, n). ³¹ S	$Q_{\rm m} = 3951 \pm 17$
	³¹ P(³ He, t) ³¹ S	$Q_{\rm m} = -5468 \pm 17$
	³² S(p, d) ³¹ S	$Q_{\rm m} = -12870 \pm 17$
	³² S(d, t) ³¹ S	$Q_{\rm m} = - 8837 \pm 17$
	$^{32}S(^{3}He, \alpha)^{31}S$	$Q_{\rm m} = 5433 \pm 17$
	³³ S(p, t) ³¹ S	$Q_{\rm m} = -15254 \pm 17$

³²Si (Fig. 32.1, p. 167)

A. ${}^{32}Si(\beta^{-}){}^{22}P$

$$Q_{\rm m} = 219 \pm 15$$

Radioactive ³²Si has been produced from the reaction ³⁷Cl (p, α 2p)³²Si at $E_p = 340$ MeV. From the measured activity and estimated reaction cross

Fig. 32.1. Energy levels of ³²Si.

section, a half-life is calculated between 100 and 710 years. The β - spectrum end point is ≈ 100 keV. There are no γ rays (Li 53a). See also Li 53. Log ft between 8.0 and 8.8, which is even higher than for ³²P.

³²Si, ³²P

168

P. M. ENDT AND C. VAN DER LEUN

B. ${}^{31}Si(n, \gamma){}^{32}Si$

 $Q_{\rm m}=9194\pm15$

Neutron capture in ³¹Si in a high-flux reactor has also produced ³²Si. From the yield, the half-life (in years) is computed as 600 times the cross section (in barns) (Tu 54). Observation of ³²Si produced by cosmic rays is reported in La 59a.

C.
$${}^{30}\text{Si}(t, p){}^{32}\text{Si}$$
 $Q_{m} = 7304 \pm 15$

From magnetic analysis at $E_t = 5-6$ MeV, levels in ³²Si have been observed at 1.941, 4.981, 5.212, 5.279, (5.405), 5.499, 5.763, 5.782, 5.949, 6.186, 6.375, all ± 0.010 MeV; $Q_0 = 7.304 \pm 0.015$ MeV (Hi 61g).

D. Not reported: ${}^{34}S(n, {}^{3}He){}^{32}Si$ $Q_m = -12708 \pm 15$

32P

(Fig. 32.2, p. 169; table 32.1, p. 170)

A. ${}^{32}P(\beta){}^{32}S$ $Q_{\rm m} = 1708.4 \pm 2.0$

The weighted mean of nine half-life determinations is 14.32 ± 0.02 days (Ro 59, Gu 58b, An 57a, Lo 53, Si 51, Kl 48, Mu 40, Ca 38, Si 36).

Determinations of the β = end point by magnetic spectrometer, collected in table 32.2, are in good agreement and yield an average of 1.7088 \pm 0.0014 MeV. The average β = energy per disintegration is 694 \pm 25 keV (Br 53b), 693 \pm 22 keV (Sh 57b). No discrete γ rays have been observed (La 54, Go 54b). The *ft* value (log *ft* = 7.9) is very large for an allowed transition (Po 56, An 54a, Je 52, Si 46); this can be explained by *l*-forbiddenness. Small deviations from the allowed shape have been reported (Po 57, Da 58, Jo 58a, Br 60j, Ni 61) and theoretically discussed (Ca 57a, Ib 58, Ku 59c, Ge 60). The effect of "weak magnetism" is discussed in Be 58d.

Measurements of the degree of longitudinal polarization are in agreement with the predicted value -v/c (Sp 61, Ul 61, Cu 60a, Sp 60a, Ke 59c, Mi 59a, Bo 58, Ge 58b, Fr 57; see also De 57b, Du 57). For recently reported energy dependence of the polarization and/or small deviations from the -v/c value, see Sp 61, Bi 60b, Ga 61a.

The internal bremsstrahlung spectrum is in agreement with theory (Su 59, Pe 59a, Re 57, Mi 54a, Go 54b; En 54a for references to older work); disagreement, however, has been found especially at higher energies (Li 55, Su 59, Ko 60). Theory, Le 57a. Circular polarization of internal bremsstrahlung. Ga 61a, Bo 58.

For internal pair formation, see Mc 54, We 54, Mi 56, Gr 56b, Hu 56a; for effects involving the atomic electron cloud, Ch 54, Ch 55a, Re 55, Re 57, Su 59, Du 31a.

Fig. 32.2. Energy levels of 32P.

32p

$E_{\mathbf{x}}$ (MeV + keV)	ſπ	$ au_{rac{1}{2}}$ or $arLambda$	Decay	Reactions
0	1+	14.32 + 0.02 days	β-	many
0 0770 L 1 %	9+	$\leq 3 \times 10^{-8}$ sec	Y	D, G, I
0.0770 ± 3.0	(0))+		21	D , G
1150 ± 3	1+		γ	D, G
1.100 ± 0 1 3 2 1 + 3	(<1)-			G
1.51 ± 20				G
1.754 - 4				G
2.177 + 4	$(0, 1)^+$		γ	D , G
2.224 + 4	(-, -,		Y	D , G
2.855 - 4	(<3)+			G
2.743 + 4	$(<3)^+$			G
3.005 - 4	(≪3)+			G
3.147 + 5	(≤3)+			G
3.264 + 4	2-		Y	D , G
3.323 + 4	(≪3)+			G
3.447 + 5			Y	D, G
3.798 + 6				G
3.890 + 6				G
3.994 + 6				G
4.010 + 6				G
4.038 ± 5	(≤.2)-		2'	D, G
4.158 ± 6				G
4.209 ± 6	(0, 1)+			G
4.280 E 6	•			G
4.316 ± 6				G
4.412 + 6	(≤2)-		2	D , G
4.560-6.85; 32 lo	evels, see table 32	2.4 and reactions		D, G
8.090 ± 3	1+	1.1 ± 0.2 keV	n	E

TABLE 32.1

6 80T

ABLE 32.2	
ABLE 32.2	

Magnetic spectrometer determinations of the ${}^{32}P(\beta){}^{32}S$ end point

Reference	End point (keV)	Reference	End point (keV)	Reference	End point (keV)
Ly 37 La 39a Wi 41a Si 46 La 49	$1690 \pm 30 \\ 1720 \pm 10 \\ 1750 \pm 20 \\ 1712 \pm 8 \\ 1689 \pm 10$	Ag 50 Wa 50 Sh 51c Je 52 Mo 52a	$ \begin{array}{r} 1718 \pm 10 \\ 1708 \pm 8 \\ 1695 \pm 5 \\ 1704 \pm 8 \\ 1697 \pm 10 \\ \end{array} $	Wo 54 An 54a Po 56 Po 57 Da 58	1714 ± 8 1712 ± 8 1712 ± 4 1711 ± 2 1705 ± 4

$^{29}\mathrm{Si}(\alpha, \mathbf{p})^{32}\mathrm{P}$ B.

 $Q_{\rm m} = -2457.8 \pm 4.0$

 $Q_{\rm m} = 7505.1 \pm 4.5$

At $\mathcal{E}_{\alpha} = 16$ MeV, ³²P has been produced from this reaction (Ki 39a).

Kadioactive ³²P has been found from this reaction at $E(^{3}\text{He}) = 13$ and 21 MeV (Po 52b, Po 53).

E_{γ}^{a} (MeV \pm keV)	<i>I</i> _γ ^{b, g}	E_{γ}^{c} (MeV \pm keV)	I _y c, g	Probable transition in ³² Pf
7.94 ± 30	0.3			$C \rightarrow 0$
7.85 ± 50	0.9			$C \rightarrow 0.08$
7.62 ± 30	1			
7.42 ± 30	4			$C \rightarrow 0.52$
6.76 ± 30	14	6.79 ± 20	10	$C \rightarrow 1.15^{e}$
6.33 ± 30	0.6			6.34 → 0
6.14 ± 30	0.9			
6.02 ± 40	1	5.96 ± 30	I	$6.09 \rightarrow 0.08$
		5.87 ± 30	0.6	5.82 ightarrow 0
5.71 ± 30	3	5.73 ± 20	3.3	$C \rightarrow 2.18$
		5.57 ±30	1.2	$5.53 \rightarrow 0$
5.41 ± 30	1	(5.41 ±30)	0.8	$5.37 \rightarrow 0$
5.27 ± 30	5.5	5.30 ± 30	3	5.82 ightarrow 0.52
4.92 ± 30	3	4.90 ± 20	2	$4.90 \rightarrow 0$
4.68 ± 30	17	4.660 ± 15	10	$C \rightarrow 3.26^{e}$
4.49 <u></u> 30	3	4.44 <u>+</u> 30	1.3	$C \rightarrow 3.45$
4.38 <u></u> 30	8	4.34 ± 20	4	$4.41 \rightarrow 0.08$
4.20 ± 30	5	4.16 ± 30	2	$5.37 \rightarrow 1.15$
3.92 ± 30	16	3.900 ± 15	14	C → 4.04
3 .55 + <u>+</u> 3 0	16	2.510 ± 15	8	$4.04 \rightarrow 0.52$; C $\rightarrow 4.41$
3.28 ± 40	8	3.27 ± 20	3.8	3.26 - > 0 e
3.04 - 40	5	3.05 ± 20	2.7	$C \rightarrow 4.90$
E_{λ}^{d}	. <i>E</i> ,, e	2.93 ±20	2.2	$3.45 \rightarrow 0.52$
$(MeV \pm keV) = I_{\gamma}^{u, v}$	(MeV + keV)	2.87 ± 20	3.4	$4.04 \rightarrow 1.15$
աններ պատությանը համանակություն է է է է է է է է է է է է է է է է է է է	Ban the in the leave	2.60 + 20	3.6	$C \rightarrow 5.37$
		2.46 20	2.7	$C \rightarrow 5.53$
29 - 30 41		· · -		$(2.18 \rightarrow 0)^{\circ}; 2.22 \rightarrow 0.08^{\circ}$
		2.10 ± 30	13	$C \rightarrow 5.82; \ 3.26 \rightarrow 1.15$
		1.95 ± 20	4.5	
		1.72 + 20	5	
		1.60 ± 20	3	$C \rightarrow 6.34$
1.13-30 14	1.07 ± 20	1.07 + 20	20	$1.15 \rightarrow 0.08^{e}; (3.26 \rightarrow 2.18)^{e}$
- Ku		(0.93 ± 30)	8	
	0.64 ± 20	, /		$1.15 \rightarrow 0.52^{e}$
0.51 ± 20 28		0.51 ± 20		$0.52 \rightarrow 0^{e}$
		0.43 ± 20	70	
	0.08 ± 10			$0.08 \rightarrow 0^{e}$

 TABLE 32.3

 Gamma rays from thermal neutron capture in phosphorus

^a Ki 52; magnetic pair spectrometer.

^b Ki 52, as corrected in Ba 58c.

-

^e Gr 58c; magnetic Compton spectrometer.

⁴ Br 56e; two-crystal scintillation spectrometer.

^e Ma 59c; assignments based on coincidence experiments.

¹ Gr 58c; the capturing state is indicated by C; excitation energies are in MeV. The transitions marked ⁹ are confirmed by coincidence experiments.

" Intensities in gamma quanta per 100 captures.

P. M. ENDT AND C. VAN DER LEUN

D. ${}^{31}P(n, \gamma){}^{32}P$ $Q_m = 7.936.8 \pm 2.5$

The thermal neutron capture cross section is 190 ± 10 mb (Hu 58). Capture gamma rays are listed in table 32.3, with the observed intensities and the levels between which they probably occur (Ki 52, Br 56e, Ba 58c, Gr 58c, Ma 59c). Most of these γ rays can be regarded as transitions between known levels in ³²P. The intensities, however, of the γ rays feeding and de-exciting a level, may differ appreciably, indicating that the decay scheme may be more complicated.

The results of coincidence measurements are also indicated in table 32.3.

The mean life of ${}^{32}P(1)$ is less than 4×10^{-8} sec. This is consistent with the conclusion that the 0.08 MeV γ ray is mainly M1 (Ma 59c).

Gamma-gamma angular correlation measurements yield $J^{\pi} = 1^+$ and 2⁻ for ${}^{32}P^* = 1.15$ and 3.26 MeV, respectively (Ma 59c).

For a comparison of the (n, γ) and (d, p) yields, see Gr 58b, Bo 59a.

E.
$${}^{31}P(n, n){}^{31}P$$
 $E_n = 7936.8 + 2.5$

A resonance has been observed at $E_n = 158 \pm 2$ keV, with J = 1, l = 0, and $\Gamma_n = 1.1 \pm 0.2$ keV (Hu 58; also Pa 55b). Partly resolved resonances for $E_n = 0.1-0.8$ MeV, Ha 53b; for $E_n = 1.9-5.0$ MeV, Ri 51, Cu 60b.

For non-resonance information, see ³¹P.

F.
$${}^{31}P(n, p){}^{31}Si$$
 $Q_m = -694.1 + 4.6$ $E_n = 7936.8 + 2.5$

Several unresolved resonances have been observed in the range $E_n = 1.9-5.0$ MeV (Ri 51, Ni 52, Cu 60).

For cross section and angular distribution, see Hu 58, Al 61, Ha 61. Measurements of Q value, see ³¹Si.

G. ³¹P(d, p)³²P
$$Q_{\rm m} = 5712.0 \pm 2.4$$

Levels in ³²P found by magnetic analysis are listed in table 32.4 (Pi 60, Da 57, Va 52b, Ho 61) together with the l_n values (Ho 61, Pa 58, Te 58a, Da 57, Te 56b, Bl 53) and the reduced widths (Ho 61, see also Ma 60d), deduced from the angular distributions of the proton groups. Several of the groups to higher excited states consist of unresolved components (Pi 60). The ground state Q value has been measured as $Q_0 = 5.709 \pm 0.010$ MeV (Pi 60), 5.704 ± 0.008 MeV (Va 52b).

The relative intensities of the groups to ${}^{32}P(1)$ and (0) are expected to be in the ratio 2J+1, or 1.67, for J = 2 and 1, respectively (En 54). The experimentally determined ratios at $E_d = 6.0$ MeV are: 1.61 at 30°, 1.52 at 50°, 1.44 at 70°, and 1.41 at 90° (Pi 60); at $E_d = 1.8$ and 2.0 MeV and 90° the ratios are 1.7 and 1.2, respectively (Va 52b).

For a discussion of the yields and relative reduced widths, see Gr 58b, Bo 59a, Ma 60d.

See ³²S, reaction F, for γ rays from ³¹P+d reactions.

32P

<i>FABLE</i>	32.4
---------------------	------

Levels in ³²P from the ³¹P(d, p)³²P reaction

32 P* &	32P#b	•	$(2/+1)\theta_{n}^{2d}$, i	32[>≉ 8	32P*c	
(MeV <u>ke</u> V)	(MeV \pm keV)	l _n	(relative)	$(MeV \pm keV)$	$(MeV \pm keV)$	/ _n c, i
0	0	2+(0) c. d. e. g. h	3 (0.15)	5.010±7		
0.077 ± 3	0.077 ± 2	2c, d, e, f, g, h	4.4	5.077 ± 7	5.11 ± 100	
$\boldsymbol{0.516\pm3}$	0.515 ± 5	0c, d, f	0.65	5.129 ± 7		
1.149 ± 3	1.154 ± 7	0c, d, f	1.2	$\boldsymbol{5.232\pm7}$		
1.322 ± 3	1.316 <u>+</u> 8	31		5.346 ± 7	5.37 ± 70	1
	1.51 ± 20^{d}			5.394 ± 7		
1.755 ± 4	1.750 ± 9			5.510 ± 8	5.53 ± 70	1
2.177 ± 4	2.177 ± 9	$0 + 2^{d}$	(0.32) (1.1)	5.550 ± 8		
2.223 ± 4	2.227 ± 9			$\textbf{5.657} \pm \textbf{8}$		
2.657 ± 5	2.650 + 8	24	0.30	5.700 ± 8		
2.743 ± 5	$2.742 \succeq \mathbf{-8}$	24	0.10	5.724 ± 8		
$\textbf{3.007} \pm \textbf{5}$	$2.999 ~\vdash~ 10$	2 d	0.33	5.775 ± 8	5.75 ± 100	
3.148 ± 5	(3.141 - 12)	2 d	0.15	5.813 ± 8		
3.265 ± 5	3.259 ± 9	Ic, d	4.6	5.835 ± 8		
3.324 ± 5	3.318 - 9	2 d	2.0	5.858 ± 8	$5.82\pm~70$	1
3.447 ± 5	3.45 ⊢100°	24 (3) c	3.7	5.964 ± 8		
3.798 ±6				$\textbf{5.989} \pm \textbf{8}$		
3.890 <u>n</u> 6				6.024 ± 8		
3.994 ± 6				6.062 ± 8		
4.010 ± 6				6.096 - 8	$6.09 \doteq 70$	1
4.040 ± 6	4.032 ± 9] e, a	3.3	6.131 ± 8		
$\textbf{4.158} \pm \textbf{6}$				6.160 ± 8		
4.209 ± 6	4.207 ± 10	0c, d	0.50	6.196 ± 8	6.20 ± 100	
4.280 + 6					6.34 <u>-1-</u> 100	1
4.316 ± 6					6.56 ± 100	1 cr 2
4.412 6	4.43 ±100°	Let q	0.21		6.69 - 100	
4.560 ± 7					6.85 ± 100	
$4.615 \div 7$						
$4.664 \div 7$	4.66 ±100°	1 d	1.6			
4.878 ±7	4.90 ± 70°	Ic, d	2.0			
4.944 ± 7						

^a Pi 60, $E_{d} = 6.0$ MeV.

- ^b Va 52b, $E_{d} = 1.8$ and 2.0 MeV.
- ^c Da 57, $E_d = 8.9$ MeV. ^d Ho 61, $E_d = 7.77$ MeV (preliminary). ^e Pa 58, $E_d = 7.8$ MeV. ^f Te 56b, $E_d = 4.0$ MeV.

- g Bl 53, $E_{\rm d} = 14.3$ MeV.
- ^h Te 58a, $E_{d} = 4.0$ MeV.

¹ For relative reduced widths calculated from the experiments reported in Da 57, see Ma 60d.

 $Q_{\rm m}=219\pm15$ ${}^{32}Si(\beta -){}^{32}P$ H. See ³²Si.

I.
$${}^{32}S(n, p){}^{32}P$$
 $Q_m = -925.8 \pm 2.1$

An ionization chamber measurement yields $Q_0 = -0.93 \pm 0.1$ MeV (Hu 41). At $E_{\rm n} = 2.56$ MeV, a 77 ± 2 keV γ ray has been observed (Da 56c).

32P, 32S

174

P.M. ENDT AND C. VAN DER LEUN

For cross section, see Hu 58, Al 61. See also Eu 58, Co 57d, Co 59c (proton spectra at $E_n = 14$ MeV), Co 60b, Ha 61 (angular distribution at $E_n = 14$ MeV).

J. ${}^{34}S(d, \alpha){}^{32}P$ $Q_m = 5081.1 \pm 3.7$

With enriched ³⁴S targets, magnetic analysis at $E_{\rm d} = 1.6-2.9$ MeV yields $Q_0 = 5.04 \pm 0.02$ MeV (Le 56b).

Cross section, An 60b.

K.
$${}^{35}Cl(n, \alpha){}^{32}P$$
 $Q_m = 939.3 \pm 3.3$

Ionization chamber pulse-height analysis yields $Q_0 = 1.07 \pm 0.15$ MeV (Fo 52), 0.97 ± 0.16 MeV (Ad 53). For cross section, see Ad 53, Pa 53, Le 57b.

L. Not reported:

³⁰ Si(t, n) ³² P	$Q_{\rm m} = 6740.6 \pm 4.5$
$^{30}Si(\alpha, d)^{32}P$	$Q_{\rm m}=-10847.4\pm4.5$
³¹ P(t, d) ³² P	$Q_{\rm m} = 1679.1 \pm 2.4$
³¹ P(a, ³ He) ³² P	$Q_{\rm m} = -12604.4 \pm 2.5$
³² S(t, ³ He) ³² P	$Q_{\rm m} = -1690.3 \pm 2.0$
³³ S(n, d) ³² P	$Q_{\rm m} = -7343.6 \pm 3.5$
³³ S(d, ³ He) ³² P	$Q_{\rm m} = -4075.2 \pm 3.4$
$^{33}S(t, \alpha)^{32}P$	$Q_{\rm m} = 10244.4 \pm 3.5$
³⁴ S(n, t) ³² P	$Q_{\rm m} = -12506.8 \pm 3.7$
³⁴ S(p, ³ He) ³² P	$Q_{\rm m} = -13271.3 \pm 3.7$

REMARKS

For theoretical discussions regarding doublet levels in ³²P, see In 53, Pa 57d. Bi 60a, Ba 61c, Pa 61b.

32S

(Fig. 32.3, p. 175; table 32.5, p. 176)

A. ${}^{28}\text{Si}(\alpha, \gamma){}^{32}\text{S}$

 $Q_{\rm m} = 6945.7 \pm 3.1$

Results obtained from this reaction for $E_{\alpha} < 3.0$ MeV are given in table 32.6. The J^{π} values result from γ -ray angular distribution and $\gamma - \gamma$ angular correlation measurements. The two highest energy resonances probably correspond to the ³¹P(p, γ)³²S resonances at $E_p = 618$ and 641 keV, respectively. The observed ³²S excitation energies are 11 and 12 keV higher than those found from the ³¹P(p, γ)³²S reaction (Sm 61a).

B.
$${}^{29}\text{Si}(\alpha, n){}^{32}\text{S}$$

 $Q_{\rm m} = -1532.0 \pm 3.5$

For resonances, see ³³S.

ENERGY LEVELS OF LIGHT NUCLEI. III

Fig. 32.3. Energy levels of ³²S; for γ decay, see also fig. 32.4.

F W. ENDY AND C. VAN DER IEUN

	17 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	The second se	Decay	Reactions
	er menne iv researchersen versterer en annendetstaaren er Arnek	annalainn an tha ann an	stable	many
5° 7° 316 at			ay	many
	ೆ. ಬಿ.ಸಿ.ಎಸ್.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	d ay	FGILP
an anna an	1811 - 1811 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911		<i>,</i>	CEGLOP
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	~ *		5 4 9	CFGLP
ne and and a set of the set of th	and to many		<i>.</i>	CFGLP
and an	2 2- B		8 4 9	CEGRIG
1 2 2 2 2 4	್ರತ ^{ನ್ನು} ಸ್ಮಾರ್.		5 • ç	C G
	4 - -		6	FGII
2 PA2 2			م ه	C P G
a the second sec	<u>ر</u> معد ا		6 4 1	
and a later of the second s			2	C. O. J G
2. 2	7. p 1		••	6.0
arring - 24	ز شد ن معان سرچ میرد		2 • ·	0.0 C C
- 1 decim 1 1 decim	<u>_</u>		, '`	C. G T. C
				6.12
	·			6.0
and the second	3 - L			C. U
				U C
مة بالحمالة معر معدان الحموييين	ີ່າພາ ພື້ອ			0
10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -				V . V#
		and a stand		1.e
297 L LL 4 100 100	. N. 196.54	್ ಕಾಲ್ಗೆ ಮಾರ್ ಮೇಲ್ ಮನ್ನು ಸುಮಾರಿ		~
24 (a)27 (2)3 at 1670a (2)4				
The state -				r, c
an a				
a mana a			9 9	N
	~		4. i	C
rian T	4		τ. υ	<u>"</u>
			€.» d	é.
			2	ι, T
	41-4 86		• 19 1	4 C
	4 85 9		7 1 2	$A_{\rm e} \subset \Sigma$
· · ··································	n ever see wind	\$ 32.7 and 32.8 and reactiv	1015	C. D. E
nh și			ž	e.
1. 346 5. 			₩. F F	¢.
. «. 			•••	C
18°, 2°,			**	3

TABLE 32.5 Energy levels of "S

TAFIF 32 6

Leves a set and the stars of the machine for 62a.

्रे * दि * दि * दि * दि	R. C. N.	Decar	J`, J`.	2/-1 5.5. 2×	
	و تو تو تو تو تر معه	• ,		e e e e e envez	
- F-14 8	5 943	. ł		10 to 10 to 10	
" " " "	6		- 81 6		۳. -
and the second s		`P ``1	1.5	1. E	ۍ در س
	an and a fight	r.	~ 3	a 🕽	<u></u>
مرتب <u>بشنب ، د</u> کنه	ENT. 18 731 1 10	్ లో చిరిది మారి కర	10-10-1-2-5 No. 27	The day text - were	

a the end of the end of the transformed and the theory of the transformed the

C. ${}^{31}P(p, \gamma){}^{32}S$

$$Q_{\rm m} = 8862.6 \pm 1.6$$

Resonances observed in this reaction are given in table 32.7; see also Ia 46, Gr 51, Sm 54, Ke 56a. All spins in table 32.7 follow from γ -ray angular distribution measurements. The parity of the $E_{p} = 641$, 1892, 2027, and 2120

E _p (keV)	³² S** (MeV)	(keV)	$(2J+1) \Gamma_{\rm p}\Gamma_{\gamma}/\Gamma$ (eV)	J^{π}	Main decay
354.8±0.7ª	9.206		الم		$\gamma_0 + \gamma_1^e$
438.7 ± 0.9 a	9.288				$\gamma_0 + \gamma_1^e$
540.9 ± 1.1 °	9.387				
618.2 ± 1.0^{b}	9.462		0.003b		$\gamma_0 + \gamma_1^b$
641.3 ± 0.8 a	9.484		0.19b	1 -b	Yob
$811.8 \pm 0.5^{\circ}$	9.648	$< 0.45^{\circ}$	1.8d		γ_1^{d}
820.0 ± 1.0^{a}	9.657		0.36d	lq	20 ^d
$892.0 \pm 0.5^{\circ}$	9.727	< 0.35°			
$1052.6 \pm 0.5^{\circ}$	9.882	$< 0.30^{\circ}$			
$1088.0 \pm 0.5^{\circ}$	9.917	< 0.30°			
$1116.2 \pm 0.5^{\circ}$	9.944	< 0.15°	1.9d	lq	Yod
$1147.0 \pm 0.5^{\circ}$	9.974	< 0.16°	2.2d		Yid, f
$1246.5\pm0.6^{\circ}$	10.070	$1.5 \pm 0.3^{\circ}$	3.9d	2d	$(\gamma_0+)\gamma_1^{d},t$
$1396.0 \pm 0.7^{\circ}$	10.215	< 0.30°).
$1398.7 \pm 0.7^{\circ}$	10.218	< 0.35°			}1
$1436.3\pm0.7^{\circ}$	10.254	< 0.20°			ំវ
$1468.6 \pm 0.7^{\circ}$	10.285	$< 0.25^{\circ}$			ſ
$1553.9\pm0.8^{\circ}$	10.368	< 0.40°			f
$1581.5 \pm 0.8^{\circ}$	10.395	< 0.55°			f
18924	10.696	240	37h	1 - d	Zed
1985d	10.786	10ª	13d	Jq	γ ₀ d
20274	10.826	240	26 ^d	1 - đ	γ ₀ d
2120d	10.917	5d	4.0d	1-d	Yod
2320d	11.111	8đ	20 ^d] q	Yod
2340d	11.131	8d	64 ^d] q	γ _o d

TABLE 32.7Levels in ³³S from the ³¹P(p, 21)³²S reaction

^a Ku 59a.

^b Sm 61a.

^c An 61.

^d Pa 55a; in the reported yields Γ_{γ} only includes transitions to ${}^{32}S(0)$ and (1).

• Sc 61c.

^f See fig. 32.4 for more details on decay.

keV resonances follows from the fact that these states are also resonant for the ${}^{31}P(p, \alpha_0){}^{32}S$ reaction (see table 32.8).

The γ -ray branching of the resonance levels in the $E_p = 1140-1590$ keV region and of many lower levels (An 61b) are presented in fig. 32.4. See also Sm 54, Ke 56a.

The yields of γ_0 and γ_1 have also been measured in the $E_p = 5.0-7.7$ MeV region. Pronounced resonance structure has been observed, with maxima at

1/7

P. M. ENDT AND C. VAN DER LEUN

Fig. 32.4. Gamma-ray branchings of ³²S levels. The data are from An 61b, except for t' γ_0 upper limit at the 3.78 MeV level (Wa 60b), and for the mixing ratio of the 5.01 \rightarrow 2.24 MeV transition (Br 61d).

 $E_{p} = (5.6)$, 6.65, 7.15, and 7.50 MeV, corresponding to ³²S levels at (14.3), 15.30, 15.97, and 16.13 MeV (Ge 59).

 ${}^{31}P(p, p'\gamma){}^{31}P$ D.

 $E_{\rm b} = 8862.6 \pm 1.6$

32S

At 21 resonances (not tabulated) in the $E_p = 2.3-3.4$ MeV region a

 1.26 ± 0.015 MeV γ ray has been observed (Ol 55). A yield curve of the same γ ray has been given in the $E_p = 2.2-2.95$ MeV region; the angular distribution has been measured at the $E_p = 2.70$, 2.78, and 2.87 MeV resonances (Al 61a). Yield curves of proton groups leading to the four lowest ³¹P excited states have been measured in the 3.57-4.00 MeV and 4.55-4.70 MeV region. Considerable resonance structure is found (Va 56, Va 57a).

For non-resonance data, see ³¹P.

Ep	325*	Г	$(2J+1) \Gamma_{\rm p}\Gamma_{\alpha_{\rm n}}/I$
(keV)	(MeV)	(keV)	(eV)
641	9.484		4.6
900	9.735		
1024 ± 10	9.854	≲ 3	100
1161 ± 10	9.988	≈ 4	24
1404 🕂 10	10.223	≈ 6	130
1474±10	10.290	≤ 2.4	34
1514 ± 10	10.330	7	3100
1640 ± 10	10.452	≈ 4.2	230
1710 ± 10	10.520	$\lesssim 5.5$	36
1811 ± 10	10.618	≈ 4.7	100
1892 ± 10	10.696	27	2900
1976 ± 10	10.777	≤ 2.8	68
1990 ± 10	10.791	≤ 3.6	120
2018 ± 10	10.818	< 3	92
2029 ± 10	10.828	~ 18	1800
2031 ± 10	10.830	≈ 6	480
2041 ± 10	10.840	≈ 6	80
2109 ± 10	10.906	< 4	5.2
2434 ± 10	11.221	~ 17	1600
2644 ± 10	11.424	≈ 5	92
2779 ± 10	11.555	8	480
2805 ± 10	11.580	17	540
2874 ± 10	11.647	≈ 5	88
2922 ± 10	11.694	10	1100
3008 ± 10	11.777	75	5000
3119 ± 10	11.884	20	560

		T	ABLE	: 32.8		
Levels in	⁸² S	from	the	³¹ P(p,	α ₀)28Si	reaction

Al. data are from Cl 60, except those at $E_p = 641$ keV (Ku 60g) and $E_p = 900$ keV (Fr 51). Upper limits of 0.08, 0.15, 1.6, and 1.6 eV are given for the (p, α_0) yields at the 439, 541, 812, and 820 keV ³¹P(p, γ)³²S resonances (Ku 60g).

E. ³¹P(p, α)²⁸Si $Q_{\rm m} = 1916.8 \pm 2.8$ $E_{\rm b} = 8862.6 \pm 1.6$ Resonances observed in the α_0 yield are given in table 32.8. See also Va 56. In the $E_{\rm p} = 2.47-3.36$ MeV region a 1.8 MeV γ ray has been observed, presumably following the transition to ²⁸Si(1) (Ol 55).

For non-resonance data, see ²⁸Si.

F. ³¹P(d, n)³²S
$$Q_m = 6637.8 \pm 1.7$$

Results from angular distribution measurements are given in table 32.9. For a theoretical discussion of the results, see Hu 55b, Ma 60d. With nuclear emulsions the ground-state Q value has been measured as 6.63 ± 0.08 MeV; transitions have also been observed to states at 6.29, 7.28, and 8.33 MeV, all ± 0.10 MeV (El 55a).

33Z#B	Ca 55; E_{d}	= 9 MeV; Ma 60d	El 55a; $E_{d} = 8 \text{ MeV}$	
(MeV)	/p	0p ^s	l _p	
0	0	6 × 10 ⁻³	0	
2.24	2	$0.3 imes10^{-3}$	2	
3.78)		0	
4.29	0			
4.46)			
4.70	Ì			
5.01	(-			
5.80	2			

TABLE 32.9 Levels in ³²S from the ³¹P(d, n)³²S reaction

^a The excitation energies are taken from table 32.5.

TABLE 32.10

		60 D D 4 1 C	# #A# 1 10
2.235 ^a	5.553 ± 8	7.114 ± 8	7.107 -12
3.780ª	5.799 ± 8	7.194 ± 10	7.881 ± 12
4.289 ^a	6.226 ± 8	(7.371 ± 20)	7.951 ± 12
4.465 ^a	6.621 ± 8	7.429±10	8.125 ± 15
4.701 ⁸	6.671 ± 8	(7.479 ± 20)	8.298 ± 15
5.012 + 8	7.002 ± 8	7.523 ± 12	8.496 ± 15

^a The ground-state deuteron group was outside the range of the magnetic spectrograph. Its position was computed by choosing the average excitation energy of the lowest five levels equal to that found from the ${}^{35}\text{Cl}(p,\alpha){}^{32}\text{S}$ reaction (En 56c).

^b Possibly a doublet.

The following γ rays have been observed with a magnetic pair spectrometer at $E_{\rm d} = 4.6 \text{ MeV}$: $E_{\rm d} = 4.43 \pm 0.03, 4.73 \pm 0.03, 4.95 \pm 0.03, 5.31 \pm 0.03, 5.81 \pm 0.03, 6.13 \pm 0.03, 6.86 \pm 0.03, 7.49 \pm 0.07, 8.19 \pm 0.03$, and 8.56 ± 0.03 MeV. The assignment is uncertain (Be 55).

G. ³¹P(³He, d)³²S
$$Q_{\rm m} = 3369.4 \pm 1.6$$

Results from magnetic analysis at several angles and at $E({}^{3}\text{He}) = 10.19$ MeV are given in table 32.10 (Hi 60i).

H. 3 $(\beta^{-})^{32}$ S $Q_{\rm m} = 1708.4 \pm 2.0$ See 32 P.

³²S
I. ${}^{32}S(\gamma, \gamma){}^{32}S$

By bremsstrahlung resonance fluorescence the mean life of ${}^{32}S(1)$ has been determined as $\tau_m = 4 \times 10^{-13}$ sec (Bo 61).

J. ${}^{32}S(e, e'){}^{32}S$

The differential cross section has been measured for elastic scattering of 187 MeV electrons, and for inelastic scattering to the 2.24, 3.78, 5.80 MeV levels, and to a 6.6 MeV level. For ${}^{32}S(1)$, $J^{\pi} = (2^+)$ is found and a mean life of $\tau_m = (1.6 \pm 0.2) \times 10^{-13}$ sec (He 56).

K. ${}^{32}S(n, n'){}^{32}S$

The only γ ray found from inelastic neutron scattering has $E_{\gamma} = 2.23 \pm 0.02$ MeV (Da 56c), 2.25 ± 0.03 MeV (Ro 55a). See also An 60d. At $E_n = 14$ MeV a neutron group has been found by time-of-flight spectroscopy leading to a, possibly double, level at 5.2 ± 0.3 MeV (Cl 60a). For elastic and inelastic total and differential cross sections, see Li 55a, El 56, La 57b, Ma 57, Ma 59b, St 59c, Cl 60a, Bo 61b, La 61. Elastic scattering of polarized neutrons, Co 60.

For resonances, see ³³S.

L. ³²S(p, p')³²S

By magnetic analysis, at $E_p = 8$ MeV, levels in ³²S have been observed at 2.25, 3.81, 4.32, 4.50, 474, 5.04, and 5.83 MeV, all ± 0.02 MeV (Ar 52; see also Od 60). At $E_p = 185$ MeV a transition is seen to $E_x = 4.7 \pm 0.2$ MeV (Ty 58).

The γ decay from the 3.78 MeV level proceeds to ${}^{32}S(1)$ (intensity of $E_{\gamma} = 3.78 \text{ MeV} < 0.2\%$) (Wa 60b). From $\gamma - \gamma$ angular correlation measurements J = 0 is found for this level (Wa 60b, Go 60c, Br 60e, Br 61d). With the same technique $J^{n} = (2^{+})$ is obtained for the 4.29 MeV level, decaying to ${}^{32}S(0)$ and (1), and J = 3 for the 5.01 MeV level, decaying only to ${}^{32}S(1)$. The quadrupole/dipole amplitude ratio of the 5.01 $\rightarrow 2.24$ MeV $3 \rightarrow 2^{+}$ transition amounts to $x = + 0.05 \pm 0.04$ (Go 60c, Br 60e, Br 61d).

For elastic and inelastic differential cross section, see Old 59, Od 60. For a $p'-\gamma$ angular correlation measurement, Ha 60. For a polarization measurement of elastically scattered protons, Ro 61c. For optical model calculations on elastic scattering, Me 57a.

Resonances, see ³³Cl.

M. ${}^{32}S(d, d){}^{32}S$

Elastic differential cross section, Ta 60e, Ba 61d.

N. ${}^{32}S(\alpha, \alpha'){}^{32}S$

For elastic and inelastic differential cross sections, see Fa 57, Co 59 See also Bl 59a.

P. M. ENDT AND C. VAN DER LEUN $Q_{\rm m} = 13000 \pm 300$ 0. $^{32}Cl(\beta^+)^{32}S$ See ³²Cl. $Q_{\rm m} = 1865.1 \pm 2.6$ $^{35}Cl(p, \alpha)^{32}S$ P.

By magnetic analysis the Q value has been measured as 1.860 ± 0.005 MeV (Va 57d), 1.863 ± 0.008 MeV (En 56c), 1.865 ± 0.015 MeV (Cl 60).

Levels in ³²S are observed at 2.237, 3.780, 4.287 MeV, all ± 0.008 MeV, 4.465 ± 0.010 , and 4.698 ± 0.010 MeV (En 56c).

For resonances, see ³⁶Ar.

Not reported:	
³⁰ Si(³ He, n) ³² S	$Q_{\rm m} = 8430.9 \pm 4.1$
$^{31}P(\alpha, t)^{32}S$	$Q_{\rm m} = -10950.1 \pm 1.7$
³³ S(y, n) ³² S	$Q_{\rm m} = - 8642.5 \pm 2.8$
³³ S(p, d) ³² S	$Q_{\rm m} = - 6417.8 \pm 2.8$
³³ S(³ He, α) ³² S	$Q_{\rm m} = 11934.6 \pm 2.8$
³⁴ S(p, t) ³² S	$Q_{\rm m} =: -11581.0 \pm 3.1$

32C1

(Not illustrated; see fig. 32.3, p. 175; table 32.11, p. 182)

 $^{32}Cl(\beta^+)^{32}S$ Ь

 $Q_{\rm m} = 13000 \pm 300$

The half-life has been measured as 0.306 ± 0.004 sec (GI 55), 0.32 ± 0.01 sec (B · 54a), 0.28 sec (Ty 54).

The maximum β^+ energy is 9.5 \pm 0.4 MeV, indicating a β^+ transition to ³²S(1). This branch has an intensity of (48 ± 15) %. A weaker branch with ≈ 7.5 MeV enc point has also been observed. In one per several thousand disintegrations the β^+ decay proceeds to an α -unstable level in ³²S; $E_{\alpha} = 2-3$ MeV (Gl 55).

Energy levels of ³² Cl					
E _x (MeV)	J ⁿ	τ ₁	Decay	Reactions	
0	(2)+	0.308±0.04 sec	β+	A, B	
1.0				В	
1.4				В	
2.0				в	

TABLE 32.11

Energies, intensities, and probable assignments of γ rays observed in the decay of ³²Cl are listed in table 32.12; see fig. 32.3. From the γ ray intensities, branchings of 60, 9, 13, and 18% are computed for β^+ transitions to $^{32}S^* = 2.24, 4.29, 5.01$, and 7.00 MeV, yielding log ft = 4.6, 5.0, 4.6, and 3.8,respectively.

32S. 32Cl

182

Q.

Т	A	в	L	E	3:	2.	1	2
---	---	---	---	---	----	----	---	----------

Gamma-ray energies (in McV) and intensities from ${}^{32}Cl(\beta^+){}^{32}S$

G1 55		Br 54a	Assignment ^a
2.21 ± 0.03	70%	2.25 ± 0.04	$2.24 \rightarrow 0$
$2.77 \mathrm{or} 3.79 \pm 0.$	08 10%	(3.79 ± 0.08)	$(5.01 \rightarrow 2.24)$
4.27 ± 0.08	7%	4.33 ± 0.09	$4.29 \rightarrow 0$
4.77 ± 0.04	14%	4.82 ± 0.08	$(7.00 \rightarrow 2.24)$

^a Excitation energies in ³²S in MeV.

The super-allowed character of the transition to ${}^{32}S^* = 7.00$ MeV, expected for the β^+ branch to the T = 1 analog of the ${}^{32}Cl$ ground state (Bo 55), indicates that this level has T = 1; in good agreement with the 7.0 MeV excitation energy estimated in Wi 56a.

B. ${}^{32}S(p, n){}^{32}Cl$ $Q_m = -13780 \pm 300$

Threshold measurements yield 14.3 ± 0.5 MeV (Gl 55) and 14.5 ± 0.6 MeV (Br 54a).

At $E_p = 17.5$ MeV, neutron groups have been observed to ${}^{32}\text{Cl}^* = 1.0$, 1.4, and 2.0 MeV (Aj 55). For cross section at $E_p = 18$ and 32 MeV, see Ta 58.

C.	Not reported:	
	³² S(³ He, t) ³² Cl	$Q_{\rm m} = -13020 \pm 300$

33P

(Not illustrated)

A. ${}^{33}P(\beta){}^{33}S$

 $Q_{\rm m}=248\pm2$

The half-life is 24.6 ± 0.2 days (weighted mean of Sh 51c, Je 52, We 52, Ni 54, Ru 58, Fo 60b; see also An 60b). The β - end point is 248 ± 2 keV (average of Sh 51c, Je 52, We 52, El 54, Ni 54, Ru 58). The transition is allowed (log ft = 5.0), but *l*-forbidden. Gamma rays have not been found (We 52, also La 54).

B. ${}^{33}S(n, p){}^{33}P$ $Q_m = 534 \pm 2$

The thermal neutron cross section is 15 ± 10 mb (Hu 58). See also Je 52, Ni 54.

C. ${}^{34}S(\gamma, p){}^{33}P$ $Q_m = -10886 \pm 5$

Production of ³³P, Sh 51c, Je 52.

D. ${}^{37}Cl(\gamma, \alpha){}^{33}P$ $Q_m = -7.856 \pm 4$

Cross section measurement, Er 57. See also Sh 51c, Je 52.

E. Not reported:

³⁰ Si(a, p) ³³ P	$Q_{\rm m} =$	-2969 ± 5
³¹ P(t, p) ³³ P	$Q_{\rm m} =$	9557 ± 4

³³ S(t, ³ He) ³³ P	$Q_{\rm m} =$	$-230\pm$	2
$^{34}S(n, d)^{33}P$	$Q_{\rm m} =$	$-8662\pm$	5
³⁴ S(d, ³ He) ³³ P	$Q_{\rm m} =$	$-5393\pm$	5
$^{34}S(t, \alpha)^{33}P$	$Q_{\rm m} =$	$8927\pm$	5
³⁵ Cl(n, ³ He) ³³ P	$Q_{\rm m} =$	$-9535\pm$	5
$^{36}S(p, \alpha)^{33}P$	$Q_{\rm m} =$	545 ± 1	10

(Fig. 33.1, p. 185; table 33.1, p. 186)

A. $^{29}\text{Si}(\alpha, n)^{32}\text{S}$ $Q_{\rm m} = -1532.0 \pm 3.5$ $E_{\rm b} = 7110.5 \pm 4.4$ Cross section for $E_{\alpha} = 2.1$ -4.5 MeV shows many partly resolved resonances, Gi 59.

B. ${}^{32}S(n, \gamma){}^{33}S$ $Q_m = 8642.5 \pm 2.8$

Cross sections and abundances of sulphur isotopes indicate that probably most of the thermal neutron captures in natural sulphur occur in ³²S (Ki 52, Hu 58). The thermal neutron absorption cross section of natural sulphur is 0.52 ± 0.02 b (Hu 58).

Gamma rays from thermal neutron capture in natural sulphur with intensities in photons per 100 captures are listed in table 33.2 (Ki 52, Br 56e, Gr 58e). Remarkable are the strong El transitions to and from the p states in ³³S at 3.22 and 5.71 MeV (cf. the large intensity of the proton groups to these levels from the ³²S(d, p)³³S reaction; En 58).

Measurement of the circular polarization of the strong 5.43 MeV γ ray $(C \rightarrow 3.22)$ reveals its El character; ${}^{33}S^* = 3.22$ MeV has $J^{\pi} = \frac{3}{2}^-$ (Tr 57, Ve 61). Angular correlations between the 5.43 MeV γ ray and the 3.22, 2.38, and 0.84 MeV γ rays yield $J^{\pi} = \frac{3}{2}^-$ and $\frac{1}{2}^+$ for ${}^{23}S^* = 3.22$ and 0.84 MeV, respectively (Ma 59c). Several of the weaker γ rays of table 33.2 might also be explained as transitions to or from known levels in ${}^{33}S$, but their assignment is less certain. Sum-coincidence measurements confirm the cascades through ${}^{33}S^* = 0.84$, (1.97), 3.22, (4.05), and 7.42 MeV. In addition to they γ rays listed in table 33.2, a 1.21 MeV γ ray has been observed. A probable 1.64-7.02 MeV cascade through ${}^{33}S^* = 7.02$ MeV is also indicated (Bu 59b).

See Bo 59a for a discussion of the (n, γ) and (d, p) reduced widths. Cross section at higher E_n , Hu 58, Be 58e.

C.
$${}^{32}S(n, n){}^{32}S$$

 $E_{\rm p} = 8642.5 \pm 2.8$

For cross section, see Hu 58, Ri 60, Cu 60b.

Fifteen resolved resonances have been observed below $E_n = 1.1$ MeV. The characteristics of the nine lowest-energy resonances are given in table 33.3 (Hu 58). The angular distribution of elastically scattered neutrons has been

Fig. 33 1. Energy levels of ³³S.

		0.	فالماد المادها وجري فالإستان الإلامة والمراجعات	
$E_{\rm x}$ (MeV \pm keV)	J^{π}	[' (keV)	Decay	Reactions
0	8.+		stable	many
0.841.1.4	2 1 ++		11	B. E. G. I. K
1.065 ± 5	2		<i>i</i> ' 21	B. E. I. K
1.900 ± 0	/9 5_		(21)	BEIK
2.313 <u>+</u> 0	(分,分)」			FGHIK
2.809±0	(g, g)' (7)-		Y	F I K
2.931 ± 5	(2)			FIK
2.970 ± 5	9 wa			L, J, K B F I
3.224 ± 5	<u>36</u> 2 (5 7)		γ	D, D, J F I
3.834 <u>+</u> 5	(学 学)_			ь, ј г т
3.939 ± 5			()	ь, ј рг 1
4.052 ± 5			(27)	D, E, J E I
4.098 ± 5				C, J F I
4.149 ± 5	44 83			E, J D. D. I
4.212 ± 5	$(\frac{1}{2}, \frac{3}{2})^{-}$		Y	B, E, J F
4.377 ± 6				E
4.425 ± 6				E
4.732 ± 6				E
4.748 ± 6				E, J
4.869 ± 6				B, E
4.919 ± 6				E
4.941 ± 6				E
5.177 ± 6	(ş, ş)-			E
5.210 ± 6				E
5.272 ± 6				E
5.287 ± 6				E
5.340 ± 6				E
5.351 ± 6				E
5.399 ± 6	(§, ⅔) [−]			E
5.479 ± 6				E
5.597 ± 6				E
5.613 ± 6				E
5.622 ± 6				E
5.711 ± 6	(4)-		Ŷ	B, E
5.864 ± 6			γ	B, E
5.888 ± 6	$(\frac{1}{2}, \frac{3}{2})^{-}$		•	E
5.915-8.015;	70 levels, see	table 33.4 and	reaction	E (and B)
8.750 ± 3	<u>}</u> +	18 + 3	n	c`́
8.839 + 3		< 2	n	С
8.908 + 3		< 3	n	Ċ
8.924 + 3		< 3	n	Ċ
9.006 + 4	3+	12 + 2	n	C
9.210 + 4	۵	1.4 + 0.5	n	Č
9.321 ± 5	3+	14 + 3	n	č
9.346	6		n	č
9.362			n	č
				\sim

TABLE 33.1 Energy levels of ³³S

measured at the $E_n = 585$ keV resonance (La 61). For many unresolved resonances with neutron energies up to 5 MeV, see Hu 58, Cu 60b.

For non-resonance data, see ³²S.

TABLE 3	3.2
IABLE 3	3

Gamma rays from thermal-neutron capture in sulphur

Gr 55a, Gr 58cª		Ki 52, Ba	58c ^b		
E_{γ} (MeV \pm keV)	I,°	E_{γ} (MeV \pm keV)	I _y c	in ³³ S ^d	
8.63 ±40	1.8	8.64 <u>+</u> 20	1.2	$C \rightarrow 0$	
$\textbf{7.80} \pm \textbf{40}$	2.6	7.78 ± 30	1.6	C → 0.84	
$\textbf{7.42} \pm \textbf{30}$	0.6	7.42 ± 30	0.3	$7.42 \rightarrow 0$	
7.20 ± 50	0.5	$7.19{\pm}30$	0.25		
$\boldsymbol{6.62 \pm 50}$	0.5	6.64 ± 30	0.25	$C \rightarrow 1.97$	
5.88 ± 50	0.4	5.97 ± 60	0.8	$5.86 \rightarrow 0$	
5.44 ± 20	48	5.43 ± 20	60	$C \rightarrow 3.22$; (6.48 $\rightarrow 0.84$	
5.07 - 30	3.5	5.03 ± 60	2.7	$5.86 \rightarrow 0.84$	
4.87 20	12	4.84 - 60	11	$5.71 \rightarrow 0.84$	
4.58 - 30	1.2	4.60 ± 60	2.7	$C \rightarrow 4.05$	
4.40 ± 20	6	4.38 ± 30	7	C → 4.21	
3.66 ± 50	2	3.69 ± 50	4	$(C \rightarrow 4.87)$	
3.41 ± 30	7.1	3.36 + 50	7	$4.21 \rightarrow 0.84; 5.71 \rightarrow 2.31$	
3.27 30	19	3.21 ± 30	20	$3.22 \rightarrow 0; (4.05 \rightarrow 0.84)$	
3.10 - 30	2	× / •			
2.97 - 30	13	2.94 ± 50	20	$C \rightarrow 5.71$	
2.82×30	4	Br 56	e	$C \rightarrow 5.86$	
$\textbf{2.70} \pm \textbf{50}$	2	6.5 g d -1 .			
2.55 ± 30	4.4				
2.41 30	30	2.34 ± 30	37	$3.22 \rightarrow 0.84$	
2.29 30	5			$(C \rightarrow 6.48)$	
2.00 - 20	3			$(1.96 \rightarrow 0)$	
		$1.52 \div 50$	1	$(2.31 \rightarrow 0.84)$	
0.84 ± 10	47	0.84 ÷ 20	56	$0.84 \rightarrow 0$	

* Magnetic Compton spectrometer.

^b Magnetic pair spectrometer. ^c Intensities in photons per 100 captures in natural s lphur. ^d The capturing state is denoted by C; all transitions are assumed to result from ${}^{32}S(n, \gamma){}^{33}S$.

E _n (keV)	³³ S* (MeV)	J^{π}	ln	Γ_{n} (keV)
111 ± 2	8.750	12+	0	18 ± 3
203 ± 2	8.839		>1	< 2
274 ± 2	8.908		$\geqslant 1$	< 3
290 ± 2	8.924		≥ l	< 3
375 ± 3	9.006	$\frac{1}{2}$ +	0	12 ± 2
585 ± 3	9.210	<u>;</u> – a	la	1.4 ± 0.4
700 <u></u> 4	9.321	1+	0	14 ± 3
725	9.346			
742	9.362			

TABLE 33.3

^a Also $J \ge \frac{5}{2}$, $l_n \ge 2$ (La 56a).

D. (a) ${}^{32}S(n, p){}^{32}P$ (b) ${}^{32}S(n, \alpha){}^{29}Si$ $Q_{m} = -925.8 \pm 2.1$ $E_{b} = 8642.5 \pm 2.8$ $Q_{m} = 1532.0 \pm 3.5$ $E_{b} = 8642.5 \pm 2.8$

Unresolved resonances, Hu 58.

For Q-value measurements, cross section, and particle groups, see ³²P and ²⁹Si, respectively.

E.
$${}^{32}S(d, p){}^{33}S$$
 $Q_m = 6417.8 \pm 2.8$

Magnetic analysis yields $Q_0 = 6.422 \pm 0.011$ MeV (St 51), 6.408 ± 0.020 MeV (Le 56b), 6.413 ± 0.006 MeV (En 58), 6.420 ± 0.005 MeV (Ma 60e).

High-resolution magnetic analysis, at $E_d = 6.0$ and 6.5 MeV and at several angles, yields the 104 levels listed in table 33.4 (En 58), together with l_n values from angular distribution measurements (Ja 61b, Ho 53a, Ho 53d, Te 57, Te 58a) and the relative reduced widths (Ja 61b, Ma 60d). The excitation energies of the seven lowest levels, reported in Ja 61a, ${}^{33}S^* = 0.846 \pm 0.005$, 1.986 ± 0.006 , 2.328 ± 0.009 , 2.887 ± 0.009 , 2.957 ± 0.012 , 2.995 ± 0.012 , and 3.238 ± 0.012 MeV, are 15-20 keV higher than those reported in En 58 and Pa 55c. See also Kr 56a.

The high intensity of the proton groups leading to the 2 937, 3.224, and 5.711 MeV levels, together with the stripping distributions of these groups, and the intensities of the γ rays to the last two of these levels in the ${}^{32}S(n, \gamma){}^{33}S$ reaction, leads to the identification of these levels with the expected $1f_{\frac{3}{2}}$, $2p_{\frac{3}{2}}$, and $2p_{\frac{1}{2}}$ single-particle states, respectively. Other strong groups lead to the levels at 4.212, 5.888, 6.427, 6.676, and 6.689 MeV (En 58). For a discussion of the (n, γ) and (d, p) reduced widths, see Bo 59a. For γ rays observed from this reaction, see Ch 58a.

F. ${}^{33}P(\beta^{-}){}^{33}S$ $Q_m = 248 \pm 2$ See ${}^{33}P$.

G. ³³S(²⁰Ne, ²⁰Ne)³³S

From Coulomb excitation at $E(^{20}\text{Ne}) = 23$ MeV, the E2 partial mean life of $^{33}S(1)$ has been found as 5.2×10^{-11} sec (An 61e).

H. ${}^{33}Cl(\beta^+){}^{33}S$ $Q_m = 5575 \pm 12$ See ${}^{33}Cl$.

 $Q_{\rm m} = -11420.8 \pm 4.0$ Threshold measurement yields 10.85 ± 0.20 MeV (Sh 51a). For cross section,

]. 3 . Cl(d, α) 33 S

see Mo 53a.

$$Q_{\rm m} = 8282.9 + 3.6$$

Magnetic analysis of the α -particle groups from bombardment of targets containing natural Cl with deuterons of several energies between 3.0 and 7.5 MeV

33S

			a, p) oreaction	
E _x a	/_b	$(2J+1)\theta_n^{2b}$	Exa	Esa
(MeV)	- 18	(relative	(MeV)	(MeV)
0	2c, d, g	4.0 ^f	5.915	7.330
0.8390	0e, d, g	1.1 ^f	5.982	(7.335)
1.965	(2)	(0.4)	6.067	7.353
2.314	2	0.8	(6.079)	7.359
2.869	2	1.2	6.101	7.369
2.936	30	9.1f	6.131	7.401
2.971	w		6.234	7.413
3.222	lc	8.1 ^f	6.261	7.452
3.832	3	0.7	6.310	7.460
3.935	w (3)	(0.3	6.326	7.475
4.049	w	•	6.360	7.482
4.095	w		6.372	7.487
4.145	w		6.416	7.503
4.211	lc	0.9f	6.427	(7.560)
4.377	w		6.487	(7.579)
4.425	(4)	(1.5)	6.513	(7.589)
4.732		15	6.526	(7.595)
4.747	3	1.0	6.559	(7.601)
4.869	w		6.616	7.615
4.919	1º and	0.21	6.676	7.629
4.941	3 or 4	0.8 or 1.1	6.689	7.658
5.177	´ 3	0.6	6.710	7.693
5.210	3 or 2	0.5 or 0.2	6.720	7.711
5.272		0.4	6.788	7.749
5.287		0.4	6.892	7.766
5.340	ĺ	0.6	6.903	7.779
5.351	30	9.0	6.965	7.797
5.399	´ 3	0.6	6.999	7.828
5.479	w		7.017	7.840
5.597	w		7.037	7.862
5.613]0	0.2	7.133	7.892
5.622		0.0	7.164	7.906
5.711	´ 1°	3.5 ^f	7.183	7.983
5.864			7.190	7.991
5.888	1	1.2	7.254	8.015
$all \pm 0.006$			$all \pm 0.006$	$all \pm 0.006$

TABLE 33.4

Levels in ³³S from the ³²S(d, p)³³S reaction

^a En 58; $E_d = 6.0$ and 6.5 MeV.

- ^c Also Ho 53a, Ho 53d; $E_d = 8.0$ MeV.
- ^d Also Te 57, Te 58a; $E_{d} = 1.3$, 1.8, 2.2, 3.8 and 4.0 MeV.
- $^{\rm e}~\pm 0.005$ MeV.
- f For these levels relative reduced widths are also given in Ho 53a, Ho 53d, as discussed in Ma 60d.
- g Also Bl 53, $E_{\rm d} = 14.3$ MeV.

^b Ja 61b (preliminary), $E_d = 7.77$ MeV; w means "weak and/or isotropic": intensity at $\vartheta = 30^{\circ}$ is $\leq 7\%$ of the ground-state transition.

yields ³³S levels at 0.844 ± 0.006 , 1.966 ± 0.007 , 2.312, 2.869, 2.938, 2.969, 3.227, all ± 0.008 , 3.840, 3.947, 4.060, 4.105, 4.159, 4.224, all ± 0.009 , and 4.749 ± 0.010 MeV; $Q_0 = 8.277 \pm 0.010$ MeV (Pa 55c). An earlier reported level at 3.365 MeV does not exist. Alpha-particle groups leading to 4.38 and 4.43 MeV levels, observed from the ³²S(d, p)³³S reaction, may have been present, but were weak or obscured by contaminant groups (En 58).

K.
$${}^{36}Ar(n, \alpha){}^{33}S$$
 $Q_m = 2002.1 \pm 4.1$

Ionization chamber measurements at $E_n = 2.15-4.40$ MeV yield a ³³S level at 0.9 ± 0.1 MeV; $Q_0 = 2.0\pm0.1$ MeV (To 53). At $E_n = 1.32-8.94$ MeV, the cross sections for transitions to the ³³S ground state and six lowest excited states have been measured; $Q_0 = 1.96\pm0.04$ MeV (Da 60, Da 61b). See also Gr 46. Resonances, see ³⁷Ar.

L. Not reported:

$^{31}P(t, n)^{33}S$	$Q_{\rm m} = 9022.8 \pm 3.1$
³¹ P(³ He, p) ³³ S	$Q_{\rm m} = 9787.2 \pm 3.1$
$^{31}P(x, d)^{33}S$	$Q_{\rm m} = -8565.2 \pm 3.1$
$^{32}S(t, d)^{33}S$	$Q_{\rm m} = 2384.9 \pm 2.8$
³² S(x, ³ He) ³³ S	$Q_{\rm m} = -11934.6 \pm 2.8$
³⁴ S(p, d) ³³ S	$Q_{\rm m} = -9196.1 \pm 4.0$
³⁴ S(d, t) ³³ S	$Q_{\rm m} = -5163.2 \pm 4.0$
${}^{34}S({}^{3}He, \alpha){}^{33}S$	$Q_{\rm m} = -9156.3 \pm 4.0$
³⁵ Cl(n, t) ³³ S	$Q_{\rm m} = -9305.1 \pm 3.6$
³⁵ Cl(p, ³ He) ³³ S	$Q_{\rm m} = -10069.6 \pm 3.6$

REMARKS

For a theoretical discussion of collective model predictions pertaining to ²³S, see Bi 60.

33C1

(Fig. 33.2, p. 191; table 33.5, p. 192)

 $Q_{\rm m} = 5575 \pm 12$

A. ${}^{33}Cl(\beta^+){}^{33}S$

The weighted mean half-life is 2.53 ± 0.04 sec (Mu 58, Ja 60a, Wa 60a; see also Ho 40, Sc 48). Other determinations (Wh 41, Bo 51) are in doubt as possibly a mixture of ³³Cl and ³⁴Cl has been studied (St 53).

Possible confusion with short-lived ³⁴Cl also sheds doubt on measurements of the β^{\pm} end point (Wa 41, Bo 51, Na 53). A recent measurement yields 4.51 ± 0.05 MeV (Wa 60a). Log ft = 3.7.

A γ ray of 2.85 MeV with an intensity of 0.3% per disintegration (log ft = 4.3) has been observed (Me 54).

Fig. 33.2. Energy levels of ³³Cl.

the activity was a post the cases

That State

Energy another of the

		1. St 2	June -	Kertion
Je.	an a	The Case of	18 m	4111
Straffation with	,		- 46, 1 2	1. L'
				<u>.</u>
			~	<u>لم</u> ح <i>ت</i>
				32. 112. 117
and the second sec	, 		13	Z 4.
N MARLE IN		· 1 - 1 - 1 - 4 - 4 - 3	40 '	1
1. 2. 2. 2		to the she	*	FII
			Ţ	ي. ب
- Marine Contraction	1	an other and the automation	3	\$* 3*-
Non-	1 m 1	(1 .	14 San
		1.5 at 1100 1.5 at 110	7	5
18. mm - 1919. (1	, «	19694 - 1646, 882 -	e 	т. г
. (Que 1:	{		4	
0.12-1:	g- 1841	the service	1	s. P
198- <u>1</u>	quaim	1.34 1.34 ditte	1	2
TRAL IN	6 m	化二氟 化酸 翻下	1	18-
in the second second	معدي ا	11 - 6 455 1	3	- ger - Kan
19		(H 1. H. 27 A	1	ζ.
17. 187		Mar IT are V	1	्र स्व
A REAL PROPERTY AND A REAL PROPERTY A REAL	1 9 ×	15	3	ф
i		αρτηγ	-74 -14	- 4
1.36- <u>1</u> :	.**	1. 1991	á.	*

Land Land

in a line of the second	SK_T** That-T	interpretation of a second s ' y second s	(1-) J.J.J.J. III		के दिन्द्र के स्वाय के स
27 3 69, 200	<u>1.83</u>	aanta waapaan waxaa ka na			ta Inc. Sc. Het La Inc. Ta Inc.
987 <u>-</u> 1 987 <u>-</u> 1 999 — U.T	2.88t	-	计研查式 基门		The Side See Str. The Side The Side
1731. hanne (. *	2) [秦]. 21. [秦].		αρουβί Έλια⊂ (4) ματοφορατορ	.不会想意	wai Te.
蓤 "逻辑"	-		13至4 年 時長		i the

Level II 22 Init. the Wey wilder Tours lite.

A get in a derest in the second

Resonant energies corresponding ⁵⁶C states spins parities and resolute strength. During from measurements of the γ tax spectra, sum-contradius γ and angular distributions are listed in table S5.5. The decay scheme $\gamma \in \gamma^{-1}$ if the 3LL The $\gamma^{+} = \gamma^{-}$ and γ^{+} assignments to $\gamma^{-} = 0$ and 0.50^{-1} respectively are confirmed by these measurements for 5.5^{-1} . We R45 strength of an additional γ resonance of occurring in the $\Sigma_{\gamma} = 500-50^{-1}$ temps is less than $(\gamma^{-} = \gamma^{-})$ and

At $E_p = 580$ keV, the decay almost entirely (> 96%) proceeds to ³³Cl (0). The intensity of a cascade through ³³Cl(1) is less than 0.5% (Va 58e); in Va 592, however, 10% is reported. Polarization measurements (Su 60c) of the ground-state γ ray confirm the $J^{\pi} = \frac{5}{2}$ + assignment to the resonance level, and select the small value for the E2/M1 amplitude ratio, $x = -0.09 \pm 0.03$, out of the two possibilities found from angular distribution measurements (Va 58e, Va 59a).

At $E_p = 587$ keV, the γ decay about equally proceeds to ${}^{33}Cl(0)$ and (1); the γ -ray energies are $E_{\gamma} = 2.862 \pm 0.015$, 2.053 ± 0.015 , and 0.806 ± 0.004 MeV (Va 58e, Va 59a). Polarization measurements prove the odd parity of this resonance, and confirm the $J^{\pi} = \frac{1}{2}^{+}$ assignment to ${}^{33}Cl(1)$ (Su 60c).

The reaction energy, computed from the resonance and γ -ray energies amounts to $Q = 2.289 \pm 0.011$ MeV (Va 58e).

The resonance at 1890 keV probably corresponds with the lowest (p, p) resonance listed in table 33.7.

C. ³²S(p, p')³²S

 $E_{\rm b} = 2285 \pm 12$

Resonances observed in the elastic and inelastic (to ${}^{32}S^* = 2.24 \text{ MeV}$) scattering cross sections at five different angles and at proton energies up to 3.8 MeV, are listed in table 33.7, with corresponding excitation energies in ${}^{32}Cl$, spins,

Resonances for proton scattering from ³² S (Ol 58)							
E _p (MeV±keV)	³³ Cl* (MeV)	Ja	Г (keV)	Γ_{p_0} (keV)	Γ_{p_1} (keV)	$ heta_{P_0}^2 imes 10^3$	${ heta_{p_1}^2\over imes 10^3}$
1.900±2	4.127		8.5 ± 1.5	a		43	
2.310 ± 4	4.525	<u> </u>	55 ± 5	a		118	
2.578 ± 3	4.785	(ૣ . ૣ) -	$0.25\pm~0.05$	а		9	
2.810 ± 2	5.010	3-	6 <u>+</u> 2	a	≈ 0.0015	6	≈ 500
2.895 ± 30	5.092	4-	360 + 60	а		336	
2.902 ± 2	5.099	(&_, ;-)	< 0.5	a	≈ 0.010	< 9	≈ 9
2.917 ± 2	5.114	<u>3</u> +	1.5 ± 0.5	а	≈ 0.0018	4	≈ 1.6
3.094 ± 2	5.285	<u>5</u>	$0.34\pm~0.06$	0.29	0.05	4	101
3.195 ± 2	5.383	<u>5</u> +	0.44 ± 0.08	0.43	0.01	0.8	2.3
3.273 ± 4	5.459	i.+	32 ± 4	а	(< 0.01)	12.8	(< 9.4)
3.379 ± 2	5.562		1.00 ± 0.20	0.40	0.60	3.0	106
3.480 ± 10	5.660	<u>4</u> -	100 ± 15	а	(< 0.08)	54.7	(< 8)
3.570 ± 5	5.747	j.+	40 🕂 5	а	(< 0.01)	13.1	(< 0.9)
3.716 ± 2	5.888	<u>5</u> <u>-</u>	1.50 ± 0.30	0.84	0.66	4.2	19

	TABLE	33.'	7		
			-	-	

^a No measurable difference between Γ_{p_0} and Γ .

parities, partial widths, and reduced widths. No capture γ rays have been found except, probably, at the 1900 keV resonance (see reaction B). The difference in the reported level densities of ³³Cl and ³³S is discussed in Ol 58. Essentially the same results at the 1.90 and 2.31 MeV resonances are given in Fe 53. For cross sections in the $E_p = 4.95-5.45$ MeV range, see Od 59.

For non-resonance data, see ³²S.

33C1, 34P

194

P. M. ENDT AND C. VAN DER LEUN

D.
$${}^{32}S(d, n){}^{33}Cl$$
 $Q_m = 60 \pm 12$

With nuclear emulsions, at $E_d = 8$ MeV, neutron groups have been found to ${}^{33}\text{Cl}^* = 0, 0.76 \pm 0.07, 2.84 \pm 0.06$, and 4.22 ± 0.08 MeV. Angular distribution measurements yield $l_p = 2$, 0, 1, and 1, giving $J^n = (\frac{3}{2}, \frac{5}{2})^+$, $\frac{1}{2}^+$, $(\frac{1}{2}, \frac{3}{2})^-$, and $(\frac{1}{2}, \frac{3}{2})^-$, respectively. Groups to several more closely spaced levels above 4.22 MeV have been found. A doubtful level at 1.89 MeV is reported (Mi 53). The relative reduced widths of the transitions to ${}^{33}\text{Cl}^* = 0$, 0.76, and 4.12 MeV, are 1, 3.0, and (5.5), respectively (Mi 53, Ma 60d). Time-of-flight measurements, at $E_d = 3.5, 3.9, \text{and } 4.2$ MeV, yield levels at $0.88 \pm 0.07, 2.11 \pm 0.06, 2.53 \pm 0.06,$ and 2.82 ± 0.06 MeV; $Q_0 = 0.10 \pm 0.05$ MeV (Ma 60).

E.
$${}^{33}S(p, n){}^{33}Cl$$
 $Q_m = -6358 \pm 12$
Observed, Wh 41.

F.	Not reported:	
	³¹ P(³ He, n) ³³ Cl	$Q_{\rm m} = 3430 \pm 12$
	³² S(³ He, d) ³³ Cl	$Q_{\rm m} = -3208 \pm 12$
	$^{32}S(\alpha, t)^{33}Cl$	$Q_{\rm m} = -17528 \pm 12$
	³³ S(³ He, t) ³³ Cl	$Q_{\rm m} = -5593 \pm 12$
	³⁵ Cl(p, t) ³³ Cl	$Q_{\rm m} = -15663 \pm 12$
	36 Ar(p, $\alpha)^{33}$ Cl	$Q_{\rm m} = -4355 \pm 12$

34P

(Not illustrated; see fig. 34.1, p. 196)

A. ${}^{34}P(\beta^{-}){}^{34}S$ $Q_{\rm m} = 5100 \pm 200$

The half-life is 12.40 ± 0.12 sec (Bl 46; see also Co 40, Hu 45). The β^- decay predominantly proceeds $0^{34}S(0)$ and (1) (Bl 46); in addition, a 4.0 MeV γ ray, with a 0.2% intensity, reveals a weak β^- branch to a 4.0 MeV level (Mo 56d). For end points, branching ratios, and log *ft* values, see table 34.1. A discussion of the β^- transition probabilities is given in De 53b.

The allowed character of the transitions to ${}^{34}S(0)$ and (1) with $J^{\pi} = 0^+$ and 2^+ , respectively, yields $J^{\pi} = 1^+$ for ${}^{34}P(0)$.

TABLE 34.1						
The ³⁴ P(β ⁻) ³⁴ S decay						
Final ³⁴ S state (MeV)	<i>E_β-</i> (MeV)	Branching ratio (%)	log ft	Reference		
ר 2,13	5.1 ± 0.2 3.2 ± 0.2	75 25	5.1 4.7	Bl 46 Bl 46		
3.2V 4.0		$\geqslant 0.2$	$> 5.6 \leqslant 4.9$	Mo 56d Mo 56d		

B. $^{33}P(n, \gamma)^{34}P$ $Q_m = 6570 \pm 200$ Perhaps observed, see Ya 51 and Je 52.C. $^{34}S(n, p)^{34}P$ $Q_m = -4320 \pm 200$ Cross section at $E_n = 14.5$ MeV, Pa 53.D. $^{37}Cl(n, \alpha)^{34}P$ $Q_m = -1290 \pm 200$

Cross section, Pa 53, Le 57b.

E. Not reported:

³⁴ S(t, ³ He) ³⁴ P	$Q_{\rm m} = -5080 \pm 200$
³⁶ S(n, t) ³⁴ P	$Q_{\rm m} = -12700 \pm 200$
³⁶ S(p, ³ He) ³⁴ P	$Q_{\rm m} = -3460 \pm 200$
${}^{36}S(d, \alpha){}^{34}P$	$Q_{\rm m}=4890\pm200$

34S

(Fig. 34.1, p. 196; table 3-.2, p. 197)

A. ${}^{31}P(\alpha, p){}^{34}S$

 $Q_{\rm m} = 63.9 \pm 3.3$

Scintillation spectrometer measurements of proton and γ -ray energies and coincidences yield levels at ${}^{34}S^* = 2.13 \pm 0.02$, 3.33 ± 0.05 , 4.3 ± 0.1 , and 4.8 ± 0.1 MeV; $Q_0 = 0.7 \pm 0.1$ MeV. The 3.30 MeV level decays by γ emission to ${}^{34}S(1)$, (73 ± 4) %, and to ${}^{34}S(0)$, (27 ± 4) % (St 56b); see, however, ${}^{34}Cl$, reaction A. Differential cross sections for transitions to ${}^{34}S(0)$ and (1) at $E_{\alpha} = 7.0$ and 8.1 MeV (Vo 57a), and to ${}^{34}S(0)$ at $E_{\alpha} = 30.4$ MeV (Hu 59a), are in fair agreement with direct-interaction calculations.

B. ³³S(d, p)³⁴S

$$Q_{\rm m} = 9196.1 \pm 4.0$$

At $E_d = 6.0$ MeV, with enriched targets, proton groups have been observed to ³⁴S levels at 0, 2.123, 3.305, 4.125, (4.26), 4.630, (4.70), 4.886, (5.38), 5.691, (5.85), 6.173, 6.252, 6.348, 6.482, 6.64, 7.110, 7.632, 7.78, 7.914, (8.12), 8.30, and (8.62) MeV; $Q_0 = 9.194$ MeV. Groups have been seen at different angles unless the corresponding excitation energy has been put in brackets (Br 61e). See also Da 49a.

- C. ${}^{34}F(\beta){}^{34}S = 5100 \pm 200$ See ${}^{34}P$ and remarks.
- D. ${}^{34}Cl(\beta^+){}^{34}S$ $Q_m = 5519 \pm 21$ See ${}^{34}Cl$ and remarks.
- E. ${}^{37}Cl(p, \alpha){}^{34}S$ $Q_m = 3030.1 \pm 3.1$

Magnetic analysis yields $Q_0 = 3.023 \pm 0.006$ MeV (Va 57d), 3.026 ± 0.008 MeV

Fig. 34.1. Energy levels of ³⁴S.

(En 5%), and 3.015 ± 0.015 MeV (Cl 60). At $E_p = 1.8-4.0$ MeV, a level has been found as 2.129 ± 0.014 MeV (Va 56), and at $E_p = 7.0$ MeV levels at 2.127, 3.302, 3.915, 4.073, 4.114, 4.621, 4.685, and 4.876, all ± 0.008 MeV (En 56c).

For the excitation function of the α_0 group, see ³⁸Ar.

34S

ENERGY LEVELS OF LEGHT NUCLEI. III

TABLE 34.2

$E_{\mathbf{x}}$ (MeV \pm keV)	J¤	Decay	Reactions
0	0+	stable	A, B, C, D, E
2.127 - 7	2+	Y	A, B, C, D, E
3.302 ± 8	2+	y Y	A, B, D, E
3.915 ± 8		(<i>Y</i>)	C, D, E
4.073 ± 8		(γ)	C, D, E
4.114 8	(2+)	2	B, C, D, E
(4.26)		•	А, В
$\textbf{4.621} \pm \textbf{8}$			B, E
4.685 -8			B, E
4.876 + 8			A, B, E
5.38-8.62; 15 1	evels, see read	ction	В

F. Not reported:

$Q_{\rm m} = 11581.0 \pm 3.1$
$Q_{\rm m} = 11420.8 \pm 4.0$
$Q_{\rm m} = 5163.2 \pm 4.0$
$Q_{\rm m} = -9156.3 \pm 4.0$
$Q_{\rm m} = -4141.9 \pm 3.8$
$Q_{\rm m} = -$ 873.4 \pm 3.7
$Q_{\rm m} = 13446.1 \pm 3.7$
$Q_{\rm m} = - 8381 \pm 9$
$Q_{\rm m} = -7154.3 \pm 4.2$

REMARKS

The assignments $J^{\pi} = 1^+$ to ${}^{34}P(0)$ and $J^{\pi} = 2^+$ to ${}^{34}S(1)$ follow from the allowed character of both the ${}^{34}P \beta^-$ decay to ${}^{34}S(0)$ and (1), and the ${}^{34}Cl^m$ $(J^{\pi} = 3^+) \beta^+$ decay to ${}^{34}S(1)$.

For a discussion of the $J^{\pi} = 2^+$ assignment to ${}^{34}S^* = 3.30$ and 4.11 MeV, see ${}^{34}Cl$, reaction A.

For a theoretical discussion of the excitation energy of the lowest 2^+ states, see Th 56.

34C1

(Fig. 34.2, p. 198; table 34.3, p. 199)

A. (a) ${}^{34}Cl(\beta^+){}^{34}S$ $Q_m = 5519 \pm 21$

The weighted mean half-life is 1.588 ± 0.014 sec (St 53b, Kl 54b, Mi 58, Ja 60a). The decay proceeds to ${}^{34}S(0)$; end point 4.50 ± 0.03 MeV (Gr 56), 4.45 ± 0.11 MeV (Ru 51), 4.45 ± 0.10 MeV (Hu 54a). The log *ft* value is 3.5, indicating that ${}^{34}Cl(0)$ is the T = 1 analog of ${}^{34}S(0)$ (see also Qu 56). A theoretical

Fig. 34.2. Energy levels of ³⁴Cl.

discussion of corrections to *ft*-values of $0^+ \rightarrow 0^+$ transitions is given in Ma 58e, Du 60.

Longitudinal polarization measurements, De 57a.

(b) ${}^{34} Cl^{m}(\beta^{+}){}^{34}S$ $Q_{m} = 5662 \pm 21$

The half-life of the 143 keV isomeric state is 32.40 ± 0.04 min (Gr 56; see also

E _x (MeV _keV)	J ^{<i>n</i>} ; T	τι	Decay	Reactions	
0	0+; 1	1.588±0.014 sec	β+	many	
0.143 ± 2	3+; 0	32.40 ± 0.04 min	ß+, _? :	A, B, C, E, H	
0.46 ± 20				С	
0.67 ± 10	(1±, 2+)		r	C, E	
1.23 ± 20				C, G	
1.89 ± 20				C, G	
2.16 = 20			γ	С, Е	
2.38 ± 20				С	
2.58 ± 20				С	
2.61 - 20				С	
2.72 ± 20		Ĩ,	γ	C, E, G	
3.13 ± 20				С	
3.34 <u>-</u> 20				С	
3.38 ± 20				С	
3.55 ± 20			2	С, Е	
3.59 ± 20				С	
3.64 ± 20				C, G	
3.78 ± 20				C, G	
(3.87 - <u>+-</u> 20)				С	
(3.97 ± 20)				С	
4.09 ± 20				С	
4.15 ± 20				C, E	
4.6				G	
5.552 ± 21			γ	E	
5.611 ± 21	(1±, 2+)		r	E, G	
5.76-6.60; 11 1	evels, see reaction	on		E	
(7.2)				G	

TABLE 34.3

Energy levels of ³⁴Cl

Hi 52a, Pe 48a, Hu 43, Ri 37). The decay proceeds by γ emission (46%) to ³⁴Cl(0) (Gr 56, St 53, Ru 51), and with about equal intensities by β^+ emission to ³⁴S^{*} = 2.13 MeV ($E_{\beta^+\text{max}} = 2.48 \pm 0.07$ MeV) and 3.30 MeV ($E_{\beta^+\text{max}} = 1.33 \pm 0.10$ MeV); log ft = 6.1 and 4.9, respectively (Gr 56, Ru 51). From the conversion coefficient of the 145±3 keV γ ray, $\alpha = 0.14 \pm 0.04$, it follows that this transition has M3 character (St 53). Hence the isomeric state has $J^{\pi} = 3^+$.

Measurement of single γ -ray spectra (see table 34.4) and of coincidences confirms the β - branches to ${}^{34}S^* = 2.13$ and 3.30 MeV, and indicates a weak ($\approx 0.4\%$) β + branch to ${}^{34}S^* = 4.11$ MeV, with log ft = 5.4. The latter state decays to ${}^{34}S(0)$ with $E_{\gamma} = 4.10 \pm 0.02$ MeV; it should thus have $J^{\pi} = 2^+$. The 0.64 and 0.77 MeV γ rays possibly indicate weak β + transitions to ${}^{34}S^* = 3.92$ and 4.07 MeV, respectively (To 60a; also Mo 56d).

The angular correlation of the 1.17 and 2.13 MeV γ rays indicates that both the 2.13 and 3.30 MeV levels have $J^{\pi} = 2^+$ (Ha 56d, Fi 57, Sh 58a). The E2/M1 amplitude ratio of the 1.17 MeV γ ray is x = +0.13 (Ha 56d), +0.12 (Fi 57),

Ru 51	Ti 51	Mo 56d	To 60a	Transition
0.145 ± 0.003			0.64 (weak)	${}^{34}Cl(0.14) \rightarrow {}^{34}Cl(0)$ ${}^{34}S(3.92) \rightarrow {}^{34}S(3)$ ${}^{34}S(4.07) \rightarrow {}^{34}S(3)$
$\begin{array}{r} 2.13 \\ \pm 0.12 \\ 3.30 \\ \pm 0.14 \end{array}$	$1.16 \pm 0.03 \\ 2.10 \pm 0.03 \\ 3.22 \pm 0.03$	1.14 2.10 3.22 4.0 (0.2° ₀)	$\begin{array}{c} 1.17 \pm 0.02 & (32) \\ 2.14 \pm 0.02 & (100) \\ 3.32 \pm 0.02 & (32) \\ 4.10 \pm 0.02 & (1) \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

TABLE 34.4 rgies (in MeV) and relative intensities of γ rays in the β^+ decay of ³⁴Clm

+0.126 (Sh 58a). Angular correlation polarization experiments confirm the spin assignments (Sh 58a).

 $Q_{\rm m} = -5671 \pm 21$ $^{31}P(x, n)^{34}Cl$ B.

Threshold measurements yield $Q_0 = -5.7 \pm 0.2$ MeV. This corresponds to the threshold for slow neutron production as well as for production of the 1.59 sec ground-state activity (Qu 56).

C.
$${}^{32}S({}^{3}He, p){}^{34}Cl$$
 $Q_{m} = 6044 \pm 21$

At $E(^{3}\text{He}) = 9.82$ and 10.10 MeV, proton groups have been observed to $^{34}Cl^* = 0, 0.15, 0.4^{\circ}, 0.6^{\circ}, 1.23, 1.89, 2.16, 2.38, 2.58, 2.61, 2.72, 3.13, 3.34$ 3.38, 3.55, 3.59, 3.64 3.78, (3.87), (3.97), 4.09, and 4.15 MeV, all ±0.02 MeV (Hi 60f).

32S(z, d)34Cl $Q_m = -12309 \pm 21$ D.

Probably observed, Sh 40.

E.
$${}^{33}S(p, \gamma){}^{34}Cl \qquad \qquad Q_{\rm m} = 5119 \pm 21$$

In the range $E_{\rm p}=200-850~{\rm keV}$, resonances have been observed at 446.5 ± 3.5 and 507.1±1.0 keV, with strengths $(2J+1) \Gamma_p \Gamma_p \Gamma_p = 0.06$ and 0.10 eV. respectively (Va 58d, Ku 59a); and at $E_{\rm p}=446$, 507, 662, 682, 730, 778, and 822 keV, all ± 2 keV (Gl 61b); in the range $E_p = 1100-1550$ keV, resonances have been found at 1152, 1211, 1262, 1434, 1456, and 1525 keV (Ga 59).

Most of the γ rays observed at the 447 and 507 keV resonances (Va 58d. Gl 61b) can be assigned to transitions in ³⁴Cl using the excitation energies found from reaction C (see fig. 34.2). A reaction Q value of 5.12 ± 0.03 MeV follows from these measurements (Va 58d).

F. 33S(d. n)34Cl $Q_{\rm m} = 2893 \pm 21$

Observed, Sa 36.

.

G.
$${}^{34}S(p, n){}^{34}Cl$$
 $Q_m = -6302 \pm 21$

At $E_p = 17.5$ MeV, neutron groups have been observed to ${}^{34}Cl^* = 0, 1.1$.

1.9, 2.7, 3.7, 4.6, (5.7), and (7.2) MeV, if it is assumed that the highest Q value measured (Q = -6.1 MeV), corresponds to ³⁴Cl(0) (Aj 55).

H. ${}^{35}Cl(\gamma, n){}^{34}Cl \qquad \qquad Q_m = -12668 \pm 21$

The Q value for the transition to ${}^{34}Cl^{m}$ is -12.35 ± 0.35 MeV (De 55). The ground-state Q value is -12.79 ± 0.07 MeV (Ba 57b), -12.66 ± 0.04 MeV (Sa 61).

Cross section, Fe 59a, Ba 57b, Go 54a, Ed 52, Wa 48. For "breaks" in the excitation curve, see ³⁵Cl.

I. Not reported:

$^{32}S(t, n)^{34}Cl$	$Q_{\rm m} = 5279 \pm 21$
³³ S(³ He, d) ³⁴ Cl	$Q_{\rm m} = - 374 \pm 21$
$^{33}S(\alpha, t)^{34}Cl$	$Q_{\rm m} = -14693 \pm 21$
³⁴ S(³ He, t) ³⁴ Cl	$Q_{\rm m} = -5537 \pm 21$
³⁵ Cl(p d) ²⁴ U	$Q_{\rm m} = -10443 \pm 21$
³⁵ Cl(d, t) ³⁴ Cl	$Q_{\rm m} = -6411 \pm 21$
³⁵ Cl(³ He, α) ³⁴ Cl	$Q_{\rm m} = 7909 \pm 21$
³⁶ Ar(n, t) ³⁴ Cl	$Q_{\rm m} = -12691 \pm 21$
³⁶ Ar(p, ³ He) ³⁴ Cl	$Q_{\rm m} = -13456 \pm 21$
$^{36}Ar(d, \alpha)^{34}Cl$	$Q_{\rm m} = 4897 \pm 21$

REMARKS

Positions of the lowest T = 0 and T = 1 states, St 53a, St 53b, Pe 53, Mo 54, Wi 56a, Va 58d.

35S

(Fig. 35.1, p. 202; table 35.1, p. 202)

A.
$${}^{35}S(\beta)^{35}Cl$$

 $Q_{\rm m} = 167.34 \pm 0.19$

The half-life is 86.73 ± 0.27 days (weighted average, He 43, Se 58b, Ca 59a, Co 59e); the end point is 167.6 ± 0.3 keV (Co 57c, Fe 54a, La 50, Gr 50b, Co 48, Be 48b). The spectrum has the allowed shape, at least down to 2 keV (Al 48c, Be 48b, Co 48, La 50, Gr 50b, He 51, Mi 53a, Fe 54a, Mo 54a, Di 55, Co 57c). Log ft = 5.0. For computation of the β^- matrix element, see Gr 56c.

The longitudinal β - polarization is equal to -v/c (La 58).

For inner bremsstrahlung, see St 55, Ch 59, Le 57a (theory). For effects involving the atomic electron cloud, see Du 61a, Ch 59, Ru 54b.

B.
$${}^{34}S(n, \gamma){}^{35}S$$
 $Q_m = 6981.8 \pm 3.8$

The thermal neutron capture cross section is 0.26 ± 0.05 b, Hu 58.

C.
$${}^{34}S(d, p){}^{35}S$$
 $Q_m = 4757.1 \pm 3.7$

Magnetic analysis of charged particles from natural sulphur targets bombarded with deuterons of 6.0 and 6.5 MeV, gives weak proton groups to ${}^{35}S^* = 0$.

Fig. 35.1. Energy levels of ³⁶S.

TABLE 3	5.1
---------	-----

Energy leve	ls	of	³⁶ S
-------------	----	----	-----------------

$\frac{E_{\mathbf{x}}}{(\text{MeV}\pm\text{keV})}$	J¤	7j	Decay	Reactions
$\begin{array}{c} 0 \\ 1.992 \pm \ 6 \\ 2.347 \pm \ 6 \\ 2.714 \pm 10 \\ 2.955 \pm 10 \end{array}$	$\frac{\frac{3}{2}+}{\left(\frac{5}{2},\frac{7}{2}\right)^{-}}$ $\left(\frac{1}{2},\frac{3}{2}\right)^{-}$	86.73 ± 0.27 days	β-	A, C, D, E, F C, F C, F F F
$\begin{array}{c} 3.803 \pm 10 \\ (4.025 \pm 10) \\ 4.192 \pm 10 \\ 4.961 \pm 10 \end{array}$				C F C C

 1.992 ± 0.008 , 2.346 ± 0.008 , 3.803 ± 0.010 , 4.192 ± 0.010 , and 4.961 ± 0.010 MeV; $\Omega_0 = 4.757 \pm 0.010$ MeV (En 58). At $E_d = 7.77$ MeV, angular distribution neasurements of the groups to ${}^{35}S^* = 0$, 1.992, and 2.346 MeV, yield $l_n = 2$, 3, and 1, respectively, and $(2J+1)\theta_n^2 = 1.5$, 11.0, and 5.7 (relative), Ja 61b.

35S

D. ${}^{35}Cl(n, p){}^{35}S$ $Q_m = 615.27 \pm 0.44$

The thermal neutron cross section is 0.19 ± 0.05 b (Hu 58). See also Be 55c. Cross section at 14 MeV, Al 61.

From measurements with thermal and D(d, n) neutrons, $Q_0 = 0.52 \pm 0.04$ MeV (Gi 44).

For resonances, see ³⁶Cl.

E. ${}^{37}Cl(\gamma, d){}^{35}S$ $Q_m = -16058.4 \pm 3.2$

Cross section for 32 MeV bremsstrahlung, Er 57.

F. ${}^{37}Cl(d, \alpha){}^{35}S$

$$Q_{\rm m} = 7787.2 \pm 3.2$$

From bombardment of targets containing natural chlorine, at several deuteron energies between 3.0 and 7.5 MeV, $Q_0 = 7.783 \pm 0.012$ MeV has been determined by magnetic analysis. Levels in ³⁵S have been observed at (1.992), (2.348), 2.714, and (4.025) MeV, all ± 0.010 MeV (Pa 55c). An additional α -particle group which had been assigned to the ³⁵Cl(d, α)³³S reaction, actually has to be ascribed to ³⁷Cl(d, α)³⁵S, leading to a ³⁵S level at 2.955 ± 0.010 MeV (En 58).

G.	Not	reported	•
----	-----	----------	---

³³ S(t, p) ⁸⁵ S	$Q_{\rm m} = 9920.3 \pm 3.6$
³⁴ S(t, d) ³⁵ S	$Q_{\rm m}=724.2~\pm 3.7$
³⁴ S(a, ³ He) ³⁵ S	$Q_{\rm m} = -13595.3 \pm 3.8$
³⁵ Cl(t, ³ He) ³⁵ S	$Q_{\rm m} = -149.21 \pm 0.20$
³⁶ S(p, d) ³⁵ S	$Q_{\rm m} = - 7657 \pm 9$
³⁶ S(d, t) ³⁵ S	$Q_{m}=-$ 3624 ± 9
³⁶ S(³ He, α) ³⁵ S	$Q_{\mathrm{m}}=10695$ ± 9
³⁷ Cl(n, t) ³⁵ S	$Q_{\rm m}=-9800.8~\pm 3.2$
³⁷ Cl(p, ³ He) ³⁵ S	$Q_{\rm m} := -10565.3 \pm 3.2$
$^{38}Ar(n, \alpha)^{35}S$	$Q_{\rm m} = = -230.8 \pm 3.4$

35C1

(Fig. 35.2, p. 204; table 35.2, p. 205)

A. ${}^{32}S(\alpha, p){}^{35}Cl$ $Q_m = -1.865.1 \pm 2.6$

At $E_{\alpha} = 8$ MeV, proton groups have been observed to ${}^{35}\text{Cl}^* = 0$, (0.7), 1.1, and (1.7) MeV; $Q_0 = -2.3$ MeV (Pi 55). For work with α particles from natural radioactive sources, see En 54a.

B. ${}^{34}S(p, \gamma){}^{35}Cl$ $Q_m = 6366.6 \pm 3.7$

With enriched targets, 44 resonances have been found in the $E_p = 0.6-1.9$ MeV region; see table 35.3 for resonance energies, corresponding ³⁵Cl excitation energies, J^{n} values, widths, and yields (An 60a, An 61c). For branching ratios

35Ar, 36S, 36Cl

208

P. M. ENDT AND C. VAN DER LEUN

D.	Not reported:	
	³³ S(³ He, n) ³⁵ Ar	$Q_{\rm m}=3317\pm30$
	³⁵ Cl(³ He, t) ³⁵ Ar	$Q_{\rm m} = -5988 \pm 30$
	$^{36}Ar(p, d)^{35}Ar$	$Q_{\rm m} = -13033 \pm 30$
	³⁶ Ar(d, t) ³⁵ Ar	$Q_{\rm m} = -9001 \pm 30$
	$^{36}Ar(^{3}He, \alpha)^{35}Ar$	$Q_{\rm m}=5319\pm30$

36S

(Not illustrated)

 $Q_{\rm m} = 1137 \pm 10$

- A. ³⁶Cl(EC)³⁶S See ³⁶Cl.
- B. ${}^{40}\text{Ar}(\gamma, \alpha){}^{36}\text{S}$ $Q_{\rm m} = -6809 \pm 9$

Observed at $E_{\nu} = 23$, 26, and 30 MeV (Em 59; see also Wi 51).

C. Not reported:

³⁴ S(t, p) ³⁶ S	$Q_{\rm m} =$	8381 ± 9
³⁷ Cl(n, d) ³⁶ S	$Q_{\rm m} = -$	-6177 ± 9
³⁷ Cl(d, ³ He) ³⁶ S	$Q_{\rm m} = -$	-2908 ± 9
$^{37}Cl(t, \alpha)^{36}S$	$Q_{\rm m} =$	11411 ± 9
³⁸ Ar(n, ³ He) ³⁶ S	$Q_{\rm m} = \cdot$	-10926 ± 9

36C1

(Fig. 36.1, p. 209; table 36.1, p. 210)

A.	(a) ${}^{36}Cl(\beta^{-}){}^{36}Ar$	$Q_{\rm m}$	7	11.5	\pm	4.3
	(b) ³⁶ Cl(EC) ³⁶ S	Q_{m}	 11	37	± 1	0

The half-life has been measured by absolute β^- counting, using samples of known ³⁶Cl content, as $(4.4 \pm 0.5) \times 10^5$ yr (Wu 49), $(3.08 \pm 0.03) \times 10^5$ yr (Ba 55a), and $(2.5 \pm 0.4) \times 10^5$ yr (Wr 57).

The end point of the β^- spectrum is 0.714 ± 0.005 MeV (Fe 52). For a discussion of the *ft*-value (log $j_{\nu} = 13.4$), see Fo 54, Jo 56. The shape of the β^- spectrum is consistent with a $\Delta J = 2$, no, transition (Wu 50, Fu 51, Fe 52, Jo 56).

The number of positons is less than 10^{-4} times the number of electrons (Wu 47, Jo 49); no γ rays are present with $E_{\gamma} > 20$ keV and with an intensity of more than 5% (Wu 49, Dr 55). Through observation of K quanta, it has been shown that ³⁶Cl also decays by K capture to ³³S with $K/\beta^- = (1.7 \pm 0.1)\%$; log ft = 13.5 (Dr 55).

B. ${}^{35}Cl(n, \gamma){}^{36}Cl$

 $Q_{\rm m} = 8576.7 \pm 4.5$

From the thermal-neutron absorption cross section of natural chlorine, 33.6 ± 1.1 b, and the capture cross section of 37 Cl, 0.56 ± 0.12 b (Hu 58), and the 35 Cl and 37 Cl abundances, it follows that less than 1% of the thermal-neutron captures in natural chlorine occur in 37 Cl.

$E_{\mathbf{x}}$ MeV \pm keV)	J ⁿ	t <u>1</u>	Decay	Reactions
0	2+	$(3.08 \pm 0.03) \times 10^5 \text{ yr}$	β-, EC	many
0.788-1-2	(3) +		2	B, E, F, H
1.164 ± 2	$(1)^+$		7	B, E, F
1.598 3	$(1, 2)^+$		2	B, E, F
1.949 - 3	$(1, 2)^+$		22	B. E
1.957 + 3	(-, -,		2	B, E
2.469 + 3	$(\leq 3)^{-}$		22	B, E
2.497 -5	$(1, 2)^+$		2	B, E
2.522 ± 5	$(\leq 5)^{-}$		Ŷ	B, E
2.681 ± 5			Ŷ	B, E
2.818 5	$(\leq 5)^{-}$		21	B, E
2.870 ± 5	$(\leq 5)^{-}$		21	B, E
2.902 ± 5	$(\leq 3)^{-}$		Ŷ	B, E
3.002 ± 5	$(\leq 3)^{-}$		Ŷ	B, E
3.106 5	$(\leq 3)^{-}$		2	B, E
3.213 ± 6	$(\leq 3)^{-}$		· ?'	B, E
3.339 5	$(\leq 3)^{-}$, ,	B, E
3.474 5	$(\leq 3)^{-}$		·	E
3.606 - 5	$(\leq 3)^{-1}$		y '	B, E
3.641 5	$(\leq 3)^{-}$)'	B, E
3.671 - 6			•	E
3.730 + 5	$(\leq 5)^{-}$		71	B, E
(3.831)			,	E
3.970 5	(≪ 3)-		2'	B, E
4.001 5	$(\leqslant 3)^{-}$		*	E
4.041 5	$(\leqslant 3)^{-}$		<i>?'</i>	B, E
4.146 - 7	(≤ 3)		, jr	B, E
4.269-7.007: 4	15 levels, see tab	le 36.5 and reaction	e	E (and B)
8.576-8.773:]	4 levels, see tab	les 36 3 and 36 4 and reaction	e	BCD

TABLE 36.1

Energy levels of ³⁶Cl

Gamma rays from thermal neutron capture in natural chlorine, observed with a Compton spectrometer, are listed in table 36.2, with the intensities in photons per 100 captured neutrons in natural chlorine, and the levels between which they are assumed to occur (Gr 60a). Previous lower resolution work, reported in Ki 52 (as corrected in Ba 58c), Br 56e, and Dr 60, is in agreement with these results, except for the intensities of the three lowest energy γ rays (Br 56e) and of most of the higher energy γ rays (Ba 58c). See also Ur 59.

Assignments of the most intensive γ rays to transitions in ³⁶Cl are based on coincidence measurements with a three-crystal pair spectrometer. These measurements also yield the branching of the 1.95, 2.47, (2.87), and 3.60 MeV levels; see fig. 36.1 (Se 59). Sum-coincidence measurements confirm the two-step cascades through ³⁶Cl^{*} = 0.79, 1.16, (1.60), 1.96, and 2.87 MeV (Bu 59b), and through ³⁶Cl^{*} = 0.79, 1.60, 1.96, 2.68, 2.87, (3.00), (5.52), 5.95, and 6.36 MeV (Dr 61). See also Re 54. The branching fractions of these intermediate states

TABLE 36.2

Gamma rays from ${}^{35}Cl(n, \gamma){}^{36}Cl$ (Gr 60a)

E., (MeV ± keV)	1,,*	Assignment ^b	$rac{E_{\gamma}}{({ m MeV}\pm{ m keV})}$	I,a	Assignment ^b
8.573 ± 4 d	3.1	$C \rightarrow 0$	3.742 ± 6	0.4	$(3.73 \rightarrow 0)$
7.786 ± 5	8.2	$C \rightarrow 0.79(c)$	3.596 ± 5	0.5	$4.77 \rightarrow 1.16$
7.410 ± 5	12.7	$C \rightarrow 1.16(c)$	3.566 <u>-</u> 4	1.2	$C \rightarrow 5.01(t); 5.52 \rightarrow 1.95$
6.974 ± 5	2.7	$C \rightarrow 1.60(c)$	3.510 ± 4	0.8	$(4.30 \rightarrow 0.79)$
6.621 ± 5	13.6	$C \rightarrow 1.96(c)$	3.435 <u>-</u> 4	1.0	$(4.61 \rightarrow 1.16)$
6.423 ± 8	0.3		3.383 ± 4	0.5	$(4.56 \rightarrow 1.16)$
6.344 ± 8	0.3	6.36 → 0(c)	3.338 ± 5	0.8	$3.34 \rightarrow 0(c)$
6.266 – 6	0.6		3.121 ± 4	0.9	$(3.11 \rightarrow 0)$
6.110 ± 5	25.2	C -> 2.47(c)	3.067 + 4	3.6	$C \rightarrow 5.52(c)$
5.959 ± 6	0.3	5,95 ↔ 0(c)	3.024 ± 4	0.8	$5.52 \rightarrow 2.50$
5.902 ± 5	1.3	C → 2.68(c)	3.002 + 5	1.4	3.00 ightarrow 0(c); 5.52 ightarrow 2.52
5.715 - 4	6.1	$\mathbb{C} o 2.87(\mathrm{c})$	2.980 ± 5	1.4	$4.15 \rightarrow 1.16$
5.585 5	0.8	C → 3.00(c)	2.896 ± 3	0.6	$(2.90 \rightarrow 0)$
5.516 + 4	1.5	5.52 -> 0(c)	2.868 ± 3	5.9	$2.87 \rightarrow 0(c)$
5.246 5	0.6	C → 3.34(c)	2.852 ± 4	0.8	$(3.64 \rightarrow 0.79)$
5.016 ± 4	0.6	5.01 > 0(t)	2.810 ± 4	0.7	$4.77 \rightarrow 1.96; 3.97 \rightarrow 1.16$
4.981 + 4	4.2	C → 3.61(c)	2.681 ± 3	1.5	2.68 → 0(c)
4.757 - 5	0.3	4.77 > 0(t)	2.628 ± 4	0.5	C → 5.95(c)
4.732 - 4	1.0	$5.52 \rightarrow 0.79$	2.535 - 7	0.7	
4.613 ± 4	0.7	C → 3.97(†)	2.498 - 3	0.5	$2.50 \rightarrow 0$
4.589 ± 5	0.3	4.61 ↔ 0(t)	2.477 3	0.5	2.47 → 0
4.547 - 8	0.4	(4.56 -> 0)	2.422 4	0.5	$(3.21 \rightarrow 0.79)$
4.522 + 5	0,6	C \Rightarrow 4.04(t)	2.235 ± 3	0.8	C → 6.36(c)
4,444 - 4	1.1	C → 4.15(t)	2.033 \pm 7	1.2	$(2.82 \rightarrow 0.79)$
4.417 + 6	0.5	(4.41 -> 0)	1.957 + 3	10.0	$1.96 \rightarrow 0(c)$
4.298 - 4	0,5	(4.30 -> 0)	1.949 - 3	18.5	$1.95 \rightarrow 0(c)$
4.203 ± 5	0.2	(5.38 👒 1.16)	1.636 - 3	1.1	$3.61 \rightarrow 1.96, 1.95(c); 4.15 \rightarrow 2.50$
4.138 ± 8	0.2	4.15 → 0(t)	1.597 ± 3	3.2	$1.60 \rightarrow 0(c)$
4.080 ± 4	0.7	(4.86 → 0.79)	$1.329\pm\!\!2$	1.3	$2.50 \rightarrow 1.16$
4.053 ± 4	0.7	$4.04 \rightarrow 0(t)$	1.165 ± 2	27.5	$1.16 \rightarrow 0(c); 1.96, 1.95 \rightarrow 0.79(c)$
3.980 ± 4	1.2	$C \rightarrow 4.61(t)$	1.13e		$3.61 \rightarrow 2.47(c)$
3. 957 - ₁₁ 7	0.3	$3.97 \rightarrow 0(t)$	0.792 ± 2	18.0	$0.79 \rightarrow 0(c)$
3.822 ± 4	1.8	$C \rightarrow 4.77(t)$	0.518 <u>-</u> 2 ≈	÷ 20	$2.47 \rightarrow 1.95(c)$

^a Intensities per 100 neutrons captured in natural chlorine; the errors in the intensities are 10°_{10} for the strong lines, and up to 50°_{10} for the weak lines.

^b The capturing state is indicated by C; excitation energies in MeV.

Assignments marked (c) are based on coincidence measurements (Bu 59b, Se 59, Dr 61). The remaining γ rays are fitted between levels known from Ho 61b; two-step cascades are marked (t). Gamma rays de-exciting levels of which the mode of population is unknown, are bracketed; these transitions are not included in fig. 36.1.

^d Calibration line; energy calculated from masses.

e Se 59.

to the ground state are 1, 0.91 ± 0.09 , 1.07 ± 0.15 , 0.89 ± 0.09 , 1.2 ± 0.2 , 0.84 ± 0.15 , 0.45 ± 0.1 , 0.45 ± 0.1 , ≤ 1 , and ≤ 0.55 , respectively (Dr 61). For a discussion of spins and parities of ³⁶Cl levels with $E_x < 3$ MeV, based on the intensities of the cascades, see Dr 61.

P. M. ENDT AND C. VAN DER LEUN

The assignments based on coincidence measurements are marked as such in table 36.2. See also Bu 59c. Using the precision energy measurements and the intensities, most of the remaining γ rays can be fitted in the ³⁶Cl level scheme known from the ³⁵Cl(d, p)³⁶Cl reaction. Gamma-ray pairs with energies adding up to the neutron binding energy indicate two-step cascades through new levels at 4.138, 4.589, 4.757, 5.016, 5.516, and 6.344 MeV (Gr 60a). The existence of these levels has later been confirmed from the ³⁵Cl(d, p)³⁶Cl reaction (Ho 61b).

The doublet character of the 1.95 MeV level is indicated by the fact that the branching of this level depends on the method of its population (Se 59); later, this doublet has been resolved in 1.957 ± 0.003 and 1.949 ± 0.003 MeV levels. The 2.47 MeV level decays to the lowest of these two levels by a $518 \pm 2 \text{ keV} \gamma$ ray. Using the assignments based on coincidence measurements, the γ -ray energies yield the excitation energies of the six lowest ${}^{36}\text{Cl}$ levels with good precision: ${}^{36}\text{Cl}^{+} = 0.787 \pm 0.002$, 1.165 ± 0.002 , 1.597 ± 0.003 , 1.949 ± 0.003 , 1.957 ± 0.003 , and 2.467 ± 0.003 MeV (Gr 60a).

For resonances, see table 36.3.

C.
$${}^{35}Cl(n, p){}^{35}S$$
 $Q_m = 615.27 \pm 0.44$ $E_p = 8576.7 \pm 4.5$

For resonances, see table 36.3. For non-resonance data, see ³⁵S.

E _n (keV)	³⁶ Cl* (MeV)	<i>I</i> ' _y (eV)	$\Gamma_{\rm p}~({ m meV})$	${\pmb \Gamma}_{f n}$ (meV)	l _n
-0.21 ± 0.01^{a}	8.576	0.50 ± 0.01	2.4 ± 0.8	and a first of the second differences of	0
0.405 (datum)	8.577		70 ± 22	26- 65 ^b	1 c
1.1 ± 0.2	8.578		≈ 50	4- 30b	1
4.3 ± 0.3	8.581		35 + 15	250-700b	1
15	8.592)	-
17	8.594		≈ 100	65×10^3	0
				,	

TABLE 36.3 Resonances in the ${}^{35}Cl(n, \gamma){}^{36}Cl$ and ${}^{35}Cl(n, p){}^{35}S$ cross sections (Po 61b)

^a Already suggested in Br 56c.

^b Value depending on resonance spin.

^c In Hu 58 $l_n = 0$ is given.

TABLE	36.4
-------	------

Resonances in the ³⁶ Cln total c	cross section (Hu 58)	
---	-----------------------	--

En (keV)	³⁶ Cl* (MeV)	ľn	Γ _n (keV)	E _n (keV)	³⁶ Cl* (MeV)	$\Gamma_{\rm n}$ (keV)
0.405 ± 0.006	8.577	0	0.00014	134	8 707	0.51
15	8.591		≈ 0.03	144	8717	0.51
27	8.603		0.13	184	8.756	1.7
104	8.678		0.30	190	8.762	1.2
114	8.688		0.40	202	8.773	2.8

36Cl

	and		or mom on(d) p	, .	÷	
seCl* s	зеС]ә р	1 0	$(2J+1)\theta_n^{2a}$	36C1*a	7 0	$(2J+1)\theta_n^{2a}$
$(MeV \pm keV)$	$(MeV \pm keV)$	[/] n ^w	$\times 10^3$	(MeV)	ln a	$\times 10^{3}$
0	0	2 (+0)c, d, e	$41 (\leq 2)$	4.834		
0.789 ± 4	0.790 + 5	2c, e	16	4.857		
		(00	5.3	4.887		
1.163 ± 4	1.163 ± 6	2	7.4	4,919		
1.599 + 5	1.600 ± 7	, <u>6</u> c	2.7	4.965	1	14
		(00	13	5.008f	1	18
1.954 ± 5	1.952 ± 7	2 or 3°	$\leq 30 \text{ or } \leq 60$	5.090	ī	6
2.472 + 6	2.473 + 7	1	43	5.169	1	13
2.497 ± 6	2.498 + 7	0	3.4	5.213	1	79
2.522 ± 6	2.523 + 7	3	133	5.269	1	36
2.679 + 6	2.684 ± 7	-		5.314	1	35
2.816 + 6	2.820 ± 7	3	56	5,339	-	•••
2.868 ± 6	2.872 7	3	22	5.376		
2.900 ± 6	2.905 ± 7	1	55	5.469	1	56
3.000 ± 6	3.004 ± 7	1	35	5.5181	-	
ent-ue		(1	2	5.550		
3.103 ± 7	3.110 ± 8	3	22	5.584		
3.212 + 8	3.214 + 8		22	5.622	1	3.0
3.338 + 6	3.341 + 8	1	77	5.701	1	12
3.474.17	3.474 + 8	1	2.1	5.731	1	8.0
3.606 + 7	3.606 + 8	1	3.6	5.766	ī	12
3.640 + 6	3.644 + 8	1	22	5.836	1	7.1
3.670 + 8	(3.673 - 8)			5.871	1	7.6
3.728 - 7	3.732 8	3	23	5.906	1	62
(3.851)		•		5.952	-	•=
3.970 + 7	3.970 ± 8	1	27	5.972		
4.000 7	4.003 + 8	1	41	6.032		
4.040 + 7	4.043 -8	1	42	6.090	1	64
4.146 + 7	1	1	17	6.155	1	17
(4.269)		-		6.3561	1	
(4.300)				6.445	1	
4.323 + 7		1	19	6.474		
4.413 + 8				6.510		
4.504 + 7		1	46	6.546		
4.560 + 8		0	3	6.680	1	
4.607 + 8	f	1	39	7.007	_	
4.734 + 8		3	12	all + 8 keV		
4.765 + 8	f	1	9.2			

TABLE 36.5 Energy levels of ^{3e}Cl from ³⁵Cl(d, p)³⁶Cl

;

^a Ho 61b; $E_d = 7.5$ MeV. ^p Pa 55c; $E_d = 3.0-7.5$ MeV. ^c Also Te 56b; $E_d = 4$ MeV.

^d Also Ki 52a, Ki 53b, $E_{\rm d} = 6.9$ and 7.8 MeV. ^e Se 61; $E_{\rm d} = 7.77$ MeV.

^f See also reaction B (Gr 60a).

D. ³⁵Cl(n, n)³⁵Cl

 $E_{\rm b} = 8576.7 \pm 4.5$

Resonances observed with enriched material are listed in table 36.4 (Hu 58; see also Br 56c, Bi 61). For cross section, see Hu 58.

For non-resonance information, see ³⁵Cl.

P. M. ENDT AND C. VAN DER LEUN

E
$$^{35}Cl(d, p)^{36}Cl$$
 $Q_m = 6352.0 \pm 4.5$

Magnetic analysis of (d, p) reactions with natural chlorine targets yields $Q_0 = 6.354 \pm 0.008$ MeV (Pa 55c and Ho 61b). Seventy levels are listed in table 36.5 (Pa 55c, Ho 61b; for low-resolution work, see En 51b, Te 56b) with l_n values and reduced widths (Ho 61b, Se 61, Te 56b). The $l_n = 2$ ground-state group has less than 4% admixture of $l_n = 0$ (Ki 52a, Ki 53b). The reduced widths of the lowest three states are in agreement with the results of a *jj*-coupling computation, assuming $J^r = 2^+$, 3^+ , and 1^+ , for 36 Cl(0), (1), and (2), respectively (Ho 61b). See also Me 59. The $l_n = 0+3$ value of the 1.95 MeV level suggests a doublet character (see 36 Cl, reaction B) (Te 56b, Gr 60a).

F.
$${}^{36}Ar(n, p){}^{36}Cl$$
 $Q_m = 71.2 \pm 4.3$

At $E_n = 1.32-8.94$ MeV, cross sections have been measured for proton groups to the ³⁶Cl ground state and the first three excited states (Da 60, Da 61b). Resonances, see ³⁷Ar.

G.
$${}^{37}Cl(\gamma, n){}^{36}Cl \qquad \qquad Q_m = -10322 \pm 5$$

The photo-neutron threshold is 10.307 ± 0.037 MeV (Ge 60a). See also Sh 51a. Cross section measurements, Go 54a.

H.
$${}^{39}K(n, \alpha){}^{36}Cl$$
 $Q_m = 1.364 \pm 6$

Irradiation of KI crystals with D(d, n) neutrons and pulse-height analysis of the scintillation spectrum, yields $Q_0 = 1.25 \pm 0.2$ MeV. A transition to ${}^{36}\text{Cl}^* = 0.87 \pm 0.1$ MeV is also observed (Sc 56a). For cross section measurements, see Li 58d, Bo 60d, Ba 61g, Di 61.

For resonances, see ⁴⁰K.

I.	Not	reported:	•
----	-----	-----------	---

$33 (\alpha - p) 36 (1)$	0 - 1031 + 6
	$\gamma_m = 1551 \pm 0$
$^{34}S(t, n)^{36}CI$	$Q_{\rm m} = 6461 \pm 6$
³⁴ S(³ He, p) ³⁶ Cl	$Q_{\rm m} = 7225 \pm 6$
$^{34}S(\alpha, d)^{36}Cl$	$Q_{\rm m} = -11127 \pm 6$
³⁵ Cl(t, d) ³⁶ Cl	$Q_{\rm m} = 2319.1 \pm 4.5$
³⁵ Cl(a, ³ He) ³⁶ Cl	$Q_{\rm m} = -12000.4 \pm 4.5$
³⁶ S(p, n) ³⁶ Cl	$Q_{\rm m} = -1920 \pm 10$
³⁶ S(³ He, t) ³⁶ Cl	$Q_{\rm m} = -1156 + 10$
³⁶ Ar(t, ³ He) ³⁶ Cl	$Q_{\rm m} = -$ 693.3+4.3
³⁷ Cl(p, d) ³⁶ Cl	$Q_{\rm m} = -8097 + 5$
³⁷ Cl(d, t) ³⁶ Cl	$Q_{\rm m} = -4064 + 5$
³⁷ Cl(³ He, α) ³⁶ Cl	$Q_{\rm m} = 10255 + 5$
³⁸ Ar(n, t) ³⁶ Cl	$Q_{\rm m} = -12082 + 6$
³⁸ Ar(p, ³ He) ³⁶ Cl	$Q_{\rm m} = -12847 + 6$
${}^{38}Ar(d, \alpha){}^{36}Cl$	$Q_{\rm m} = 5506 \pm 6$

36C1

REMARKS

Pure jj coupling predicts a linear relation between excitation energies of (d_{3}, d_{3}^{-1}) levels in ³⁶Cl and those of (d_{3}^{-1}, d_{3}^{-1}) levels in ³⁸K. Using this relation $J^{\pi} = 2^{+}$, 3⁺, and 1⁺ has been calculated for ³⁶Cl^{*} = 0, 0.79, and 1.60 MeV (Pa 61b).

For a theoretical discussion of the ³⁶Cl ground-state configuration, see Ku 53, De 53a, Hi 54, Sc 54c.

36Ar

(Fig. 36.2, p. 216; table 36.6, p. 217)

A.
$${}^{35}Cl(p, \gamma){}^{36}Ar$$
 $Q_n = 8505.6 \pm 2.1$

The γ ray yield from targets containing natural chlorine bombarded with protons in the energy range $E_{\rm p} = 500-2150$ keV shows 86 resonances (not tabulated), Br 51. The resonances assigned to ³⁵Cl by the use of isotopically enriched targets and/or by the energies of the γ rays emitted, are listed in table 36.7 together with the observed resonance strengths, the corresponding ³⁶Ar excitation energies, and a qualitative indication of the decay (Ku 61, Li 60b, Wa 60, To 57, Br 51, Ta 46).

Using single counter and coincidence techniques, the decay schemes of six resonance levels and of the lower levels at 1.97 ± 0.02 , 4.17 ± 0.03 , 4.45 ± 0.05 , 4.94 ± 0.03 , 5.85 ± 0.03 , and 6.85 ± 0.03 MeV have been measured; see fig. 36.2 (Li 60b). A few discrepancies with measurements reported in Ku 61 and To 57 are given in the figure caption.

Angular distribution measurements at $E_p = 861$ keV indicate $J^{\pi} = 2^{(+)}$, $3^{(-)}$, and $3^{(+)}$ for ³⁶Ar^{*} = 1.95, and 4.1 MeV, and the resonance state, respectively (Be 57b). At $E_p = 735$ and 861 keV, the angular distributions are consistent with J = 3 for ³⁶Ar^{*} = 4.17 MeV, but J = 2 cannot be excluded. The assignment J = (2,4) to the 4.94 MeV level is tentative (Li 60b).

B.
$${}^{35}Cl(p, p'){}^{35}Cl$$

$$E_{\rm h} == 8505.6 \pm 2.1$$

Resonances (not tabulated) in the excitation curve for inelastic proton scattering, observed by measuring the γ -ray yield from ³⁵Cl(1), have a spacing of 18 keV at an average proton energy of 2.8 MeV (Pr 58a). The excitation function for $E_{\gamma} = 1.22$ and 1.76 MeV shows 31 resonances in the $E_{\rm p} = 2.30$ –3.25 MeV range (St 61b); for energies at d widths, see table 36.8. With natural chlorine targets weak p₀ resonances have been observed at $E_{\rm p} = 1.496$ and 1.96 MeV, with $\Gamma = 20$ and 70 keV, respectively (Ru 59).

For non-resonance data, see ³⁵Cl.

Fig. 36.2. Energy levels of ³⁶Ar. Gamma decay as reported in Li 60b. The branchings are in agreement with the indications given in Ku 61, To 57, Be 57b, except for the annotated transitions: ^a intensity ratio $\gamma_1/\gamma_0 = 3$ (Ku 61); ^b decay proceeds to 1.97 level, ground-state transition not observed (Ku 61); ^c intensity ratio $\gamma_1/\gamma_0 = 4$ (Be 57b); ^d intensity $\gamma_1 \gtrsim 3$ (To 57).

 $^{35}Cl(\mu, \alpha)^{32}S$ C. $Q_{\rm m} = 1865.1 \pm 2.6$ $E_{\rm b} = 8505.6 \pm 2.1$

Thirty-eight resonances (not tabulated) have been observed in the energy range $E_p = 1.2$ j-3.1 MeV. For a discussion of level spacing, strength function,

36Ar

Energy levels of ³⁶ Ar				
$\frac{E_{\rm x}}{({\rm MeV}\pm{\rm keV})}$	J¤	Decay	Reactions	
0	0+	stable	A, D, E, F, G	
1.973 ± 7	(2+)	2	A, G	
4.17 ± 30	(2, 3)	r	А	
$4.45 \hspace{0.1in} \pm 50$		Ŷ	Α	
4.94 ± 30	(2, 4)	γ	А	
5.85 ± 30		2	А	
6.85 ± 30		γ	A	
8.921-10.042;	19 levels, see	table 36.7 and reaction	А	
9.948		γ. P	А, В	
(10.41)		Р	В	
10.749—11.642;	38 levels, see	e table 36.8 and reactions	В, С	

TABLE 36.6

TABLE	36.7
****	00.4

Resonances in the reaction ${}^{35}Cl(p, \gamma){}^{36}Ar$

	$E_{\rm p}$ keV)		³⁶ Ar*	$(2J+1) \Gamma_{\gamma}\Gamma_{\rm p}/\Gamma$	
Ku 61	Wa 60	Ta 46	(MeV)	(meV)	Decay*
Benerican menologi kan sular selak politikan separata		427 b	(8.921)		
445.9 ± 1.5	443.9 ± 0.4	447	8.939	31	21
		500 c	(8.992)		
533.8 ± 1.5		532	9.025	18	21
$\textbf{575.9} \pm \textbf{1.5}$			9.066	7 ^g	
644.2 ± 1.5			9.132	41	71
656.8 ± 1.5	Li 60bh	Br 51	9.144	31	71
734.6 ± 1.5	736	in a configuration and an an Excellence and Admin and Admin	9.220	201	see fig. 36.3
755.4 ± 1.5			9.240	<u>1</u> f	γ 1
818.2 ± 1.5	819		9.301	31	see fig. 36.3
861.4 ± 1.5	861	858	9.343	100 ^f ; 9600 ^g	see fig. 36.3
885.7 ± 1.5	883	888	9.367	20 f	see fig. 36.3
893.0 ± 1.5	890		9.374	40 ^f	see fig. 36.3
899.2 ± 1.5	896		9.380		see fig. 36.3
	$all \pm 5$	1102	9.577		
To 57		1258	9.729		
1484		1484 d	9.948	8000g	20
1510		1510 ^d	9.974	32000g	20
1580			10.042	22000g	20
			(10.41) ^e		

^a The γ_0 indicates a transition to the ground state (To 57); observation of this transition implies $J^{\pi} = (1^{\pm}, 2^{+})$ for the resonance level. The γ_1 indicates a transition to ${}^{36}\text{Ar} = 1.95 \pm 0.02$ MeV (Ku 61).

^b Possibly due to ¹⁵N contamination (Ku 61).

^c Not observed in Ku 61.

^d At $E_p = 1496$ keV, a resonance is reported in the reaction Cl(p, p)Cl, with $I \approx 20$ keV, Ru 59.

^e This level corresponds to a 1960 keV resonance in the reaction Cl(p, p)Cl; $\Gamma = 70$ keV, Ru 59. ^f Ku 61.

g To 57; the yields given here are apparently about 100 times higher than those given in Ku 61.

^h $\varGamma \leqslant 5$ keV for these resonances.

³⁶Ar

and reduced α -particle and proton widths, see Cl 60. The resonances above 2.3 MeV are quoted in St 61b; see table 36.8.

For non-resonance data, see ³²S.

 $Q_{\rm m} = 711.5 \pm 4.3$ $^{36}Ci(\beta^{-})^{36}Ar$ D.

See ³⁶Cl.

³⁶Ar(n, n)³⁶Ar E.

See ³⁷Ar for cross section and resonances.

TABLE 36.8

Levels in	³⁶ Ar fi	rom the	³⁵ Cl(p,	p' :	γ) ³⁵ Cl	and	³⁵ Cl(p,	α_0) ³² S	reactions
-----------	---------------------	---------	---------------------	------	---------------------	-----	---------------------	------------------------------	-----------

Cl 60°	St 61	ba		Cl 60°	St 6	168	
(p, α ₀)	$(\mathbf{p}, \alpha_0) \qquad (\mathbf{p}, \mathbf{p}' \gamma)$			(p, α ₀)	(p, p	(p, p'γ)	
E_{p} (MeV)	$E_{\mathbf{p}}$ (MeV)	I' (keV)	³⁶ Ar* (MeV)	$E_{\mathbf{p}}$ (MeV)	$E_{\mathbf{p}}$ (MeV)	Γ (keV)	³⁶ Ar* (MeV)
2.307			10.749	2.830	2.826		11.256
2.325			10.767		2.838	5	11.265
	2.345	6	10.786	2.867			11.294
2.400			10.840	2.892	2.892	5	11.318
2.450	2.460	8	10.893	2.910	2.907	10	11.334
2.505			10.942		2.921		11.346
	2.530	11	10.966		2.933	≈ 5	11.358
2.545	2.545	6	10.980	2.978	2.980 ^b	8	11.402
	2.560	≈ 7	10.995		2.993	≈ 9	11.416
2.572	2.572	< 3	11.007	3.03	3.020	5	11.442
2.602	2.606	8	11.038		3.065 ^b	9	11.486
	2.650	7	11.083		3.093 ^b	14	11.513
2.682	2.683	< 4	11.115		3.115 ^b	≈ 4	11.535
2.718	2.724	≈ 4	11.152		3.135b	≈ 4	11.554
2.730	2.733		11.163		3.154	23	11.573
2.757			11.187		3.159b		11.578
2.772			11.201		3.182	< 10	11.600
2.800	2.807	8	11.232		3.205 b	< 8	11.622
	2.818		11.246	t	3.225	< 12	11.642
	all <u>-</u> 0.005				$\mathrm{all}\pm0.005$	-	

^a The yield was measured of $E_{\nu} = 1.22$ and 1.76 MeV.

^b At these resonances the 1.76 MeV γ ray is strong.

^c As quoted in St 61b.

³⁶Ar(p, p)³⁶Ar F.

For cross section and resonances, see ³⁷K.

G. ${}^{39}K(p, \alpha){}^{36}Ar$ $Q_{\rm m} = 1292.3 \pm 3.9$

Magnetic analysis at $E_p = 7.0-7.5$ MeV yields an α -particle group to the ground state, $Q_0 = 1.286 \pm 0.007$ MeV, and one to an excited state at 1.977 ± 0.008 MeV (Sp 58). At $E_p = 1.9$ MeV, $Q_0 = 1.267 \pm 0.020$ MeV (Cl 60). For resonances, see ⁴⁰Ca.

36Ar

H.	Not reported:	
	³³ S(a, n) ³⁶ Ar	$Q_{\rm m} = -2002.1 \pm 4.1$
	³⁴ S(³ He, n) ³⁶ Ar	$Q_{\rm m} = 7154.3 \pm 4.2$
	³⁵ Cl(d, n) ³⁶ Ar	$Q_{\rm m} = 6280.9 \pm 2.1$
	³⁵ Cl(³ He, d) ³⁶ Ar	$Q_{\rm m} = 3012.4 \pm 2.1$
	³⁵ Cl(<i>a</i> , t) ³⁶ Ar	$Q_{\rm m} = -11307.1 \pm 2.1$
•	³⁸ Ar(p, t) ³⁶ Ar	$Q_{\rm m} = -12153.2 \pm 3.8$

REMARKS

Recalculation of the excitation energy of the lowest T = 1 state in ³⁶Ar, computed in Wi 56a, yields $E_x = 6.68$ MeV (Gl 61b).

375

(Fig. 37.1, p. 219; table 37.1, p. 220)

A. ${}^{37}S(\beta -){}^{37}Cl \qquad \qquad Q_m = 4\,790 \pm 90$

The half-life is 5.07 \pm 0.01 min (El 59), 5.04 \pm 0.02 min (Bl 46). The β^{-} spectrum, measured by Al absorption, consists of two components with the follow-

Fig. 37.1. Energy levels of ³⁷S.

ing end points and relative intensities: 4.3 ± 0.3 MeV (10%) and 1.6 ± 0.1 MeV (90%). The second component is in coincidence with a 2.7 ± 0.2 MeV γ ray (Bl 46).

Essentially the same results have been obtained by scintillation spectrometer: $E_{\beta} \approx 4.7 \text{ MeV} (10\%)$ and 1.6 MeV (90%), respectively, and $E_{\gamma} = 3.1 \text{ MeV}$. No other γ ray with more than 1% intensity has been observed (Mo 56). The energy of the γ ray has more accurately been determined as $3.09 \pm 0.03 \text{ MeV}$ (St 56a).

The β - ground-state transition is evidently forbidden: log ft = 7.2 and log (W_0^2-1) ft = 9.2, while the transition to the 3.1 MeV level in ³⁷Cl is allowed (log ft = 4.2).

TABLE 37.1

$(MeV \pm keV)$	$ au_{rac{1}{2}}$	Decay	Reactions
0	5.06±0.01 min	β-	A, B, C, D
0.65 ± 60			D
1.39 ± 70			D
2.19 ± 90			D
2.7 ± 100			D
3.5 ± 200			D

B. ${}^{36}S(n, \nu)^{37}S$

 $Q_{\rm m} = 4\,390\pm90$

The thermal neutron cross section is 0.14 ± 0.04 b (Hu 58).

C. ${}^{37}Cl(n, p){}^{37}S$ $O_{m} = -$

 $Q_{\rm m}=-4010\pm90$

For cross section, see Hu 58, Ma 60c.

D. ${}^{40}\text{Ar}(n, \alpha){}^{37}\text{S}$ $Q_{\rm m} = -2420 \pm 90$

At $E_n = 14$ MeV, ionization-chamber pulse-height analysis yields α -particle groups to ${}^{37}S^* = 0$, 1.3 ± 0.05 , 2.2 ± 0.1 , 2.7 ± 0.1 , and 3.5 ± 0.2 MeV; $Q_0 = -2.5 \pm 0.1$ MeV (Be 55a). At $E_n = 1.3$ -8.9 MeV, groups have been observed to ${}^{37}S^* = 0$, 0.65 ± 0.06 , 1.39 ± 0.07 , 2.19 ± 0.09 , and (2.8 ± 0.2) MeV; $Q_0 = -2.49 \pm 0.05$ MeV (Da 60, Da 61b).

For resonances, see ⁴¹Ar.

E. Not reported:

³⁶ S(d, p) ³⁷ S	$Q_{\rm m} = 2170 \pm 90$
³⁶ S(t, d) ³⁷ S	$Q_{\rm m} = -1860 \pm 90$
³⁶ S(a, ³ He) ³⁷ S	$Q_m = -16180 \pm 90$
³⁷ Cl(t, ³ He) ³⁷ S	$Q_{\rm m} = -4770 \pm 90$

37S
37C1

A.
$${}^{36}Cl(n, \gamma){}^{37}Cl \qquad \qquad Q_m = 10322 \pm 5$$

The thermal neutron capture cross section is 90 ± 30 b, Hu 58.

B. ${}^{37}S(\beta^{-}){}^{37}Cl$ $Q_m = 4790 \pm 90$ See ${}^{37}S$.

C.
$${}^{37}Cl(p, p'){}^{37}Cl$$

At $E_p = 7.0$ MeV, magnetic analysis yields proton groups to ${}^{37}Cl^* = 0.838$, 1.728, 3.087, and 3.105 MeV, all ± 0.005 MeV (En 56c). With enriched ${}^{37}Cl$

Fig. 37.2. Energy levels of ³⁷Cl.

TABLE 3	7	.2	
---------	---	----	--

Energy levels of ³⁷Cl

$E_{\mathbf{x}}$ (MeV \pm keV)	J^{π}	Decay	Reactions
$0 \\ (0.838 \pm 5) \\ 1.725 \pm 5 \\ 3.087 \pm 5 \\ 3.105 \pm 5$	3 <u>3</u> +	stable	A, B, C, D C C B, C B, C B, C

targets, however, only one level below $E_x = 2$ MeV has been found: ³⁷Cl* = 1.713±0.010 MeV (Sc 56c; $E_p = 4.6-5.6$ MeV).

For resonances, see ³⁸Ar.

37C:1, 37Ar

222

P. M. ENDT AND C. VAN DER LEUN

D.	³⁷ Ar(EC) ³⁷ Cl	$Q_{\rm m}=816.0\pm1.5$
S	ee ³⁷ Ar.	
E.	$^{40}Ar(p, \alpha)^{37}Cl$	$Q_{ m m}=1592.3\pm2.2$
F	or resonances, see ⁴¹ K.	
F.	Not reported:	
	³⁶ S(p, ₂) ³⁷ Cl	$Q_{\rm m} = 8401 \pm 9$
	³⁶ S(d, n) ³⁷ Cl	$Q_{\rm m} = 6177 \pm 9$
	³⁶ S(³ He, d) ³⁷ Cl	$Q_{\rm m} = 2908 \pm 9$
	$^{36}S(\alpha, t)^{37}C1$	$Q_{\rm m} = -11411 \pm 9$
	³⁸ Ar(n, d) ³⁷ Cl	$Q_{\rm m} = - 8018.0 \pm 1.0$
	³⁸ Ar(d, ³ He) ³⁷ Cl	$Q_{\rm m} = -4749.5 \pm 0.9$
	³⁸ Ar(t, α) ³⁷ Cl	$Q_{\rm m} = 9570.0 \pm 1.0$
	³⁹ K(n, ³ He) ³⁷ Cl	$Q_{\rm m} = - 8892.0 \pm 3.5$

³⁷Ar

(Fig. 37.3, p. 223; table 37.3, p. 224)

A. 37Ar(EC)37Cl

 $Q_{\rm m} = 816.0 \pm 1.5$

The weighted mean half-life is 34.33 ± 0.15 days (Ki 59, Mi 52a, We 44); log ft = 5.0. Shape and intensity of the internal bremsstrahlung spectrum have been investigated by several authors (An 53, Em 54, Li 55b, Sa 56). The results are in agreement with theory, taking account of capture from P states (Gl 56). The end point is in agreement with the decay energy computed from the threshold for the 37 Cl(p, n) 37 Ar reaction. The decay energy has also been obtained from recoil measurements as 814 ± 2 keV (Sn 55) and 812 ± 8 keV (Ko 54b; also Ru 55b). The L- to K-capture ratio is 0.102 ± 0.003 (v eighted mean of Sa 60b, Ki 59, La 56b; see also Po 49a). For other small effects (e.g. the production of double holes in the K shell), see Mi 54, Wo 54a, Ki 59. Theoretical discussion of the matrix element, Go 56b, Gr 56c.

The circular polarization of the internal bremsstrahlung has been measured as $P = 0.97 \pm 0.15$ (Ma 58c, d) and 1.03 ± 0.04 (Ha 58b, Ha 59d).

The cross section of the inverse reaction ${}^{37}Cl(\bar{\nu}, e^-){}^{37}Ar$ is smaller than 2.5×10^{-46} cm² (Da 59).

B.
$${}^{34}S(x, n){}^{37}Ar$$
 $Q_m = -4628.7 \pm 3.4$

For threshold measurement, see Ne 61.

C.
$${}^{36}Ar(n, \gamma){}^{37}Ar$$
 $Q_m = 8794.2 \pm 4.0$

The thermal neutron activation cross section is $6 \pm 2 b$ (Hu 58).

·ENERGY LEVELS OF LIGHT NUCLEI. III

³⁶Ar(n, n)³⁶Ar D.

 $E_{\rm b} = 8794.2 \pm 4.0$

Analysis of the scattering cross section measured in the $E_{\rm n}=0.1$ -6 $imes 10^4~{
m eV}$ range, yields a resonance at $E_{\rm n}=-5.4\,{\rm keV}$, with $\Gamma_{\rm n}=50\,{\rm eV}$, and $\Gamma_{\rm r}=1.0\,{\rm eV}$ (Ch 60). See also He 57a.

 $Q_{\rm m} = 71.2 \pm 4.3$ $E_{\rm b} = 8794.2 \pm 4.0$ $Q_{\rm m} = 2002.1 \pm 4.1$ $E_{\rm b} = 8794.2 \pm 4.0$ (a) ³⁶Ar(n, p)³⁶Cl E. (b) ${}^{36}Ar(n, \alpha){}^{33}S$

Pronounced resonance structure has been observed in the $E_n = 1.2$ –9.0 MeV region (Da 61b). For non-resonance data, see ³³S and ³⁶Cl.

F.
$${}^{36}Ar(d, p){}^{37}Ar$$
 $Q_m = 6569.5 \pm 4.0$

Deuteron bombardment of argon gas enriched in ³⁶Ar content yieles the

37Ar

E_{x} (MeV \pm keV)	J ^π	$ au_{rac{1}{2}}$ or $arGamma$	Decay	Reactions
0	$(\frac{3}{3}, \frac{5}{3})$ +	34.33 ± 0.15 days	EC	many
1.42 ± 10	<u>_</u>			F, G
1.61 ± 10	(<u>३, ँ</u> <u></u> , ँ <u></u> , ÷			F, G
2.25 ± 10	· · · · ·			F, G
2.41 ± 10				G
2.54 ± 50				F
3.55 ± 50				\mathbf{F}
4.40				\mathbf{F}
4.63				F
5.07				F
5.85				\mathbf{F}
8.789 ± 4		50 eV	n	D

TABLE 37.3

Energy levels of ³⁷Ar

TA	BLE	37.4	

Levels in ³⁷Ar from the ³⁶Ar(d, p)³⁷Ar reaction

³⁷ Ar* ⁸	³⁷ Ar*b	³⁷ Ar*c	/ c
(MeV)	(MeV)	(MeV)	°0.
0	0	0	2 d
1.53	1.44	1.39 ± 0.06	0
1.67		1.63 ± 0.06	2
2.27			
2.56	2.56	2.54 ± 0.05	(2)
3.46	3.54	3.55 ± 0.05	(2)
	4.40		
	4.63		
5.01	5.07		
	5.85		

^a Da 49; $E_{\rm d} = 3.4$ MeV. ^b Zu 50; $E_{\rm d} = 3.9$ MeV.

^c Ya 61; $E_d = 3.85$ MeV.

^d Also Su 59a; $E_d = 4$ MeV.

³⁷Ar excitation energies and l_n values listed in table 37.4; $Q_0 = 6.59 \pm 0.03$ MeV (Da 49), 6.49 ± 0.08 MeV (Zu 50), 6.55 ± 0.05 MeV (Ya 61).

G. 37Cl(p, n)37Ar $Q_{\rm m} = -1598.6 \pm 1.5$

The threshold has been measured as $E_p = 1640 \pm 4 \text{ keV}$ (Ri 50), $1641 \pm 2 \text{ keV}$ (Sc 52a). Neutron groups have been observed to ${}^{37}Ar^* = 1.42$, 1.61, 2.25, and 2.41 MeV, all ± 0.01 MeV; $Q_0 = -1.64$ MeV (Fe 59; see also St 52a, Gr 50c). Cross section, Jo 58, Sc 58a. For resonances, see ³⁸Ar.

 ${}^{37}K(\beta^+){}^{37}Ar$ H. $Q_{\rm m}=6150\pm50$ See ³⁷K.

I. ${}^{39}K(d, \alpha){}^{37}Ar$ $Q_m = 7861.9 \pm 3.8$ Observed, We 44. J. ${}^{40}Ca(n, \alpha){}^{37}Ar$ $Q_m = 1750.2 \pm 4.3$

Cross section measurements, Ba 60c, Mu 58a. With emulsion techniques, $Q_0 = 2.0 \pm 0.44$ MeV has been found (Mu 58a).

K. Not reported:

³⁵ Cl(t, n) ³⁷ Ar	$Q_{\rm m} = 8817.5 \pm 3.5$
³⁵ Cl(³ He, p) ³⁷ Ar	$Q_{\rm m} = 9581.9 \pm 3.5$
³⁵ Cl(a, d) ³⁷ Ar	$Q_{\rm m} = -$ 8770.5 \pm 3.5
³⁶ Ar(t, d) ³⁷ Ar	$Q_{\rm m} = 2536.6 \pm 4.0$
³⁶ Ar(a, ³ He) ³⁷ Ar	$Q_{\rm m} = -11783.0 \pm 4.0$
³⁷ Cl(³ He, t) ³⁷ Ar	$Q_{\rm m} = -$ 834.1±1.5
³⁸ Ar(p, d) ³⁷ Ar	$Q_{\rm m} = -9616.6 \pm 1.7$
³⁸ Ar(d, t) ³⁷ Ar	$Q_{\rm m} = -5583.7 \pm 1.8$
$^{38}Ar(^{3}He, \alpha)^{37}Ar$	$Q_{\rm m} = 8735.9 \pm 1.8$
³⁹ K(n, t) ³⁷ Ar	$Q_{\rm m} = -9726.1 \pm 3.8$
³⁹ K(p, ³ He) ³⁷ Ar	$Q_{\rm m} = -10490.6 \pm 3.7$

37K

(Fig. 37.4, p. 226; table 37.5, p. 226)

A. ${}^{37}K(\beta^+){}^{37}Ar$

 $Q_{\rm m}=6150\pm50$

The half-life is 1.23 ± 0.02 sec (weighted mean of Sc 58b, Su 58, Wa 60a, Bo 51, La 48). The β^+ end point is 5.15 ± 0.07 MeV (Wa 60a), 5.10 ± 0.07 MeV (Su 58), 5.06 ± 0.11 MeV (Ki 54b). The transition is super-allowed, with log ft = 3.6.

B.
$${}^{36}\text{Ar}(p, \gamma){}^{37}\text{K}$$
 $Q_{\rm m} = 1\,860\pm50$

No resonances have been found in the range $E_p = 0.5-1.8$ MeV with targets containing separated ³⁶Ar (Br 48a).

 $E_{\rm h} = 1860 \pm 50$

The elastic scattering differential cross section has been measured in the $E_{\rm p} = 1.0-1.8$ MeV region; an anomaly at $E_{\rm p} = 1.494$ MeV corresponds with ${}^{37}{\rm K}^* = 3.31$ MeV; $J = \frac{1}{2}$ (Ki 61a).

D.
$${}^{36}\text{Ar}(d, n){}^{37}\text{K}$$
 $Q_{\rm m} = -360 \pm 50$

At $E_{\rm d} = 3.85$ MeV, two neutron groups have been observed with $Q = -0.32 \pm 0.10$ and -1.78 ± 0.10 MeV, corresponding to the ground state and a ³⁷K level (or doublet) at 1.46 ± 0.10 MeV; angular distribution measurement yields $l_{\rm p} = 2$ and 0+2, respectively (Ya 61).

74248

THE IT & EARTHY LEVICE OF FIL

THELE ST I

Earry leves of FR

		e annual a she shart demandation to she can a she can a		and a construction of a second s
	ت . ب	<u>ي</u> 4	૾ૢૺૺૺૺૺૺૺૡ૱ૡૢૻૻ૾૾૾૾	The state way . The
· · · · · · · · · · · · · · · · · · ·				ayan 21 mi ing Kabupatén K
ķ	է։ ¹⁰ տասատու Ծանու անձնեւ ։ Դեւցել՝ հու		دی. در	¥
14 - 1 St	-	こいではこう		and a
ж. 38. С. А.	2000 19 19		apan Agra 4.	Ċ
		and the second sec		warman we ward and a set

Q. = -3190 - 30 At $\Xi_{\rm s} = 12 \circ MeV$ FR has been produced by 38 .

Not regarded - $Q_{\pm} = -\frac{2530 \pm 30}{2500 \pm 30}$ $Q_{\pm} = -\frac{3530 \pm 30}{250}$ 18 grand and a start free $Q_{n} = -16660 - 50$

345

Not Electrical see fig. 36.1, p. 228

$$\underline{A} = 25.5 - 20.0 \pm 150$$

At $E_{a} = 44$ MeV. ¹⁶ has been produced in the reaction $Cl(a, Sp)^{16}$. The inst-life is 172 ± 1 mm. The main 3- branch ($\approx 95\%$), with end point 1.1 ± 0.1 MeV proceeds to all St MeV level of SCI. The 1.88 MeV y ray has been observed

227

in coincidence with β^- . The transition is allowed (log ft = 5.0), giving $J^{\pi} = 1^+(0^+)$ for ³⁸Cl(1.88). A (5±3)% β^- branch, with end point 3.0 ± 0.2 MeV, proceeds to ³⁸Cl(0). This once-forbidden $0^+ \rightarrow 2^-$ transition has log ft = 8.2, log (W_0^2 -1) ft = 9.9 (Ne 58).

B.	Not reported:		
	³⁶ S(t, p) ³⁸ S	$Q_{\rm m} =$	3810 ± 150
	40Ar(n, 3He)38S	$Q_{\rm m} = 1$	-15090 ± 150

38C1

(Fig. 38.1, p. 228; table 38.1, p. 228)

A.
$${}^{38}Cl(\beta){}^{38}Ar$$
 $Q_m = 4916 \pm 8$

The half-life is 37.29 ± 0.04 min (Co 50a; see also Ma 55b, En 54a).

The decay is complex. Three β^- branches and two γ rays have been observed; see table 38.2 for energies and relative intensities. The intensity of a potential 3.78 MeV cross-over γ ray is less than 0.3% per β^- particle (My 49). The shape of the high-energy β^- spectrum and its ft value, log ft = 7.5 and log (W_0^2-1) ft = 9.5, are characteristic for unique once-forbidden transitions, thus $J^{\pi}({}^{39}\text{Cl}) = 2^-$ (La 50a, Wu 50; theory Ko 58). The β^- transition to the 2.16 MeV level is also forbidden (log ft = 6.9), while that to the 3.78 MeV level is allowed (log ft = 4.9). From the data given above and from the measured $\gamma - \gamma$ angular correlation (Wa 41, St 50, Kr 54a) and γ polarization (Br 58d), $J^{\pi} = 2^+$ and 3⁻ follow for ${}^{38}\text{A}^* = 2.16$ and 3.78 MeV, respectively. For $\beta - \gamma$ angular correlation, see Ma 55b.

B. ${}^{37}Cl(n, \gamma){}^{38}Cl$ $Q_m = 6110 \pm 8$

The thermal neutron capture cross section is 0.56 ± 0.12 b (Hu 58). For the cross section at $E_n = 25$ keV, see Ko 58d.

From thermal neutron capture in separated ³⁷Cl, an isomeric state has been found emitting 660 ± 20 keV γ rays with a half-life of 1.0 ± 0.2 sec (Sc 54). In Po 59a are reported: $E_{\gamma} = 663 \pm 12$ keV and $\tau_{\downarrow} = 1.5 \pm 0.8$ sec. The thermal neutron cross section for formation of ³⁷Cl^m is 5 ± 3 mb (Hu 58).

C.
$$1^{37}Cl(n, n)^{37}Cl$$

 $E_{\rm b} = 6110 \pm 8$

With enriched material, resonances in the total neutron cross section have been observed at $E_n = 8.8, 26.5, 47.4, 55.5, 65.0, \text{ and } 94.2 \text{ keV}$, with $\Gamma_n = 0.09$, 0.33, 0.20, 0.18, 0.18, and 0.80 keV, respectively (Hu 58).

See also Bi 61.

D.
$${}^{37}Cl(d, p){}^{38}Cl \qquad \qquad Q_m = 3\,885\pm 8$$

At $E_d = 3.0$ and 7.5 MeV, ten proton groups have been observed. The excitation energies of ³⁸Cl levels, the reduced widths, and l_n values are listed

P. M. ENDT AND C. VAN DER LEUN

Fig. 35.1. Energy levels of PCI.

ī.ar	CE 38	8. I	
Energy 1	levels	of	5% . !

	1 €. 	T ₂	Decay	Reactions
Ŕ		\$: 19_0@ min	β-	A, D, E, F, G, H
ANI _3	-	10 -03 00	***	B. D
			•	D
1.512=4	- -			D
	1			D
1625-				D
1 14 - 7	// ⁴⁷			T
				D
e				ñ
	<u>`</u> - {}			1. P
			å	22 73
£119-1			**	5
			1.1	در ۱۳۰
1 · ·			11	
÷ 100 - 1			73	<u>.</u>
· · · · · · · · ·			21	
5.2M2-5				C
	The set of		20	Č

3SCI

TABLE 38.2

Beta decay of ³⁸Cl

F					and the second se
(MeV)	$\begin{array}{c} E_{\boldsymbol{\beta}_{i}} \\ \text{(MeV)} \end{array}$	Ε _β , (MeV)	E_{γ_1} (MeV)	$E_{\gamma_{\mathfrak{s}}}$ (MeV)	Ref.
4.99 ± 0.06		1.08 ± 0.06			Wa 39
			2.15 (57%) $2.19 \pm 0.03 (53\%)$	1.65 (43%) $1.64 \pm 0.02 (47\%)$	Cu 40 It 41
5.2 (53%)	2.70 (11%)	1.19 (36%)	2.15 (57%)	1.60 (43%)	Ho 46
4.81±0.05 (53.4%)	2.77 ± 0.05 (15.8%)	1.11 ± 0.01 (30.8%)	()0/	()0)	Lo 50a
(1.20 + 7) 4.99 ± 0.06 5.2 (53%) 4.81 ± 0.05 (53.4%)	2.70 (11%) 2.77±0.05 (15.8%)	(MeV) 1.08±0.06 1.19 (36%) 1.11±0.01 (30.8%)	(MeV) 2.15 (57%) 2.19±0.03 (53%) 2.15 (57%)	1.65 (43%) 1.64±0.02 (47%) 1.60 (43%)	Wa Cu It 4 Ho Lo

³⁸ Cl* 8 (MeV <u>+</u> keV)	³⁸ Cl* b (MeV±keV)	l _n b	$\begin{array}{c}(2J+1)\theta_n^{2t}\\\times 10^3\end{array}$
0	0	-c	C
0.672 ± 5	0.671 ± 5	3	200
0.762 ± 5	0.761 ± 5	1, 3	24, 70
1.312 ± 6	1.309 ± 6	3	110
1.620 ± 7	1.622 ± 6	1	39
1.658 ± 7			
1.693 ± 7	1.695 ± 6	1	79
	1.748 ± 7	1	32
	1.789 ± 8		
	1.986 ± 7	1	102

TABLE 38.3				
Levels of	38Cl	from	37Cl(d	, p) ⁸⁸ Cl

^a Pa 55c; $E_d = 3.0$ and 7.5 MeV.

^b Ho 61b; $E_{\rm d} = 7.5$ MeV.

^c Angular distribution incomplete because of interference with a ³⁵Cl(d, p)³⁶Cl group.

in table 38.3; $Q_0 = 3.877 \pm 0.008$ MeV (Pa 55c), 3.878 ± 0.008 MeV (Ho 61b). The intensity ratio of the proton groups leading to 38 Cl(0) and (1) is 0.43 ± 0.04 . as measured at $E_d = 5.6$ MeV, in agreement with $J^{\pi} = 2^{-}$ and 5^{-} assignments, respectively (Pa 55c).

E.	³⁸ S(β ⁻) ³⁸ Cl	$Q_{\rm m} = 3000 \pm 150$
Se	e ³⁸ S.	

F.	⁴⁰ Ar(γ, np) ³⁸ Cl	$Q_{\mathtt{m}}=-20593\pm 8$
Cro	oss section for $E_{\gamma} = 20-4$	15 MeV, Pe 59.

G. ⁴⁰Ar(d, α)³⁸Cl $Q_{\rm m} = 5477 \pm 8$

Perhaps observed, En 54a.

H. ${}^{41}K(n, \alpha)^{38}Cl$ $Q_m = -98 \pm 9$ Cross-section measurements at $E_n = 14$ MeV, Pa 53, Bo 60d.

P. M. ENDT AND C. VAN DER LEUN

Ĺ.	Not reported:	
	™S(t. E)™CI	$Q_{m} = 6029 \pm 12$
	*STE. D'CI	$Q_{\rm m} = 6793 \pm 12$
	¹⁴ Siz. d ¹² Cl	$Q_{\rm m} = -11559 \pm 12$
	FCIIE di MCI	$Q_{\rm m} = -148 \pm 8$
	FCI(z. He) Cl	$Q_{\rm m} = -14467 \pm 8$
	³⁸ Ar(n, p) ³⁸ (1	$Q_{\rm m} = -4133 \pm 8$
	*Ar(t, He)*CI	$Q_{\rm m} = -4897 \pm 8$
	⁴⁹ Ar(n, t) ²⁶ Cl	$Q_{\rm m} = -12111 \pm 3$
	⁴⁹ Ar(p, ³ He) ³⁵ Cl	$Q_{\rm m} = -12875 \pm 8$

REMARKS

For pure jj coupling, a linear relation can be derived between excitation energies of (d_1, f_1) states in ³⁸Cl and those of (d_1^{-1}, f_1) states in ⁴⁹K. From known excitation energies and spins in ⁴⁹K calculation yields ³⁸Cl levels at 0, 0.702, 0.751, and 1.328 MeV, with $J^x = 2^-$, 5⁻, 3⁻, and 4⁻, respectively (Go 56a, Pa 56a, Pa 57a), in very good agreement with experiment.

³⁸Ar

(Fig. 38.2, p. 231; table 38.4, p. 231)

A. ${}^{35}\text{Cl}(\mathbf{z}, \mathbf{p}){}^{38}\text{Ar}$ $Q_{\rm m} = 846.1 \pm 3.4$

At $E_z = 7.5$ MeV, bombardment of enriched ³⁵Cl targets yields proton groups to ³⁵Ar^{*} = 2.13 ± 0.04 and 3.73 ± 0.04 MeV; $Q_0 = 0.81 \pm 0.08$ MeV (Kr 53).

B. (a) ${}^{37}Cl(p, \gamma){}^{38}Ar$ $Q_m = 10242.7 \pm 0.9$ (b) ${}^{37}Cl(p, p){}^{37}Cl$ $E_b = 10242.7 \pm 0.9$

Resonances found with enriched ³⁷Cl targets in the range $E_p = 0.3-0.9$ MeV (Ku 61), 0.5-1.0 MeV (Li 60b), and 0.8-1.8 MeV (To 57) are listed in table 38.5, with the excitation energies of corresponding ³⁸Ar levels, widths, and main modes of decay. See fig. 38.2 for the decay of the intermediate states.

Older work with natural chlorine targets, Br 51, Ta 46, Cu 39. For the reaction Cl(p, p), see also Fu 59.

For non-resonance data, see ³⁷Cl.

C ${}^{37}\text{Cl}(p, n){}^{37}\text{Ar}$ $Q_m = -1598.6 \pm 1.5 E_b = 10242.7 \pm 0.9$

From threshold $(E_p = 1641 \pm 2 \text{ keV})$ to 2150 keV, 130 resonances have been four 1; for energies $(\pm 0.1^{\circ}_{0})$, widths (resolution 1.4 keV at $E_p = 1800 \text{ keV}$) and relative intensities, see Sc 52a. See also Bl 51, Br 51, Jo 58. The 150 resonances (not tabulated) observed in the range $E_p = 1.64-2.9$ MeV form two distinct groups which may be associated with giant resonance splitting (Ma 61).

Fig. 38.2. Energy levels of ³⁸Ar.

TABLE 38.4	
Energy levels of	³⁸ Ar

$E_{\mathbf{x}}$ (MeV \pm keV)	J ^π	Decay	Reactions
0	0+	stable	A, B, E, F, G, H
2.158 ± 13	2+	2	A, B, E, F, G, H
3.78 ± 20	3-	2	A, B, E, G
4.3		-	G
5.0		r	B, G
5.4		-	G
6.3			G
6.6		2	B, G
7.3			G
7.85			G
10.948-11.923; 1	l levels, se	e table 38.5 and reaction	В
For levels with	$E_{\rm x} > 11$ Me	eV, see also reactions	C, D

 	雪福 盂
 Sec. Salara	Star was

Issues a The Table

میں ایک	20 <u>1</u> - *	27-1 F.F. F		I	h tay	1	
			7e	71	12	<i>i</i> 6	75
	54. 345				بملا		
	24. 1464				° •)		
746.2 - 2.344 8		15. L			ď		
	22 44.7	2 5 ⁵ -2	ý	ş	S.		
				" 4	÷ +		
N 1 - 1 3 -		ت ەرۋىيى <u>ە.</u>		` 0			
		S & S SAME		.41	\$	<i>a</i> .,	
1255 <u>-</u> 74				, ø	. تلار	, گۆ	
				¥		\$	
							ť

■ 五工 転

I Resonance energies with 1 keV errors reported in L: Who are in agreement with the energies listed.

¹ The γ_{0} γ_{1} γ_{2} γ_{3} and γ_{2} stand for transmiss to "Ar" = 4 2.16, 3.75, 5.0, and 6.6 MeV, respectively. For resonances with $E_{\gamma} < 1.000$ keV, see To 57. 5 Not reported in Li 606.

^e Anglar nemberan ri_{no} Ie II.

The yield to "Ar" L42 shows broad maxima similar to those in the yield of grand-state neutrons. Ba sile .

For threshold measurements and matrix groups, see "Ar.

D. Filp z^{100} $Q_n = 5000.1 \pm 3.1$ $E_s = 10242.7 \pm 0.9$ In the range $E_s = 1.0 \pm 3.12$ MeV, 31 resonances (not tabulated) have been toserved. For a discussion of the widths, strengths, and level spacing, see Cl 60.

in ex Brail

Fit (2, value and z-particle groups, see 45.

- E. $M_{11}^{2} M_{22}^{2}$ See M_{12}^{2} E. $M_{11}^{2} - M_{22}^{2}$ See M_{12}^{2} E. $M_{11}^{2} - M_{22}^{2}$ See M_{12}^{2} See M_{12}^{2}
- 后。 #E - #上

 $Q_{n} = -5.85.2 \pm 3.6$

Proton groups to "Ar" = ϕ 2.16, 3.75, 4.3, 5.6, 5.4, 6.3, 6.6, 7.3, and 7.85 MeV have been observed at $E_{\phi} = 17.6$ MeV (Op 58).

Criss Hitting, Be She

H. "Rp z^{38} Ar $Q_{1} = 4035.2 \pm 4.8$

Magnetic analysis at $E_0 = 1.9$ MeV gives $Q_0 = 4.002 \pm 0.020$ MeV (CI 60); at $E_0 = 7$ and 2 MeV $Q_0 = 4.0002 \pm 0.0002$ MeV (Bi 59). In the range $E_0 = 2.5-3.5$ MeV,

1983-198 1983-198 a 2.16 MeV γ ray has been observed in coincidence with α -particles; its angular distribution is isotropic (Sh 58c, Sh 59a, Sh 61).

For resonances, see ⁴²Ca.

I. Not reported: ³⁶S(³He. n)³⁸Ar $Q_{\rm m} = 10926 \pm 9$ ³⁶Ar(t, p)³⁸Ar $Q_{\rm m} = 12153.2 \pm 3.8$ ³⁷Cl(d, n)³⁸Ar $Q_{\rm m} = 8018.0 \pm 1.0$ ³⁷Cl(³He, d)³⁸Ar $Q_{\rm m} =$ 4749.5 ± 0.9 $^{37}Cl(\alpha, t)^{38}Ar$ $Q_{\rm m} = -9570.0 \pm 1.0$ ³⁹K(n, d)³⁸Ar $Q_{\rm m} = -4142.4 \pm 3.6$ 39K(d, 3He)38Ar $Q_{\rm m} = -$ 874.0±3.6 39 K(t, α) 38 Ar $Q_{\rm m} = 13445.5 \pm 3.6$ 40Ar(p, t)38Ar $Q_{\rm m} = -7977.7 \pm 2.3$ 40Ca(n, 3He)38Ar $Q_{\rm m} = - 6985.7 \pm 4.1$

REMARKS

Theoretical discussions on low-lying excited states in ³⁸Ar, Th 56, Ta 54.

38K

(Fig. 38.3, p. 234; table 38.6, p. 234)

A. (a)
$${}^{38}K(\beta^+){}^{38}Ar$$

 $Q_{\rm m} = 5929 \pm 11$

The weighted mean of the half-life measurements for which errors have been given is 7.66 ± 0.03 min (Ri 37, He 37a, Hu 37, Gr 56, Cl 57).

The β^+ spectrum has the allowed shape, with a 2.68 ± 0.03 MeV end point; log ft = 5.0. The β^+ decay is followed by a 2.16 ± 0.03 MeV γ ray (Ti 51). The intensity of a possible higher energy β^+ transition is less than 0.6% of the main transition (Gr 56). These results yield $J^{\pi}({}^{38}K) = (2,3)^+$.

For a *jj*-coupling calculation of the β^+ matrix element, see Gr 56c.

(b)
$${}^{38}K^{m}(\beta^{+}){}^{38}Ar$$
 $Q_{m} = 6052 \pm 14$

The half-life is 0.946 ± 0.005 sec (weighted mean of St 53b, Kl 54b, Cl 57, Mi 58, Ja 60a, Li 60a). The β^+ end point is 5.00 ± 0.10 MeV (Ju 61), 5.06 ± 0.11 MeV (Hu 54a). The super-allowed (log ft = 3.5) character of this transition yields a $J^{\pi} = 0^+$, T = 1 assignment to the isomeric state. The occurrence of isomerism requires a spin difference with the ground state of at least 3, which determines, with the results mentioned above, $J^{\pi}({}^{38}K) = 3^+$. For theoretical discussions concerning the isobaric spin of levels in ${}^{38}K$, see Mo 54, Ta 54, Wi 56a.

The absence of ³⁸K in meteorites contradicts the hypothesis of a long-lived ³⁸K isomeric state (Vo 59).

Fig. 38.3. Energy levels of ³⁸K.

TABLE 38.6

Energy levels of ³⁸K

$E_{\mathbf{x}}$ (MeV \pm keV)	J ^π ; T	$ au_{rac{1}{2}}$	Decay	Reactions
0	3+;0	7.66 ± 0.03 min	β+	A, B, D, E, F, G
0.123 ± 8	0+; 1	$0.946 \pm 0.005 \text{ sec}$	β+	A, C, D, G
0.45 ± 10				G
(3.6)	(0, 1)+		Y	С

B. ${}^{35}Cl(\alpha, n){}^{38}K$

 $Q_{\rm m} = -5866 \pm 11$

The ground-state Q value has been measured as $Q_0 = -5.89 \pm 0.06$ MeV (Sm 61).

C. ${}^{38}Ca(\beta^+){}^{38}K$ $Q_{estimated} = 6700$ See ${}^{38}Ca$.

D.	(a) ${}^{39}K(\gamma, n){}^{38}K$	Q_{m}	$-13079\pm\!11$
	(b) ${}^{39}K(\gamma, n){}^{38}K^{m}$	$Q_{\rm m}$	-13202 ± 14

The threshold for the production of the 7.7 min activity has been measured as $\leq 13.125 \pm 0.038$ MeV (Ge 60a), 13.2 ± 0.2 MeV (Mc 49), and 13.00 MeV (De 55). Cross-section measurements, see Wa 48, Mc 50, Ed 52. See also Em 59a.

Production of ³⁸K^m, see Cl 57.

E. ${}^{40}Ca(\gamma, d){}^{38}K \qquad Q_m = -19191 \pm 10$ Cross section, Fe 60.

F. ${}^{40}Ca(n, t){}^{38}K \qquad Q_m = -12933 \pm 10$

Upper limit of the cross section at $E_n = 14.6$ MeV, Ba 61f.

G. ${}^{40}Ca(d, \alpha){}^{38}K \qquad Q_m = 4655 \pm 10$

At deuteron energies up to 7 MeV, two α -particle groups have been observed, to ${}^{38}K^* = 0$ and 0.45 ± 0.01 MeV; $Q_0 = 4.650 \pm 0.010$ MeV (Br 56f). A new group, corresponding to ${}^{38}K^* = 0.123 \pm 0.008$ MeV, with about one tenth of the intensity of the two known groups, has been found at $E_d = 3.2-4.1$ MeV. This level presumably is the T = 1, $J = 0^+$ state expected at about this energy (Ha 59c). For a discussion of the relative intensities of the groups, see Ha 59c.

³⁶ Ar(t, n) ³⁸ K	$Q_{\rm m} = 5441 \pm 11$
³⁶ Ar(³ He, p) ³⁸ K	$Q_{\rm m} = 6206 \pm 11$
³⁶ Ar(a, d) ³⁸ K	$Q_{\rm m} = -12147 \pm 11$
³⁸ Ar(p, n) ³⁸ K	$Q_{\rm m} = -6712 \pm 11$
³⁸ Ar(³ He, t) ³⁸ K	$Q_{\rm m} = -5947 \pm 11$
³⁹ K(p, d) ³⁸ K	$Q_{\rm m} = -10854 \pm 11$
³⁹ K(d, t) ³⁸ K	$Q_{\rm m} = - 6821 \pm 11$
³⁹ K(³ He, α) ³⁸ K	$Q_{\rm m} = 7498 \pm 11$
⁴⁰ Ca(p, ³ He) ³⁸ K	$Q_{\rm m} = -13697 \pm 10$

REMARKS

For a theoretical discussion of (d_3^{-1}, d_3^{-1}) levels, see Pa 61b.

³⁸Ca

(Not illustrated; see fig. 38.3, p. 234)

A.
$${}^{38}Ca(\beta^+){}^{38}K$$
 $Q_{estimated} = 6700$

Calcium targets irradiated with 85 MeV bremsstrahlung yield 3.5 ± 0.1 MeV γ rays with a half-life of 0.66 ± 0.05 sec. This activity is interpreted as a transi-

38Ca, 39Cl

236

P. M. ENDT AND C. VAN DER LEUN

tion in ³⁸K (presumably to ${}^{38}K^* = 0$ or 0.12 MeV) following a branching of the β^+ decay of ³⁸Ca, produced in the ⁴⁰Ca(γ , 2n)³⁸Ca reaction.

The occurence of this β^+ branch (only γ rays have been observed) in competition with a super-allowed transition to ${}^{38}K^* = 0.12$ MeV (not observed since other β^+ transitions with about the same end point occur simultaneously) suggests a $I^{\pi} = 1^{+}$, T = 0 assignment to ${}^{38}K^{*} = 3.6$ MeV, but $J^{\pi} = 0^{+}$, T = 1is also possible (Cl 57); in the latter case, the 3.5 MeV γ ray probably would not feed the ground state or 0.12 MeV level, but the 0.45 MeV level (presumably $I^{\pi} =: 1^{+}$).

An estimate of the ³⁸Ca mass excess from Coulomb energy systematics yields the Q values for reactions A and B.

B. Not reported:

³⁶Ar(³He, n)³⁸Ca

 $Q_{\text{estimated}} = -1300$

21

39C1

(Not illustrated; see fig. 39.1, p. 238; table 39.1, p. 236)

A.
$${}^{39}\text{Cl}(\beta^{-}){}^{39}\text{Ar}$$
 $Q_{m} = 3430 \pm$

The half-life is 55.5 ± 0.2 min (Ha 50a), 56.5 min (Ru 52).

The decay is complex. By magnetic spectrometer, three branches are observed with the following end points and intensities: 3.45 ± 0.02 MeV $(7 \pm 2)_{10}^{0}$ 2.18 MeV (8 ± 4) %, and 1.91 ± 0.02 MeV (85 ± 6) %. The shape of the high-energy branch is characteristic of unique, once-forbidden transitions ($\Delta J = 2$, yes).

Energy levels of ³⁹ Cl				
E _x (MeV)	J^{π}	$ au_{rac{1}{2}}$	Decay	Reactions
$0 0 364 \pm 0.030$	$\frac{3}{2}$ +	55.5 ± 0.2 min	β-	A, B, C, D
(0.8 ± 0.2)	$(\frac{1}{2}^+)$			D C

TABLE 39.1	
nergy levels of	3961

Three γ rays are observed with the following energies and relative intensities: $E_{\gamma_1} = 0.246 \pm 0.003$ MeV (0.9 ± 0.1), $E_{\gamma_2} = 1.266 \pm 0.010$ MeV (1), $E_{\gamma_s} = 1.520 \pm 0.010$ MeV (0.85 ± 0.05). Upper limits of 2.1×10^{-3} , 1.6×10^{-3} , and 3.2×10^{-3} are given for the conversion coefficients of γ_1 , γ_2 , and γ_3 , respectivoly. Coincidence measurements yield the decay scheme given in fig. 39.1. From $\beta_2 - \gamma$ coincidences a half-life of $(9.5 \pm 0.5) \times 10^{-10}$ sec is found for ³⁹Ar^{*} = 1.52 MeV. The log ft values for the β - transitions to ³⁹Ar^{*} = 0, 1.27, and 1.52 MeV, are 8.3, 6.8, and 5.6, respectively.

All data are in agreement with the assignments $J^{\pi} = \frac{3}{2}^+$ to ³⁹Cl, and $J^{\pi} = \frac{7}{2}^-$, $(\frac{3}{2}, \frac{5}{2})^-$, and $\frac{3}{2}^+$ to ³⁹Ar^{*} = 0, 1.27, and 1.52 MeV, respectively (Pe 56). See also Ha 50a.

For a *jj*-coupling computation of the β - matrix element, see Gr 56c.

B.
$${}^{36}S(\alpha, p){}^{39}Cl$$
 $Q_m = -5714 \pm 23$

A 1.1 hr activity has been observed from the bombardment of sulphur by 16 MeV α particles (Ki 39a).

C. ⁴⁰Ar(
$$\gamma$$
, p)³⁹Cl $Q_{\rm m} = -12523 \pm 22$

A threshold measurement yields $E_{\gamma} = 14.2 \pm 0.2$ MeV, not corrected for penetration of protons through the Coulomb barrier (Ha 50a).

For proton energy spectrum, see Wi 51 ($E_{\gamma} = 17.6$ MeV), Gu 58 ($E_{\gamma} = 15$ MeV). The proton angular distribution indicates the possible existence of a 0.8 ± 9.2 MeV excited state in ³⁹Cl, with $J^{\pi} = \frac{1}{2}$ ⁺ (Gu 58). See also Em 59, Sp 55a, Ko 56.

Cross section, Mc 54a, Ia 58, Br 59e, Pe 59, Do 60a, Go 60.

D.
$${}^{40}\text{Ar}(t, \alpha){}^{39}\text{Cl} \qquad \qquad Q_{\rm m} = 7\,290\pm22$$

Magnetic analysis at $E_t = 2.6$ MeV, yields α -particle groups to ${}^{39}Cl(0)$. $Q_0 = 7.259 \pm 0.040$, and to a level at 0.364 ± 0.030 MeV (Ja 61d).

E. Not reported:

³⁷ Cl(t, p) ³⁹ Cl	$Q_{\rm m} = 5698 \pm 22$
⁴⁰ Ar(n, d) ³⁹ Cl	$Q_{\rm m} = -10298 \pm 22$
40Ar(d, 3He)39Cl	$Q_{\rm m} = -7030 \pm 22$
⁴¹ K(n, ³ He) ³⁹ Cl	$Q_{ m m} = -12605\pm22$

(Fig. 39.1, p. 238; table 39.2, p. 238)

A.
$${}^{39}Ar(\beta){}^{39}K$$

 $Q_{\rm m} = 565 \pm 5$

The half-life is 265 ± 30 yr (Ze 52).

The shape of the β - spectrum, with end point 565 ± 5 keV is unique first forbidden ($\Delta J = 2$, yes) which agrees with the *ft* value; log *ft* = 9.9 and log ($W_0^2 - 1$) *ft* = 10.4 (Br 50) Gamma rays have not been observed (Br 50, An 52).

B.
$${}^{38}Ar(n, \gamma){}^{39}Ar$$
 $Q_m = 6585 \pm 6$

The thermal neutron activation cross section is 0.8 ± 0.2 b (Hu 58).

Fig. 39.1. Energy levels of ³⁹Ar.

TABLE 3	9.2
---------	-----

Energy levels of ³⁹Ar

E _x MeV=keV3	J=	T 1	Decay	Reactions
() 			β-	A, C, D, E
1.270 ± 9	(4, 4)-		2	C, D
1.516 <u> </u>	<u>5</u> -	$(9.5\pm0.5)\times10^{-19}$ sec	2	C, D
2.17 ± 30	-		-	D
2.50 = 40				D
3.10 <u>-</u> 100				D
3.45 = 100				D
3.82 = 50				D
4.25 = 100				D
4.52 ± 100				D
:4.75 =100				D
4.94 - 1.00				D
(n) <u>i -</u> (127				D
s / = 100		•		D

- C. ${}^{39}Cl(\beta^{-}){}^{39}Ar$ $Q_m = 3430 \pm 21$ See ${}^{39}Cl$.
- D. ${}^{39}K(n, p){}^{39}Ar$ $Q_m = 218 \pm 5$

Bombardment of a KI scintillation crystal with monoenergetic neutrons in the range $E_n = 2.4-8.7$ MeV, yields proton groups leading to ³⁹Ar^{*} = 0, 1.32, 1.57, 2.17, 2.52, all ± 0.05 , 3.10 ± 0.10 , (3.45 ± 0.10) , 3.82 ± 0.05 , 4.25, 4.52, (4.75), 4.94, 5.40, and 6.00, all ± 0.10 MeV. The groups to ³⁹Ar^{*} = 1.32, 2.52, 3.82, and 5.40 MeV are strong (Ba 61g). In the range $E_n = 2.0-5.5$ MeV, pulse height analysis yields proton groups to ³⁹Ar^{*} = 1.24 \pm 0.05 and 2.46 ± 0.10 MeV, if $Q_0 = 0.20$ MeV is assumed (Sc 56a).

For cross section, see Li 58d, Bo 60d, Ba 61g, Di 61. For resonances, see 40 K.

E. ${}^{40}\text{Ar}(\gamma, n){}^{39}\text{Ar}$ $Q_{\rm m} = -9875 \pm 6$

The threshold is 9.85 ± 0.15 MeV (Ha 54). For cross section, see Fe 54, Mc 54a, Ia 58, Fa 60.

F.	Not reported:	
	$^{36}S(\alpha, n)^{39}Ar$	$Q_{\rm m} = -3066 \pm 11$
	³⁷ Cl(t n) ³⁹ Ar	$Q_{\rm m} = 8345 \pm 6$
	³⁷ Cl(³ He, p) ³⁹ Ar	$Q_{\rm m} = 9110 \pm 6$
	$^{37}Cl(\alpha, d)^{39}Ar$	$Q_{\rm m}=-9243\pm 6$
	³⁸ Ar(d, p) ³⁹ Ar	$Q_{\rm m} = 4360 \pm 6$
	³⁸ Ar(t, d) ³⁹ Ar	$Q_{\rm m}=327\pm 6$
	³⁸ Ar(α, ^υ He) ³⁹ Ar	$Q_{ m m}=-13992\pm 6$
	³⁹ K(t, ³ He) ³⁹ Ar	$Q_{\rm m} = -547 \pm 5$
	⁴⁰ Ar(p, d) ³⁹ Ar	$Q_{\rm m} = -7651 \pm 6$
	40Ar(d, t) ³⁹ Ar	$Q_{\rm m} = -3618 \pm 6$
,	$^{40}\mathrm{Ar}(^{3}\mathrm{He}, \alpha)^{39}\mathrm{Ar}$	$Q_{\rm m} = 10702 \pm 6$
	⁴¹ K(n, t) ³⁹ Ar	$Q_{\rm m} = -9193 \pm 7$
	⁴¹ K(p, ³ He) ³⁹ Ar	$Q_{\rm m} = -9957 \pm 7$
	$^{41}K(d, \alpha)^{39}Ar$	$Q_{\rm m} = 8395 \pm 7$
	$^{42}Ca(n, \alpha)^{39}Ar$	$Q_{\rm m}=344\pm7$

39K

(Fig. 39.2, p. 240; table 39.3, p. 240)

A. ${}^{36}Ar(\alpha, p){}^{39}K$

 $Q_{\rm m} = -1292.3 \pm 3.9$

At $E_{\alpha} = 7.4$ MeV, with enriched targets, Q values are observed of -1.28 ± 0.03 , -3.78 ± 0.06 , and -4.15 ± 0.04 MeV, corresponding to transitions to ³⁹K^{*} = 0, 2.50, and 2.87 MeV (Sc 56b).

P. M. ENDT AND C. VAN DER LEUN

Fig. 39.2. Energy levels of ³⁹K.

TABLE 3	9.	3
---------	----	---

Energy levels of ³⁹K

$E_{\mathbf{x}}$ (MeV \pm keV)	Jπ	Decay	Reactions
0	<u>3</u> +	stable	A, B, C, D, E, F, G, H
2.526 ± 7	-	Y	A, C, D
2.817 ± 7		r	A, C, D
3.021 ± 7		Ŷ	C, D
3.603 ± 7		Ŷ	C, D
3.879-5.168;	12 levels,	see reaction	D

B. ${}^{39}{\rm Ar}(\beta^{-}){}^{39}{\rm K}$

 $Q_{\rm m}=565\pm5$

See ³⁹Ar.

C. ${}^{39}K(n, n'){}^{39}K$

In the range $E_n = 2.5-4.0$ MeV, the cross section for inelastic neutron scattering to ${}^{39}\text{K}^* = 2.52$, 2.81, 3.05, and 3.59 MeV has been measured by observation of the γ rays de-exciting these levels to the ground state (Li 61). Angular distribution measurements of elastically scattered neutrons in the range $E_n = 60-1800$ keV, see La 57b.

For resonances, see ⁴⁰K.

39K

D. ${}^{39}K(p, p'){}^{39}K$

Magnetic analysis at several angles of observation at $E_p = 7.0-7.5$ MeV, yields proton groups to ${}^{39}K^* = 2.526$, 2.817, 3.021, 3.603, 3.879, and 3.935 MeV, all ± 0.007 MeV, and 4.078, 4.092, 4.122, 4.472, 4.511, 4.678, 4.737, 4.928, 5.010, and 5.168 MeV, all ± 0.008 MeV (Sp 58). The absence of levels below $E_x = 2$ MeV has been confirmed (Sc 56c). Inelastic scattering at $E_p = 185$ MeV, see Ty 58.

For resonances, see ⁴⁰Ca.

- E. ${}^{39}Ca(\beta^+){}^{39}K$ $Q_m = 6490 \pm 40$ See ${}^{39}Ca$.
- F. ${}^{40}Ca(\gamma, p){}^{39}K$

$$Q_{\rm m} = -8336.4 \pm 4.3$$

At $E_{\gamma} = 85$ MeV, some structure has been observed in the proton spectrum (Ko 59). Cross section, Jo 55, Mo 55a.

G. ⁴⁰Ca(n, d)³⁹K $Q_{\rm m} = -6111.7 \pm 4.4$

A ground-state group and some unresolved groups have been observed at $E_n = 14$ MeV (Co 59b).

H. ${}^{42}Ca(p, \alpha){}^{39}K$ $Q_m = 126.0 \pm 4.4$

Magnetic analysis at $E_p = 6.5$ and 7.4 MeV yields $Q_0 = 0.118 \pm 0.005$ MeV (Br 56f).

I. Not reported: $\begin{array}{rcl} Q_{\rm m} = & 8\,892.0 \pm 3.5 \\ Q_{\rm m} = & 6\,367.2 \pm 3.6 \\ Q_{\rm m} = & 4\,142.4 \pm 3.6 \end{array}$ 37Cl(3He, n)39K ${}^{38}Ar(p, \gamma){}^{39}K$ $^{38}Ar(d, n)^{39}K$ $\tilde{Q}_{\rm m} = 874.0 \pm 3.6$ ³⁸Ar(³He, d)³⁹K $^{38}Ar(\alpha, t)^{39}K$ $Q_{\rm m} = -13445.5 \pm 3.6$ $Q_{\rm m} = - 2843.3 \pm 4.3$ 40Ca(d, 3He)39K $^{40}Ca(t, \alpha)^{39}K$ $Q_{\rm m} = 11476.3 \pm 4.4$ ${}^{41}K(p, t){}^{39}K$ $Q_{\rm m} = -9410 \pm 5$

(Fig. 39.3, p. 242; table 39.4, p. 242)

A. ${}^{39}Ca (\beta^+) {}^{39}K \qquad \qquad Q_m = 6490 \pm 40$

The half-life is 0.877 ± 0.006 sec (weighted mean of Li 60a, Cl 58, Ki 58, Mi 58, Kl 54b; see also Wa 60a, Br 53, Su 53, Bo 51, Hu 43).

Magnetic spectrometer measurements of the end point give 5.43 ± 0.06 MeV (Wa 60a), 5.490 ± 0.025 MeV (Ki 58); see also Br 53, Hu 54. The transition is super-allowed (log ft = 3.6), giving $J^{\pi} = \frac{3}{2}^{+}$ for ³⁹Ca.

Potential branches to ³⁹K excited states are very weak. Gamma rays with $E_{\gamma} = 2.5-3.5$ MeV have an intensity < 0.12% per disintegration (Ki 58; see also Ta 60c).

Fig. 39.3. Energy levels of ³⁹Ca.

TA	BLE 39).4	
Energy	levels	of	³⁹ Ca

E _x (MeV)	J¤	T 1	Decay	Reactions
ý	3+ 3+	0.877 ±0.006 sec	β+	A, B, C, D
2.473-5.13; 1	6 levels, se	e reaction		D

P. ³⁹K(p, n)³⁹Ca

 $Q_{\rm m}=-7\,280\pm40$

The threshold has been measured at 7.227 ± 0.070 MeV, giving $Q_0 = -7.044 \pm 0.70$ (Br 59f).

Closs section, Ta 58.

³⁹Ca

243

C. ${}^{40}Ca(\gamma, n){}^{39}Ca$

$$Q_{\rm m} = -15610 \pm 40$$

The threshold is measured as 15.8 ± 0.1 MeV (Su 53), 15.9 ± 0.4 MeV (Mc 49), and 16.0 ± 0.3 MeV (Be 47). For neutron energy spectra, measured at $E_{\nu} = 30$ MeV, see Ag 59, Em 59a.

Cross section, Wa 48, Mc 50, Su 53, Go 54a, Mo 55a, Li 60a, Ne 50c. Theory, see Le 61.

D. ${}^{40}Ca({}^{3}He, \alpha){}^{39}Ca.$ $Q_m = 4\,960\pm40$

At $E(^{3}\text{He}) = 10.1$ MeV, magnetic analysis yields seventeen α -particle groups leading to $^{39}\text{Ca}^* = 0$, 2.473, 2.799, 3.032 (all ± 0.010), 3.66, 3.84, 3.88, 3.95, 4.02, 4.32, 4.43, 4.49, 4.61, 4.71, 4.92 (double?), 5.07 and 5.13 MeV (all ± 0.02 MeV) (Hi 60f).

E.	Not reported:	
	³⁶ Ar(a, n) ³⁹ Ca	$Q_{\rm m} = - 8570 \pm 40$
	³⁹ K(³ He, t) ³⁹ Ca	$Q_{\rm m} = - 6510 \pm 40$
	⁴⁰ Ca(p, d) ³⁹ Ca	$Q_{\rm m} = -13390 \pm 40$
	⁴⁰ Ca(d, t) ³⁹ Ca	$Q_{\rm m} = -9350 \pm 40$

40C1

(Not illustrated; see fig. 40.1, p. 244)

A. ${}^{40}Cl(\beta^{-}){}^{40}Ar$

$$Q_{\rm m}=7500\pm500$$

The half-life is 1.42 ± 0.02 min (Ro 57).

The β - spectrum has been investigated with a scintillation spectrometer; the end point is 7.5 MeV. A strong β - transition with end point between 3.0 and 3.5 MeV is also present (Mo 56b). Gamma rays of 0.55, 0.66, 0.96, 1.1, 1.46, 2.80, 3.10, 4.2-4.4, 5.8, and 6.3 MeV, and several more in the $E_{\gamma} = 2.5-3.0$ MeV range have been observed (Ro 57, Mo 56b). The 1.46 and 2.80 MeV γ rays have about equal intensities. These data suggest a decay scheme as shown in fig. 40.1. They are compatible with the assignment $J^{\pi} = 2^{-1}$ to ⁴⁰Cl, and $J^{\pi} = 0^{+}$, 2^{+} , 3^{-} , and 1^{-1} to ⁴⁰Ar^{*} = 0, 1.46, 4.2, and 5.8 MeV, respectively (Mo 56b).

- B. 40 Ar(n, p) 40 Cl $Q_m = -6700 \pm 500$ Cross section, Za 59. C. Not reported:
- ⁴⁰Ar(t, ³He)⁴⁰Cl $Q_{\rm m} = -7500 \pm 500$

REMARKS

For a prediction of the excitation energies of $(d_{\frac{3}{2}}, f_{\frac{3}{2}}^3)$ states in ⁴⁰Cl, see Ta 57a, Pa 57c.

40A.

(Fig. 40.1, p. 244; table 40.1, p. 245)

A.
$${}^{40}\text{Cl}(\beta^{-}){}^{40}\text{Ar}$$
 $Q_{\rm m} = 7500 \pm 500$
See ${}^{40}\text{Cl}$.

Magnetic analysis at $E_e = 187$ MeV of inelastically scattered electrons shows levels at 1.46 and 2.4 MeV. The differential cross section leads to tentative assignments $J^{\pi} = 0^+$ and 2⁺, respectively, and to $\Gamma_{\gamma} = 2.0 \pm 0.4$ meV, $\tau_{\gamma} = (3.3 \pm 0.6) \times 10^{-13}$ sec, for the 2.4 MeV level (He 56).

Fig. 40.1. Energy levels of ⁴⁰Ar.

C. ${}^{40}Ar(n, n){}^{40}Ar$

Cross section and resonances, see ⁴¹Ar.

D. ⁴⁰Ar(p, p')⁴⁰Ar

Inelastic scattering of protons by ⁴⁰Ar yields groups to ⁴⁰Ar^{*} = 1.48 ± 0.02 MeV (Fr 54), 1.48 ± 0.02 , 2.22 ± 0.04 , (2.66), 3.12 ± 0.03 , 3.80 ± 0.03 , (4.50), 4.50 ± 0.05 , and 4.98 ± 0.05 MeV (Va 56e); 1.46, 3.7, and ≈ 4.8 MeV (Od 60). A scintillation spectrometer measurement yields a γ ray with $E_{\gamma} = 1.442\pm0.015$ MeV (Ho 59). Angular distribution of elastically and inelas-

40Ar

TABLE	40.1
TUDEE	TU.L

Energy levels of ⁴⁰Ar

$E_{\rm x}$ (MeV \pm keV)	Jπ	τ _m	Decay	Reactions
0	0+		stable	many
1.462 ± 5	2+		γ	A, B, D, G, H
2.22 ± 40	(2+)	$(3.3\pm0.6) imes10^{-13}$ sec	•	B, D
(2.66)	• •	,		D
3.12 ± 30				D
3.80 ± 30				D
4.2	(3-)		γ	Α
(4.40)	• •		•	D
4.50 ± 50				D
4.98 ± 50				D
5.8	(1-)		γ	Α
6.3			Ŷ	А

tically scattered protons, He 47, Fr 54, Hi 55, Bu 56a, Ei 56, Ki 56a, Va 56e, Gi 57, Ty 58, Od 60; theory Me 57a. Polarization measurement of elastically scattered protons, Ro 61c.

For cross section and resonances, see ⁴¹K.

E. ${}^{40}Ar(d, d){}^{40}Ar$

Differential elastic scattering cross section at $E_d = 11$ MeV, Ta 60e.

F. 40Ar(³He, ³He)⁴⁰Ar

Differential cross section for elastic and inelastic scattering at $E(^{3}\text{He}) = 28.5 \text{ MeV}$, Ag 60.

G. ${}^{40}Ar(\alpha, \alpha'){}^{40}Ar$

Differential cross section for elastic scattering and for inelastic scattering to ${}^{40}\text{Ar}^* = 1.46$ MeV, has been measured at $E_a = 18$ MeV (Se 58a), and 40 MeV (Ya 59). Theoretical analysis, Ig 59, Ro 60b. The angular distribution is consistent with $J^{\pi} = 2^+$ for ${}^{40}\text{Ar}(1)$ (Ya 59).

н. S	⁴⁰ K(EC) ⁴⁰ Ar ee ⁴⁰ K.	$Q_{\rm m} = 1512.8 \pm 3.4$
I. C	⁴⁰ K(n, p) ⁴⁰ Ar ross section, Ro 58a.	$Q_{\rm m}=2295.3\pm 3.4$
J.	Not reported: ${}^{37}Cl(\alpha, p){}^{40}Ar$ ${}^{38}Ar(t, p){}^{40}Ar$ ${}^{41}K(n, d){}^{40}Ar$	$Q_{\rm m} = -$ 1592.3±2.2 $Q_{\rm m} = -$ 7977.7±2.3 $Q_{\rm m} = -$ 5575.1±4.3

40Ar, 40K

P. M. ENDT AND C. VAN DER LEUN

⁴¹ K(d, ³ He) ⁴⁰ Ar	Q_m	-2306.7 ± 4.3
$^{41}K(t, \alpha)^{40}Ar$	$Q_{\tt m}$	 12012.9 ± 4.3
⁴² Ca(n, ³ He) ⁴⁰ Ar	$Q_{\mathtt{m}}$	 -10358.2 ± 4.2
$^{43}Ca(n, \alpha)^{40}Ar$	Q_{m}	2289.5 ± 4.5

REMARKS

Pure *jj*-coupling theory predicts a $J^{\pi} = 3^{-1}$ level in ⁴⁰Ar with $E_x = 2.51$ MeV (Th 57).

40K

(Fig. 40.2, p. 247; table 40.2, p. 248)

A.	(a) ${}^{40}K(\beta^{-}){}^{40}Ca$	Q_{m}	 1321.5 ± 4.5
	(b) ⁴⁰ K(EC) ⁴⁰ Ar	$Q_{\mathtt{m}}$	 1512.8 ± 3.4

(a) The number of β^- particles emitted per s γ per g of potassium is 27.7 ± 0.3 (weighted average of Gr 48, Fl 49, Ho 50, Sa 5 a, Go 51c, Ko 55, Su 55, Mc 56, Ke 59a, Sa 60c). Together with the abundance of 40 K in natural potassium, $(1.178 \pm 0.004) \times 10^{-4}$ (Ni 50, Re 52a, Re 56a), this number gives a partial half-life for β^- decay, $\tau_{\pm} (\beta^-) = (1.439 \pm 0.015) \times 10^9$ yr.

The β^- end point is 1330 ± 9 keV (weighted average of Dz 46, Al 50c, Be 50b, Go 51c, Fe 52, Ko 55, Ke 59a); $\log ft = 18.5$. The shape of the spectrum is unique third forbidden (Wu 50, Al 50c, Be 50b, Go 51c, Fe 52, Ma 53c, Ko 55), in agreement with the $J^{\pi} = 4^-$ assignment to 40 K (St 58b), and $J^{\pi} = 0^+$ to 40 Ca.

(b) The decay almost entirely proceeds through electron capture to ${}^{40}\text{Ar}^* = 1.46$ MeV. The number of 1.46 MeV γ rays emitted per sec per g of potassium is 3.38 ± 0.06 (weighted mean of Sa 49a, Fa 50, Ho 50, Bu 53, Ba 55b, We 57, Sa 60c; see also Su 55). If electron capture and β^+ emission to ${}^{40}\text{Ar}(0)$ are neglected (see below), this number of γ rays gives a partial half-life $\tau_{\frac{1}{2}}$ (EC) = $(11.8 \pm 0.2) \times 10^9$ yr.

Measurements of the γ -ray energy yield a weighted average of 1.462 ± 0.005 MeV (Gl 47, Be 50c, Be 50d, Ho 50b, Pr 50, Go 51a, Mc 56). The assignment of this γ ray to 40 Ar, which follows from the mass-spectroscopic 40 K- 40 Ca and 40 K- 40 Ar mass differences, is confirmed by coincidence measurements between γ quanta and Auger electrons (Pa 52a). Independent experiments (see 40 Ar) yield a 40 Ar excited state at 1.462 ± 0.012 MeV. Combination of the γ -ray energy with the $Q_{\rm m}$ value, gives 51 ± 6 keV for the capture energy. With the partial half-life given above, this energy yields log ft = 10.6, a rather high value in the class of first-forbidden electron capture transitions.

Fig. 40.2. Energy levels of ⁴⁰K.

247

ł

$E_{\mathbf{x}}$	In	τ_1 or Γ	Decay	Reactions
$(MeV \pm keV)$	J			
0	4-	$(1.282\pm0.013)\times10^9$ yr	β-, EC	many
0.0297 ± 0.7	3-	$(3.9 \pm 0.4) \times 10^{-9}$ sec	γ	C, F, G, H, I
0.789 - 4	2-	/	Y	C, F, G, H, I
0.888 ± 6	5-		Y	C, F, H, I
1.639 + 8	$(\leq 3)^{-}$		·	F
1.954 ± 8				F
2.042 ± 8	(3-)			F
2.064 8	(2^{-})			C, F
2.099 ± 8	(1-)			F
2 256 - 8	(-)			F
2.200 10				F
2.200 ±0	(< 3)-			F
2.555 <u></u> 0	(< 3)			F
2.510 <u>-</u> 0				F
2.000 ±0	(0-)			- 7
2.022 10 9 749 4 009.9	(V) R lovels see to)	ale 40.4 and reaction		F
2.140-4.9V2; 0 7 001 14	o ieveis, see tai		n	л П
1.0VI <u>+4</u>				D D
1.8V1 ±4	1	ov ev	n	D E
9.22-10.77; 50	levels, see read	tion		L

TABLE 40.2 Energy levels of ⁴⁰K

The number of K captures per sec per g of potassium, 1.42 ± 0.03 (He 54), and the number of γ quanta adopted above, lead to an LM/K capture ratio 1.35 ± 0.25 . The transition energy inferred from this ratio, 20 ± 3 keV, leads to a log *ft* value in the range of the log *ft* values found for the class of first-forbidden electron-capture transitions (Ro 60d).

The number of positons emitted per sec per g potassium is less than $(3.6\pm1.8) \times 10^{-4}$ (Ti 59). Thus less than (0.0012 ± 0.0006) % of the ⁴⁰K decay goes by positon emission to ⁴⁰Ar(0) (see also Be 50d: < 0.002%; Co 51a, Go 51b). Since 1.5 MeV is available for β^+ decay, the ratio of K captures to the ground state over β^+ emissions is expected to be about 200 (Mo 51a). It is not excluded therefore, that a few tenths of a percent of the decay to ⁴⁰Ar proceeds by electron capture directly to the ground state.

(a) and (b). The most accurate direct measurements of the ratio of the number of γ quanta over the number of electrons yield 0.124 ± 0.002 and 0.121 ± 0.004 (Mc 56). This is to be compared with the ratio 0.122 ± 0.003 , which follows from the average values given above for the number of β^- particles and γ quanta emitted per sec per g of potassium. Measurement of the ratio of the number of electron captures over the number of β^- emissions yields 0.135 ± 0.040 (Sa 50a; see also En 54a).

Measurements of the amount of argon in minerals of known age which contain potassium, and mass spectrometer studies of the relative amounts of ⁴⁰Ar,

40 K

ENERGY LEVELS OF LIGHT NUCLEI. III 249

⁴⁰K, and ⁴⁰Ca in such minerals, yield values for the electron .apture to β -emission branching ratio which generally come out lower than the value deduced from counting experiments (In 50, however, gives 0.126 ± 0.005). A review of geochemical experiments (We 56) shows that several older determinations need upward revision and that geological evidence gives a branching ratio of 0.117 ± 0.015 , in good agreement with the value 0.1230 ± 0.0015 , deduced from counting experiments.

Other reviews of the ⁴⁰K decay, We 56, Ro 60d.

Summary: ⁴⁰K decays by 1.33 MeV β^- emission (89.0%) to ⁴⁰Ca(0), and by electron capture (11.0%) to ⁴⁰Ar(1), which in turn decays by γ emission to ⁴⁰Ar(0). It is not excluded that a few tenths of a percent of the decay proceeds by electron capture directly to ⁴⁰Ar(0).

The partial half-life for the β^- decay to ⁴⁰Ca, $\tau_{\frac{1}{2}}(\beta^-) = (1.439 \pm 0.015) \times 10^9$ yr, and for electron capture to ⁴⁰Ar(1), $\tau_{\frac{1}{2}}$ (EC) = $(11.8 \pm 0.2) \times 10^9$ yr, yield a total half-life $(1.282 \pm 0.013) \times 10^9$ yr.

B. ${}^{37}Cl(\alpha, n){}^{40}K$ $Q_m = -3887.6 \pm 3.9$

At $E_{\alpha} = 8.3$ MeV, nuclear emulsion measurements yield $Q_0 = -3.86 \pm 0.06$ MeV (Sm 61).

C. ${}^{39}K(n, \gamma){}^{40}K$ $Q_m = 7797.6 \pm 3.3$

The thermal neutron absorption cross section of natural potassium is 2.07 ± 0.07 b. The isotopic cross sections of ³⁹K, ⁴⁰K, and ⁴¹K, are 1.94 ± 0.15 , 70 ± 20 , and 1.24 ± 0.10 b, and their abundances 93.1, 0.012, and 6.91%, respectively. About 95% of the thermal neutron captures in natural potassium should then occur in ³⁹K (Hu 58).

Energies, intensities, and assignments of γ rays resulting from thermal neutron capture in natural potassium are listed in table 40.3. The assignment of the 9.39 and 8.45 MeV γ rays to capture in 40 K is based on experiments with potassium enriched in 40 K. Some probable transitions in 40 K are indicated in table 40.3; several others must also be assigned to capture in 39 K because of intensities. In view of the small spacing of several 39 K levels, precision measurements of the γ -ray energies are needed to make possible unambiguous assignments of the other γ rays. For a proposed level scheme which accounts for several of the observed γ transitions, see Ad 56, Gr 58c.

For a comparison of the reduced widths from (n, γ) and (d, p) reactions, see Bo 59a.

D.
$${}^{39}K(n, n){}^{39}K$$

 $E_{\rm p} = 7797.6 \pm 3.3$

Cross section, Hu 58.

Resonances have been reported at $E_n = 3.4$ keV ($\Gamma = 12$ eV) and 9.2 keV ($\Gamma = 60$ eV), Go 58a. See also Hu 58, Ma 58, Bl 58b.

P. M. ENDT AND C. VAN DER LEUN

	Galimia	1ay5 110112			Final	Probables
E.,ª	7 h h	7 c. h	E_{γ}^{a}	$I_{\gamma}^{d, h}$	nucleus	transition
$(MeV \pm keV)$	$I_{\gamma}^{0, u}$	17	$(MeV \pm keV)$	·		
0.90 1.80	0.08	0.02			41K	
9.39 ±00	0.00	0.1			41K	$C \rightarrow 1.67$
3.40 ± 40	4.	3.5	7.763 ± 10	4.4	40K	$C \rightarrow 0.03$
7.707 ± 0		0.1	7.320 ± 25	0.2		_
1.34 ± 40	9.±	1.3	7.000 ± 15	1.6	40K	$\mathbf{C} \rightarrow 0.80$
6.994± /	04	0.3				_
0.31 ± 00)	6	5.725 ± 15	11	40K	$C \rightarrow 2.06$
3.740 ± 12	12	4	(5.65 ± 40)	≈ 3		
5.00 ± 20	,	2.5	5.51 ± 30	≈ 2		
5.30 ± 20	6	6	5.40 ± 20	6.4		
5.08 ± 30	v	2	5.25 ± 50	2.5		
5.18 ± 20	4	- 3	5.02 ± 30	4.5		
0.00 <u>-</u> 20	72	0	4.81 + 40	1.5		
			4.70 + 30	≈ l		
			4.50 + 40	≈ 1		
4 20 1 20	Q	4	4.39 + 20	5		
4.39 ± 30	7	•	4.11 + 30	4		
4.10 ± 50	ĥ		3.97 + 30	5		
5.91 ±00	0		3.81 + 50	2		
3 67 .1.50	0		3.70 + 30	4		
<u></u>			3 60 - 30	4		
E_{γ}°	<i>I.</i> ,e, h		3.55	9		
$(Mev \pm kev)$. <u>9.40 1.50</u>			
3.45 ± 50	8		3.40 ± 30	≈÷± 15		
			(3.10 ± 00)	≈ 19 ≂. 9		
	0		3.U3 ±3V	≈ 0 		
2.80 ± 30	0		2.10 ± 40	≈ 4		
			(2.00 ± 40)	≈ 4		
			(2.55 ± 40)	~ 4		
			(2.42 ± 30)	≈ 2		
			(2.37 ± 30)	≈ 3		
			(2.30 ± 30)	≈ 3		
	10		2.06 ± 10	9		
2.03 ± 30	13		2.020 ± 15	4		
			1.95 ± 20	4		
			1.85 ± 20	≈ 3		
	~		1.75 ± 20	≈ 3		
1.61 ± 30	5		1.610 ± 8	13		
			1.51 ± 10	5		
			1.40 ± 20	≈ 2		
1 10 00	0		1.27 ± 20	≈ 2		
1.19 ±30	8		1.180 ± 15	7 r	40 T F	000 0
	0.1		0.900 ± 15	2	40 K	0.89 -> V
0.77 ± 30	24		0.770 ± 7	26 ^r	40K	$0.80 \rightarrow 0.00$
			0.625 ± 10	3		

TABLE 40.3 Gamma rays from thermal neutron capture in potassium

· Ki 52, Ba 53; magnetic pair spectrometer.

^b Ki 52, as revised in Ba 58c.

ч Ba 53.

d $^{\circ}$ d 56, as corrected in Gr 58c; magnetic Compton spectrometer.

e Br 56e; 2-crystal scintillation spectrometer.

^t Also reported in Ur 59; scintillation spectrometer.

^g The capturing state is indicated by C, the excitation energies are in MeV.

^h Intensities are given as the number of γ quanta per 100 captures in natural potassium.

E.	(1) ³⁹ K(n, p) ³⁹ Ar	$Q_{\rm m}=218\pm5$	$E_{\rm b} = 7797.6 \pm 3.3$
	(b) 39 K(n, $\alpha){}^{36}$ Cl	$Q_{\rm m} = 1364 \pm 6$	$E_{\rm h} = 7797.6 \pm 3.3$

Sixty resonances in p_0 have been observed in the $E_n = 1.46-3.05$ MeV region (10 keV resolution). With 70-150 keV resolution, strong resonance structure in the p_0 yield has also been found in the $E_n = 3.05-8.7$ MeV region, and in the p_1 and α_0 yield in the 2.3-3.8 MeV region (Ba 61g).

F. ${}^{39}K(d, p){}^{40}K$ $Q_m = 5572.8 \pm 3.3$

The excitation energies of 52 levels in the $E_x = 0-5.0$ MeV range are listed in table 40.4, together with l_n values and reduced widths (En 59, Ma 60d). Analogous work, at $E_d = 8.9$ MeV, with lower resolution, is reported in Da 59b. The relative reduced widths in En 59 and Da 59b are in good agreement. At $E_d = 4.8-5.7$ MeV, the excitation energies of the first three levels are given as 0.032 ± 0.002 , 0.800 ± 0.010 , and 0.893 ± 0.010 MeV (Bu 53a). See also Sa 50, Te 57a. The ground-state Q value is 5.576 ± 0.010 MeV (Bu 53a), 5.569 ± 0.010 MeV (En 59), 5.583 ± 0.010 MeV (Ma 60e).

The states at 0, 0.030, 0.798, and 0.888 MeV all have $l_n = 3$. The ratio of the weighted reduced widths, $(2J+1)\theta_n^2$, is 9.8:8.4:6.1:11. This ratio is in agreement with the theoretical ratio 9:7:5:11, calculated assuming a $J^{\pi} = 4^{-}$, 3^{-} , 2^{-} , and 5^{-} sequence for the four levels, the $(d_{\frac{3}{2}}^{-1}, f_{\frac{3}{2}})$ quadruplet, mentioned above. The levels at 2.042, 2.064, and 2.099 MeV, to which strong proton groups have been observed, evidently belong to the $(d_{\frac{3}{2}}^{-1}, p_{\frac{3}{2}})$ quadruplet. The fourth member is probably the level at 2.622 MeV. The relative intensities of the four groups to these levels suggest a spin sequence $J^{\pi} = 3^{-}$, 2^{-} , 1^{-} , and 0^{-} . For a theoretical discussion of the observed reduced widths, see Ma 60d.

For a comparison of the (d, p) and (n, γ) reduced widths, see Bo 59a.

G. ⁴⁰Ar(p, n)⁴⁰K
$$Q_{\rm m} = -2295.3 \pm 3.4$$

Time-of-flight measurements yield neutron groups to ${}^{40}\text{K}^* = 0.029$ and 0.80 MeV, with $Q = -2.336 \pm 0.010$ and -3.104 ± 0.015 MeV, respectively. With a scintillation spectrometer, thresholds have been measured for the production of $29.4 \pm 1.0 \text{ keV} (1 \rightarrow 0)$ and $771 \pm 10 \text{ keV} (2 \rightarrow 1) \gamma$ rays, yielding $Q = -2.332 \pm 0.010$ and -3.096 ± 0.010 MeV, respectively. These four Q values, combined with the excitation energies of Bu 53a, yield $Q_0 = -2.304 \pm 0.006$ MeV (Ho 59). The mean life of the 30 keV level, measured by a pulsed-beam technique, is $(5.6 \pm 0.5) \times 10^{-9}$ sec. This supports the assumption that the 30 keV γ ray is mainly M1 (Ly 59).

H.
$${}^{40}Ca(n, p){}^{40}K$$
 $Q_m = -538.9 \pm 4.5$

Gamma rays of 30 ± 2 , 767 ± 7 , and 877 ± 17 keV, corresponding to the transitions (1) \rightarrow (0), (2) \rightarrow (1), and (3) \rightarrow (0) or (1), respectively, have been found at $E_n = 4$ MeV (Da 56c).

For cross section, see Ba 60c, Al 61; for angular distributions, Co 58d.

P. M. ENDT AND C. VAN DER LEUN

TABLE 40.4

Levels in ⁴⁰K from the ³⁹K(d, p)⁴⁰K reaction

E _x a (MeV)	/n a	$\begin{array}{c c} (2J+1)\theta_n^{2b} \\ \times 10^3 \end{array}$	Е _ж а (MeV)	/ _n a	$\frac{(2J+1)\theta_n^{2b}}{\times 10^3}$
0	3	86	3.412	0	0.7
0.028¢	3	73	3.479	1	4.9
0 795	3	55	3.599	1	1.4
0.885	3	100	3.629	1	30
1.639	1	0.7	3.657		
1.000	-		3.715		
2.042	1	86	3.738		
2.064	1	78	3.766	1	2.7
2.099	1	53	3.790	0	1.3
2.256	2 or 3		3.820	(1)	(1.6)
2.286	(1)	(1.6)	3.838		. ,
2.393	1	1.0	3.869	1	17
2.415	ī	2.6	3.883		
2.565	-		3.898		
2.622	1	18	3.920		
2.743	1	6.7	4.017d	1	9.7
2.781	-		4.102d	1	16
2.802	1	1.8	4.253 d	1	33
2.948	-		4.396d	1	17
2,983			4.462 d	1	17
(3.0:1)			4.539d	1	17
3.104	0	1.0	4.582d	(1)	(6.3)
3.125	-		4.658d	ì	9.4
3.144	(1)	(1.5)	4.788d	1	7.3
3.225	1	22	4.801d	1	12
3.367	1	6.3	4.902 d	1	8.9
3.385	(1)	(2.5)	all+8 keV		
all ± 8 keV	· · /		·		

^a En 59.

^b En 59, Ma 60d.

^c ± 2 keV. ^d For $E_x > 4$ MeV, only levels corresponding to strong groups have been tabulated.

 $^{43}Ca(p, \alpha)^{40}K$ I.

 $Q_{\rm m}=-5.9\pm4.9$

Magnetic analysis at $E_{\rm p}=6.5$ and 7.0 MeV yields $Q_{\rm 0}=-0.014\pm0.008$ MeV (Br 56f).

J. Not reported:

³⁸ Ar(t, n) ⁴⁰ K	$Q_{\rm m} =$	5682.4 ± 4.0
³⁸ Ar(³ He, p) ⁴⁰ K	$Q_{\rm m} =$	6446.8 ± 4.0
$^{38}{\rm Ar}(\alpha, {\rm ~d})^{40}{\rm K}$	$Q_{\rm m} =$	-11905.6 ± 4.0
³⁹ K(t, d) ⁴⁰ K	$Q_{\rm m} =$	1539.9 ± 3.3
³⁹ K(a, ³ He) ⁴⁰ K	$Q_{m} =$	-12779.6 ± 3.4
⁴⁰ Ar(³ He, t) ⁴⁰ K	$Q_{\rm m} =$	-1530.9 ± 3.4

40K

253

ENERGY LEVELS OF LIGHT NUCLEI. III

$^{40}Ca(t, {}^{3}He)^{40}K$	$Q_{\rm m} = -1303.3 \pm 4.5$
⁴¹ K(p, d) ⁴⁰ K	$Q_{\rm m} = -7870 \pm 5$
41 K(d, t) 40 K	$Q_{\rm m} = -3838 \pm 5$
⁴¹ K(³ He, α) ⁴⁰ K	$Q_{\rm m} = 10482 \pm 5$
$^{42}Ca(n, t)^{40}K$	$Q_{\rm m} = -11889 \pm 5$
⁴² Ca(p, ³ He) ⁴⁰ K	$Q_{\rm m} = -12653.6 \pm 4.9$
${}^{42}Ca(d, \alpha){}^{40}K$	$C_{\rm m} = 5699 \pm 5$

REMARKS

For a discussion of a relation between excitation energies in 38 Cl and 40 K based on *jj*-coupling, see 38 Cl, Remarks. Theoretical discussion of the 40 K ground state configuration, Ku 53, De 53a, Hi 54, Ma 54, Sc 54c, Ta 54a, Pa 56a, Pa 57a, Sh 60, De 61a.

40Ca

(Fig. 40.3, p. 254; table 40.5, p. 255)

A.
$${}^{39}\text{K}(p, \gamma){}^{40}\text{Ca}$$
 $Q_{\rm m} = 8336.4 \pm 4.3$

Experimental information on resonance energies, relative γ yields, absolute γ_0 yields, and branching percentages is given in table 40.6. Resonances in the $E_p = 2-3$ MeV region (not tabulated) have also been observed (Zi 61).

The γ_0 yield measured in the $E_p = 9-14$ MeV region shows broad resonances at $E_p = 10.8$, 11.6, and 12.0 MeV (Ta 61b).

From delayed coincidence measurements the half-life of ${}^{40}Ca(1)$ has been determined as $\tau_{\pm} = (2.15 \pm 0.08) \times 10^{-9}$ sec (Go 60f).

B.
$${}^{39}K(p, p'){}^{39}K$$

 $E_{\rm h} = 8336.4 \pm 4.3$

No elastic scattering resonances have been observed in the $E_p = 1.0-2.0$ MeV region (Ru 59). Many resonances (not tabulated) are seen in the yield of the $E_{\gamma} = 2.53$ MeV γ ray de-exciting ³⁹K(1). The average distance at an excitation energy of 12.4 MeV in ⁴⁰Ca is D = 16 keV (Pr 58a).

For non-resonance data, see ³⁹K.

C. ³⁹K(p,
$$\alpha$$
)³⁶Ar $Q_{\rm m} = 1292.3 \pm 3.9$ $E_{\rm b} = 8336.4 \pm 4.3$

The α_0 yield has been measured in the $E_p = 2.2-3.2$ MeV region. Many resonances (not tabulated; yield curve given) are found, at an average distance D < 15 keV (Cl 60).

For non-resonance data, see ³⁶Ar.

D.
$${}^{40}K(\beta){}^{40}Ca$$
 $Q_m = 1321.5 \pm 4.5$

See ⁴⁰K.

Fig. 40.3. Energy levels of ⁴⁰Ca.

⁴⁰Ca

		Bhergy levels of Ca		
$E_{\mathbf{x}}$ (MeV \pm keV)	J¤	τ _m	Decay	Reactions
0	0+		stable	many
$3.351\pm~3$	0+	$(3.15\pm0.10) imes10^{-9}$ sec	π, e ⁻	A, F, G
3.730 ± 4	3-	$(7.1 \pm 0.3) \times 10^{-11} \text{ sec}$	2	A, E, F, G, I, J
3.900 ± 4			v v	A, F, G, I
4.483 ± 5	3-		γ	A. G. I
$5.202\pm~8$			•	G
5.241 ± 6				G
$5.272\pm~6$				G
5.606 ± 8			γ	G
$5.621\pm$ 8			2	G
5.901 ± 8			•	G
6.029 ± 8				G
6.16 ± 70	(3-)			I
6.74 ± 70	(3-)		Y	G, I
8.4			•	I
9.197 ± 11			2	А
9.238 ± 11			Ŷ	А
9.292 ± 11			γ	А
9.441 ± 5			Ŷ	A
9.615 ± 5			y.	А
9.651 ± 5			2	А
9.877 ± 5	(doublet)		γ	А
10.062 ± 5			Ŷ	А
10.330 ± 5			2	А
10.3-13.4; many	y levels, see react	ions	•	A, B, C
18.8			2	А
19.6			γ	А
20.0			Ŷ	Α

TABLE 40.5

Energy levels of ⁴⁰Ca

E. 40Ca(e, e')40Ca

The angular distribution has been measured by magnetic analysis of 183 MeV electrons scattered inelastically from calcium. Both the angular distribution and the cross section, yielding a mean life $\tau_{\rm m} = (7.1 \pm 0.3) \times 10^{-11}$ sec, support a $J^{\pi} = 3^{-11}$ assignment to the ⁴⁰Ca level at 3.73 MeV (Ha 56b, He 56).

F. 40Ca(n, n')40Ca

Inelastic scattering of 4 MeV neutrons by calcium yields γ rays of $E_{\gamma} = 3.74 \pm 0.04$ and 3.9 ± 0.1 MeV, in addition to annihilation radiation. The threshold for β^+ production is $E_n = 3.44 \pm 0.05$ MeV, showing that ${}^{40}Ca(1)$ decays by pair emission (Da 56c). The mean life of ${}^{40}Ca(1)$ has been measured with a pulsed neutron source, yielding $\tau_m = (3.4 \pm 0.2) \times 10^{-9}$ sec and a reduced E0 matrix element $\varrho = 0.15$ (Kl 59).

De	57	T ₀	57, Be 571,ª	1 ² 0 61a		4 - Oak			01 june	, o
E _p (keV)	relative yield	$E_{\mathbf{p}}$ (keV)	$(2J+1) \Gamma_{\rm p} \Gamma_{\gamma_0} / \Gamma$ (eV)	E _p (keV)	relative yield	(MeV)	M.a.		4 y - 1	2.4
883.1.10	1.2					191.0	×			
925 ± 10	1.0					9.238	x			
980 F 10	small					9.292	×			
01 2001	10	1120 + 5	0.5	1133.0 ± 1.4	I	1441	XX	x	4	
		1300 1.5	1.0	1311.7-J. 1.6	1.5	9.615	₹x	ŝ	\$	»)
		1338-1.5		1349.3 ± 1.6	2.5	9.651	} . ∖`	6.9	59 E5	
		1566.±5	1.7	1579.9 ± 1.9	2.5	9.8774	70	ŝ] <u>≈</u>	(9)
				1769.7 ± 2.1	1.8	10.062			×	
				≈ 1880 (doublet)	< 3.5			×		
				2046.7 ± 2.5	8.0	10.330 c	×	×		

^b The total width of all observed resonances is $\Gamma < 0.5$ keV.

^c Information from De 57, To 57, and Po 61a. The decay modes γ_6 through γ_4 indicate transitions to ⁴⁰Ca(0) through (4). A cross indicates that the cerresponding decay mode has been observed.

^d This level is a doublet (Zi 61).

^e A resonance absorption measurement of γ_0 yields $\Gamma_{\gamma_0} = 3.6 \pm 0.24$ eV, $\Gamma_p = 5.8 \pm 1.8$ eV, $\Gamma = 10.3 \pm 1.7$ eV (Ec 61). Resonance spin J = 2 has been assumed.

40Ca 256

TABLE 40.6
Elastic scattering cross section and angular distribution, Cr 55, We 56a, Cr 58, Cr 60, Ke 60, La 61; theory, Cu 56.

For resonances, see ⁴¹Ca.

G. 40Ca(p, p')40Ca

Eleven levels in ⁴⁰Ca (table 40.7) have been found by magnetic analysis at several proton energies between 6 and 8 MeV (Br 56b).

TABLE 40.7 Levels in ⁴⁰Ca (E_x in MeV \pm keV) from the ⁴⁰Ca(p, p')⁴⁰Ca reaction (Br 56b)

3.348±4	4.483 ± 5	5.272 ± 6	5.901 ± 8
3.730 ± 4	5.202 ± 8	5.606 ± 8	6.029 ± 8
3.900 ± 4	5.241 ± 6	5.621 ± 8	

The first level in ⁴⁰Ca has been found to decay by internal pair formation; the sum of e⁺ and e⁻ energies leads to $E_x = 3.46 \pm 0.10$ MeV (Be 55b). The e⁺-e⁻ angular correlation establishes the transition as E0 (Go 58g, Ch 59a). The corresponding e⁻ conversion line has also been observed; the measured energy leads to ⁴⁰Ca*(1) = 3.353 ± 0.003 MeV; the intensity relative to pair emission is (6.94 ± 0.20) $\times 10^{-3}$ (Ne 59a, Ne 60e). The intensity of 2-photon decay relative to pair emission is at most 1.4×10^{-2} (De 61, also Ne 59). Resonances in the yield of e⁺-e⁻ pairs, Be 58a.

Resonances have been observed in the yield of elastically scattered protons (Da 57a, Jo 59a), and in the yield of protons exciting ⁴⁰Ca(1) and (2). The $l_{\rm p} = 0$ resonances decay to (1), the $l_{\rm p} = 2$ resonances decay with equal intensity to (1) and (2), one $l_{\rm p} = 3$ resonance decays only to (2) (Jo 59).

Angular distribution of elastic scattering, Jo 61b, and of inelastically scattered protons exciting ${}^{40}Ca(1)$ and (2) (unresolved), Ha 52c. Energy spectrum of inelastically scattered protons at $E_p = 11$ MeV, Sh 59. Angular distribution of $E_{,} = 3.73$ and 3.90 MeV (unresolved), Hi 58b. Gamma spectrum at $E_p = 10$ and 14 MeV, Wa 60c. Polarization of p_0 and p_1 proton groups, Al 57d, Ro 61c.

From p'- γ angular correlation measurements at $E_p = 150$ MeV, branchings (see fig. 40.3) have been obtained of the levels at 3.73 MeV ($J^{\pi} = 3^{-}$), 4.48 MeV ($J^{\pi} = 3^{-}$), ≈ 5.6 , and ≈ 6.8 MeV (Ro 61e).

H. $40Ca(d, d)^{40}Ca$

Differential cross section for elastic scattering at $E_d = 11$ MeV, Ta 60e; at $E_d = 13$ MeV, Fr 61.

I. ${}^{40}Ca(\alpha, \alpha'){}^{40}Ca$

At $E_{\alpha} = 43$ MeV, α -particle groups have been observed exciting ${}^{40}Ca(4.48)$ and a new level at 8.4 ± 0.2 MeV. The 4.48 MeV level decays to ${}^{40}Ca(2)$ or (3).

40Ca, 41Ar

258

The α' angulas distribution and the $\alpha' - \gamma$ ($E_{\gamma} = 3.8$ MeV) angular correlation yield $J^{\pi} = 1^{-}$ or 3^{-} for ${}^{40}Ca(4.48)$, and 2^{+} or 3^{-} for ${}^{40}Ca(2)$ or (3) (Sh 59). At $E_{\alpha} = 44$ MeV, ${}^{40}Ca$ levels at 3.78, 4.47, 6.16 and 6.74 MeV, all ± 0.07 MeV, are excited; the α' angular distribution points to odd parity for all these states, and to spins J = 3, 5 (or 1), (3), and (3), respectively (Be 61e, Sa 61a). In Bl 59a, the α' angular distribution measurements given in Sh 59 are re-analysed, with ⁴iffraction scattering theory, yielding $J^{\pi} = 3^{-}$ for ${}^{40}Ca(4.48$ MeV). See also Ko 60b.

J. $40 \text{Sc}(\beta^+) 40 \text{Ca}$ $Q_{\rm m} = 13950 \pm 200$

The half-life has been measured as 0.35 sec (Ty 54), 0.22 ± 0.03 sec (Gl 55), 0.179 ± 0.002 sec (Sc 59c). The β^+ end point is 9.0 ± 0.4 MeV (Gl 55), 9.2 ± 0.2 MeV (log ft = 4.1) (Sc 59c). A γ ray ($E_{\gamma} = 3.75 \pm 0.04$ MeV) has been observed. No delayed α particles are found (Gl 55). Discussion of a possible β^+ transition to the lowest T = 1 state in ⁴⁰Ca, expected at 7.5 MeV, Bo 55, Wi 56a.

K. Not reported:

³⁸ Ar(³ He, n) ⁴⁰ Ca	$Q_{\rm m} =$	6985.7 ± 4.1
³⁹ K(d, n) ⁴⁰ Ca	$Q_{\rm m} =$	6111.7 ± 4.4
³⁹ K(³ He, d) ⁴⁰ Ca	$Q_{\rm m} =$	2843.3 ± 4.3
³⁹ K(a, t) ⁴⁰ Ca	$Q_{\rm m} = -2$	11476.3 ± 4.4
⁴² Ca(p, t) ⁴⁰ Ca	$Q_{\rm m} = -2$	11350 ± 5

REMARKS

For theoretical discussions of 40 Ca states, see Da 59a, Sh 60. A discussion of vibrational 3- states in 40 Ca is given in Br 61f, La 60.

⁴¹Ar

(Fig. 41.1, p. 259; table 41.1, p. 260)

A. ${}^{41}Ar(\beta){}^{41}K$

 $Q_{\rm m}=2490\pm10$

The half-life measurement with the lowest stated error, yielding 109.6 ± 0.4 min (Ha 51a), is in good agreement with older measurements with larger errors (En 54a).

The β^- decay proceeds by two branches. The end point of the ground-state transition has been measured by magnetic spectrometer as 2.48 ± 0.04 MeV (intensity 0.88%) (Sc 56), and 2.485 ± 0.010 MeV (intensity 0.78%) (Ka 61b), yielding log ft = 8.5, log (W_0^2-1) ft = 10.0. The shape of the spectrum is unique once-forbidden ($\Delta J = 2$, yes) (Sc 56). The end point of the main branch has been measured by magnetic spectrometer as 1.245 ± 0.005 MeV (Br 50a), 1.199 ± 0.008 MeV (Sc 56), and 1.195 ± 0.008 MeV (Ka 61b). The spectrum has an allowed shape (Br 50a, Sc 56, Ka 61b). Log ft = 5.1.

Fig. 41.1. Energy levels of ⁴¹Ar.

TABLE	41	.1
-------	----	----

Energy levels of ⁴¹Ar

E _x (MeV)	J¤	$ au_1$	Decay	Reactions
0	<u>i</u> -	$109.6 \pm 0.4 \text{ min}$	β-	A, B, E, F
0.171-6.146	; 50 levels, s	ee table 41.2 and reaction		E

The energy of the γ ray following the main β - branch has been measured by scintillation spectrometer as 1.298 ± 0.010 MeV (Kl 55), and 1.290 ± 0.005 MeV (Sc 56), and by magnetic spectrometer as 1.290 ± 0.004 MeV (Ka 61b). The conversion coefficient is $(6.8 \pm 0.9) \times 10^{-5}$, indicating an M2 transition (Ka 61b).

By $\beta - \gamma$ delayed coincidence measurements the half-life of the 1.29 MeV level in ⁴¹K has been established as $(6.7 \pm 0.5) \times 10^{-9}$ sec (El 52), and 6.6×10^{-9} sec (En 53), which is 60 times slower than the single particle estimate for an M2 transition.

Two measurements of the $\beta - \gamma$ circular polarization correlation are contradictory as to the existence of a Fermi contribution in the β - matrix element (Ma 59e; Bl 60c, Bl 61c). Theoretically, this contribution should be quite small (Bo 61a).

A measurement of the β - γ angular correlation shows that the parity nonconserving relative amplitude in the γ decay is smaller than 6×10^{-5} (Bo 60).

For a *jj*-coupling computation of the β - matrix element, see Gr 56c.

B.
$${}^{40}\text{Ar}(n, \gamma){}^{41}\text{Ar}$$
 $Q_{\rm m} = 6092 \pm 11$

The thermal neutron capture cross section is 0.53 ± 0.02 b (Hu 58). For the cross section at $E_n \approx 1$ MeV, see Hu 58.

C.
$${}^{40}Ar(n, n){}^{40}Ar$$

 $E_{\rm b} = 6092 \pm 11$

There are no resonances in the total cross section beneath $E_n = 10$ keV (Hu 58). See also He 57a, Sp 60. Pronounced resonance structure has been observed in the $E_n = 0.4-1.1$ MeV region (Gu 53). For the $E_n = 0.12-6.2$ MeV and 12.1–19.8 MeV regions, see Va 60c.

D.
$${}^{40}\text{Ar}(n, z){}^{37}\text{S}$$
 $Q_{\rm m} = -2420 \pm 90$ $E_{\rm b} = 6092 \pm 11$

Pronounced resonance structure has been observed in the 5.8-9.0 MeV region (Da 61b). For non-resonance data, see ³⁷S.

E.
$${}^{40}\text{Ar}(d, p){}^{41}\text{Ar}$$
 $Q_{\rm m} = 3868 \pm 11$

The ground-state Q value has been measured as 3.874 ± 0.004 MeV. High resolution angular distribution measurements have been performed at $E_{\rm d} = 7.5$ MeV. Excitation energies of 56 ⁴¹Ar levels, $l_{\rm n}$ values, and reduced widths are listed in table 41.2 (Ka 61a). For earlier measurements at low resolution, see En 57. The reduced widths from the older work, as analysed in

			- 17		
⁴¹ Ar*a (MeV)	l _n	$\begin{array}{c}(2J+1)\theta_{\rm n}{}^2\\\times10^3\end{array}$	⁴¹ Ar*a (MeV)	l _n	$(2J+1) heta_{ m n} onumber \times 10^3$
0	3	68	4.135		
0.171	(3)	weak	4.163	(3)	
0.517	1	16	4.180	1	3.0
1.035	2	4.9	4.305	(0)	
1.354	1	68	4.395		
1.636		weak	4.414		
1.871	0	3.4	4.447	0	0.37
1.988		weak	4.487		
2.402	1	11.2	4.526	isotropic	weak
2.701	1	1.3	4.577	2	4.4
2.740	1	11.3	4.613	0	0.53
2.895	0	0.4	4.676	2	7.2
2.955	1	7.5	6.816	isotropic	weak
3.017	1	3.4	4.840	3	8.7
3.293	1	0.83	4.935	0	1.3
3.335	1	19	4.977		
3.393	3	2.9	5.018	1	3.3
3.438	1	1.6	5.070	3	16
3.577	isotropic		5.407	1	2.8
3.601	2	0.9	5.440	1	1.3
3.705	isotropic		5.754	. (2)	2.5
3.808	1	1.7	5.790	2	1.8
3.847	isotropic	weak	5.825	(1, 2)	
3.900	•	weak	6.041	3	9
3.979	1	17	6.146	3	15
4.108					

TABLE 41.2 Table 40.4 = -41.4 = -41.4

Levels in ⁴¹Ar from the ⁴⁰Ar(d, p)⁴¹Ar reaction (Ka 61a)

* Errors in excitation energies range from 2 keV for the 0.171 MeV level to 9 keV for all levels above 4.5 MeV. For $E_x > 5.07$ MeV only the levels with relatively high yields have been included.

Ma 60d, are in fair agreement with those given in Ka 61a. See also Ma 60d for theoretical remarks on the observed widths. See also Ra 56a.

F.	41K(n, p)41A1	.	$Q_{\rm m} =$	-1707 ± 10

For the cross section at $E_n = 14.5$ MeV, see Fa 53.

G.	Not	reported:
U 1		

$Q_{\rm m} = -165 \pm 11$
$Q_{\rm m} = -14485 \pm 11$
$Q_{\rm m} = -2472 \pm 10$
$Q_{\rm m} = -12195 \pm 12$
$Q_{\rm m} = -2754 \pm 11$

41K

(Fig. 41.2, p. 263; table 41.3, p. 264)

A.
$${}^{40}\text{Ar}(\mathbf{p}, \gamma){}^{41}\text{K}$$
 $Q_{\rm m} = 7799.8 \pm 4.3$

Fifty seven resonances have been found in the $E_p = 0.7-1.4$ MeV range (Ar 61, Va 60e). See table 41.4. Gamma-ray spectra have been investigated at the 1086 and 1101 keV resonances, yielding a.o. $E_{\gamma} = 1.59$, 1.29, 0.98, and 0.60 MeV (Va 60e). The first three are probably ground-state transitions, the last a transition from ⁴¹K(1.58) to ⁴¹K(0.98). See also Br 48a.

B.
$${}^{40}Ar(p, p){}^{40}Ar$$

$$E_{\rm b} = 7799.8 \pm 4.3$$

Strong resonances for elastic scattering have been observed at 1.90 and 2.48 MeV (Fr 58), 1.86 and 2.45 MeV (Va 59b), 1.88, 2.45, and 3.4 MeV (Ba 60d). The 1.86 MeV resonance is at least double; the 2.45 MeV resonance has $l_p = 0$ ($J^{\pi} = \frac{1}{2}^{-}$) (Va 59b).

For non-resonance data, see ⁴⁰Ar.

C. ⁴⁰Ar(p, z)³⁷Cl $Q_m = 1592.3 \pm 2.2$ $E_p = 7799.8 \pm 4.3$ Thirty five resonances (not tabulated) have been observed in the $E_p = 2.4$ -3.4 MeV region (Ba 60d).

D.
40
Ar(d, n) 41 K $Q_m = 5575.1 \pm 4.3$

At $E_d = 3.2$ MeV, the ground-state Q value has been measured as 5.97 ± 0.25 MeV, and transitions are observed to ${}^{41}K^* = 1.34 \pm 0.15$, 3.10, and 4.0 MeV (Wo 50). See also Be 58f.

E. ${}^{40}K(n, \gamma){}^{41}K$ $Q_m = 10095 \pm 5$

The thermal neutron absorption cross section is 70 ± 20 b (Hu 58).

Two weak high energy γ rays ($E_{\gamma} = 9.39 \pm 0.06$ and 8.45 ± 0.02 MeV; see table 40.3), produced by thermal neutron capture in natural potassium, are assigned to ⁴⁹K on account of their energies, and from experiments with targets enriched in ⁴⁰K (Ki 52). The first is difficult to fit into the ⁴¹K level scheme, the second might excite the 1.67 MeV level.

F.
$${}^{41}\text{Ar}(\beta^{-}){}^{41}\text{K}$$
 $Q_{\rm m} = 2490 \pm 10$

See ⁴¹Ar.

G.
$${}^{41}K(p, p'){}^{41}K$$

Levels found from magnetic analysis at $E_p = 6.5$ MeV are given in table 41.5 (En 58a, Ke 58).

Gamma rays of $E_{\pm} = 0.98$, 1.27, and 1.65 MeV have been observed in coincidence with inelastically scattered protons. They might be explained as ground-state transitions. Gamma-ray angular distribution measurements show

41**K** 262 ENERGY LEVELS OF LIGHT NUCLEI. III

Fig. 41.2. Energy levels of ⁴¹K.

TABLE	41	3
IADLE	- T. R.	

 $E_{\rm x}$ (MeV \pm keV) Reactions Jπ Decay $au_{rac{1}{2}}$ A, D, F, G, H, I stable 0 3+ A, G $(\frac{1}{2}^{+})$ γ 0.978 ± 6 A, D, F, G (6.7 \pm 0.5) \times 10^{-9} sec 1.291 ± 4 Y ÷-G 1.559 ± 6 A, G 1.580 ± 6 2 E, G 1.675 ± 6 γ G 1.696 ± 6 G 2.143-3.279; 16 levels, see table 41.5, reaction 8.579-9.139; 57 levels, see table 41.4, reaction А в 9.61 (double) p В 10.19 <u>}</u>+ р С 10.2-11.1; 35 levels, see reaction В р 11.1

Energy levels of ⁴¹K

TABLE 41.4

Levels in ⁴¹ K from	the ⁴⁰ Ar(p,	γ) ⁴¹ K	reaction	(Ar	61)
--------------------------------	-------------------------	--------------------	----------	-----	-----

Ep ³ (keV)	E _x (MeV)	$E_{\mathbf{p}}^{\mathbf{a}}$ (keV)	E _x (MeV)	E _p ^a (keV)	$E_{\mathbf{x}}$ (MeV)
799	8.579	1068	8,842	1229	8.999
819	8.599	1074	8.848	1240	9.010
856	8.635	1081	8.855	1244	9.014
898c	8.676	1086d	8.860	1249	9.019
904	8.682	1096	8.869	1258	9.027
911	8.689	1101 d	8.874	1262	9.031
920	8.698	1108d	8.881	1268	9.037
942	8.719	1118d	8.891	1279	9.048
950	8.727	1129	8.911	1283	9.052
962°	8.739	1152	8.924	1293	9.061
9730	8.749	1162c	8.934	1303	9.071
985	8.761	1170	8.941	1321	9.089
995	8.771	1179	8.950	1331	9.099
1005	8.781	1186	8.957	1336	9.103
1015b	8.790	1194	8.965	1349	9.116
1029	8.804	1200	8.971	1358	9.125
1049	8.823	1207	8.978	1365	9.132
1052	8.826	1217	8.987	1368	9.135
1061	8.835	1222	8.992	1372	9.139

* All values <u>-1</u> keV.

^b Double.

e Probably double.

d Also observed in Va 60e, at proton energies about 6 keV higher.

264

265

TABLE	41	.5
-------	----	----

Levels in 41 K (E_x in MeV)	from t	he 41K(p,	p')41K 1	reaction	(En	58a,	Ke	58) ^a
and the second								

0.978	2.143	2.588	9 190
1.291	2.165	2.673	3 173
1.559	2.315	2.709	3 212
1.580	2.438	2.755	3.230
1.675	2.493	3.045	3.279
1.696	2.507	$all \pm 0.0$	06 MeV

^a $E_{\rm p}$ = 6.5 MeV, enriched target, magnetic analysis at two different angles.

that the 0.98 MeV level in 41 K is most likely a $\frac{1}{2}$ + state (Sh 58c, Sh 59a, Sh 61). For resonances, see 42 Ca.

H. ${}^{41}Ca(EC){}^{41}K$

See ⁴¹Ca.

I. ${}^{44}Ca(p, \alpha){}^{41}K$

 $Q_{\rm m}=-1047\pm 6$

 $Q_{\rm m} = 413 \pm 9$

By magnetic analysis at $E_p = 6.5$ and 7.4 MeV the ground state Q value is measured as -1.057 ± 0.010 MeV (Br 56f).

J. Not reported:

39 K(t, p) 41 K	$Q_{\rm m}=9410~\pm 5$
⁴⁰ Ar(³ He, d) ⁴¹ K	$Q_{\rm m} = 2306.7 \pm 4.3$
⁴⁰ Ar(<i>a</i> , t) ⁴¹ K	$Q_{\rm m} = -12012.9 \pm 4.3$
⁴² Ca(n, d) ⁴¹ K	$Q_{\rm m} = - 8052 \pm 6$
${}^{42}Ca(d, {}^{3}He){}^{41}K$	$Q_{\rm m} = -4783 \pm 6$
$^{42}Ca(t, \alpha)^{41}K$	$Q_{\rm m}=9536\pm 6$
$^{43}Ca(n, t)^{41}K$	$Q_{\rm m} = -$ 9723 ± 6
⁴³ Ca(p, ³ He) ⁴¹ K	$Q_{\rm m} = -10488 \pm 6$
$^{43}Ca(d, \alpha)^{41}K$	$Q_{ m m}=7865\pm 6$

⁴¹Ca

(Fig. 41.3, p. 266; table 41.6, p. 267)

A.	41Ca(EC)41K			Q_n	_n = 4	$13\pm$	9	
Th	e half-life is (1.1 ± 0.3)	$ imes 10^5$	yr	(Br	53a);	log	ft =	10.7.

B. ${}^{40}Ca(n, \gamma){}^{41}Ca$ $Q_m = 8361 \pm 8$

The thermal neutron absorption cross section of natural calcium is 0.44 ± 0.02 b; the main contributions are from ⁴⁰Ca and ⁴²Ca, with cross sections of 0.22 ± 0.04 and 42 ± 3 b, and abundances of 97% and 0.64%, respectively, indicating that these isotopes contribute about equally to the cross section of natural calcium (Hu 58). For a theoretical estimate of the cross section, see Mo 60a.

Observed γ rays from thermal neutron capture in natural calcium are given

41Ca

			<u>u</u>	
$E_{\rm x}$ (MeV \pm keV)	J^{π}	$ au_{rac{1}{2}}$	Decay	Reactions
0	7-	$(1.1\pm0.3) imes10^{5} { m yr}$	EC	A, B, D, E, F, G
1.947 ± 4	<u>3</u> -		γ	B, D
2.014 ± 5			Ŷ	B, D
2.469 ± 5			γ	B, D, E
2.584 - 4.194;	22 levels, se	ee table 41.9, reaction	·	D (and B)
8.447-8.942;	14 levels, so	ee table 41.8, reaction		C

Т	BIF	đ	1	R
	LDLL	- 12	ь.	. U

Energy levels of ⁴¹Ca

TABLE	41.7	ĩ
-------	------	---

Gamma rays from thermal neutron capture in natural calcium

Ad 56, G	Ad 56, Gr 58c		Ba 58c	Probable
Magn. Compton	spectrometer	Magn. pair s	pectrometer	transition
E_{γ} (MeV)	Intensity ^a	E_{γ} (MeV)	Intensity ^a	in ⁴¹ Ca ^b
		7.83±0.05	0.4	
		7.43 ± 0.05	0.6	
6.406 ± 0.015	22	6.42 ± 0.03	40	$C \rightarrow 1.95$
5.90 ± 0.03	3.8	5.89 ± 0.03	6	$C \rightarrow 2.47$
5.70 ± 0.03	1.2	5.66 ± 0.06	3	
5.50 ± 0.04	1.2	5.49 ± 0.05	4	$^{42}Ca(n, \gamma)^{43}Ca$
5.15 ± 0.04	0.9			$^{42}Ca(n, \gamma)^{43}Ca$
4.94 ± 0.03	2.3	4.95 ± 0.03	5	· · ·
4.76 ± 0.03	2.5	4.76 ± 0.03	4	
4.418 ± 0.015	12.3	4.45 ± 0.05	18	$C \rightarrow 3.95$
3.76 = 0.02	1.8			
3.60 ± 0.01	6.4	3.62 ± 0.05	10	
2.81 ± 0.03	$\geqslant 3.6$	Br	56e	
2.66 ± 0.05	$\geqslant 2.0$	Two-crystal se	cint. spectrom.	
2.004 ± 0.010	12.7	an a		$3.95 \rightarrow 1.95, 2.01 \rightarrow 0$
1.944 ± 0.008	39	1.93 ± 0.03	45	$1.95 \rightarrow 0$
1.844 ± 0.015	6.4			
1.790 ± 0.015	$\geqslant 3.6$			
≈ 1.48	≈ 3.2			
≈ 1.2	≈ 4.8			
(0.532 ± 0.010)	≈ 5			$2.47 \rightarrow 1.95$
0.463 ± 0.010	≈ 9	$\textbf{0.48} \pm 0.05$	15	$2.47 \rightarrow 2.01$

* Number of photons per 100 captures in natural calcium.

^b The capturing state is denoted by C.

in table 41.7. By using enriched material it has been made probable that the 5.50 and 5.15 MeV lines result from capture in 42 Ca. It is not clear why the observed intensity sum of 42 Ca(n, γ) lines is so relatively small (Ad 56). For comparison between (n, γ) and (d, p) intensities, see Gr 58b, Bo 59a.

The circular polarization has been measured of the strong 6.41 MeV γ ray,

resulting from capture of polarized thermal neutrons. This yields $J^{\pi} = \frac{3}{2}^{-}$ for the 1.95 MeV level in ⁴¹Ca (Tr 57).

Cross section at higher E_n , Hu 58, Be 58e.

C.
$${}^{40}Ca(n, n){}^{40}Ca$$

$$E_{\rm b}=8361\pm8$$

Observed resonances in the total cross section below $E_n = 600$ keV (Bi 61a, Wi 61) are given in table 41.8. See also Ma 58. Considerable resonance structure has also been observed in the $E_n = 600-1000$ keV region (Wi 61). For total cross section measurements in the $E_n = 1-25$ MeV region, see Hu 58, Co 58, Cr 58, Pe 60.

For non-resonance data, see ⁴⁰Ca.

2-32	#1Ca*	$\Gamma_{\rm n}$	0.°
(194)	(MeV)	(keV)	$\times 10^{2}$
88 ±0.25	8.447	0.148 ± 0.015	0.10
132 - 0.5	8.490	2.54 ± 0.12	1.3
144 _05	8.501	0.19 ± 0.04	0 09
167 = 1.0	8.524	2.49 ± 0.25	H. 1
230 -3	8.576	7.0 ± 1.5	
234 -10	8.609	22.7 ±2b	8.3
566 - 5	8.653	2.2 ± 0.5	0.90
t	8.690	13.6 ± 1.2	4.3
360 = 2	8.712	1.5 ± 0.6	03 45
青春的;	(8.790)		
447.3 2	8.798	13.4 - 1.5	3.
4.4.3)	(8.834)		
. tek - 2	8.853	10.6 = 2.0	28
323 - <u>2</u>	8.942	58 4	13.8

TABLE 41.8

* Bi 61a for $E_{\rm m} \sim 230$ keV; Wi 61 for $E_{\rm m} > 250$ keV. All resonances are probably swave ($I^{\pm} = \frac{1}{2}$). Several weaker resonances might be present. * In Bi 61a $E_{\rm m} = 250 \pm 4$ keV and $\Gamma_{\rm m} = 20 \pm 3$ keV is given for this

Westing.

 $Q_{\rm m} = 6136 \pm 8$

The ground-state () value is 6.140 ± 0.009 MeV (Br 56g). Levels in 4°Ca from magnetic analysis, and the results from high resolution angular distribution measurements are given in table 41.9. The latter results are in essential agreement with earlier low resolution results at $E_d = 8.1$ MeV (Ho 53c). See also Te 57a, Za 60. For a discussion of the reduced widths, see Fu 54, Ra 56, Be 59a. Ma 60d.

For measurements of proton polarization, see Hi 58d. Ta 50d. Jo 61 1 r measurements with polarized deuterons. Hi 60e.

For resonances in the yield of the ground-state group in the $E_s = 1.5 - 1.2$ MeV region, see Le 57.

41Ca

E.
$${}^{40}Ca(t, d){}^{41}Ca$$
 $Q_m = 2103 \pm 8$

At $E_t = 5.5$ MeV, angular distributions have been measured yielding $l_n = 3$ and 1 for the deuteron groups leading to ${}^{41}Ca(0)$ and ${}^{41}Ca(2.47)$, respectively (De 61b).

F.
$${}^{41}K(p, n){}^{41}Ca$$
 $Q_m = -1196 \pm 9$

The threshold has been observed at $E_p = 1.25 \pm 0.02$ MeV (Ri 50); the Q value is measured as -1.10 ± 0.05 MeV (El 58). Cross section, Sc 58a.

For resonances, see ⁴²Ca.

⁴¹ Ca* (MeV±keV)	l _n	$\begin{array}{c c}(2J+1)\theta_{n}^{2},\\\times 10^{3}\end{array}$	^{il} Ca* (MeV±keV)	l _R	$\begin{array}{c}(2f+1)\theta_{n}{}^{2}\\\times10^{3}\end{array}$
0	3	114	3.500±7	a mangangang sakar sakat para sa kana s	
1.947 ± 4	1	80	3.531 ± 7		
2.014 ± 5	2 b	5	3.619 ± 7	J p	5
2.469 ± 5	1	27	3.682 ± 7		
2.584 ± 6			3.736 ± 7	1 b	3
2.612 ± 6			3.837 ± 7		
2.677 ± 6	0	1	3.854 ± 7		
2.890 ± 6			3.921 ± 7		
2.967 ± 6	1	2	3.950 ± 7	I p	32
3.056 ± 6			3.982 ± 7		
3.206 ± 6			4.023 ± 7		
3.375 ± 7			4.101 ± 7		
3.405 ± 7	0	1.2	4.194 ± 7		
		1			

TABLE 41.9 Levels in ⁴¹Ca from the ⁴⁰Ca(d, p)⁴¹Ca reaction^a

^a Excitation energies from Br 56g; angular distribution results ($E_d = 7.0$ MeV) from Bo 57c. Groups for which no l_n and reduced width has been indicated are weak and/or isotropic. Reduced widths in Bo 57c are not absolute; they have roughly been normalized (Ma 60d) with the help of the absolute widths given in Ho 53c.

^b Two l_n values are indicated in Bo 57c as possible for these groups; for reasons given in Ma 60d, always the lowest l_n value has been taken here.

G.
$${}^{41}Sc(\beta^+){}^{41}Ca$$
 $Q_m = 6495 \pm 13$

The half-life has been measured as 0.87 ± 0.03 sec (El 41), 0.873 sec (Ma 52a), 0.87 ± 0.05 sec (Wa 60a), and 0.628 ± 0.014 sec (Ja 60a). The β^+ end point, as measured by cloud chamber is 4.94 ± 0.07 MeV (El 41). A recent measurement, however, yields 5.65 ± 0.10 MeV (Cl 60b). The transition is superallowed (log ft = 3.6).

H. Not reported:

$^{38}Ar(\alpha, n)^{41}Ca$	$Q_{\rm m} = -$	5231 ± 9
$^{39}K(t, n)^{41}Ca$	$Q_{\rm m} =$	8215 ± 9
³⁹ K(³ He, p) ⁴¹ Ca	$Q_{\rm m} =$	8979 ± 9
39 K(α , d) 41 Ca	$Q_{\rm m} = -$	9373 ± 9

P. M. ENDT AND C. VAN DER LEUN

	$Q_{-} = -12217 \pm 8$
saca she ata	n = -431 = 9
arkisHe. that a	$0 = -9247 \pm 9$
racap. diarca	$0^{\vee m} = -5214 = 9$
etald. steita	0 = 9105 = 9
esta stre. 2 state	$0^{2} = -10919 \pm 9$
*S(2) 2) * * C2	1 m

REMARKS

For theoretical work on the ⁴¹Ca level scheme, see Ni 58, Kh 59, Ab 60. Sh 66.

42Ar

(Fig. 42.1, p. 270; table 42.1, p. 271)

 $Q_{\rm m} = 583 \pm 45$ Successive capture of two neutrons in ⁴⁰Ar in a nuclear reactor has produced state its presence has been detected by the observation of the 12.5 ht =K daughter activity in milkings from irradiated argon gas. From the fact that the

the 42 I how to love of the tr

miking over a period of 400 days did not show a decrease in activity of The chan 21", a lower limit to the "' is half life is obtained of 25 yr K2 -

Assuming that the 3 decay is unique first forbidden $\log 5 = 10$, the factor can be expended from the known decay energy as \$20 yr.

«ICa, «Ar

65°C.

TABLE 42.1

Energy levels of ⁴² Ar						
$E_{\mathbf{x}}$ (MeV \pm keV)	Jn	$ au_{rac{1}{2}}$	Decay	Reactions		
0 1.138±30	0+	> 3.5 yr	β-	A, B, C B		

B.	40Ar(t, p) ⁴² Ar
----	-------	------	--------------------

 $Q_{\rm m}=7046\pm40$

From magnetic analysis at $E_t = 2.6$ MeV, the ground state Q value has been measured as 7.046 \pm 0.040 MeV. The first excited state in ⁴²Ar is at 1.138 \pm 0.030 MeV (Ja 61d).

C.
$${}^{41}Ar(n, \gamma){}^{42}Ar$$
 $Q_m = 9436 \pm 41$

The thermal neutron capture cross section is larger than 0.06 b (Ka 52a).

D. Not reported: 44Ca(n, 3He)42Ar

$Q_{\rm m} = -13896 \pm 40$

42K

(Fig. 42.2, p. 272; table 42.2, p. 271)

A.
$$4^{2}K(\beta^{-})^{42}Ca$$

 $Q_{\rm m} = 3530 \pm 20$

The measurement of the half-life with the lowest stated error, $12.516\pm0.007\,\mathrm{hr}$ (Bu 53), is in reasonable agreement with older results with larger errors (En 54a), and with more recent measurements, 12.37 ± 0.09 hr (Ma 59g), 12.46 ± 0.07 hr (Wr 57).

TABLE 42.2

Energy levels of ⁴²K

$E_{\mathbf{x}}$ (MeV)	J^{π}	Г	Decay	Reactions
0	2-		β-	A, B, D, E, F, G, H
0.104 - 4.842; 5	5 levels, see t	able 42.4, reactio	n	D
7.534		$35 \ \mathrm{eV}$	n	С
7.545		60 eV	n	С

There are strong β - transitions to ${}^{42}Ca(0)$ and (1). The best measurement of the end points yields 3.545 ± 0.010 and 1.985 ± 0.010 MeV, respectively (Po 56). The intensity of the low-energy branch (in percents of total decay) has been measured as 30% (Bl 47), 25% (Si 47), (20 ± 1) % (Ka 53), 16% (Si 47a), 18.2% (Ko 54), $(10.8\pm0.6)\%$ (Em 55), $(18.4\pm1.4)\%$ (Ma 59g). The average, 18%, yields log ft = 7.9, log (W_0^2-1) ft = 9.7, for β_0^- , and log ft = 7.5 for β_1^- . One strong and many weak γ lines have been observed; see table 42.3. They

the matter and the second

دو صور حد حد

TABLE	42.	3
-------	-----	---

Gamma rays following the ${}^{42}K(\beta^{-}){}^{42}Ca$ decay^a

La 54b Scint. spectrom.	Po 56 Magn. spectrom.	Mo 59b Scint. spectrom.	Mc 61 Scint. spectrom.	Probable transition in ⁴² Ca ^b
0.309 (1.5)	0.320 ± 0.005 (0.8)	0.31 (1) ^c	0.31 ± 0.01 (1.1) ^c	$1.84 \rightarrow 1.52$
			(0.49 ± 0.02) (< 0.1)	$(3.25 \rightarrow 2.75)$
			$0.60 \pm 0.02 (0.1)^{\circ}$	$2.42 \rightarrow 1.84$
		0.9 (0.3) ^c	$0.90 \pm 0.02 (0.1)^{\circ}$	$2.42 \Rightarrow 1.52$
			$1.02 \pm 0.02 (0.1)$ ^c	$3.44 \rightarrow 2.42$
1.52 (100)	$1.53 \pm 0.01 (100)$	1.53 (100)	1.52 ± 0.01 (100)	$1.52 \rightarrow 0$
		1.94 (0.3) ^c	$1.92 \pm 0.01 \ (0.3)^{\circ}$	$3.44 \rightarrow 1.52$
		2.42 (0.2)	2.42 ± 0.02 (0.2)	2.42 -> 0

^a Gamma-ray energies in MeV; intensities, in percents of $E_{\gamma} = 1.52$ MeV intensity, in brackets.

^b Excitation energies of ⁴²Ca levels in MeV.

^c In coincidence with $E_{\nu} = 1.52$ MeV.

yield branching ratios of 0.18% (log ft = 9.2), 0.05% (log ft = 8.1), < 0.02% (log ft > 7.9), and 0.09% (log ft = 5.1), for the β - transitions to the 1.84, 2.42, 3.25, and 3.44 MeV ⁴²Ca levels, respectively (Mc 61).

The shape of the high-energy β^- spectrum is unique first-forbidden ($\Delta f = 2$, yes), from which a $J^{\pi} = 2^-$ assignment follows for ${}^{42}K(0)$ (Si 47, Sh 49, Ko 54, Po 56; for theory, see De 53a, Sc 54c). The β^- transition to ${}^{42}Ca(1)$ has the allowed shape (Ko 54, Po 56); for theory, see Ko 58.

The $\beta - \gamma$ ($E_{\gamma} = 0.31$ MeV) angular correlation is not isotropic (Be 50, St 51b, St 61a). For $\beta - \gamma$ polarization correlation measurements, see Ha 53a, St 58a.

The $\gamma - \gamma$ ($E_{\gamma} = 0.31 - 1.52$ MeV) angular correlation yields a $J = 0 \rightarrow 2 \rightarrow 0$ sequence (As 59, Mo 59b), in contradiction to an earlier result (Ca 54). From a delayed coincidence experiment the mean life of ${}^{42}Ca(2)$ has been measured as $(4.8 \pm 0.3) \times 10^{-10}$ sec (Si 61).

B.
$${}^{41}K(n, \gamma){}^{42}K$$
 $Q_m = 7529 \pm 21$

The thermal neutron absorption cross section is 1.24 ± 0.10 b (Hu 58). For cross section at higher E_n , see Hu 58, Bo 58b, Ko 58d.

None of the γ rays from thermal neutron capture in natural potassium can be assigned to capture in ⁴¹K with confidence.

C.
$${}^{41}K(n, n){}^{41}K$$

 $E_{\rm b} = 7529 \pm 21$

Resonances in the total cross section have been observed at $E_n = 5.4$ keV ($\Gamma = 35$ eV), and 16.2 keV ($\Gamma = 60$ eV), corresponding to ${}^{41}K^* = 7.534$ and 7.545 MeV, respectively (Go 58a).

D.
$${}^{41}K(d, p){}^{42}K$$
 $Q_m = 5304 \pm 21$

The ground-state Q value is 5.309 ± 0.012 MeV (Mo 58). Levels in ⁴²K found

TABLE 42.4

0	1.453	2.470	3.195	4.123
0.104	1.472	2.542	3.275	4.174
0.252	1.776	2.563	3.356	4.409
0.623	1.913	2.595	3.408	4.474
0 689	1.927	2.616	3.606	4.544
0.772	2.035	2.633	3.650	4.561
0.827	2.061	2.706	3.691	4.797
1.120	2.162	2.832	3.719	4.842
1.179	2.189	2.906	3.766	
1.242	2.227	2.929	3.837	
1.363	2.356	3.007	3.881	
1.396	2.389	3.076	3.92 8	

^a Excitation energies in ⁴²K in MeV. The relatively strong groups are printed in italics. All errors in Q values are 12 keV. There are unresolved levels in the $E_x = 2.74-2.80$ MeV region.

at $E_{\rm d} = 6.0$ MeV by magnetic analysis at three angles are given in table 42.4. See also Sa 50.

E. See	$^{42}Ar(\beta^{-})^{42}K$ e ^{42}Ar .	Q_{m}	==	$583{\pm}45$
F. Cre	$^{42}Ca(n, p)^{42}K$ oss section, Le 57b.	Qm	=	-2747 ± 20
G. We	$^{44}Ca(d, \alpha)^{42}K$ eak ^{42}K activity observed, En 54	Q _m a.	=	4257 ± 21
H. Cre	45 Sc(n, α) 42 K oss section, Ba 61b.	Qm	==	-407 ± 21
Ι.	Not reported: 40 Ar(t, n) 42 Ca 40 Ar(3 Hc, p) 42 K 40 Ar(α , d) 42 K 41 K(t, d) 42 K 41 K(α , 3 He) 42 K 42 Ca(t, 3 He) 42 K 43 Ca(t, α) 42 K 44 Ca(n, t) 42 K 44 Ca(p, 3 He) 42 K	$egin{array}{c} Q_{m} & Q_{m$		$\begin{array}{r} 6846 \pm 20 \\ 7611 \pm 20 \\ -10742 \pm 20 \\ 1271 \pm 21 \\ -13048 \pm 21 \\ -3512 \pm 20 \\ -8452 \pm 21 \\ -5184 \pm 21 \\ 9136 \pm 21 \\ -13331 \pm 21 \\ -14095 \pm 21 \end{array}$

REMARKS

For a theoretical discussion of the 42 K level scheme, see Pa 57c, Go 57c.

42K 274

A. ${}^{39}K(\alpha, p){}^{42}Ca$

$$Q_{\rm m} = -126.0 \pm 4.4$$

At $E_{\alpha} = 8.2$ MeV, the ground-state Q value was determined by range analysis as -0.19 ± 0.07 MeV, and levels in ⁴²Ca were observed at 1.51 ± 0.05 , 1.95 ± 0.07 , 2.29 ± 0.05 , 2.59 ± 0.07 , 3.02 ± 0.05 , (3.30 ± 0.10) , 3.75 ± 0.07 , and (4.09 ± 0.10) MeV (Sc 55).

Fig. 42.3. Energy levels of ⁴²Ca.

42Ca 275

TARTE	42.5
IADLD	72.62.57

Energy	levels	of	42Ca
--------	--------	----	------

$E_{\mathbf{x}}$ (MeV_keV)	J^{π} $\tau_{\rm m}$		Decay	Reactions	
0	0+		stable	many	
1.523 - 4	2^+		γ	A, E, F, G , H	
1.836 ± 4	0+	$(4.8\pm0.3) imes10^{-10}~{ m sec}$	γ, e+–e [–]	A, E, F, H	
2.423 - 4	$(1, 2)^+$		Y	A, E, F, H	
2.751 ± 4				A, F, H	
3.191 ± 8				H	
3.252 ± 5				A, F, H	
3.297 ± 6				F	
3.389 - 6				F	
3.442 - 6	$(1, 2, 3)^{-}$		γ	A, E, F	
3.651 - 6			•	F	
3.883 - 7				F	
3.949 - 7				F	
4.043 - 7				F	

B. 41 K(p, n) 41 Ca $Q_m = -1196 \pm 9$ $E_b = 10276 \pm 6$ Several incompletely resolved resonances are observed in the $E_p = 1.5-3.5$ MeV region (Ri 50). For threshold, see 41 Ca.

C.
$${}^{41}K(p, p'){}^{41}K$$

 $E_{\rm b} = 10276 \pm 6$

About fifty resonances (not tabulated) in the $E_p = 2.3-3.5$ MeV region have been observed in the yield of the 0.98 MeV γ ray (Sh 58c, Sh 59a, Sh 61). For non-resonance data, see ⁴¹K.

D. ${}^{41}K(p, \alpha){}^{38}Ar$ $Q_m = 4035.2 \pm 4.8$ $E_b = 10276 \pm 6$ The α_0 yield has been measured in the $E_p = 1-3$ MeV region. Many resonances (not tabulated) have been seen at an average spacing of 8 keV (Cl 60). For resonances in the yield of the 2.16 MeV γ ray, see Sh 58c, Sh 59a, Sh 61. For Q value, see ${}^{38}Ar$.

E.
$${}^{42}K(\beta^{-}){}^{42}Ca$$
 $Q_m = 3530 \pm 20$
See ${}^{42}K$.

F. ${}^{42}Ca(p, p') {}^{42}Ca$

Magnetic analysis, at 90° and 120°, and at several bombarding energies between 6.5 and 7.0 MeV, gives levels in ${}^{42}Ca$ at 1.523 ± 0.004 , 1.836 ± 0.004 , 2.422 ± 0.005 , 2.750 ± 0.005 , 3.250 ± 0.006 , 3.297 ± 0.006 , 3.389 ± 0.006 , 3.442 ± 0.006 , 3.651 ± 0.006 , 3.883 ± 0.007 , 3.949 ± 0.007 , and 4.043 ± 0.007 (Pr 56f).

With a magnetic lens spectrometer, conversion electrons have been observed of 1.834 ± 0.009 and 0.305 ± 0.003 MeV transitions. The relative intensity of

⁴²Ca

the former to the latter is 1.03 ± 0.10 . A continuous e⁺ distribution with end point at 0.80 ± 0.03 MeV has also been found, originating from e⁺-e⁻ pair formation; the intensity relative to the 1.834 MeV e⁻ is 9.0 ± 1.8 . The shape of the e⁺ spectrum and the observed relative intensities confirm the 0⁺ assignment to $^{42}Ca(2)$ (Be 61d).

G. (a)
$${}^{42}Sc(\beta^+){}^{42}Ca$$
 $Q_m = 6260 \pm 60$

The half-life is $0.62 \pm 0.05 \sec (Mo 55c)$, $0.68 \pm 0.01 \sec (Cl 57a)$, $0.695 \pm 0.007 \sec (Ja 60a)$. With scintillation detectors the β^+ end point has been measured as 4.8 ± 0.9 MeV (Cl 57a), and 5.32 ± 0.15 MeV (Ju 61). No γ rays have been detected (Cl 57a).

The decay is super-allowed (log ft = 3.4), indicating that the ⁴²Sc ground state presumably has $J^{\pi} = 0^+$, T = 1. See also Mo 54.

(b)
$${}^{42}Sc^{m}(\beta^{+}){}^{42}Ca$$
 $Q_{m} = 7130 \pm 40$

Gamma-radiation with $E_{\gamma} = 0.43(1)$, 1.21(2), and 1.51(1) MeV (relative intensities in brackets), and annihilation radiation has been observed with a half-life of 62 ± 4 sec. It has been produced from the ${}^{39}K(\alpha, n){}^{42}Sc$ reaction with a threshold of $E_{\alpha} = 8.86\pm0.04$ MeV. Presumably, a high-spin, T = 1, ${}^{42}Sc$ state at $E_{x} = 0.88\pm0.07$ MeV is excited, decaying through β^{+} emission to a high-spin ${}^{42}Ca$ level (Ne 61a). See also Ju 61.

H.
$${}^{45}Sc(p, \alpha){}^{42}Ca$$
 $Q_m = 2341 \pm 6$

By magnetic analysis at $E_p = 5.9$ and 6.5 MeV, the ground-state Q value has been measured as 2.341 ± 0.008 MeV, and levels in ⁴²Ca have been observed at $E_x = 1.526$, 1.836, 2.425, 2.753, 3.191, and 3.255 MeV, all ± 0.008 MeV (Ma 58h, Bu 58b).

I. Not reported:

40Ar(3He, n)42Ca	$Q_{m} =$	10358.2	2 ± 4.2
$^{40}Ca(t, p)^{42}Ca$	$Q_{\rm m} =$	11350	± 5
41 K(d, n) 42 Ca	$Q_{\mathbf{m}} =$	8052	± 6
⁴¹ K(³ He, d) ⁴² Ca	$Q_{\rm m} =$	4783	± 6
${}^{41}K(\alpha, t){}^{42}Ca$	$Q_{\rm m} = -$	9536	± 6
$^{43}Ca(p, d)^{42}Ca$	$Q_{\rm m} = -$	5705	± 5
$^{43}Ca(d, t)^{42}Ca$	$Q_{\rm m} = -$	-1672	± 5
$^{43}Ca(^{3}He, \alpha)^{42}Ca$	$Q_{\rm m} =$	12648	± 5
$^{44}Ca(p, t)^{42}Ca$	$Q_{\rm m} = -$	-10583	± 6

REMARKS

For theoretical discussions of the ⁴²Ca level scheme, see Sc 54a, Th 56, Ko 59a, Iw 60, Ab 60, Mi 61.

43K

A.
$${}^{43}\text{K}(\beta^{-}){}^{43}\text{Ca}$$
 $Q_{\rm m} = 1817 \pm 10$

The half-life is 22.4 hr (Ov 49), 21.5 hr (Ru 52), 22.0 hr (Li 54a).

The β - decay is complex; β - end points, γ -ray energies, and relative intensities are given in table 43.2. Extensive $\beta - \gamma$, $\gamma - \gamma$, and $e^- - \gamma$ coincidence measurements have been reported (Ba 57, Ni 57, Be 59a); these all support the decay scheme as given in table 43.2 and fig. 43.1. The β_5^- branch given in Li 54a must be

Fig. 43.1. Energy levels of ⁴³K.

Table	43.1	
-------	------	--

Energy levels of 43K

$\frac{E_{\mathbf{x}}}{(\mathrm{MeV}\pm\mathrm{keV})}$	J ^π	τ <u>ι</u>	Decay	Reactions
0 9.65 <u></u> 40 1.18 <u></u> 70	3 + 2 +	22.0 hr	β-	A, B, C B B

regarded as instrumental. A comparison of the γ -ray energies given in Ba 57 and Be 59a shows that the latter are low by about 0.75%. With this correction the best value found from table 43.2 for the excitation energy of $^{43}Ca(4)$ is 1384 ± 4 keV, which differs more than the sum of the experimental errors with the value 1394 ± 4 keV found from the $^{42}Ca(d, p)^{43}Ca$ and $^{43}Ca(p, p')^{43}Ca$

⁴³K

ENERGY LEVELS OF LIGHT NUCLEI. III

TABLE 43.2

The ${}^{43}K(\beta^{-}){}^{43}Ca$ decay a						
	Li 54a	Ba 57	Ni 57	Be 59a		Probable
	Lens spectrom.	Double foc. sp. b	Lens spectrom.	Lens spectrom. ^b	log ft	transition
β_0 -	1839 ± 30 (1.6)			1814 + 25 (1.3)	8.7	
$\beta_1 - + \beta_2 -$	1218 ± 25 (5.4)			1240 (3.5)	> 7.4	
β_3 -	827 ± 20 (83.1)			825 ± 10 (87)	5.5	
β_4 -	460 ± 20 (5.4)			465 ± 50 (8.2)	5.5	
β ₅ ~	243 ± 20 (4.5)					
71	219 ± 4 (1)		215 ± 5	220 ± 2 (3)		(2) = = (1)
Y2	$369\pm~3~(67)$	373.7 ± 0.4	376 ± 4	371 ± 3 (85)		(1) -> (0)
Y3				388 ± 4 (7)		(4) → (3)
24	393 ± 4 (6)			$394 \pm 4(11)$		(3) (2)
Y5				$591 \pm 6(13)$		$(2) \rightarrow (0)$
¥6	$627 \pm 6 (100)$ c	618.9 ± 0.6	612 ± 5	614 - 6 (81)		(3) -> (1)
Y 7	1000 ± 20 (4)	1020 ± 10	1015 ± 10	1005 ± 20 (2)		$(4) \rightarrow (1)$

* Beta-decay end points and γ -ray energies in keV; relative intensities in brackets. All γ -ray energies determined

from external conversion spectrum unless otherwise stated.

^b Energy of γ_7 determined by scintillation spectrometer.

 c Also internal conversion line observed with $\alpha_{K}\approx$ 2 \times 10^{-4}.

reactions (table 43.2). The best value for the decay energy from the data in table 43.2 is 1.818 ± 0.010 MeV.

The shape of the β_0^- spectrum is unique first-forbidden ($\Delta J = 2$, yes), with log ft = 8.7 and log (W_0^2 -1) ft = 10.0 (Li 54a, Be 59a).

The $\gamma - \gamma$ angular correlation of the (3) \rightarrow (1) \rightarrow (0) and the (4) \rightarrow (1) \rightarrow (0) cascades has been measured (Li 57c). For conclusions, see ⁴³Ca, Remarks. For theoretical remarks on the $\beta - \gamma$ angular correlation, see Ga 57.

B. ${}^{40}\text{Ar}(\alpha, p){}^{43}\text{K}$ $Q_{\rm m} = -3324 \pm 11$

From nuclear emulsion measurements at $E_x = 7.4$ MeV, the ground state Q value has been measured as -3.36 ± 0.03 MeV, and levels in ⁴³K have been observed at 0.65 ± 0.04 and 1.18 ± 0.07 MeV(Sc 56b). Cross section, Sc 56b, Ta 60f.

C.	44 Ca(γ, p) 4 3K	$Q_{\rm m} = -12170 \pm 12$
0		

Cross section, Br 58a.

D.

Not reported:	
⁴¹ K(t, p) ⁴³ K	$Q_{ m m}=-8689\pm12$
$^{43}Ca(n, p)^{33}K$	$Q_{\rm m} = -1034 \pm 10$
⁴³ Ca(t, ³ He) ⁴³ K	$Q_{\rm m} = -1799 \pm 10$
$44Ca(n, d)^{43}K$	$Q_{\rm m} = -9946 \pm 12$
44Ca(d, 3He)43K	$Q_{\rm m} = - \ 6677 \pm 12$
$44Ca(t, \alpha)^{43}K$	$Q_{\rm m} = 7.642 \pm 12$
⁴⁵ Sc(n, ³ He) ⁴³ K	$Q_{\rm m} = -11342 \pm 12$
$^{46}Ca(p, \alpha)^{43}K$	$Q_{\rm m} = -1696 \pm 15$

⁴³Ca

A.
$${}^{40}\text{Ar}(\alpha, n){}^{43}\text{Ca} \qquad Q_m = -2289.5 \pm 4.5$$

Cross section, Sc 56b. Resonances, ${}^{44}\text{Ca}$.

B. ${}^{42}Ca(n, \gamma){}^{43}Ca$ $Q_m = 7929 \pm 5$

The thermal neutron absorption cross section is 42 ± 3 b (Hu 58). Thermal neutron capture γ rays of 5.50 ± 0.04 and 5.15 ± 0.04 MeV are assigned to ^{42}Ca (Ad 56).

C.
$${}^{42}Ca(d, p){}^{43}Ca$$
 $Q_m = 5705 \pm 5$

The ground state Q value has been measured as 5.711 ± 0.010 MeV (Br 57b). Levels in ⁴³Ca from magnetic analysis and results from angular distribution measurements at $E_d = 7.0$ MeV are given in table 43.4. For a theoretical interpretation of the measured angular distributions, see Fr 55, Ra 56, Ma 60d.

D.
$${}^{43}K(\beta^{-}){}^{43}Ca$$
 $Q_m = 1817 \pm 10$
See ${}^{43}K$.

E. $43Ca(p, p')^{43}Ca$

Levels in ⁴³Ca found by magnetic analysis are given in table 43.4.

F.
$${}^{43}Sc(\beta^{-}){}^{43}Ca$$
 $Q_{\rm m} = 2220 \pm 10$

The measurement of the half-life with the smallest stated error, 3.92 ± 0.02 hr (Hi 45), is in reasonable agreement with other measurements with larger errors (En 54a, Li 54).

The β^+ decay proceeds to the lowest two ⁴³Ca states (table 43.5). For theoretical remarks on ft values, see Gr 56c, Bl 57, Ca 58.

G. ${}^{44}Ca(\gamma, n){}^{43}Ca \qquad Q_m = -11136 \pm 6$

Cross section, Go 54a.

H. Not reported:

41 K(t, n) 43 Ca	$Q_{\rm m} = 9723 \pm 6$
⁴¹ K(³ He, p) ⁴³ Ca	$Q_{\rm m} = 10488 \pm 6$
$^{41}K(\alpha, d)^{43}Ca$	$Q_{\rm m}=-7865\pm6$
$^{42}Ca(t, d)^{43}Ca$	$Q_{\rm m} = 1672 \pm 5$
⁴² Ca(α, ³ He) ⁴³ Ca	$Q_{\rm m}=-12648\pm5$
$^{44}Ca(p, d)^{43}Ca$	$Q_{\rm m}=-8911\pm 6$
44Ca(d t) 43 Ca	$Q_{\rm m}=-4878\pm 6$
⁴⁴ Ca(³ He, α) ⁴³ Ca	$Q_{\rm m} = 9441 \pm 6$
$^{45}Sc(n, t)^{43}Ca$	$Q_{\rm m}=-9543\pm6$
⁴⁵ Sc(p, ³ He) ⁴³ Ca	$Q_{\rm m}=-10307\pm 6$
$^{45}Sc(d, \alpha)^{43}Ca$	$Q_{\rm m} := 8045 \pm 6$
⁴⁶ Ti(n, α) ⁴³ Ca	$Q_{\rm in} = -$ 79±6

43Ca

	Energy levels of ⁴³ Ca			
$E_{\rm x}$ (MeV \pm keV)	J¤	Decay	Reactions	
0 0.3737 <u></u> 0.4	7 - 2 5 - 2	stable γ	A, C, D, E, F, G C, D, E, F	
$\begin{array}{r} 0.594 = 2 \\ 0.9926 \pm 0.7 \end{array}$	3- 5+ 2	$\gamma \gamma$	C, D, E C, D, E C, D, F	
1.389 <u>+</u> 3 1.678–3.584; 32 le	$\frac{3}{2}^+$ evels, see table	γ e 43.4, reactions	C, E	

TABLE 43.3

TABLE 43.4

Levels in ${}^{43}Ca$ from the ${}^{42}Ca(d, p){}^{43}Ca$ and ${}^{43}Ca(p, p'){}^{43}Ca$ reactions

⁴³ Ca*a (MeV±keV)	l _n e	$\frac{(2J+1)\theta_n{}^{2f}}{\times 10^3}$	⁴³ Ca* ³ (MeV±keV)	l ⁿ e	$\begin{array}{c}(2J+1)\theta_{\rm n}{}^{2\mathfrak{l}}\\\times10^{3}\end{array}$
()b. c	3	82	$2.607 \pm 5^{\mathrm{b}}$, c	1	8
0.373 - 3 ^{b, c}			2.673 ± 5 °		
0.593 3 b, c	1	5	$2.693{\pm}5^{\circ}$		
0.991 <u>-</u> 3b, c	2	4	$2.753{\pm}5^{\circ}$		
1.394-4b, c			2.844±5 ^{b, c}		
$1.678 - 4^{b, c}$			2.880 ± 5 b, c	1	5
$1.904 - 4^{b, c}$			2.947 ± 5 b, c	1	5
1.932 <u>4</u> b, c			$3.027\pm6^{\circ}$		
$1.957 \pm 4^{b, c}$	0	2.6	3.047 ± 6 b, c		
1.985 ± 5^{b}			3.074±6°		
$2.048 \pm 5^{b, c}$	1	80	3.094 ± 6 b, c		
$2.069 \pm 5^{\circ}$			$3.194\pm6^{ m c}$		
$2.095\pm5^{\circ}$			$3.279\pm6^{\circ}$		
$(2.107\pm 5)^{\circ}$			$3.293\pm6^{\circ}$		
2.225 <u>-</u> 5 ^{b, c}			$3.369\pm6^{\circ}$		
$2.250 \pm 5^{b, c}$			3.398 ± 6 c		
2.273 <u>-</u> 5°			3.419-6b. c		
$2.409 \pm 5^{\circ}$			3.584 ^d	1	5
(2.53) đ	1	1			

^a Listed excitation energies are weighted averages (where possible) of results obtained from the ${}^{42}Ca(d, p){}^{43}Ca$ and ${}^{43}Ca(p, p'){}^{43}Ca$ reactions.

^b Observed from the ${}^{42}Ca(d, p){}^{43}Ca$ reaction at several deuteron energies between 2.9 and 7.0 MeV and at $\vartheta = 90^{\circ}$ (Br 57b).

^c Observed from the ⁴³Ca(p, p')⁴³Ca reaction at $E_p = 6.5 \text{ MeV} (\vartheta = 90^\circ)$ and $E_p = 7.0 \text{ MeV} (\vartheta = 130^\circ)$ (Br 57b).

⁴ Additional level observed from the ${}^{42}Ca(d, p){}^{43}Ca$ reaction (Bo 57).

^e Angular distribution measurements of the ⁴²Ca(d, p)⁴³Ca reaction at $E_d = 7.0$ MeV (Bo 57). Groups for which no l_n value and reduced width are given, are weak and/or isotropic.

^t Normalization of reduced widths in Ma 60d. In Bo 57 only relative reduced widths are given; in Bo 57c the yields of the ⁴²Ca(d, p)⁴³Ca and ⁴⁰Ca(d, p)⁴¹Ca reactions are compared.

TABLE 43.5

The ${}^{43}\mathrm{Sc}(\beta^+){}^{43}\mathrm{Ca}$ decay				
Method	$\frac{E(\beta_0^{+})}{(\text{MeV})}$	$\frac{E(\beta_1^+)}{(\text{MeV})}$	E; (MeV)	Reference
magn. spectrom.	1.18 ± 0.02 (72%)	0.77 ± 0.04 (28%)	0.375 ± 0.002	Ha 52d
scint. spectrom.			$\begin{array}{c} 0.375 \pm 0.004 \\ (25 \pm 2) \% \\ \end{array}$	Nu 53
magn. spectrom.	1.20 ± 0.01 (82%)	0.82 ± 0.02 (18%)	$0.369 \pm 0.005 \\ (16\%)$	Li 54ª
magn. spectrom.		, , ,, ,	0.374 ± 0.004	Ni 57
log ft	5.1	4.7		

^a Also reported in Li 54 are a β^+ branch of 0.39 ± 0.03 MeV end point (4%), and γ rays of $E_{\gamma} = 0.25 \pm 0.01$ MeV, 0.627 ± 0.005 MeV (4%), and 0.84 ± 0.02 MeV (weak). The existence of the last two γ rays has not been substantiated in later work (Va 57b). All these transitions seem improbable in view of what is known about ⁴³Ca spins and parities

REMARKS

For theoretical work on the ⁴³Ca level scheme, see Le 55, Ko 59a, Ab 60, Mi 61.

The ⁴²Ca(d, p)⁴³Ca angular distribution measurements (table 43.4) limit J^{π} of ⁴³Ca(2) and ⁴³Ca(3) to $(\frac{1}{2}, \frac{3}{2})^{-}$ and $(\frac{3}{2}, \frac{5}{2})^{+}$, respectively. The observation of a γ transition to the $\frac{7}{2}$ - ⁴³Ca ground state (γ_5 in table 43.2), then yields for ⁴³Ca(2) the unique assignment $I^{\pi} = \frac{3}{2}^{-}$.

The ⁴³Sc ground state very probably has $J^{\pi} = \frac{\tau}{2} - (f_{\frac{3}{2}})$. The allowed character of the ⁴³Sc(β^+)⁴³Ca(1) transition then limits J^{π} of ⁴³Ca(1) to $(\frac{5}{2}, \frac{\tau}{2}, \frac{9}{2})^-$, spin $\frac{9}{2}$ can be excluded by the observation of the ⁴³Ca(3) \rightarrow ⁴³Ca(1) γ transition (γ_6 in table 43.2).

The ⁴³K ground state has $J^{\pi} = \frac{3}{2}^+$. The allowed character of the β_4^- branch limits J^{π} of ⁴³Ca(4) to $(\frac{1}{2}, \frac{3}{2}, \frac{5}{2})^+$; the observation of the ⁴³Ca(4) \rightarrow ⁴³Ca(1) transition (γ_7 in table 43.2) eliminates spin $\frac{1}{2}$.

If ⁴³Ca(1) had $J^{\pi} = \frac{7}{2}^{-}$, both ⁴³Ca(3) and ⁴³Ca(4) would have $J^{\pi} = \frac{5}{2}^{+}$ (because the observation of γ_6 and γ_7 rules out $\frac{3}{2}^{+}$). The $\gamma_6 - \gamma_2$ and $\gamma_7 - \gamma_2$ angular correlations would then have to be identical, of $\frac{5}{2}^{+} \xrightarrow{E1} \frac{7}{2}^{-} \xrightarrow{M1+E2} \frac{7}{2}^{-}$ character. However, they have been measured to be different (Li 57c). Thus, ⁴³Ca(1) has $J^{\pi} = \frac{5}{2}^{-}$. The $\gamma - \gamma$ angular correlation measurements then yield $J^{\pi} = \frac{5}{2}^{+}$ for ⁴³Ca(3) and $\frac{3}{2}^{+}$ for ⁴³Ca(4), with an E2/M1 amplitude ratio for γ_2 of $x = -0.05 \, \sigma^- x = -5.4$.

⁴⁴K

(Not illustrated)

A. ${}^{44}K(\beta^{--}){}^{44}Ca$

$$Q_{\rm m} = 6100 \pm 200$$

Half-life, 18 ± 1 min (Wa 37), 20 min (An 54), 22.0 ± 0.5 min (Co 54), and 22.3 min (Su 60b).

284

P. M. ENDT AND C. VAN DER LEUN

TABLE 44.1

	The ⁴⁴ K	$(\beta^{-})^{44}$ Ca decay [®]	
References	End points (in	MeV) of partial β^- spectra	
Co 54	4.9	1.5	
Su 60b	4.91 (10%), 3.	4.91 (10%), 3.55, 2.63	
	Observed gam	ma rays (energies in MeV)	
Co 54	1.13, 2.07, 2.4	.8, 3.6. Also unresolved γ rays with $E_{\gamma} < 0.5$ MeV.	
Su 60b	$0\ 48,\ 0.63,\ 0$ $2.08+2.13\ (13)$	2.74, 0.90 (1), 1.06 (1), 1.16 (100), 1.5, 1.74 (13), 2.55 (12), 3.4, 3.66 (6.2), 4.4, 4.6, 5.0 (0.6).	

^a Scintillation spectrometer, both for β^- and for γ . Relative intensities in brackets.

The β - decay is complex. End points of partial β - spectra and observed γ rays are given in table 44.1. The assignment of most of the observed data is obscure. It is uncertain to which of the known ⁴⁴Ca states the 4.9 MeV β - branch proceeds; the Q_m value is calculated assuming that this branch proceeds to ⁴⁴Ca^{*} = 1.16 MeV.

B.	$^{44}Ca(n, p)^{44}K$	$Q_{\rm m} = -5320 \pm 200$
C	ross section, Le 57b.	
C.	Not reported:	
	⁴⁴ Ca(t, ³ He) ⁴⁴ K	$Q_{\rm m} = -6080 \pm 200$
	$^{46}Ca(n, t)^{44}K$	$Q_{\rm m} = -14660\pm200$
	⁴⁶ Ca(p, ³ He) ⁴⁴ K	$Q_{\rm m} = -15420 \pm 200$
	${}^{46}Ca(d, \alpha){}^{44}K$	$Q_{\rm m} = 2930 \pm 200$

44Ca

(Fig. 44.1, p. 285; table 44.2, p. 285)

A. ${}^{40}\text{Ar}(\alpha, n){}^{43}\text{Ca}$	$Q_{\rm m} = -2289.5 \pm 4.5$	$E_{\rm b} = 8846.6 \pm 4.5$
Resonances observed with	Th C' a particles, Fu 38.	

B. ${}^{41}K(\alpha, p){}^{44}Ca$ $?_m = 1047 \pm 6$

From range analysis at $E_z = 7.8$ MeV, the ground-state Q value is measured as 0.98 ± 0.10 MeV, and levels in ⁴⁴Co are observed at 1.13, 1.92, 2.28, 2.58, 2.97, and 3.17 MeV, all ± 0.05 MeV (S: 55).

C. ${}^{43}Ca(d, p){}^{44}Ca \qquad \qquad Q_m = 8911 \pm 6$

From magnetic analysis at $E_d = 0.0$ MeV, the ground-state Q value is measured as 8.913 ± 0.014 MeV. Tra sitions are also observed to the lowest six ⁴⁴Ca levels (Br 56f).

Fig. 44.1. Energy levels of ⁴⁴Ca.

TABLE	44.2
-------	------

Energy	levels	of	44Ca
--------	--------	----	------

$\frac{E_{\mathbf{x}}}{(\text{MeV}\pm\text{keV})}$	J¤	τ _m	Decay	Reactions
0	0+		stable	many
1.158 ± 3	2+	$(5.5 \pm 1.1) \times 10^{-12} \sec$	γ	B, C, D, E, F, G, H
1.883 ± 4	(4)		γ	B, C, F, H
2.284 ± 5	$(1, 2)^+$		21	B, C, F, H
2.655 + 5	$(1, 2)^+$		2	B, C, F, H
3044 ± 5				B, C, F
3.297 ± 6			(7)	B, C, F, H
3.305 ± 6			(_{7'})	F, H
9.954 L B				F
9 501 L B	(5 6)+		γ	F, H
3.081 + 0	(*), 0)			F
3.050±0				F
3.671 ± 6				

D. ${}^{44}K(\beta^{-}){}^{44}Ca$ $Q_m = 6100 \pm 200$ See ${}^{44}K$.

E. $44Ca(n, n')^{44}Ca$

From inelastic scattering of 3.9 MeV neutrons on natural calcium, a 1.152 ± 0.020 MeV γ ray has been observed with a scintillation spectrometer (Da 56c).

F.
$${}^{44}Ca(p, p'){}^{44}Ca$$

From magnetic analysis at $E_p = 6.5$, 7.0, and 7.4 MeV, levels in ⁴⁴Ca have been observed at 1.156 ± 0.004 , 1.883 ± 0.004 , 2.284 ± 0.005 , 2.655 ± 0.005 , 3.044 ± 0.005 , 3.297 ± 0.006 , 3.305 ± 0.006 , 3.354 ± 0.006 , 3.581 ± 0.006 , 3.656 ± 0.006 , and 3.671 ± 0.006 MeV (Br 56f).

G. ⁴⁴Ca+heavy ions (¹⁴N, ²⁰Ne)

From Coulomb excitation with 16.8 and 21.5 MeV ¹⁴N ions and 26.0 MeV ²⁰Ne ions, the ⁴⁴Ca(1) mean life has been determined as $(5.5 \pm 1.1) \times 10^{-12}$ sec (An 61f).

H. (a) ${}^{44}Sc(\beta^+){}^{44}Ca$ $Q_m = 3648 \pm 5$

The half-life has been measured as 3.92 ± 0.03 hr, (Hi 45), in reasonable agreement with other measurements with larger stated errors (En 54a).

	<i>E</i> .,. ^a (MeV)	Probable transition in ${}^{44}Ca$ (E_x in MeV)		E ₇ , a (MeV)	Probable transition in ⁴⁴ Ca (E_x in MeV)
/1 /2 /3 /8	$\begin{array}{c} 0.68 \pm 0.02 \ (3.2) \\ 1.02 \pm 0.02 \ (3.1) \\ 1.12 \pm 0.02 \ (4.7) \\ 1.16 \pm 0.01 \ (100) \end{array}$	$1.88 \rightarrow 1.16$ $3.30 \rightarrow 2.28$ $2.28 \rightarrow 1.16$ $1.16 \rightarrow 0$	7'5 7'6 7'7 7'8	$\begin{array}{c} 1.50 \pm 0.02 \ (1.7) \\ 1.72 \pm 0.02 \ (0.8) \\ 2.28 \pm 0.02 \ (0.2) \\ 2.69 \pm 0.02 \ (0.2) \end{array}$	$2.65 \rightarrow 1.16$ $3.58 \rightarrow 1.88$ $2.28 \rightarrow 0$ $2.65 \rightarrow 0$

TABLE 44.3 Gamma rays in the ${}^{44}Sc(\beta^+){}^{44}Ca$ decay (Mc 61)

^a Measurements by scintillation spectrometer. Relative intensities are in brackets. Gamma rays $\gamma_1, \gamma_2, \gamma_3, \gamma_5$, and γ_6 are in coincidence with γ_4 .

The decay is complex. The end point of the β^+ branch to ⁴⁴Ca(1), has been measured by magnetic spectrometer as 1.463 ± 0.005 MeV (Br 50b), and 1.471 ± 0.005 MeV (Bl 55). The Kurie plot is straight (Br 50b, Bl 55). The γ ray following the β^+ decay has $E_{\gamma} = 1.159\pm0.003$ MeV. Its conversion coefficient is $(6.3\pm0.3) \times 10^{-5}$, establishing this transition as E2 (Bl 55). Electron capture also occurs, with an intensity EC/ $\beta^+ = 0.073\pm0.016$ (Bl 55), 0.023 ± 0.019 (Ko 58b). See also La 54a. Two measurements of the β - γ circular polarization are contradictory as to the existence of a Fermi contribution in the β^+ matrix element (Bo 58, Bl 61c, Bl 61d, see also Bo 60b).

A number of weak γ rays have been observed, implying electron capture to

44Ca 286 higher ⁴⁴Ca states (Mc 61, table 44.3). In this experiment a ⁴⁴Sc^m source was used; the ⁴⁴Ca 3.58 MeV level probably is excited directly from ⁴⁴Sc^m. The branching percentages to ⁴⁴Ca states at 1.16, 1.88, 2.28, 2.65, 3.30, and 3.58 MeV are 90.7, < 2.4, 1.8, 1.9, 3.1, and 0.8, with log *ft* values of 5.4, > 5.6, 5.2, 5.0, 3.8, and 5.3, respectively. The small log *ft* value found for excitation of the 3.30 MeV level makes the assignment of γ_2 doubtful (Mc 61). See also Bl 55.

For a *jj*-coupling calculation of the β^+ matrix element, see Gr 56c.

(b)
$${}^{44}Sc^{m}(\gamma){}^{44}Sc \qquad Q_{m} = 270.6 \pm 0.6$$

 ${}^{44}Sc^{m}(EC){}^{44}Ca \qquad Q_{m} = 3919 \pm 5$

The half-life is 58.6 ± 0.7 hr (Hi 45). The decay to ${}^{44}Sc(0)$ proceeds through a γ ray of energy 269.3 ± 1 keV (Sm 42), 271.3 ± 0.7 keV (Br 50b). The total conversion coefficient is 0.139 ± 0.003 , in agreement with the value expected for an E4 transition (Bl 55). Electron capture to ${}^{44}Ca(3.58)$ also occurs with an intensity of 0.8%; log ft = 5.4 (Mc 61).

I. ${}^{45}Sc(n, d){}^{44}Ca$ $Q_m = -4664 \pm 5$

Observed, Co 61a.

T.

Not reported:	
⁴² Ca(t, p) ⁴⁴ Ca	$Q_{\rm m} = 10583 \pm 6$
$^{43}Ca(n, \gamma)^{44}Ca$	$Q_{\rm m}^- = 11136 \pm 6$
⁴³ Ca(t, d) ⁴⁴ Ca	$Q_{ m m}=4878\pm 6$
43Ca(a, 3He)44Ca	$Q_{\rm m} = -9441 \pm 6$
⁴⁵ Sc(d, ³ He) ⁴⁴ Ca	$Q_{\rm m} = - 1396 \pm 5$
$^{45}Sc(t, \alpha)^{44}Ca$	$Q_{\rm m} = 12924 \pm 5$
46Ca(p, t)44Ca	$Q_{\rm m} = -9338 \pm 11$
46Ti(n, 3He)44Ca	$Q_{ m m}=-$ 9520 \pm 6
47Ti(n, α)44Ca	$Q_{ m m}=$ 2170 \pm 9

45K

(Not illustrated)

A 34 min A = 45 activity, observed by electromagnetic separation of a vanadium target bombarded by 187 MeV protons, has tentatively been assigned to 45 K (An 54).

45Ca

(Fig. 45.1, p. 288; table 45.1, p. 288)

A.
$${}^{45}Ca(\beta^{-}){}^{45}Sc$$
 $Q_m = 252.0 \pm 1.9$

The half-life has been measured as 163.5 ± 4 days (De 53), 153 ± 2 days (Th 57a), 167 ± 3 days (Ca 59a); weighted average 158.2 ± 4.5 days. For older measurements with larger errors, see En 54a.

The β - spectrum is simple; no γ rays have been observed. The end point has been measured by magnetic spectrometer as 255 ± 4 keV (Ke 50), 254 ± 3 keV (Ma 50b), 261 ± 4 keV (Ma 53). The Kurie plot is straight; log ft = 5.7. Computation of ft value with configurational mixing, Ca 58.

Fig. 45.1. Energy levels of ⁴⁵Ca.

TABLE 45.1 Energy levels of ⁴⁵Ca

$E_{\rm x}$ (MeV)	J¤	$ au_{rac{1}{2}}$	Decay	Reactions
0	$\left(\frac{1}{2}\right)^{-}$	158.2 ± 4.5 days	β-	A, B, D, E, F
0.176-3.419;	22 levels, se	te table 45.3, reaction		D
7.442-7.661;	5 levels, se	te table 45.2, reaction		C

B.
$${}^{44}Ca(n, \gamma){}^{45}Ca$$

$$Q_{\rm m} = 7420 \pm 6$$

The thermal neutron capture cross section is 0.67 ± 0.07 b (Hu 58).

C.
$$44Ca(n, n)^{44}Ca$$

 $E_{\rm h} = 7420 \pm 6$

Resonances in the total cross section are given in table 45.2 (Bi 61a).

⁴⁵Ca

TABLE 45.2

Resonances in the ⁴⁴Ca+n total cross section (Bi 61a)^a

E_{n} (keV)	⁴⁵ Ca* (MeV)	Γ_{n} (keV)	Sample
$\begin{array}{cccc} 22 & \pm 1 \\ 51.5 \pm 1 \\ 82 & \pm 2 \\ 150 & \pm 3 \\ 247 & \pm 3 \end{array}$	7.442 7.470 7.500 7.567 7.661	$\begin{array}{c} 0.54 \pm 0.30 \\ 2.13 \pm 0.70 \\ 1.87 \pm 1.00 \\ 8.6 \pm 1.0 \\ 2.26 \pm 0.25 \end{array}$	natural calcium natural calcium natural calcium enriched enriched

^a All resonances are probably s-wave.

TABLE 45.3

Levels in ⁴⁵Ca from the ⁴⁴Ca(d, p)⁴⁵Ca reaction

⁴⁵ Ca*a (MeV <u>+</u> keV)	l _n b	$\begin{array}{c}(2J+1)\theta_n{}^2 b\\ \times 10^3\end{array}$	$^{45}Ca*a$ (MeV \pm keV)	ln ^b	$\frac{(2f+1)\theta_n^{2b}}{\times 10^3}$
0	3	45	2.681 ± 5		
0.176 ± 3			(2.763 ± 5)		
(1.036 ± 10)			2.844 ± 5	10	<u>(</u>)
1.432 - 4	í	11	$2.950\pm5^{\circ}$		
(1.475 <u>-</u> 6)			2.970 ± 5		
(1.557 ± 10)			(3.032 ± 6)		
1.902 ± 4	1	54	3.148 ± 6		
1.971 ± 4			3.244 ± 6	1 c	4
2.249 ± 5	1	9	3.296 ± 6		
$2.356\pm~5$			3.319 ± 6		
2.394 ± 5	0	2.5	3.419 ± 6] c	17
(2.597 ± 5)					

^a Br 56f.

^b Co 57. Only relative reduced widths are given in Co 57. They have been normalized, in Ma 60d, by means of the relative yields of the ⁴⁴Ca(d, p)⁴⁵Ca and ⁴⁰Ca(d, p)⁴¹Ca ground-state transitions given in Bo 57c, and by using the absolute reduced width of ⁴⁰Ca(d, p)⁴¹Ca given in Ho 53c.
^c The lower of two possible l_n values has been chosen, for reasons given in Ma 60d.

D.
$${}^{44}Ca(d, p){}^{45}Ca$$
 $Q_m = 5195 \pm 6$

The ground-state Q value is 5.188 ± 0.010 MeV (Br 56f). Levels in ${}^{45}Ca$ observed at several deuteron energies between 2.9 and 7.0 MeV (Br 56f), and the results of angular distribution measurements at $E_d = 7.0$ MeV (Co 57), are given in table 45.3. Theoretical remarks, Fr 55, Ra 56, To 59a, Sa 60, Ma 60d.

E.
$${}^{45}Sc(n, p){}^{45}Ca$$
 $Q_m = 530.6 \pm 1.9$

Cross section, Za 59, Ba 61b.

F. ${}^{48}\text{Ti}(n, \alpha){}^{45}\text{Ca}$ $Q_{\rm m} = -2030 \pm 5$

Cross section, He 48.

45Ca, 46Ca, 47Ca

290

P. M. ENDT AND C. VAN DER LEUN

G.	Not reported:	
	$^{44}Ca(t, d)^{45}Ca$	$Q_{ m m}=1162~\pm~6$
	$^{44}Ca(\alpha, {}^{3}He){}^{45}Ca$	$Q_{ m m} = -13158 ~\pm ~6$
	⁴⁵ Sc(t, ³ He) ⁴⁵ Ca	$Q_{\rm m} = -$ 233.9 \pm 1.9
	${}^{46}Ca(p, d){}^{45}Ca$	$Q_{\rm m} = - 8176 \pm 11$
	$^{46}Ca(d, t)^{45}Ca$	$Q_{\rm m} = - 4143 \pm 11$
	$^{46}Ca(^{3}He, \alpha)^{45}Ca$	$Q_{\rm m} = 10177 \pm 11$

⁴⁶Ca

(Not illustrated)

Not reported:

$Q_{\rm m} = 9338 \pm 11$
$Q_{\rm m} = -8896 \pm 16$
$Q_{\rm m} = 223 \pm 10$

⁴⁷Ca

(Not illustrated)

A. $47Ca(\beta^{-})^{47}Sc$

$$Q_{\rm m} = 1996 \pm 16$$

Half-life measurement with lowest stated error: 4.51 ± 0.02 days (Fo 60a). For older measurements, En 57.

The β^- decay is complex. End points of β^- branches, γ -ray energies, and relative intensities are given in table 47.1. The log *ft* values for β_0 and β_2 are 8.5 and 6.0, respectively.

		TABLE 47.1		
	1	The beta decay of ⁴⁷ C	a	
	Co 53 ^a magn. spectrom.	Ma 53 magn. spectrom.	Ly 55 Al abs. + scint. spectrom.	Li 56 magn. spectrom. +scint. spectrom.
E_{β_0} (MeV)		2.060 ± 0.020 b (19%)	1.93 ± 0.2 (24+6)%	1.940 ± 0.020^{b}
E_{β_2} (MeV)		0.685 ± 0.006 (81%)	0.70 ± 0.02 (76+6)%	$0.660 \pm 0.010^{\text{b}}$ (83%)
E_{γ_1} (MeV)	1.303 ± 0.040		$(12 \pm 0)/0$ 1.29 (14.2 ± 1.2)	$1.31 \pm 0.02^{\circ}$ (13 +2)
E_{γ_2} (MeV)	0.800 ± 0.025		0.182	$0.83 \pm 0.02^{\circ}$
Е ₇₃ (MeV)	0.495 ± 0.015		0.500 (1)	$\begin{array}{c} 0.48 \pm 0.02^{\circ} \\ (1) \end{array}$

^a Additional γ rays of 234.0 and 149.5 keV reported in Co 53, not observed by others. The β^- end points at 1.4 ± 0.1 MeV (40%) and 0.46 ± 0.02 MeV (60%) do not fit well in the ⁴⁷Ca decay scheme.

^b Kurie plot is straight.

^c Coincidences observed between γ_2 and γ_3 ; neither γ_2 nor γ_3 coincident with γ_1 .

The average energies of γ_1 and of the $\gamma_2 - \gamma_3$ cascade (Co 53, Li 56) yield the excitation energy ${}^{47}\text{Sc}^* = 1309 \pm 14$ keV. With the average value for the end point $E_{\beta_3} = 687 \pm 10$ keV (Ma 53, Ly 55, Li 56) this gives a total decay energy of 1996 ± 16 keV, in agreement with the average end point $E_{\gamma} = 2000 \pm 60$ keV (Ma 53, Li 56).

Theoretical remarks, Gr 56c, Ca 58.

B.
$${}^{46}Ca(n, \gamma){}^{47}Ca$$
 $Q_m = 7269 \pm 21$

The cross section for thermal neutron capture is 0.25 ± 0.10 b (Hu 58).

C. Not reported:

⁴⁶ Ca(d, p) ⁴⁷ Ca	$Q_{\rm m} = 5044 \pm 21$
⁴⁶ Ca(t, d) ⁴⁷ Ca	$Q_{\rm m} = 1012 \pm 21$
⁴⁶ Ca(α, ³ He) ⁴⁷ Ca	$Q_{\rm m} = -13308 \pm 21$
⁴⁸ Ca(p, d) ⁴⁷ Ca	$Q_{\rm m} = -7884 \pm 22$
⁴⁸ Ca(d, t) ⁴⁷ Ca	$Q_{\rm m} = -3851 \pm 22$
⁴⁸ Ca(³ He, α) ⁴⁷ Ca	$Q_{\rm m} = 10469 \pm 22$
49 Ti(n, 3He)47Ca	$Q_{\rm m} = -13085 \pm 18$
⁵⁰ Ti(n, <i>α</i>) ⁴⁷ Ca	$Q_{\rm m} = -3446 \pm 19$

⁴⁸Ca

(Not illustrated; table 48.1, p. 291)

A. ${}^{48}Ca(\beta^{-}){}^{48}Sc$ $Q_{\rm m} = 122 \pm 16$

This reaction has not been observed. The half-life is longer than 2×10^{16} yr; log ft > 21.5 (Jo 52).

B. ${}^{48}Ca(2\beta){}^{48}Ti$ $Q_m = 4112 \pm 13$

Lower limits of the half-life for double β^- decay are given of 2×10^{18} yr (Aw 56), and 7×10^{18} yr (Do 59). However, in Mc 55 a half-life is reported of

	TABI Energy le	LE 48.1	
1	Energy ic		
$(MeV \pm keV)$	J¤	Decay	Reactions
$0 \\ 3.825 \pm 6 \\ 4.499 \pm 7$	0+	stable	A, B, C C C

 (1.6 ± 0.7) × 10¹⁷ yr and a total kinetic energy of the two electrons of 4.1 ± 0.3 MeV. Theoretical work on double β decay, Me 60. Review paper on double β decay, De 60c.

292

P. M. ENDT AND C. VAN DER LEUN

C. $48Ca(p, p')^{48}Ca$

From magnetic analysis at $E_p = 6.5$, 7.0, and 7.4 MeV, levels in ⁴⁸Ca have been observed at 3.825 ± 0.006 and 4.499 ± 0.007 MeV (Br 56f). A search for de-excitation of the first level by internal pair formation has been unsuccessful (Ek 58).

D.	Not reported:		
	$^{46}Ca(t, p)^{48}Ca$	$Q_{\rm m} = 8896 \pm 1$	6
	⁵⁰ Ti(n, ³ He) ⁴⁸ Ca	$Q_{\rm m} = -13914 \pm 1$	4

⁴⁹Ca

(Fig. 49.1, p. 292; table 49.1, p. 293)

A.
$${}^{49}Ca(\beta^{-}){}^{49}Sc$$
 $Q_{\rm m} = 5090 \pm 40$

The half-life, averaged from two measurements (Ke 56, Ma 56a) is 8.83 ± 0.14 min.

Fig. 49.1. Energy levels of ⁴⁹Ca.

The β^- decay is complex (table 49.2). Beta transitions with log *ft* values of 4.9, 4.6, and 4.5 occur to ⁴⁹Sc levels at 3.09, 4.05, and 4.68 MeV, respectively, which are de-excited by ground-state γ transitions.

B. ${}^{48}Ca(n, \gamma){}^{49}Ca$ $Q_m = 5152 \pm 19$

The thermal neutron capture cross section is 1.1 ± 0.1 b (Hu 58).
Т	D 7	12	46	1
I A	BL	Æ	49.	L

Energy levels of ⁴⁹Ca

⁴⁹ Ca* (MeV±keV)	J^{π}	$ au_{rac{1}{2}}$	Decay	Reactions
0	(3)-	8.83 + 0.14 min	ß-	A. B. C
2.026 ± 5	$(\frac{1}{2}, \frac{3}{3})^{-}$		r	C
3.589 ± 6				č
4.004 ± 7				č
(4.026+10)				Č

TABLE	49.2
-------	------

The beta decay of ⁴⁹Ca

	Ke 56 ^a scint. spectrom.	Ma 56a ^b scint. spectrom.
E_{β_1} (MeV)	1.95 ± 0.05 (88%)	2.12 ± 0.10
$E_{\beta_{2}}$ (MeV)	0.95 ± 0.15 (12%)	≈ 1.0
E_{γ} (MeV)	$3.10 \pm 0.03 (90 \pm 2\%)$	3.07 ± 0.05 (89%)
$E_{\gamma_{\bullet}}$ (MeV)	$4.05 \pm 0.05 (10 \pm 2\%)$	$4.04 \pm 0.06 (10\%)$
$E_{}$ (MeV)	$4.68 \pm 0.05 \ (0.38 \pm 0.1\%)$	$4.7 \pm 0.1 (0.8^{\circ})$

^a Intensity of a possible 0.95 MeV γ ray is < 2% No $\gamma - \gamma$ coincidences are observed.

b Intensity of ground-state β^- transition is < 1%. Intensity of a possible 0.97 MeV γ ray is < 3%.

C. ${}^{48}Ca(d, p){}^{49}Ca \qquad \qquad Q_m = 2927 \pm 19$

The ground state Q value is 2.916 ± 0.006 MeV. By magnetic analysis at $E_{\rm d} = 6.5$ and 7.0 MeV, levels in ⁴⁹Ca have been observed as given in table 49.1 (Br 56f). See also Wa 54.

Angular distribution measurements at $E_d = 6.5$ MeV show that ${}^{49}Ca(0)$ and (1) are p-states $(l_n = 1)$ (Bu 55a).

D. Not reported:

⁴⁸ Ca(t, d) ⁴⁹ Ca	$Q_{\rm m} = -1105 \pm 19$
⁴⁸ Ca(α, ³ He) ⁴⁹ Ca	$Q_{\rm m} = -15425 \pm 19$

References

- Ab 60 Abraham and Gupta, Nuclear Physics 19 (1960) 496
- Ad 53 Adler, Huber, and Hälg, Helv. Phys. Acta 26 (1953) 349
- Ad 56 Adyasevich, Groshev, Demidov, and Lysenko, Atomnaya Energiya 1 (1956) 28; I. Nuclear Energy 3 (1956) 325
- Ad 56a Adyasevich, Groshev, and Demidov, Atomna a Energiya 1 (1956) 40; J. Nuclear Energy 3 (1956) 258
- Ad 61 Adelson and Waddell, Bull. Amer. Phys. Soc. 6 (1961) 375
- Ad 61a Adams, Fox, Heydenburg, and Temmer, Bull. Amer. Phys. Soc. 6 (1961) 250
- Ag 50 Agnew, Phys. Rev. 77 (1950) 655
- Ag 56 Ager-Hanssen, Lönsjö, and Nordhagen, Phys. Rev. 101 (1956) 1779
- Ag 59 Agodi, Cavallaro, Cortini, Emma, Milone, Rinzivillo, Rubbino, and Ferrero, Proc. of the Paris Conf., p. 625 (Dunod, Paris, 1959)
- Ag 60 Aguilar, Burcham, England, García, Hodgson, March, McKee, Mosinger, and Toner, Proc. Royal Soc. A 257 (1960) 13
- Ag 61 Aguilar, García, England, Hodgson, and Toner, Nuclear Physics 25 (1961) 259
- Aj 55 Ajzenberg, Rubin, and Likely, Phys. Rev. 99 (1955) 654(A) and verbal report to Nuclear Data Group
- Aj 59 Ajzenberg-Selove and Lauritsen, Nuclear Physics 11 (1959) 1
- Aj 60 Ajzenberg-Selove and Dunning, Phys. Rev. 119 (1960) 1681
- Aj 60a Ajzenberg-Selove, Cranberg, and Dietrich, Bull. Amer. Phys. Soc. 5 (1960) 493
- Aj 61 Ajzenberg-Selove, Cranberg, and Dietrich, Phys. Rev. 124 (1961) 1548
- Al 48a Allan and Wilkinson, Proc. Royal Soc. A 194 (1948) 131
- Al 48c Albert and Wu, Phys. Rev. 74 (1948) 847(L)
- Al 49 Alburger, Phys. Rev. 76 (1949) 435(L)
- Al 49a Alburger, Phys. Rev. 75 (1949) 51
- Al 50 Alburger and Hafner, Revs. Mod. Phys. 22 (1950) 373
- Al 50a Alvarez, Phys. Rev. 80 (1950) 519
- Al 50b Alburger, Hughes, and Eggler, Phys. Rev. 78 (1950) 318(A)
- Al 50c Alburger, Phys. Rev. 78 (1950) 629(L)
- Al 51 Allen, May, and Rall, Phys. Rev. 84 (1951) 1203
- Al 55 Allen, Burcham, Chackett, Munday, and Reasbeck, Proc. Phys. Soc. A 68 (1955) 681
- Al 55b Allan and Sarma, Proc. Phys. Soc. A 68 (1955) 535
- Al 56 Alkhazov, Andreyev, Greenberg, and Lemberg, Physica 22 (1956) 1129; Nuclear Physics 2 (1956) 65; Zh. Eksp. Teor. Fiz. 30 (1956) 809(L); JETP 3 (1957) 964(L)
- Al 56a Allen, Collinge, Hird, Maglić, and Orman, Proc. Phys. Soc. A 69 (1956) 705
- Al 57 Almqvist, Bromley, Ferguson, Gove, Litherland, and Paul (Chalk River), private communication (1957)
- Al 57a Allan, Proc. Phys. Soc. A 70 (1957) 195
- Al 57d Alphonce, Johansson, and Tibell, Nuclear Physics 4 (1957) 672
- Al 59a Allen, Burman, Herrmannsfeldt, Stähelin, and Braid, Phys. Rev. 116 (1959) 134
- Al 59b Alkhazov, Grinnerg, Gusinskii, Erokhina, and Lemberg, Zh. Eksp. Teor. Fiz. 37 (1959) 1530; JETP 10 (1960) 1086
- Al 60 Almqvist, Bromley, and Kuehner, Phys. Rev. Lett. 4 (1960) 515
- Al 60a Alexander and Bredel, Nuclear Physics 17 (1960) 153
- Al 60b Almqvist, Bromley, Gove, and Litherland, Nuclear Physics 19 (1960) 1

- Al 60c Almqvist, Bromley, and Kuehner, Proc. of the Kingston Conf., p. 258 (Univ. of Toronto Press, 1960)
- Al 60d Alekseev, Zherebtsova, Litvin, and Nemilov, Zh. Eksp. Teor. Fiz. 39 (1960) 1508; JETP 12 (1961) 1049
- Al 61 Allan, Nuclear Physics 24 (1961) 274
- Al 61a Almqvist and Ferguson, as quoted in Mc 61a
- Al 61b Albert and Hansen, Phys. Rev. 123 (1961) 1749
- Am 52 Ambrosen, Nature 169 (1952) 408(L)
- Am 61 Ambrozy, Faudrowicz, Jasinski, Kownacki, Lancman, and Ludziejewski, Proc. Rutherford Jubilee Conf., Manchester (1961)
- An 52 Anderson, Wheeler, and Watson, Phys. Rev. 87 (1952) 897(L)
- An 53 Anderson, Wheeler, and Watson, Phys. Rev. 90 (1953) 606
- An 54 Andersson, Phil. Mag. 45 (1954) 621
- An 54a Antenova, Bashilov, Dzhelepov, and Orlov, Izvest. Akad. Nauk, Ser. Fiz. 18 (1954) 93
- P.n 57 Andersen, Holtebekk, Lonsjö, and Tangen, Nuclear Physics 4 (1957) 39
- An 57a Anders and Meinke, Nucleonics 15 (1957) No. 12, 68
- An 59 Andersen, Bö, Holtebekk, Lönsjö, and Tangen, Nuclear Physics 9 (1959) 509
- An 59a Anderson, Gardner, McClure, Nakada, and Wong, Phys. Rev. 115 (1959) 1010
- An 59b Andersen, Holtebekk, Lönsjö, and Tangen, Nuclear Physics 13 (1959) 310
- An 60 Andreyev, Grinberg, Erokhina, and Lemberg, Nuclear Physics 19 (1960) 400
- An 60a Antufev, Valter, Gonchar, Kopanets, Lvov, and Tsytko, Izvest. Akad. Nauk, Ser. Fiz. 24 (1960) 877
- An 60b Anders and Meinke, Phys. Rev. 120 (1960) 2114
- An 60c Angeli, Közlemények 2 (1960) 199
- An 60d Androsenko, Broder, and Lashuk, Atomnaya Energiya 9 (1960) 403
- An 61 Andersen, Dörum, Gautvik, and Holtebekk, Nuclear Physics 22 (1961) 245
- An 61a Andersen, Haug, Holtebekk, Lönsjö, and Nordhegen (Oslo University), private communication (1961)
- An 61b Andersen, Proc. Rutherford Jubilee Conf., Manchester (1961)
- An 61c Antufev, Valter, Gonchar, Kopanets, Lvov, and Tsytko, Izvest. Akad. Nauk, Ser. Fiz.
 25 (1961) 265
- An 61d Antufev, Gonchar, Kopanets, Lvov, and Tsytko, Izvest. Akad. Nauk, Ser. Fiz. 25 (1961) 261
- An 61e Andreev, Grinberg, Erokhina, and Lemberg, Izvest. Akad. Nauk, Ser. Fiz. 25 (1961) 70
- An 61f Andreev, Vasilev, Gusinskii, Erokhina, and Lemberg, Izvest. Akad. Nauk, Ser. Fiz. 25 (1961) 832
- Ap 58 Appel, Schopper, and Bloom, Phys. Rev. 109 (1958) 2211(L)
- Ap 59 Appel, Z. Physik **155** (1959) 580
- Ar 52 Arthur, Allen, Bender, Hausman, and McDole, Phys. Rev. 88 (1952) 1291
- Ar 58 Arnell, Dubois, and Almén, Nuclear Physics 6 (1958) 196
- A. 59 Arns, Sund, and Wiedenbeck, Phys. Rev. Lett. 2 (1959) 50
- Ar 60 Artamonova, Gustova, Podkopaev, and Chubinskii, Zh. Eksp. Teor. Fiz. 39 (1960) 1953; JETP 12 (1961) 1109
- Ar 61 Arnell, Nuclear Physics 24 (1961) 500
- As 59 Asplund and Wiedling, Arkiv f. Fysik 15 (1959) 303; Phys. Rev. 116 (1959) 741
- As 61 Ashe, McCrary, Nellis, and Hudson, Bull. Amer. Phys. Soc. 6 (1961) 368
- Aw 56 Awschalom, Phys. Rev. 101 (1956) 1041
- Ba 40 Barkas, Creutz, Delsasso, Sutton, and White, Phys. Rev. 58 (1940) 383(L)
- Ba 46 Baldwin and Klaiber, Phys. Rev. 70 (1946) 259
- Ba 49 Baldwin, Phys. Rev. 76 (1949) 182(A)
- Ba 52 Baker, Dodd, and Simmons, Phys. Rev. 85 (1952) 1051(L)
- Ba 52a Baskova and Kudriavtseva, Zh. Eksp. Teor. Fiz. 23 (1952) 83
- Ba 53 Bartholomew and Kinsey, Canadian J. Phys. 31 (1953) 9?
- Ba 53a Bartholomew, Brown, Howell, Shorey, and Yaffe, Canadian J. Phys. 31 (1953) 714
- Ba 54 Batzel and Coleman, Phys. Rev. 93 (1954) 280

- Ba 55a Bartholomew, Boyd, Brown, Hawkings, Lounsbury, and Merritt, Canadian J. Phys. 33 (1955) 43
- Ba 55b Backenstoss and Goebel, Z. Naturf. 10a (1955) 920
- Ba 56 Baumann, Prosser, Read, and Krone, Phys. Rev. 104 (1956) 376
- Ba 57 Bäckström and Lindqvist, Arkiv. f. Fysik 11 (1957) 465
- Ba 57a Bazhanov, Volkov, Komar, Kulchitskii, and Chizhov, Dokl. Akad. Nauk 113 (1957) 65; "Doklady" 2 (1957) 107
- Ba 57b Basile, Annales de Physique 2 (1957) 267
- Ba 58a Barber, Dodge, and Vanhuyse, Bull. Amer. Phys. Soc. 3 (1958) 173; Proc. of the Paris Conf., p. 630 (Dunod, Paris, 1959)
- Ba 58c Bartholomew and Higgs, Chalk River Report A.E.C.L. No. 669 (1958)
- Ba 59 Bame and Cubitt, Phys. Rev. 113 (1959) 256
- Ba 59a Batchelor and Towle, Proc. Phys. Soc. 73 (1959) 307(L)
- Ba 59b Barjon, Annales de Physique 4 (1959) 545
- Ba 60 Batchelor, Ferguson, Gove, and Litherland, Nuclear Physics 16 (1960) 38
- Ba 60b Baart, Green, and Willmott, Proc. Phys. Soc. 75 (1960) 154(L)
- Ba 60c Bass, Bonner, and Haenni, Bull. Amer. Phys. Soc. 5 (1960) 248
- Ba 60d Barnard and Kim, Bull. Amer. Phys. Soc. 5 (1960) 346
- Ba 60f Baart, Green, and Willmott, Proc. of the Kingston Conf., p. 468 (Univ. of Toronto Press, 1960)
- Ba 60g Barber, Berthold, Fricke, and Gudden, Phys. Rev. 120 (1960) 2081
- Ba 61 Barnard, Bashkin, Broude, and Hornback, Nuclear Physics 23 (1961) 327
- Ba 61a Baglin, Thompson, and Spicer, Nuclear Physics 22 (1961) 207 and 216
- Ba 61b Bayhurst and Prestwood, Los Alamos Scientific Laboratory Report LA-2493 (1961)
- Ba 61c Barker, Phys. Rev. 122 (1961) 572
- Ba 61d Bardwick, Tickle, and Parkinson, Bull. Amer. Phys. Soc. 6 (1961) 259
- Ba 61e Barnard, Mani, and Forsyth, Bull. Amer. Phys. Soc. 6 (1961) 259
- Ba 61f Baerg and Bowes, Canadian J. Chem. 39 (1961) 684
- Ba 61g Bass, Häenni, Bonner, and Gabbard, Nuclear Physics 28 (1961) 478
- Be 47 Becker, Hanson, and Diven, Phys. Rev. 71 (1947) 466(A)
- Be 48 Benson, Phys. Rev. 73 (1948) 7
- Be 48b Berggren and Osborne, Phys. Rev. 74 (1948) 1240(A)
- Be 50 Beyster and Wiedenbeck, Phys. Rev. 79 (1950) 728(L)
- Be 50b Bell, Weaver, and Cassidy, Phys. Rev. 77 (1950) 399(L)
- Be 50c Bell and Cassidy, Phys. Rev. 77 (1950) 409(L)
- Be 50d Bell and Cassidy, Phys. Rev. 79 (1950) 173(L)
- Be 51 Beghian, Bishop, and Halban, Phys. Rev. 83 (1951) 186(L)
- Be 55 Bent, Bonner, McCrary, and Ranken, Phys. Rev. 100 (1955) 774
- Be 55a Bellamy and Flack, Phil. Mag. 46 (1955) 341
- Be 55b Bent, Bonner and McCrary, Phys. Rev. 98 (1955) 1325
- Be 55c Berthet and Rossel, Helv. Phys. Acta 28 (1955) 26-
- Be 56 Beyster, Walt, and Salmi, Phys. Rev. 104 (1956) 1319
- Be 56a Berenbaum, Towle, and Matthews, Proc. Phys. Soc. A 69 (1956) 858(L)
- Be 57b Berenbaum and Matthews, Proc. Phys. Soc. A 70 (1957) 445
- Be 58a Bent and Kruse, Phys. Rev. 109 (1958) 1240
- Be 58b Berko, Whitehead, and Groseclose, Nuclear Physics 6 (1958) 210
- Be 58d Bernstein and Lewis, Phys. Rev. 112 (1958) 232
- Be 58e Belanova, Zh. Eksp. Teor. Fiz. 34 (1958) 574; JETP 7 (1958) 397
- B: 58f Benenson and Shurman, Revs. Sci. Instr. 29 (1958) 1
- Be 58g Bennet, Thesis, Princeton University (1958)
- Be 59 Berko, Groseclose, Stetson, and Walker, Bull. Amer. Phys. Soc. 4 (1959) 257
- Be 59a Benczer-Koller, Schwarzschild, and Wu, Phys. Rev. 115 (1959) 108
- Be 61 Benenson and Lidofsky, Phys. Rev. 123 (1961) 939
- Be 61a Belote, Kashy, and Risser, Phys. Rev. 122 (1961) 920
- Be 61b Bennett, Phys. Rev. 122 (1961) 595
- Be 61c Bent and Eidson, Phys. Rev. 122 (1961) 1514

- Be 61d Benczer-Koller, Nessin, and Kruse, Phys. Rev. 123 (1961) 262
- Be 61e Beurtey, Catillon, Chaminade, Crut, Faraggi, Papineau, and Thirion, Comptes Rendus 252 (1961) 260
- Be 61f Beckner, Bramblett, Phillips, and Eastwood, Phys. Rev. 123 (1961) 2100
- Bi 50 Bishop, Nilson, and Halban, Phys. Rev. 77 (1950) 416(L)
- Bi 52 Birge, Phys. Rev. 85 (1952) 753(A)
- Bi 52a Birge, as quoted in Revs. Mod. Phys. 24 (1952) 321
- Bi 58a Bizot, Muller, and Bishop, J. Phys. Rad. 19 (1958) 571(L); Proc. of the Paris Conf., p. 344 (Dunod, Paris, 1959)
- Bi 59 Bird and Divine, M.I.T., Laboratory for Nuclear Science Progress Report, May 1 (1959) 125
- Bi 59a Bishop and Kossanyi-Demay, J. Phys. Rad. 20 (1959) 9:1
- Bi 60 Bishop, Nuclear Physics 14 (1960) 376
- Bi 60a Bilaniuk and French, Nuclear Physics 17 (1960) 435
- Bi 60b Bisi, Fasana, and Zappa, Nuovo Cimento 16 (1960) 350
- Bi 61 Bilpuch, Seth, Bowman, and Newson, Bull. Amer. Phys. Soc. 6 (1961) 69
- Bi 61a Bilpuch, Seth, Bowman, Tabony, Smith, and Newson, Annals of Physics 14 (1961) 387
- Bl 46 Bleuler and Zünti, Helv. Phys. Acta 19 (1946) 137
- Bl 47 Bleuler and Zünti, Helv. Phys. Acta 20 (1947) 195
- Bl 51 Blaser, Boehm, Marmier, and Scherrer, Helv. Phys. Acta 24 (1951) 465
- Bl 52 Bloom, Phys. Rev. 88 (1952) 312
- Bl 53 Black, Phys. Rev. 90 (1953) 381(A)
- Bl 55 Blue and Bleuler, Phys. Rev. 100 (1955) 1324
- Bl 55a Bleuler and Tendam, Phys. Rev. 99 (1955) 1652(A)
- Bl 56a Bleuler, Gailar, Seidlitz, and Tendam, Physica 22 (1956) 1127(A)
- Bl 57 Blin-Stoyle and Caine, Phys. Rev. 105 (1957, 1810
- Bl 57a Blok and Jonker, Nuovo Cimento 6 (1957) 378
- Bl 58 Blair, Bull. Amer. Phys. Soc. 3 (1953) 26
- Bl 58a Block, Phys. Rev. 109 (1958) 1217
- Bl 58b Block, Haeberli, and Newson, Phys. Rev. 109 (1958) 1620
- Bl 59a Blair, Phys. Rev. 115 (1959) 928
- Bl 60b Blair, Farwell, and McDaniels, Nuclear Physics 17 (1960) 641
- Bl 60c Bloom, Mann and Miskel, Phys. Rev. Lett. 5 (1960) 326
- Bl 61 Blachman and Lurio, Bull. Amer. Phys. Soc. 6 (1961) 74
- Bl 61a Blair and Hamburger, Phys. Rev. 122 (1961) 566
- Bl 61b Blair and Quisenberry, Phys. Rev. 122 (1961) 869
- Bl 61c Bloom and Mann, Proc. Rutherford Jubilee Conf. Manchester (1961)
- Bl 61d Bloom, Mann, and Nagle, Bull. Amer. Phys. Soc. 6 (1961) 334
- Bo 50 Boyer, M.I.T. Laboratory for Nuclear Science Progress Report, July 1 (1950) 166
- Bo 51 Boley and Zaffarano, Phys. Rev. 84 (1951) 1059(L)
- Bo 55 Bolsterli and Feenberg, Phys. Rev. 97 (1955) 736
- Bo 57 Bockelman, Braams, Browne, Buechner, Sharp, and Sperduto, Phys. Rev. 107 (1957) 176
- Bo 57a Bostrom, Moore, and Morgan, Bull. Amer. Phys. Soc. 2 (1957) 104
- Bo 57c Bockelman, and Buechner, Phys. Rev. 107 (1957) 1366
- Bo 58 Boehm and Wapstra, Phys. Rev. 109 (1958) 456
- Bo 58a Boley, Thorndike, and Moffet, Phys. Rev. 110 (1958) 915
- Bo 58b Booth, Ball, and MacGregor, Phys. Rev. 112 (1958) 226
- Bo 59 Booth, Hutchinson, Segar, Shute, and White, Nuclear Physics 11 (1959) 341
- Bo 59a Bockelman, Nuclear Physics 13 (1959) 205
- Bo 59b Bouchiat, Phys. Rev. Lett. 3 (1959) 516
- Bo 60 Boehm and Hauser, Nuclear Physics 14 (1960) 615
- Bo 60b Bouchiat, Phys. Rev. 118 (1960) 540
- Bo 60d Bormann, Jeremie, Andersson-Lindström, Neuert, and Pollehn, Z. Naturf. 15a (1960) 200
- Bo 60e Bowsher, Dell, and Hausman, Bull. Amer. Phys. Soc. 5 (1960) 406
- Bo 60f Booth, Nuclear Physics 19 (1960) 426

- Bo 61 Booth and Wright, Bull. Amer. Phys. Soc. 6 (1961) 37
- Bo 61a Bouchiat, Proc. Rutherford Jubilee Conf., Manchester (1961)
- Bo 61b Bobyr, Grona, and Strizhak, Zh. Eksp. Teor. Fiz. 41 (1961) 24
- Bo 61c Boring and McEllistrem, Phys. Rev. 124 (1961) 1531
- Br 47 Broström, Huus, and Koch, Nature 160 (1947) 498(L)
- Br 47a Broström, Huus, and Tangen, Phys. Rev. 71 (1947) 661
- Br 48 Bradner and Gow, Phys. Rev. 74 (1948) 1559(A)
- Br 48a Broström, Huus, and Koch, Nature 162 (1948) 695(L)
- Br 49 Brolley, Sampson, and Mitchell, Phys. Rev. 76 (1949) 624
- Br 50 Brosi, Zeldes, and Ketelle, Phys. Rev. 79 (1950) 902(L)
- Br 50a Brown and Perez-Mendez, Phys. Rev. 78 (1950) 649
- Br 50b Bruner and Langer, Phys. Rev. 79 (1950) 606
- Br 50c Brady and Deutsch, Phys. Rev. 78 (1950) 558
- Br 50d Brown and Perez-Mendez, Phys. Rev. 78 (1950) 812(L)
- Br 51 Broström, Madsen, and Madsen, Phys. Rev. 83 (1951) 1265(L)
- Br 53 Braams and Smith, Phys. Rev. 90 (1953) 995(L)
- Br 53a Brown, Yaffe, and Hanna, Proc. Royal Soc. A 220 (1953) 203
- Br 53b Brabant, Cochran, and Caswell, Phys. Rev. 91 (1953) 210(A)
- Br 54a Breckon, Henrikson, Martin, and Foster, Canadian J. Phys. 32 (1954) 223
- Br 54b Browne, Zimmerman, and Buechner, Phys. Rev. 96 (1954) 725
- Br 54c Bretscher, Alderman, Elwyn, and Shull, Phys. Rev. 96 (1954) 103
- Br 55b Breen and Hertz, Phys. Rev. 98 (1955) 599
- Br 56b Braams, Phys. Rev. 101 (1956) 1764
- Br 56c Brugger, Evans, Joki, and Shankland, Phys. Rev. 104 (1956) 1054
- Br 56e Braid, Phys. Rev. 102 (1956) 1109
- Br 56f Braams, Thesis, Univ. of Utrecht (1956)
- Br 56g Braams, Phys. Rev. 103 (1956) 1310
- Br 56h Broude, Green, Singh, and Willmott (Liverpool Univ.), private communication (1956)
- Er 56i Broude, Green, Willmott, and Singh, Physica 22 (1956) 1139(A)
- Br 57 Bromley, Gove, Litherland, Paul, and Almqvist, Canadian J. Phys. 35 (1957) 1042
- Br 57b Braams, Phys. Rev. 105 (1957) 1023
- Br 57c Bromley, Gove, and Litherland, Canadian J. Phys. 35 (1957) 1057
- Br 57e Brown, Morrison, Muirhead, and Morton, Phil. Mag. 2 (1957) 785
- Br 58a Brix, Hegel, Lindenberger, and Quitmann, Z. Physik 150 (1958) 461
- Br 58c Broude, Green, and Willmott, Proc. Phys. Soc. 72 (1958) 1097, 1115, and 1122
- Br 58d Brazos, Purdue Progress Report AECU-3696, June 15 (1958)
- Br 58e Brajovic, Miric, and Popic, Bull. Inst. nat. Sciences "Boris Kidrich" 8 (1958) 145
- Br 59 Broude, Green, and Willmott, Proc. of the Paris Conf., p. 724 (Dunod, Paris, 1959)
- Br 59a Browne, Phys. Rev. 114 (1959) 807
- Br 59b M. Brenner, Soc. Sci. Fennica Comm. Phys. Math. 23 (1959) No. 5
- Br 59c Bromley, Kuehner, and Almqvist, Phys. Rev. 115 (1959) 586
- Br 59d Browne, Nuclear Physics 12 (1959) 662
- Br 59e Crix, Körding, and Lindenberger, Z. Physik 154 (1959) 569
- Br 59f Bromley, Ferguson, Gove, Kuehner, Litherland, Almqvist, and Batchelor, Canadian J. Phys. 37 (1959) 1514
- Br 60b Broude and Gove, Bull. Amer. Phys. Soc. 5 (1960) 248
- Br 60d Browne and Radzyminski, Nuclear Physics 19 (1960) 164
- Br 60e Broude and Gove, Proc. of the Kingston Conf., p. 471 (Univ. of Toronto Press, 1960)
- Br 60f Brugger, Niewodniczanski, and Steiger, Helv. Phys. Acta 33 (1960) 576
- Br 60g Bromley, Kueiner, and Almqvist, Phys. Rev. Lett. 4 (1960) 365
- Br 60h Bromley, Kuehner, and Almqvist, Proc. of the Kingston Conf., p. 255 (Univ. of Toronto Press, 1960)
- Br 60j Brabec and Vinduška, Czechoslov. J. Phys. 10 (1960) 614
- Br 61 Braid, Yntema, and Zeidman, Bull. Amer. Phys. Soc. 6 (1961) 37
- Br 61a Brenner, Hoogenboom, and Kashy, Phys. Rev., to be published
- Br 61b Broude and Gove, Proc. Phys. Soc. 77 (1961) 1211(L)

- Br 61c Braben, Green, and Willmott, Proc. Rutherford Jubilee Conf., Manchester (1961), and private communication
- Br 61d Broude and Gove, to be published
- Br 6le Brenner Helsinki Univ.), private communication
- Br 61f Brown, Evans, and Thouless, Nuclear Physics 24 (1961) 1
- Bu 51 Burkig and Wright, Phys. Rev. 82 (1951) 451
- Bu 53 Burch, Nature 172 (1953) 361(L)
- Bu 33a Buechner, Sperduto, Browne, and Bockelman, Phys. Rev. 91 (1953) 1502
- Bu 55 Budde and Huber, Helv. Phys. Acta 28 (1955) 49
- Bu 55a Buechner, Proc. of the Glasgow Conf., p. 52 (Pergamon Press, London, 1955)
- Bu 56 Buechner, Mazari, and Sperduto, Phys. Rev. 101 (1956) 188
- Bu 56a Burge, Fujimoto, and Hossain, Phil. Mag. 1 (1956) 19
- Bu 56c Burton and Williamson, Bull. Amer. Phys. Soc. 1 (1956) 264
- Bu 56d Burrows, Green, Hinds, and Middleton, Proc. Phys. Soc. A 69 (1956) 310
- Bu 56e Burtov and Danilyan, Izvest. Akad. Nauk, Ser. Fiz. 20 (1956) 941
- Bu 57 Buechner and Sperduto, Phys. Rev. 106 (1957) 1008
- Bu 57a Butler, Phys. Rev. 106 (1957) 272
- Bu 57c Burcham, Encyclopedia of Physics, Springer Verlag, Berlin, 40 (1957) 1
- Bu 58b Buechner and Mazari, Revista Mexicana de Fisica 7 (1958) 117
- Bu 59a Burgov and Terekhov, Nuclear Physics 10 (1959) 541
- Bu 59b Burmistrov, Izvest. Akad. Nauk, Ser. Fiz. 23 (1959) 898
- Bu 59c Burmistrov, Atomnaya Energiya 7 (1959) 260; J. Nuclear Energy 12A (1960) 133
- Bu 60 Bussière de Nercy and Langevin, J. Phys. Rad. 21 (1960) 293(A)
- Bu 60b Bussière de Nercy, Comptes Rendus 250 (1960) 1252
- Bu 60c Bucka, Kopfermann, and Ney, Z. Physik 159 (1960) 49
- Bu 61 Buck and Satchler, Bull. Amer. Phys. Soc. 6 (1961) 38
- Bu 61a Butler, Phys. Rev. 123 (1961) 873
- Bu 61b Butler and Santry, Bull. Amer. Phys. Soc. 6 (1961) 250
- Bu 61c Bussière de Nercy, J. Phys. Rad. 22 (1961) 119
- Ca 38 Caccapuoti, Nuovo Cimento 15 (1938) 213
- Ca 53 Casson, Phys. Rev. 89 (1953) 809
- Ca. 54 Cappeller and Klingelhöfer, Z. Naturf. 9a (1954) 1052 (L)
- Ca 54a Carlson, Geer, and Nelson, Phys. Rev. 94 (1954) 1311
- Ca 55 Calvert, Jaffe, Litherland, and Maslin, Proc. Phys. Soc. A 68 (1955) 1008
- Ca 56a Calvert, Jaffe, and Maslin, Phys. Rev. 101 (1956) 501(L)
- Ca 57 Calvert, Jaffe, and Maslin, Proc. Phys. Soc. A 70 (1957) 78
- Ca 57a Carlson and Henton, Bull. Amer. Phys. Soc. 2 (1957) 358
- Ca 57b Campion and Bartholomew, Canadian J. Phys. 35 (1957) 1361
- Ca 58 Caine, Proc. Phys. Soc. 71 (1958) 939
- Ca 58a Campion and Merritt, Canadian J. Phys. 36 (1958) 983(L)
- Ca 59 Campbell and Fettweis, Nuclear Physics 13 (1959) 92
- Ca 59a Cali and Lowe, Nucleonics 17 (1959) No. 10, 86
- Ca 60 Carroll and Stephens, Phys. Rev. 118 (1960, 1256
- Ce 60 Cevolani, Petralia, Righini, Valdrè, and Venturini, Nuovo Cimento 16 (1960) 950
- Ch 37 Chang and Szalay, Proc. Royal Soc. A 159 (1937) 72
- Ch 50 Charpak and Suzor, J. Phys. Rad. 11 (1950) 633
- Ch 54 Charpak and Suzor, J. Phys. Rad. 15 (1954) 378(L)
- Ch 55 Charpak, J. Phys. Rad. 16 (1955) 62
- Ch 55a Charpak, J. Phys. Rad. 16 (1955) 567
- Ch 56 Chick, Evans, Hancock, Hunt, and Pope, Proc. Phys. Soc. A 69 (1956) 624
- Ch 58 Chidley, Katz, and Kowalski, Canadian J. Phys. 36 (1958) 407
- Ch 58a Chase, Thesis, Stanford Univ. (1958)
- Ch 59 Charpak and Suzor, J. Phys. Rad. 20 (1959) 31
- Ch 59a Chevallier, Annales de Physique 4 (1959) 1389
- Ch 60 Chrien, Jain, and Hughes, Bull. Amer. Phys. Soc. 5 (1960) 19

- Ch 50a Chrien and Benade, Phys. Rev. 119 (1960) 748
- Ci 38 Cichocki and Soltan, Comptes Rendus 207 (1938) 423(A)
- Ci 60 Cindro and Wall, Phys. Rev. 119 (1960) 1340
- Ci 60a Cindro, Cerineo, and Strzałkowski, Nuclear Physics 21 (1960) 38
- Ci 61 Cindro, Cerineo, and Strzałkowski. Nuclear Physics 24 (1961) 107
- Cl 46 Clarke and Irvine, Phys. Rev. 69 (1946) 680(A)
- Cl 46a Clarke and Irvine, Phys. Rev. 76 (1946) 893
- Cl 51 Cleland, Townsend, and Hughes, Phys. Rev. 84 (1951) 298
- Cl 57 Cline and Chagnon, Phys. Rev. 108 (1957) 1495
- Cl 57a Cloutier and Henrikson, Canadian J. Phys. 35 (1957) 1190
- Cl 58 Cline and Chagnon, Bull. Amer. Phys. Soc. 3 (1958) 206
- Cl 60 Clarke, Almqvist, and Paul, Nuclear Physics 14 (1960) 472
- Cl 60a Clarke and Cross, Bull. Amer. Phys. Soc. 5 (1960) 245
- Cl 60b Class, Farmer, and Cramer, as quoted in Wegner and Hall, Phys. Rev. 119 1960 1654
- Co. 40 Cork and Middleton, Phys. Rev. 58 (1940) 474(L)
- Co. 48 Cork, Langer, and Price, Phys. Rev. 74 (1948) 548
- Co. 50a Cobble and Atteberry, Phys. Rev. 80 (1950) 917(L)
- Co. 51a Colgate, Phys. Rev. 81 (1951) 1063(L)
- Co. 53 Cork, LeBlanc, Brice, and Nester, Phys. Rev. 92 (1953) 367
- Co. 54 Cohen, Phys. Rev. 94 (1954) 117
- Co 54a Cohen, Reynolds, and Zucker, Phys. Rev. 96 (1954) 1617
- Co. 545 Cox, Van Loef, and Lind, Phys. Rev. 93 (1954) 925(A)
- Co 35a Cohn, Bair, Klagton, and Willard, Phys. Rev. 99 (1955) 644 (A), and verbal report to Nuclear Pata Group.
- Co. 55b Cohen, Phys. Rev. 98 (1955) 49
- Co 55c Coleman, Phil. Mag. 46 (1955) 1135(L)
- Co. 56 Chen and White, Nuclear Physics 1 (1956) 73
- C 57 Cibb and Gathe, Phys. Rev. 107 (1957) 181
- Co. 57a Conzert, Phys. Rev. 105 (1957) 1324
- Co. 175 Cox and Williamson, Phys. Rev. 105 (1957) 1799
- du 57d Connor and Fairweather, Proc. Phys. Soc. A 70 (1957) 769(L) and 909
- Cu 57d Colli and Faechini, Nuovo Cimento 5 (1957) 309
- Co 58 Conner Phys. Rev 109 (1958) 1268
- Co. 580 Coon, Davis, Felthauser, and Nicodemus, Phys. Rev. 111 (1958) 250
- 25 58d Colh. Facchim. Iori, Marcazzan, Sona, and Pignanelli, Nuovo Cimento 7 1958 404
- 🗇 58e Colli, Ergnanelli, Kytz, and Zurmühle, Nuovo Cimento 9 (1958) 280 –
- 20 58 Conen and Rubin, Phys. Rev. 114 (1959) 1143
- Co 59a C relli, Bleuler and Fendam, Phys. Rev 116 (1959) 1184
- C. 190 C.ih. Cveibar Micheletti, and Fignanelli, Nuovo Cimento 14 (1959) 1120 and 13 1958; 868
- Colores Colli, Cvelbar Micheletti, and Fignanelli, Nuovo Cimento 14 (1959) 81
- Co. 396 Comm. Milone, Papa, and Rinzivillo, Nuovo Cimento 14 (1959) 54
- C. The Comper and Corton, Science 129 1959) 1360
- 1. 40 Cabb. Funsten, Williamson, and Hereford, Buil. Amer. Phys. Soc. 5 1960) 288
- Co dua Coili, Marcazzan, Merzari, Sona, and Tonolini, Nuovo Cimento 16 (1960) 991
- Comb Colli, Jori, Marcazzan, Merzary, Sona, and Sona, Nuovo Cimento 17 (1960) 634
- de dla Chili, Isrr, Micheletti, and Fignanelli, Nuovo Cimento 20 (1961) 94
- C. 615 Cohen and Cookson, Nuclear Physics 24 (1961) 529
- C. Sle Colli, Marvazzan, Merzari, Sona, and Tomaš, Nuovo Cimento 20 (1961) 928
- 1) Ald Cohen and Cookson, Nuclear Physics 29 (1962) 604
- 17 40 Creatz, Fox, and Sarton, Phys. Rev. 57 1940) 567(A)
- 17 55 Cross and Jarvis, Phys. Rev. 99 1955; 621(A)
- Cr 56 Craig, Phys. Rev. 101 1956) 1479
- Gr. 36a Granberg and Levin, Phys. Rev. 103 (1956) 343
- Cr. 17 Crutchifield, Haeberli, and Newson, Bull. Amer. Phys. Soc. 2 (1967) 33
- 17 75 Cranberg, Seagrave, and Simmons, Bull. Amer. Phys. Soc. 3 (1958) 336

- Cr 59 Cross and Clarke, Bull. Amer. Phys. Soc. 4 (1959) 258
- Cr 60 Cross and Jarvis, Nuclear Physics 15 (1960) 155
- Cr 60a Crut, Sweetman, and Wall, Nuclear Physics 17 (1960) 655
- Cs 61 Csongor, Nuclear Physics 23 (1961) 107
- Cu 39 Curran and Strothers, Proc. Royal Soc. A 172 (1939) 72
- Cu 40 Curran, Dee, and Strothers, Proc. Royal Soc. A 174 (1940) 546
- Cu 56 Culler, Fernbach, and Sherman, Phys. Rev. 101 (1956) 1047
- Cu 59 Čujec-Dobovišek, Proc. of the Paris Conf., p. 634 (Dunod, Paris, 1959)
- Cu 60 Cuzzocrea, Pappalardo, and Ricamo, Nuovo Cimento 16 (1960) 450
- Cu 60a Cuperman, Phys. Rev. 117 (1960) 185
- Cu 60b Cuzzocrea, Notarrigo, Ricamo, and Vinci, Nuovo Cimento 18 (1960) 671
- Cu 61 Cuzzocrea, Notarrigo, and Vinciguerra, Nuovo Cimento 19 suppl. (1961) 310(A)
- Cu 61a Cuzzocrea and Pappalardo, Nuovo Cimento 19 suppl. (1961) 311(A)
- Da 49 Davison, Buchanan, and Pollard, Phys. Rev. 76 (1949) 890
- Da 49a Davison, Phys. Rev. 75 (1949) 757
- Da 53 Daniel, Koester, and Mayer-Kuckuk, Z. Naturf. 8a (1953) 447(L)
- Da 54 Dayton, Phys. Rev. 95 (1954) 754
- Da 54a Daniel and Bothe, Z. Naturf. 9a (1954) 402
- Da 56a Dayton and Schrank, Phys. Rev. 101 (1956) 1358
- Da 56c Day, Phys. Rev. 102 (1956) 767
- Da 56d Dawson, Canadian I. Phys. 34 (1956) 1480
- Dalton, Hinds, and Parry, Proc. Phys. Soc. A 70 (1957) 586 Da 57
- Davis, Prosser, Spencer, Young, and Johnson, Bull. Amer. Phys. Soc. 2 (1957) 304 Da 57a
- Da 58 Daniel, Nuclear Physics 8 (1958) 191
- Davis and Harmer, Bull. Amer. Phys. Soc. 4 (1959) 217 Da 59
- Da 59a Davis, Bull. Amer. Phys. Soc. 4 (1959) 387
- Dalton, Parry, and Scott, Proc. Phys. Soc. 73 (1959) 677 (L) Da 59b
- Davis, Bass, Bonner, and Worley, Bull. Amer. Phys. Soc. 5 (1960) 110 Da 60
- Daniel and Eakins, Phys. Rev. 117 (1960) 1565 Da 60a
- Dahl, Costello, and Walters, Nuclear Physics 21 (1960) 106 Da 60b
- Daum, Bull. Amer. Phys. Soc. 6 (1961) 259 and private communication Da 61a
- Davis, Bonner, Worley, and Bass, to be published Da 61b
- De Vries, Clay, and Veringa, Physica 18 (1952) 1264 De 52
- Delaney and Poole, Phys. Rev. 89 (1953) 529 (L) De 53
- De-Shalit, Phys. Rev. 91 (1953) 1479 De 53a
- De-Shalit and Goldhaber, Phys. Rev. 92 (1953) 1211 De 53b
- De Souza Santos et al., Geneva Conference Report 8/P/897 (1955) De 55
- Dearnaley, Phil. Mag. 1 (1956) 821 De 56
- De Veiga Simão and Sellschop, Phys. Rev. 106 (1957) 98 De 57
- Deutsch, Gittelman, Bauer, Grodzins, and Sunyar, Phys. Rev. 107 (1957) 1733(L) De 57a
- De Waard and Poppema, Physica 23 (1957) 597(L) De 57b
- Delyagin and Shpinel, Dokl. Akad. Nauk 121 (1958) 621; "Doklady" 3 (1958) 789 De 58
- De Veiga Simão, Proc. Second Internat. Conf. Peaceful Uses of Atomic Energy, Geneva De 58a (1958), Paper No. 1813
- Delyagin and Shpinel, Izvest. Akad. Nauk, Ser. Fiz. 22 (1958) 861 De 58b
- Deconninck and Martegani, Bull. classe sci. Acad. roy. Belg. 44 (1958) 851
- De 58c De S. Barros, Forsyth, Jaffe, and Taylor, Proc. Phys. Soc. 73 (1959) 513(L)
- De 59 De S. Barros, Forsyth, Jaffe, and Taylor, Proc. Phys. Soc. 73 (1959) 793
- De 59a Deuchars and Dandy, Proc. Phys. Soc. 75 (1960) 855
- De 60 Depraz, Legros, and Salin, J. Phys. Rad. 21 (1960) 377(A)
- De 60a Dell'Antonio and Fiorini, Nuovo Cimento 17 suppl. (1960) 132
- De 60c Dell, Jastram, and Hausman, Bull. Amer. Phys. Soc. 6 (1961) 93
- De 61 De-Shalit, Nuclear Physics 22 (1961) 677 De 61a
- De S. Barros, Forsyth, Jaffe, and Taylor, Proc. Phys. Soc. 77 (1961) 853 De 61b
- Deuchars and Dandy, Proc. Phys. Soc. 77 (1961) 1197 De 61c

- Dearnaley and Ferguson, Proc. Rutherford Jubilee Conf., Manchester (1961) De 61d
- Diven and Almy, Phys. Rev. 80 (1950) 407 Di 50
- Dixon, McNair, and Curran, J. Fhys. Rad. 16 (1955) 538 Di 55
- Dickerman, Phys. Rev. 109 (1958) 443 Di 58
- Dixon and Aitken, Nuclear Physics 24 (1961) 456 Di 61
- Donahue, Jones, McEllistrem, and Richards, Phys. Rev. 89 (1953) 824 Do 53
- Doyle and Robbins, Phys. Rev. 101 (1956) 1056 Do 56
- Dolan, Fincher, Kenny, Berko, and Whitehead, Bull. Amer. Phys. Soc. 1 (1956) 339 Do 56a
- Dobrokhotov, Lazarenko, and Luk'yanov, Zh. Eksp. Teor. Fiz. 36 (1959) 76; JETP 9 Do 59 (1959) 54
- Doehring, Jahr, and Schmidt-Rohr, Z. Physik 159 (1960) 149 Do 60
- Dosch, Lindenberger, and Brix, Nuclear Physics 18 (1960) 615 Do 60a
- Drever and Moljk, Phil. Mag. 46 (1955) 1337 Dr 55
- Dropesky and Schardt, Phys. Rev. 102 (1956) 426 Dr 56
- Draper and Bostrom, Bull. Amer. Phys. Soc. 5 (1960) 17, and verbal report to Nuclear Dr 60 Data Group
- Draper and Fleischer, Phys. Rev. 122 (1961) 1585 Dr 61
- Dulgeroff, Lambe, and Pond, Bull. Amer. Phys. Soc. 2 (1957) 348 Du 57
- Durand, Landovitz, and Marr, Phys. Rev. Lett. 4 (1960) 620 Du 60
- Du Toit and Bollinger, Phys. Rev. 123 (1961) 629 Du 61
- Du 61a Duquesne, Annales de Physique 6 (1961) 643
- Dz 46 Dzelepov, Kopjova, and Vorobjov, Phys. Rev. 69 (1946) 538(L)
- Ec 61 Eckert and Shrader, Phys. Rev. 124 (1961) 1541
- Ed 52 Edwards and MacMillan, Phys. Rev. 87 (1952) 377(L)
- Ed 60 Edakova, Neuchadin, and Romanovskii, Zh. Eksp. Teor. Fiz. 38 (1960) 248(L); JETP 11 (1960) 180(L).
- Ei 56 Eisberg and Hintz, Phys. Rev. 103 (1956) 645
- Ek 43 Eklund and Hole, Arkiv Mat. Astron. Fys. 29A (1943) No. 26
- Ek 58 Eklund and Bent, Phys. Rev. 112 (1958) 966
- Ek 60 Eklund, Columbia Univ. Report CU(PNPL)-196 (1960)
- El 41 Elliot and King, Phys. Rev. 60 (1941) 489
- El 52 Elliot, Phys. Rev. 85 (1952) 942(L)
- El 54 Elbek, Nielsen, and Nielsen, Phys. Rev. 95 (1954) 96
- El 55 Elbek, Madsen, and Nathan, Phil. Mag. 46 (1955) 663
- El Bedewi and El Wahab, Proc. Phys. Soc. A 68 (1955) 754 El 55a
- El 56 Elliot, Phys. Rev. 101 (1956) 684
- El 56a El Wahab, Thesis, Univ. of Alexandria (1956)
- El 57 El Bedewi and El Wahab, Nuclear Physics 3 (1957) 385
- El 58 Elwyn, Landon, Oleksa, and Glasoe, Phys. Rev. 112 (1958) 1200
- El 59 Elliot and Young, Nuclear Sci. and Eng. 5 (1959) 55
- E1 60 El Nadi and Wafik, Proc. Phys. Soc. 76 (1960) 185
- El 60b Elwyn and Lane Bull. Amer. Phys. Soc. 5 (1960) 410
- El 60c El Bedewi and El Wahab, Nucle r Physics 21 (1960) 49
- Emmerich, Singer, and Kurbatov, Phys. Rev. 94 (1954) 113 Em 54
- Em 55 Emery and Veall, Proc. Phys. Soc. A 68 (1955) 346(L)
- Emma, Milone, Rinzivillo, and Rubbino, Nuovo Cimento 14 (1959) 62 Em 59
- Emma, Milone, and Rinzivillo, Nuovo Cimento 14 (1959) 1149 Em 59a
- Endt, Van Patter, Buechner, and Sperduto, Phys. Rev. 83 (1951) 491 En 51a
- En 51b Ennis, Phys. Rev. 82 (1951) 304(A)
- Endt, Haffner, and Van Patter, Phys. Rev. 86 (1952) 518 En 52 En 52a
- Enge, Buechner, and Sperduto, Phys. Rev. 88 (1952) 963 En 52b
- Endt, Enge, Haffner, and Buechner, Phys. Rev. 87 (1952) 27 En 53
- Engelder, Phys. Rev. 90 (1953) 259 En 54
- Enge, Phys. Rev. 94 (1954) 730(L)
- En 54a Endt and Kluyver, Revs. Mod. Phys. 26 (1954) 95

- En 54b Enge, Universitetet i Bergen Årbok Naturvitenkapelig Rekke (1954) No. 1
- En 54c Endt, Kluyver, and Van der Leun, Physica 20 (1954) 1299
- En 56 Enge, Angleman, and Jarrell, M.I.T., Laboratory for Nuclear Science Progress Report, May 31 (1955) 118
- En 56a Enge, Buechner, Sperduto, and Mazari, Bull. Amer. Phys. Soc. 1 (1956) 212 En 56c Endt Paris Sporduto and Buscher Bland Paris Sporduto and Bland Paris Sporduto and Buscher Bland Paris Sporduto and Bland
- En 56c Endt, Paris, Sperduto, and Buechner, Phys. Rev. 103 (1956) 961 En 57 Endt and Braams Roya Med. Dhan 20 (1957) 202
- En 57 Endt and Braams, Revs. Mod. Phys. 29 (1957) 683 En 57a Endt and Paris Phys. Rev. 106 (1957) 764
- En 57a Endt and Paris, Phys. Rev. 106 (1957) 764 En 57d Enge MIT Laboratory for Nuclear Sci
- En 57d Enge, M.I.T., Laboratory for Nuclear Science Progress Report, Nov. 30 (1956) 47 En 58 Endt and Paris Phys. Rev. 110 (1959) 69
- En 58 Endt and Paris, Phys. Rev. 110 (1958) 89 En 58a Enge, Moore and Kelly, Bull Amer Phys
- En 58a Enge, Moore, and Kelly, Bull. Amer. Phys. Soc. 3 (1958) 210 En 59 Enge Irwin and Weaper Phys. Rev. 115 (1950) 040
- En 59 Enge, Irwin, and Weaner, Phys. Rev. 115 (1959) 949 En 60 Endt and Heyligers Physica 26 (1960) 320
- En 60 Endt and Heyligers, Physica 26 (1960) 230 Er 57 Erdös, Scherrer, and Stoll Hely Phys. Act
- Er 57 Erdös, Scherrer, and Stoll, Helv. Phys. Acta **30** (1957) 639 Es 56 Estulin, Popoy and Chukreev, 7h Eksp. Toor, Vig. **30** (105
- Es 56 Estulin, Popov, and Chukreev, Zh. Eksp. Teor. Fiz. **30** (1956) 1052; JETP **3** (1957) 866 Eu 58 Eubank Peck and Hassler Nuclear Physics **9** (1958) 372
- Eu 58 Eubank, Peck, and Hassler, Nuclear Physics 9 (1958) 273 Ev 60 Everling, König Mattauch and Wapetra Nuclear Physics
- Ev 60 Everling, König, Mattauch, and Wapstra, Nuclear Physics 18 (1960) 529 Ev 61 Everling, König Mattauch and Wapstra, Nuclear Physics 25 (1961) 175
- Ev 61 Everling, König, Mattauch, and Wapstra, Nuclear Physics 25 (1961) 177, and private communication
- Ev 61a Everling, König, Mattauch, and Wapstra, "1960 Nuclear Data Tables, Part 1", Report of the Nuclear Data Project, U.S. Government Printing Office, Washington 25 D.C. (1961)
- Fa 35 Fahlenbrach, Z. Physik 96 (1935) 503
- Fa 50 Faust, Phys. Rev. 78 (1950) 624(L)
- Fa 57 Farwell and Robison, Cyclotron Res., Univ. of Washington, Annual Progress Report (1957)
- Fa 59 Farinelli, Ferrero, Ferroni, Malvano, and Silva, Nuovo Cimento 12 (1959) 89
- Fa 60 Fast, Flournoy, Tickle, and Whitehead, Phys. Rev. 118 (1960) 535
- Fe 52 Feldman and Wu, Phys. Rev. 87 (1952) 1091
- Fe 53 Ferguson and Gove, Phys. Rev. 91 (1953) 439(A)
- Fe 54 Ferguson, Halpern, Nathans, and Yergin, Phys. Rev. 95 (1954) 776
- Fe 54a Feuvrais and Yuasa, Comptes Rendus 239 (1954) 1627
- Fe 55 Feenberg, Phys. Rev. 99 (1955) 71
- Fe 58 Ferrero, Malvano, Menardi, and Terracini, Nuclear Physics 9 (1958) 32
- Fe 58a Ferguson, Phys. Rev. 112 (1953) 1238
- Fe 59 Ferguson and Paul, Nuclear Physics 12 (1959) 426
- Fe 59a Ferrero, Ferroni, Malvano, Menardi, and Silva, Nuovo Cimento 11 (1959) 410
- Fe 60 Ferrero, Ferroni, Malvano, Menardi, and Silva, Nuclear Physics 15 (1960) 436
- Fe 60a Ferguson, Grace, and Newton, Nuclear Physics 17 (1960) 1
- Fi 51 Fields and Walt, Phys. Rev. 83 (1951) 479(L)
- Fi 54 Fischer, Phys. Rev. 96 (1954) 704
- Fi 57 Fisher and Shute, Phil. Mag. 2 (1957) 1255
- Fi 58 Fischer, Fischer, Remler, and Tatcher, Phys. Rev. 110 (1958) 286(L)
- Fi 58a Fisher, Hadley, and Speers, Phil. Mag. 3 (1958) 163
- Fl 49 Floyd and Borst, Phys. Rev. 75 (1949) 1106(L)
- Fl 54 Flack, Rutherglen, and Grant, Proc. Phys. Soc. A 67 (1954) 973
- Fo 52 Folkierski, Proc. Phys. Soc. A 65 (1952) 1006
- Fo 54 Fowler, Proc. Phys. Soc. A 67 (1954) 1005(L)
- Fo 60 Forsyth, De S. Barros, Jaffe, Taylor, and Ramavataram, Proc. Phys. Soc. 75 (1960) 291
- Fo 60a Foster, Weaver, and Voigt, Iowa State Univ. Report IS-184 (1960)
- Fo 60b Fogelström-Fineman and Westermark, Acta Chem. Scand. 14 (1960) 2046
- Fo 61 Forkman, Nuclear Physics 23 (1961) 269
- Fr 50b Freeman, Proc. Phys. Soc. A 63 (1950) 668(L)
- Fr 51 Freeman and Seed, Proc. Phys. Soc. A 64 (1951) 313(L)
- Fr 54 Freemantle, Prowse, Hossain, and Rotblat, Phys. Rev. 96 (1954) 1270

- French and Raz, Phys. Rev. 98 (1955) 1523(L) Fr 55
- Frauenfelder, Hanson, Levine, Rossi, and DePasquali, Phys. Rev. 107 (1957) 643(L) Fr 57
- Freier, Famularo, Zipoy, and Leigh, Phys. Rev. 110 (1958) 446 Fr 58
- Freeman and Montague, Nuclear Physics 9 (1958) 181 Fr 58a
- Fricke, Koplermann, Penselin, and Schlüpmann, Z. Physik 156 (1959) 416 Fr 59
- Freindl, Niewodniczanski, Nurzynski, Slapa and Strzałkowski, Proc. Rutherford Jubilee Fr 61 Conf., Manchester (1961)
- Fünfer, Annalen der Physik 32 (1938) 313 Fu 38
- Fulbright and Milton, Phys. Rev. 82 (1951) 274(L) Fu 51
- Fujimote, Kikuchi, and Yoshida, Prog. in Theor. Phys. 11 (1954) 264 Fu 54
- Fulmer and Cohen, Phys. Rev. 112 (1958) 1672 Fu 58
- Fulmer and Goodman, Phys. Rev. 117 (1960) 1339 Fu 60
- Galonsky, Haeberli, Goldberg, and Douglas, Phys. Rev. 91 (1953) 439(A) Ga 53
- Garrett, Hereford, and Sloope, Phys. Rev. 92 (1953) 1507 Ga 53a
- Gapanov and Popov, Nuclear Physics 4 (1957) 453 Ga 57
- Gailar, Bleuler, and Tendam, Phys. Rev. 112 (1958) 1989 Ga 58
- Gaehler, Knipp, and Milne, Bull. Amer. Phys. Soc. 4 (1959) 366 Ga 59
- Gabbard, Huffaker, and Kern, Bull. Amer. Phys. Soc. 5 (1960) 442 Ga 60b
- Gabbard and Loomis, Bull. Amer. Phys. Soc. 6 (1961) 375 Ga 61
- Galster, Z. Physik 161 (1961) 46 Ga 61a
- Gardner and Gugelot, Proc. Rutherford Jubilee Conf., Manchester (1961) Ga 61b
- Gerber, Garcia Muñoz, and Maeder, Helv. Phys. Acta 28 (1955) 478(A); Phys. Rev. Ge 55 101 (1956) 774
- Gerstein, Niederer, and Strauch, Bull. Amer. Phys. Soc. 1 (1956) 192 Ge 56a
- Ge 58a Gerhart, Phys. Rev. 109 (1958) 897
- Geiger, Ewan, Graham, and MacKenzie, Phys. Rev. 112 (1958) 1684 Ge 58b
- Ge 59 Gemmel, Morton, and Smith, Nuclear Physics 10 (1959) 45
- Ge 60 Geshkenbein, Zh. Eksp. Teor. Fiz. 38 (1960) 1341; JETP 11 (1960) 965
- Ge 602 Geller, Halpern, and Muirhead, Phys. Rev. 118 (1960) 1302
- Gi 44 Gibert, Roggen, and Rossel, Helv. Phys. Acta 17 (1944) 97
- Gi 57 Gibson, Prowse, and Rotblat, Proc. Royal Soc. A 243 (1957) 237
- Gi 59 Gibbons and Macklin, Phys. Rev. 114 (1959) 571
- GI 47 Gleditsch and Graf, Phys. Rev. 72 (1947) 640(L)
- Gl 55 Glass and Richardson, Phys. Rev. 98 (1955) 1251
- GI 56 Glauber and Martin, Phys. Rev. 104 (1956) 158
- G! 57 Glassgold and Kellogg, Phys. Rev. 107 (1957) 1372
- GI 61 Glover and Weigold, Nuc ear Physics 24 (1961) 630
- Gl 61a Glaudemans and Endt, Nuclear Physics 30 (1962) 30
- Gl 61b Glaudemans (Utrecht Univ.), private communication (1961)
- Gl 61c Glagolev and Yampolsky, Zh. Eksp. Teor. Fiz. 40 (1961) 743; JETP 13 (1961) 520
- G! 61e Glendenning, Nilsson, and Sawicki, Proc. Rutherford Jubilee Conf., Manchester (1961)
- Go 51a Good, Phys. Rev. 81 (1951) 891(L)
- Go 51b Good, Phys. Rev. 81 (1951) 1058(L)
- Go 51c Good, Phys. Rev. 83 (1951) 1054(L)
- Go 53 Goldberg, Phys. Rev. 89 (1953) 760
- Go 54 Gove, Paul, Bartholomew, and Litherland, Phys. Rev. 94 (1954) 749(A)
- Goldemberg and Katz, Canadian J. Phys. 32 (1954) 49 Go 54a
- Goodrich and Payne Phys. Rev. 94 (1954) 405 Go 54b
- Go 54c Goldberg, Haeberli, Galonsky, and Douglas, Phys. Rev. 93 (1954) 799
- Go 55 Gorodetzky, Muller, and Port, Comptes Rendus 240 (1955) 1704 and 2224
- Gove, Bartholomew, Paul, and Litherland, Nuclear Physics 2 (1956) 132 and 3 (1957) Go 56 344 Go 56a
- Goldstein and Talmi, Phys. Rev. 102 (1956) 589(L)
- Go 56b Goldhammer, Phys. Rev. 101 (1956) 1375
- Go 56c Gol'danskii, Zh. Eksp. Teor. Fiz. 30 (1956) 969(L); JETP 3 (1956) 791(L)

- Go 57 Gove, Litherland, and Paul, Bull. Amer. Phys. Soc. 2 (1957) 178 Go 57b Gove (Chalk River), private communication (1957).
- Go 57b Gove (Chalk River), private communication (1957) Go 57c Goldstein and Talmi Phys. Rev. 105 (1957) 997
- Go 57c Goldstein and Talmi, Phys. Rev. 105 (1957) 995 Go 57d Gove and Litherland Phys. Rev. 107 (1957) 145
- Go 57d Gove and Litherland, Phys. Rev. 107 (1957) 1458(L) Go 58 Gorodetzky, Muller Port and Paradalt J. Phys. Rev.
- Go 58 Gorodetzky, Muller, Port, and Bergdolt, J. Phys. Rad. 19 (1958) 49 Go 58a Good, Neiler, and Gibbons, Phys. Roy. 100 (1958) 622
- Go 58a Good, Neiler, and Gibbons, Phys. Rev. 109 (1958) 926 Go 58d Goldemberg and Marquez, Nuclear District 7 (1959) 809
- Go 58d Goldemberg and Marquez, Nuclear Physics 7 (1958) 202 Go 58e Gove, Litherland Almovict, and Browleys Diverties
- Go 58e Gove, Litherland, Almqvist, and Bromley, Phys. Rev. 111 (1958) 608
- Go 58f Gove, Kuehner, Litherland, Almqvist, Bromley, Ferguson, Rose, Bastide, Brooks, and Connor, Phys. Rev. Lett. 1 (1958) 251
- Go 58g Gorodetzky, Chevallier, Armbruster, Gallmann, and Sutter, Nuclear Physics 7 (1958) 672
- Go 60 Golden, Zaffarano. and Martin, Bull. Amer. Phys. Soc. 5 (1960) 57
- Go 60a Gonzales-Vidal, Conzett, and Wade, Bull. Amer. Phys. Soc. 5 (1960) 230
- Go 60c Gove, Proc. of the Kingston Conf., p. 438 (Univ. of Toronto Press, 1960)
- Go 60d Gove and Broude, Bull. Amer. Phys. Soc. 5 (1960) 473
- Go 60e Gonzales-Vidal and Wade, Phys. Rev. 120 (1960) 1354
- Go 60f Gorodetzky, Richert, Manquenouille, and Knipper, Comptes Rendus 251 (1960) 944, and private communication
- Go 61 Gofman and Nemets, Zh. Eksp. Teor. Fiz. 40 (1961) 477; JETP 13 (1961) 333
- Go 61a Gove, private communication, as quoted in Ro 61
- Go 61b Gove, Litherland, and Batchelor, Nuclear Physics 26 (1961) 480
- Gr 46 Graves and Coon, Phys. Rev. 70 (1946) 101(A)
- Gr 48 Graf, Phys. Rev. 74 (1948) 831(L)
- Gr 49 Greenlees, Kempton, and Rhcderick, Nature 164 (1949) 663(L)
- Gr 50a Grant, Proc. Phys. Soc. A 63 (1950) 1298
- Gr 50b Gross and Hamilton, Phys. Rev. 80 (1950) 484(L)
- Gr 50c Grosskreutz and Mather, Phys. Rev. 77 (1950) 580
- Gr 51 Grove and Cooper, Phys. Rev. 82 (1951) 505
- Gr 54 Green, Harris, and Cooper, Phys. Rev. 96 (1954) 817(A)
- Gr 55 Greenlees, Proc. Phys. Soc. A 68 (1955) 97
- Gr 55a Groshev, Adyasevich, and Demidov, Proc. Internat. Conf. (Geneva, 1955) on Peaceful Uses of Atomic Energy 2 (1956) 39
- Gr 55c Green, Singh, and Willmott, Phil. Mag. 46 (1955) 982
- Gr 55d Griffith, Phys. Rev. 98 (1955) 579
- Gr 55e Grant, Rutherglen, Flack, and Hutchinson, Proc. Phys. Soc. A 68 (1955) 369
- Gr 55f Green, Thesis, Univ. of Liverpool (1955)
- Gr of Green and Richardson, Phys. Rev. 101 (1956) 776
- Gr 56b Greenberg and Deutsch, Phys. Rev. 102 (1956) 415
- Gr 56c Grayson and Nordheim, Phys. Rev. 102 (1956) 1093
- Gr 56e Green, Singh, and Willmott, Proc. Phys. Soc. A 69 (1956) 335
- Gr 57 Graetzer and Robbins, Phys. Rev. 105 (1957) 1570
- Gr 57a Green, Wiseman, and Milne, Bull. Amer. Phys. Soc. 2 (1957) 377
- Gr 57b Greenlees, Haywood, Kuo and Petravić, Proc. Phys. Soc. A 70 (1957) 331
- Gr 57c Groshev, Demidov, Lutsenko, and Pelekhov, Atomnaya Energiya 3 (1957) 187: Sov. J. At. Energy 3 (1957) 969
- Gr 58a Greenlees, Kuo, Lowe, and Petravić, Proc. Phys. Soc. 71 (1958) 347
- Gr 58b Groshev, Demidov, Lutsenko, and Pelekhov, Proc. Second Intern. Conf. Peaceful Uses of Atomic Energy, Geneva 15 (1958) 138
- Gr 58c Groshev, Demidov, Lutsenko, and Pelekhov, "Atlas spektrov γ-luchei radiatsionnogo zakhvata teplovykh neitronov" (Moskva, 1958); "Atlas of Gamma-Ray Spectra from Radiative Capture of Thermal Neutrons" (London, Pergamon, 1959)
- Gr 58d Grosof, Buck, Lichten, and Rabi, Phys. Rev. Lett. 1 (1958) 214
- Gr 59 Greenlees, Kuo, and Petravić, Proc. of the Paris Conf., p. 438 (Dunod, Paris, 1959)
- Gr 60 Greenlees and Lowe, Proc. Phys. Soc. 76 (1960) 149
- Gr 60a Groshev, Demidov, and Lutsenko, Izvest. Akad. Nauk, Ser. Fiz. 24 (1960) 833

- Gr 61 Grüebler and Rossel, Helv. Phys. Acta 34 (1961) 479(A)
- Gr 61a Greenlees, Lilley, Rowe, and Hodgson, Nuclear Physics 24 (1961) 334
- Gr 61b Green, Willmott, and Kaye, Nuclear Physics 25 (1961) 278
- Gu 52 Gugelot, Phys. Rev. 87 (1952) 525(L)
- Gu 53 Guernsey and Goodman, Phys. Rev. 92 (1953) 323
- Gu 54 Gugelot, Phys. Rev. 93 (1954) 425
- Gu 56 Gugelot and Rickey, Phys. Rev. 101 (1956) 1613(L)
- Gu 58 Gudden and Eichler, Z. Physik 150 (1958) 436
- Gu 58a Gustova, Dzhelepov, Ermolov, and Chubinskii, Izvest. Akad. Nauk, Ser. Fiz. 22 (1958) 211
- Gu 58b Gueben and Govaerts, Inst. interuniv. sci. nucléaires (Bruxelles), Monographie No. 2 (1958)
- Ha 50a Haslam, Katz, Moody, and Skarsgard, Phys. Rev. 80 (1950) 318
- Ha 51 Hanscome and Malich, Phys. Rev. 82 (1951) 304(A)
- Ha 51a Hälg, Helv. Phys. Acta 24 (1951) 641(A)
- Ha 51b Halpern and Mann, Phys. Rev. 83 (1951) 370
- Ha 52 Hausman, Allen, Arthur, Bender, and McDole, Phys. Rev. 88 (1952) 1296
- Ha 52a Haslam, Summers-Gill, and Crosby, Canadian J. Phys. 30 (1952) 257
- Ha 52c Harvey, Phys. Rev. 88 (1952) 162(A)
- Ha 52d Haskins, Duval, Cheng, and Kurbatov, Phys. Rev. 88 (1952) 876
- Ha 53 Haeberli, Galonsky, Goldberg, and Douglas, Phys. Rev. 91 (1953) 438(A)
- Ha 53a Hamilton, Lemonick, and Pipkin, Phys. Rev. 92 (1953) 1191
- Ha 53b Hansen, Kiehn, and Goodman, Phys. Rev. 92 (1953) 652
- Ha 54 Halpern, Nathans, and Yergin, Phys. Rev. 95 (1954) 1529
- Ha 54a Haslam, Roberts, and Robb, Canadian J. Phys. 32 (1954) 361
- Ha 55 Hattori, Hisatake, Mikumo, and Momata, J. Phys. Soc. Japan 10 (1955) 242
- Ha 55a Haeberli, Phys. Rev. 99 (1955) 640(A)
- Ha 55b Handley and Lyon, Phys. Rev. 99 (1955) 755
- Ha 55c Hancock and Verdaguer, Proc. Phys. Soc. A 68 (1955) 1080(L)
- Ha 56 Hausman, Monahan, Mooring, and Raboy, Bull. Amer. Phys. Soc. 1 (1956) 56, and verbal report to Nuclear Data Group
- Ha 56b Hahn, Ravenhall, and Hofstadter, Phys. Rev. 101 (1956) 1131
- Ha 56c Haffner, Phys. Rev. 103 (1956) 1398
- Ha 56d Handler and Richardson, Phys. Rev. 102 (1956) 833
- Ha 56e Hassler, Steigert, and Pieper, Bull. Amer. Phys. Soc. 1 (1956) 280
- Ha 57a Haling, Peck, and Eubank, Phys. Rev. 106 (1957) 971
- Ha 58b Hartwig and Schopper, Z. Physik 152 (1958) 314
- Ha 58c Hamilton, Langer, and Smith, Phys. Rev. 112 (1958) 2010
- Ha 59a Hassler, Zatzick, and Eubank, Bull. Amer. Phys. Soc. 4 (1959) 321
- Ha 59c Hashimoto and Alford, Phys. Rev. 116 (1959) 981
- Ha 59d Hartwig and Schopper, Bull. Amer. Phys. Soc. 4 (1959) 77
- Ha 60a Hamburger, Phys. Rev. 118 (1960) 1271
- Ha 60b Hausman, Dell. and Bowsher, Phys. Rev. 118 (1960) 1237
- Ha 60c Hamburger and Blair, I hys. Rev. 119 (1960) 777
- Ha 61 Hassler, Bull. Amer. Phys. Soc. 6 (1961) 61
- Ha 61a Hamburger, Cohen, and Price, Phys. Rev. 121 (1961) 1143
- Ha 61b Harris and McCullen, Bull. Amer. Phys. Soc. 6 (1961) 224
- Ha 61c Hazewindus (Delft Technol. Univ.), private communication (1961)
- He 37a Henderson, Ridenour, White, and Henderson, Phys. Rev. 51 (1937) 1107(L)
- He 39 Henderson and Doran, Phys. Rev. 56 (1939) 123(L)
- He 43 Hendricks, Bryner, Thomas, and Ivie, J. Phys. Chem. 47 (1943) 469
- He 47 Heitler, May, and Powell, Proc. Royal Soc. A 190 (1947) 180
- He 48 Hein and Voigt, Phys. Rev. 74 (1948) 1265(A)
- He 51 Heller, Sturcken, and Weber, Phys. Rev. 83 (1951) 848(L)
- He 52 Hedgran and Lind, Arkiv f. Fysik 5 (1952) 177

- He 54 Heintze, Z. Naturf. 9a (1954) 469
- He 54b Heydenburg and Temmer, Phys. Rev. 94 (1954) 1252
- He 56 Helm, Phys. Rev. 104 (1956) 1466
- He 57a Henshaw, Phys. Rev. 105 (1957) 976
- He 61 Heyligers (Utrecht Univ.), private communication (1961)
- Hi 45 Hibdon, Pool, and Kurbatov, Phys. Rev. 67 (1945) 289
- Hi 47 Hirzel and Wäffler, Helv. Phys. Acta 20 (1947) 373
- Hi 52a Hintz and Ramsey, Phys. Rev. 88 (1952) 19 Hi 54
- Hitchcock, Phil. Mag. 45 (1954) 379 and 385
- Hi 54a Hird, Whitehead, Butler, and Collie, Phys. Rev. 96 (1954) 702
- Hi 55 Hintz, Phys. Rev. 100 (1955) 1794(A)
- Hi 56b Hinds and Middleton, Proc. Phys. Soc. A 69 (1956) 347(L)
- Hi 57b Hinds, Middleton, and Parry, Proc. Phys. Soc. A 70 (1957) 900(L)
- Hi 58 Hinds, Middleton, and Parry, Proc. Phys. Soc. 71 (1958) 49
- Hi 58a Hill, Phys. Rev. 109 (1958) 2105
- Hi 58b Hirao, Okada, Miura, and Wakatsuki, J. Phys. Soc. Japan 13 (1958) 233
- Hi 58c Hill and Blair, Phys. Rev. 111 (1958) 1142
- Hi 58d Hird, Cookson, and Bokhari, Proc. Phys. Soc. 72 (1958) 489
- Hi 59 Hibdon, Phys. Rev. 114 (1959) 179
- Hi 59a Hinds and Middleton, Proc. Phys. Soc. 73 (1959) 727
- Hi 59b Hinds and Middleton, Proc. Phys. Soc. 73 (1959) 501
- Hi 60b Hibdon, Phys. Rev. 118 (1960) 514
- Hi 60c Hinds and Middleton, Proc. Phys. Soc. 75 (1960) 444
- Hi 60d Hinds and Middleton, Proc. Phys. Soc. 76 (1960) 545
- Hi 60e Hird and Strzałkowski, Proc. Phys. Soc. 75 (1960) 868
- Hi 60f Hinds and Middleton, Proc. of the Kingston Conf., p. 946 (Univ. of Toronto Press, 1960), and private communication
- Hi 60i Hinds and Middleton, Proc. Phys. Soc. 76 (1960) 553
- Hi 60k Hinds and Middleton, as quoted in Ma 60, Proc. Phys. Soc. 76 (1960) 56
- Hi 601 Hisatake, Ishizaki, Isoya, Nakamura, Nakano, Saheki, Saji, and Yuasa, J. Phys. Soc. Japan 15 (1960) 741
- Hinds, Middleton, and Litherland, Proc. Phys. Soc. 77 (1961) 1210(L) Hi 61
- Hi 61a Hinds and Middleton, Proc. Rutherford Jubilee Conf., Manchester (1961)
- Hi 61b Hibdon, Phys. Rev. 122 (1961) 1235
- Hi 61c Hintz, Lee, and Stovall, Bull. Amer. Phys. Soc. 6 (1961) 260
- Hinds, Middleton, and Litherland, Nuclear Physics 24 (1961) 510 Hi 61d
- Hinds, Middleton, and Litherland, Proc. Rutherford Jubilee Coni., Manchester (1961) IIi 61e
- Hinds, Litherland, and Middleton (Aldermaston), private communication (1961) Hi 61f
- Hinds, Marchant, and Middleton (Aldermaston), private communication (1961) Hi 61g
- Hinds, Marchant, and Middleton, Proc. Phys. Soc. 78 (1961) 473 Hi 61h
- Hibdon, Phys. Rev. 124 (1961) 500 Hi 61i
- Hoag, Phys. Rev. 57 (1940) 937(L) Ho 40
- Hole and Siegbahn, Arkiv Mat. Astron. Fys. 33 A (1946) No. 9 Ho 46
- Holt and Young, Nature 164 (1949) 1000(L) Ho 49
- Houtermans, Haxel, and Heintze, Z. Physik 128 (1950) 657 Ho 50
- Hofstadter and McIntyre, Phys. Rev. 80 (1950) 631 Ho 50b
- Holt and Marsham, Proc. Phys. Soc. A 66 (1953) 258 Ho 53
- Holt and Marsham, Phys. Rev. 89 (1953) 665(L) Ho 53a
- Hornyak and Coor, Phys. Rev. 92 (1953) 675 Ho 53b
- Holt and Marsham, Proc. Phys. Soc. A 66 (1953) 565 Ho 53c
- Holt and Marsham, Proc. Phys. Soc. A 66 (1953) 467 Ho 53d
- Holt and Marsham, Proc. Phys. Soc. A 66 (1953) 249 Ho 53e
- Holland and Lynch, Bull. Amer. Phys. Soc. 3 (1958) 380 Ho 58b
- Hoogenboom, Thesis, Utrecht Univ. (1958) Ho 58c
- Holland and Lynch, Phys. Rev. 113 (1959) 903 Ho 59
- Hosoe and Suzuki, J. Phys. Soc. Japan 14 (1959) 699 Ho 59a

- Holtebekk, Bull. Amer. Phys. Soc. 6 (1961) 259 and private communication Ho 61
- Hoare, Robbins, and Greenlees, Proc. Phys. Soc. 77 (1961) 830 Ho 6la
- Hoogenboom, Kashy, and Buechner, Proc. Rutherford Jubilee Conf., Manchester Ho 61b (1961), and private communication
- Hurst and Walke, Phys. Rev. 51 (1937) 1033 Hu 37
- Huber, Helv. Phys. Acta 14 (1941) 163 Hu 41
- Huber, Lienhard, Scherrer, and Wäffler, Helv. Phys. Acta 16 (1943) 33 Hu 43
- Huber, Lienhard, Scherrer, and Wäffler, Helv. Phys. Acta 17 (1944) 139 Hu 44
- Huber, Lienhard, Scherrer, and Wäffler, Helv. Phys. Acta 18 (1945) 221 Hu 45
- Hunt and Jones, Phys. Rev. 89 (1953) 1283 Hu 53
- Hunt, Kline, and Zaffarano, Phys. Rev. 95 (1954) 611(A) Hu 54
- Hunt and Zaffarano, Iowa State College Report ISC-469 (1954) Hu 54a
- Hunt, Jones, Churchill, and Hancock, Proc. Phys. Soc. A 67 (1954) 443 Hu 54b
- Hunt, Jones, and Churchill, Proc. Phys. Soc. A 67 (1954) 479(L) Hu 54c
- Hunt and Hancock, Phys. Rev. 97 (1955) 567(L) Hu 55
- Huby and Newns, Proc. Phys. Soc. A 68 (1955) 758 Hu 55b
- Hughes and Sinclair, Proc. Phys. Soc. A 69 (1956) 125 Hu 56
- Huang, Phys. Rev. 102 (1956) 422 Hu 56a
- Hughes and Schwartz, "Neutron Cross Sections", 2nd edition, Brookhaven National Hu 58 Laboratory Report BNL-325 (1958)
- Hudson and Morgan, Bull. Amer. Phys. Soc. 4 (1959) 97 Hu 59
- Hunting and Wall, Phys. Rev. 115 (1959) 956 Hu 59a
- Hu 60a Hu, J. Phys. Soc. Japan 15 (1960) 1741
- Iavor, Zh. Eksp. Teor. Fiz. 34 (1958) 1420; JETP 7 (1958) 983 Ia 58
- Ib 58 Iben, Phys. Rev. 109 (1958) 2059
- Ig 56 Igo, Wegner, and Eisberg, Phys. Rev. 101 (1956) 1508
- lg 57 Igo, Phys. Rev. 106 (1957) 256
- Ig 59 Igo, Phys. Rev. 115 (1959) 1665
- Ig 60 Igo, Gonzales-Vidal, and Markowitz, Bull. Amer. Phys. Soc. 5 (1960) 229
- Igo, Lorenz, and Schmidt-Rohr, Phys. Rev. 124 (1961) 832 Ig 61
- Inghram, Brown, Patterson, and Hess, Phys. Rev. 80 (1950) 916(L) In 50
- In 53 Inglis, Revs. Mod. Phys. 25 (1953) 390
- Is 61 Ishizaki, J. Phys. Soc. Japan 16 (1961) 1056
- Is 61a Isoya, Micheletti, Marrone, and Reber, Proc. Rutherford Jubilee Conf., Manchester (1961)
- It 41 Itoh, Proc. Phys. Math. Soc. Japan 23 (1941) 605
- Iw 53 Iwersen, Koski, and Rasetti, Phys. Rev. 91 (1953) 1229
- Iw 55 Iwersen and Koski, Phys. Rev. 98 (1955) 1307
- Iw 60 Iwao, Bull. Amer. Phys. Soc. 5 (1960) 29
- Jack and Ward, Proc. Phys. Soc. 75 (1960) 833 Ja 60
- Jänecke, Z. Naturf. 15a (1960) 593 Ja 60a
- Jaffe, De S. Barros, Forsyth, Muto, Taylor, and Ramavataram, Proc. Phys. Soc. 76 Ja 60b (1960) 914
- Jastram, Skeel, and Ramaswamy, Bull. Amer. Phys. Soc. 6 (1961) 38 Ja 61
- Jaider, Lopez, Mazari, and Dominguez, Revista Mexicana de Fisica 10 (1961) 247 Ja 61a la 61b
- Jänecke, Bull. Amer. Phys. Soc. 6 (1961) 259, and private communication
- Jahr, Müller, Oswald, and Schmidt-Rohr, Z. Physik 161 (1961) 509 Ja 61c
- Jarmie and Silbert, Phys. Rev. 123 (1961) 909 Ja 61d le 52
- Jensen, Nichols, Clement, and Pohm, Phys. Rev. 85 (1952) 112 Jo 49
- Johnston and Willard, Phys. Rev. 75 (1949) 528(L) Jo 52
- Jones and Kohman, Phys. Rev. 85 (1952) 941(L) Jo 53
- Jones and Kohman, Phys. Rev. 90 (1953) 495(L) Jo 55
- Johansson, Phys. Rev. 97 (1955) 1186(L)

- lo 56 Johnson Johnson, and Langer, Phys. Rev. 102 (1956) 1142
- Johnson and Moffat, Bull. Amer. Phys. Soc. 2 (1957) 230 lo 57
- lo 58 Johnson, Galonsky, and Ulrich, Phys. Rev. 109 (1958) 1243
- Johnson, Johnson, and Langer, Phys. Rev. 112 (1958) 2004 Jo 58a
- Johnson and Class, Bull. Amer. Phys. Soc. 4 (1959) 97 10 59
- Jo 59a Johnson and Class, Bull. Amer. Phys. Soc. 4 (1959) 255
- To 60 Johnson, Chase, and Imhof, Bull. Amer. Phys. Soc. 5 (1960) 406 lo 60a
- Johnson, as quoted in Nuclear Physics 17 (1960) 116
- Johnson and Miller, Phys. Rev. 124 (1961) 1190 Jo 61
- Io 61b Johansson, Svanberg, and Hodgson, Arkiv f. Fysik 19 (1961) 541
- **Ju 58** Juveland and Jentschke, Phys. Rev. 110 (958) 456
- Ju 61 Jung and Jänecke, Bull. Amer. Phys. Soc. 6 (1961) 228
- Ka 51 Katz and Cameron, Phys. Rev. 84 (1951) 1115
- Ka 5la Katz and Penfold, Phys. Rev. 81 (1951) 815
- Ka 5lc Katz and Cameron, Canadian J. Phys. 29 (1951) 518
- Ka 52 Kaufmann, Goldberg, Koester, and Mooring, Phys. Rev. 88 (1952) 673
- Ka 52a Katcoff, Phys. Rev. 87 (1952) 886
- Ka 53 Kahn and Lyon, Phys. Rev. 91 (1953) 1212
- Ka 54 Katz, Haslam, Goldemberg, and Taylor, Canadian J. Phys. 32 (1954) 586
- Ka 55 Kavanagh, Mills, and Sherr, Phys. Rev. 97 (1955) 248(L)
- Ka 61 Kantele, Bull. Amer. Phys. Soc. 6 (1961) 252
- Ka 61a Kashy, Hoogenboom, and Buechner, Phys. Rev. 124 (1961) 1917
- Ka 61b Kartashov, Burgov, and Davydov, Izvest. Akad. Nauk, Ser. Fiz. 25 (196!) 189
- Ke 50 Ketelle, Phys. Rev. 80 (1950) 758(L)
- Ke 51 Keller, Phys. Rev. 84 (1951) 884
- Ke 56 O'Kelley, Lazar, and Eichler, Phys. Rev. 101 (1956) 1059
- Ke 56a Kern and Cochran, Phys. Rev. 104 (1956) 711
- Ke 58 Kelley, Moore, and Enge, M.I.T., Laboratory for Nuclear Science Progress Report, May 31 (1958) 111
- Keszthelyi and Erö, Nuclear Physics 8 (1958) 650 Ke 58a
- Kern, Thompson, and Ferguson, Nuclear Physics 10 (1959) 228 Ke 59
- Ke 59a Kelly, Beard, and Peters, Nuclear Physics 11 (1959) 492
- Ke 59b Kern, Bull. Amer. Phys. Soc. 4 (1959) 414
- Ketelle, Brosi, Galonsky, and Willard, Bull. Amer Phys. Soc. 4 (1959) 76 Ke 59c
- Kent, Puri, Bucher, and Snowdon, Bull. Amer. Phys. Soc. 5 (1960) 369 Ke 60
- Khanna and Green, Bull. Amer. Phys. Soc. 4 (1959) 387 Kh 59
- Khurana and Hans, Nuclear Physics 13 (1959) 88 J.h 59a
- King, Henderson, and Risser, Phys. Rev. 55 (1939) 1118(A) Ki 39a
- Kinsey, Bartholomew, and Walker, Phys. Rev. 83 (1951) 319 Ki 51
- Kinsey, Bartholomew, and Walker, Phys. Rev. 85 (1952) 1012 Ki 52
- King and Parkinson, Phys. Rev. 88 (1952) 141(L) Ki 52a
- Kinsey and Bartholomew, Physica 18 (1952) 1112 Ki 52b
- Kinsey and Bartholomew, Canadian J. Phys. 31 (1953) 901(L) Ki 53a
- King and Beach, Phys. Rev. 90 (1953) 381(A) Ki 53b
- Kinsey and Bartholomew, Canadian J. Phys 31 (1953) 537 Ki 53c
- Kiehn and Goodman, Phys. Rev. 95 (1954) 989 Ki 54
- Kinsey and Bartholomew, Phys. Rev. 93 (1954) 1260 Ki 54a
- King, Revs. Mod. Phys. 26 (1954) 327 Ki 54b
- King, Phys. Rev. 99 (1955) 67 Ki 55
- Kington, Bair, Cohn, and Willard, Phys. Rev. 99 (1955) 1393 Ki 55a
- Kistner, Schwarzschild, and Rustad, Phys. Rev. 104 (1956) 154 Ki 56
- Kinsey and Stone, Phys. Rev. 103 (1956) 975 1'i 56a
- Kistner and Rustad, Phys. Rev. 112 (1958) 1972 K. 58
- Kiser and Johnston, J. Amer. Chem. Soc. 81 (1959) 1810 Ki 59
- King and McDonald, Nuclear Physics 19 (1960) 94 Ki 60

- Ki 61 Kimura, Shoda, Mutsuro, Tohei, Sato, Kuroda, Kuriyama, and Akiba, Nuclear Physics
 23 (1961) 338; J. Phys. Soc. Japan 15 (1960) 1128
- Ki 61a Kim and Barnard, Bull. Amer. Phys. Soc. 6 (1961) 259
- Kl 48 Klema and Hanson, Phys. Rev. 73 (1948) 106
- Kl 54 Kluyver, Van der Leun, and Endt, Physica 20 (1954) 1287
- Kl 54b Kline and Zaffarano, Phys. Rev. 96 (1954) 1620
- Kl 55 Kluyver and Van der Leun, Physica 21 (1955) 604(L)
- Kl 59 Kloepper, Day, and Lind, Phys. Rev. 114 (1959) 240
- Kn 59 Knowles, Canadian J. Phys. 37 (1959) 203
- Ko 52 Koester, Phys. Rev. 85 (1952) 643
- Ko 54 Koerts, Schwarzschild, Gold, and Wu, Phys. Rev. 95 (1954) 612(A)
- Ko 54a Koester, Z. Naturf. 9a (1954) 104
- Ko 54b Kofoed-Hansen, Phys. Rev. 96 (1954) 1045
- Ko 55 Kono, J. Phys. Soc. Japan 10 (1955) 495
- Ko 56 Komar and Iavor, Zh. Eksp. Teor. Fiz. 31 (1956) 531(L); JETP 4 (1957) 432(L)
- Ko 58 Kotani and Ross, Phys. Rev. Lett. 1 (1958) 140
- Ko 58b Konijn, Van Nooyen, Hagedoorn, and Wapstra, Nuclear Physics 9 (1958) 296
- Ko 58c Kopaleishvili and Mamasakhlisov, Zh. Eksp. Teor. Fiz. 35 (1958) 1017; JETP 8 (1959) 711
- Ko 58d Kononov, Stavisskii, and Tolstikov, Atomnaya Energiya 5 (1958) 564; J. Nuclear Energy 11A (1959) 46
- Ko 59 Komar and Dragnev, Dokl. Akad. Nauk 126 (1959) 1234; "Doklady" 4 (1959) 653
- Ko 59a Komoda, Prog. in Theor. Phys. 22 (1959) 891(L)
- Ko 60 Korotkov and Chernikov, Izvest. Akad. Nauk, Ser. Fiz. 24 (1960) 899
- Ko 61 Kondo, Yamazaki, and Yamabe, J. Phys. Soc. Japan 16 (1961) 1091
- Ko 61a Konstantinova, Myakinin, Romanov, and Tsaryova, Zh. Eksp. Teor. Fiz. 41 (1961) 49
- Kr 53 Kranz and Watson, Phys. Rev. 91 (1953) 1472
- Kr 54 Kreger, Phys. Rev. 96 (1954) 1554
- Kr 54a Kraushaar, Mihelich, and Sunyar, Phys. Rev. 95 (1954) 456
- Kr 55 Kromchenko, Izvest. Akad. Nauk, Ser. Fiz. 19 (1955) 277
- Kr 56 Krone, Everett, and Hanna, Bull. Amer. Phys. Soc. 1 (1956) 329
- Kr 56a Kromchenko, Zh. Eksp. Teor. Fiz. 30 (1956) 681; JETP 3 (1956) 531
- Kr 60 Krone and Singh, Phys. Rev. 117 (1960) 1562
- Kr 60a Kruse, Bent, and Lidofsky, Phys. Rev. 119 (1960) 289
- Ku 53 Kurath, Phys. Rev. 91 (1953) 1430
- Ku 57 Kumabe, Takekoshi, Ogata, Tsuneoka, and Oki, Phys. Rev. 106 (1957) 155
- Ku 57a Kuščer, Mihailović, and Park, Phil. Mag. 2 (1957) 998
- Ku 59 Kumabe, Wang, Kawashima, Yada, and Ogata, J. Phys. Soc. Japan 14 (1959) 713
- Ku 59a Kuperus, Smulders, and Endt, Physica 25 (1959) 600
- Ku 59b Kulchitskii and Presperin, Zh. Eksp. Teor. Fiz. 37 (1959) 1524; JETP 10 (1960) 1082
- Ku 59c Kuchowicz, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 7 (1959) 509
- Ku 60d Kuehner, Almqvist, and Bromley, Nuclear Physics 19 (1960) 614
- Ku 60e Kuehner, Almqvist, and Bromley, Nuclear Physics 21 (1960) 555
- Ku 60f Kuehner, Whalen, Almqvist, and Bromley, Proc. of the Kingston Conf., p. 261 (Univ. of Toronto Press, 1960)
- Ku 60g Kuperus and Smith, Physica 26 (1960) 954
- Ku 61 Kuperus, Physica 27 (1961) 273
- La 37 Laslett, Phys. Rev. 52 (1937) 529
- La 39a Lawson, Phys. Rev. 56 (1939) 131
- La 48 Langmuir, Phys. Rev. 74 (1948) 1559(A)
- La 49 Langer and Price, Phys. Rev. 76 (1949) 641
- La 50 Langer, Motz, and Price, Phys. Rev. 77 (1950) 798
- La 50a Langer, Phys. Rev. 77 (1950) 50
- La 51 Landon, Phys. Rev. 83 (1951) 1081
- La 54 Langevin, Yuasa, and Mérinis, J. Phys. Rad. 15 (1954) 778(L)

- La 54a Langevin and Marty, J. Phys. Rad. 15 (1954) 127(L)
- Lazar and Bell, Phys. Rev. 95 (1954) 612(A) La 54b
- La 55 Laubitz, Proc. Phys. Soc. A 68 (1955) 1033
- La 56a Lane and Monahan, Bull. Amer. Phys. Soc. 1 (1956) 346
- La 56b Laberrigue-Frolow, Radvanyi, and Langevin, J. Phys. Rad. 17 (1956) 530
- La 57a Lawson and Uretsky, Phys. Rev. 108 (1957) 1300
- La 57b Langsdorf, Lane, and Monahan, Phys. Rev. 107 (1957) 1077
- La 58 Langevin-Joliot and Marty, J. Phys. Rad. 19 (1958) 28; Comptes Rendus 245 (1957) 670 La 58a
- Lawson, Bull. Amer. Phys. Soc. 3 (1958) 223
- La 59 Lackner, Dell, and Hausman, Phys. Rev. 114 (1959) 560
- La 59a Lal, Goldberg, and Koide, Phys. Rev. Lett. 3 (1959) 380
- La 60 Lane and Pendlebury, Nuclear Physics 15 (1960) 39
- La 60a Lane and Monahan, Phys. Rev. 118 (1960) 533
- La 60b Lane, Revs. Mod. Phys. 32 (1960) 519
- La 61 Lane, Langsdorf, Monahan, and Elwyn, Annals of Physics 12 (1961) 135
- Le 54 Leamer and Hinman, Phys. Rev. 96 (1954) 1607
- Le 55 Levinson and Ford, Phys. Rev. 100 (1955) 13
- Le 56a Lewis and Joyner, Bull. Amer. Phys. Soc. 1 (1956) 280
- Lee and Mooring, Phys. Rev. 104 (1956) 1342 Le 56b
- Le 57 Lee and Schiffer, Phys. Rev. 107 (1957) 1340
- Lewis and Ford, Phys. Rev. 107 (1957) 756 Le 57a
- Le 57b Levkovskii, Zh. Eksp. Teor. Fiz. 33 (1957) 1520; [ETP 6 (1958) 1174
- Le 61 Lee, Bull. Amer. Phys. Soc. 6 (1961) 79
- Le 61a Lehar, Palečková, Skřivánek, and Veselá, Czechslov. J. Phys. 11 (1961) 229
- Le 61b Leutz, Z. Physik 164 (1961) 78
- Li 37 Livingston and Bethe, Revs. Mod. Phys. 9 (1937) 245
- Li 53 Lindner, Phys. Rev. 89 (1953) 1150(L)
- Li 53a Lindner, Phys. Rev. 91 (1953) 642
- Li 54 Lindqvist and Mitchell, Phys. Rev. 95 (1954) 1535
- Li 54a Lindqvist and Mitchell, Phys. Rev. 95 (1954) 444
- Li 55 Lidén and Starfelt, Phys. Rev. 97 (1955) 419
- Little, Leonard, Prud'Homme, and Vincent, Phys. Rev. 98 (1955) 634 Li 55a
- Li 55b Lindqvist and Wu, Phys. Rev. 100 (1955) 145
- Li 56 Lidofsky and Fischer, Phys. Rev. 104 (1956) 759
- Litherland, Paul, Bartholomew, and Gove, Phys. Rev. 102 (1956) 208 Li 56a
- Li 57b Lidofsky, Revs. Mod. Phys. 29 (1957) 773
- Li 57c Lindqvist, Arkiv. f. Fysik 12 (1957) 495
- Litherland and Gove (Chalk River), private communication (1958) Li 58a
- Litherland and Gove, Bull. Amer. Phys. Soc. 3 (1958) 200 Li 58b
- Litherland, McManus, Paul, Bromley, and Gove, Canadian J. Fhys. 36 (1958) 378 Li 58c
- Lindström and Neuert, Z. Naturf. 13a (1958) 826 Li 58d
- Litherland, Paul, Bartholomew, and Gove, Canadian J. Phys. 37 (1959) 53 Li 59
- Litherland, Gove and Ferguson, Phys. Rev. 114 (1959) 1312 Li 59a
- Litherland and McCallum, Canadian J. Phys. 38 (1960) 927 Li 60
- Lindenberger and Scheer, Z. Physik 158 (1960) 111 Li 60a
- Lisle and Shaw, Proc. Phys. Soc. 76 (1960) 929 Li 60b
- Lind and Day, Annals of Physics 12 (1961) 485 Li 61
- Lockett and Thomas, Nucleonics 11 (1953) No. 3, 14 Lo 53
- Longuequeue, J. Phys. Rad. 20 (1959) 37(A) Lo 59
- Lovchikova, Zh. Eksp. Teor. Fiz. 38 (1960) 1434; JETP 11 (1960) 1036 Lo 60
- Lönsjö (Oslo Univ.), private communication (1961) Lo 61
- Lüscher, Ricamo, Scherrer, and Zünti, Helv. Phys. Acta 23 (1950) 561 Lu 50
- Lubitz and Goldman, Bull. Amer. Phys. Soc. 6 (1961) 295 Lu 61
- Lyman, Phys. Rev. 51 (1937) 1 Ly 37
- Lyon and Manning, Phys. Rev. 93 (1954) 501 Ly 54
- Lyon and Handley, Phys. Rev. 100 (1955) 1280 Uv 55

- Ly 56 Lyon and Lazar, Phys. Rev. 101 (1956) 1524
- Ly 58 Lynn, Firk, and Moxon, Nuclear Physics 5 (1958) 603
- Ly 59 Lynch and Holland, Phys. Rev. 114 (1959) 825
- Ly 59a Lyon and Macklin, Phys. Rev. 114 (1959) 1619
- Ma 50a Macklin, Lidofsky, and Wu, Phys. Rev. 78 (1950) 318(A)
- Ma 50b Macklin, Feldman, Lidofsky, and Wu, Phys. Rev. 77 (1959) 137(L)
- Ma 52 Mandeville, Swann, Chatterjee, and Van Patter, Phys. Rev 85 (1952) 193
- Ma 52a Martin and Breckon, Canadian J. Phys. 30 (1952) 643
- Ma 53 Marquez, Phys. Rev. 92 (1953) 1511
- Ma 53a Marquez, Phys. Rev. 90 (1953) 330(L)
- Ma 53b May and Foster, Phys. Rev. 90 (1953) 243
- Ma 53c Marshall, Phys. Rev. 91 (1953) 905
- Ma 54 Marty, Nataf, and Prentki, J. Phys. Rad. 15 (1954) 134
- Ma 54a Mayer-Kuckuk, Z. Naturf. 9a (1954) 338
- Ma 54c Maeder, Müller, and Wintersteiger, Helv. Phys. Acta 27 (1954) 3
- Ma 55 Maeder and Stähelin, Helv. Phys. Acta 28 (1955) 193
- Ma 55b Macq, Bull, classe sci. Acad. roy. Belg. 44 (1955) 467
- Ma 55c Marion, Bonner, and Cook, Phys. Rev. 100 (1955) 91, and private communication
- Ma 56a Martin, Cork, and Burson, Phys. Rev. 102 (1956) 457
- Ma 56b Marion, Slattery, and Chapman, Phys. Rev. 103 (1956) 676
- Ma 57 MacGregor, Ball, and Booth, Phys. Rev. 108 (1957) 726
- Ma 57a Marin, Movchet, and Poupaud, J. Phys. Rad. 18 (1957) 693(L)
- Ma 58 Magleby, Bull. Amer. Phys. Soc. 3 (1958) 19
- Ma 58c Mann, Miskel, and Bloom, Phys. Rev. Lett. 1 (1958) 34
- Ma 58d Mann, Miskel, and Bloom, Bull. Amer. Phys. Soc. 3 (1958) 326
- Ma 58e MacDonald, Phys. Rev. 110 (1958) 1420
- Ma 58f MacGregor, Ball, and Booth, Phys. Rev. 111 (1958) 1155
- Ma 58g March and Morton, Phil. Mag. 3 (1958) 1256
- Ma 58h Mazari, M.I.T., Laboratory for Nuclear Science Progress Report, May 31 (1958) 109
- Ma 59 Mayer-Kuckuk and Nierhaus, Z. Physik 154 (1959) 383
- Ma 59a MacGregor, Proc. of the Paris Conf., p. 609 and 612 (Dunod, Paris, 1959)
- Ma 500 Machwe, Kent, and Snowdon, Phys. Rev. 114 (1959) 1563
- Ma 59c Manning and Bartholomew, Phys. Rev. 115 (1959) 401
- Ma 59e Mayer-Kuckuk, Nierhaus, and Schmidt-Rohr, Z. Physik 157 (1959) 586
- Ma 59f Mamasakhlisov and Kopaleishvili, Zh. Eksp. Teor. Fiz. 37 (1959) 131; JETP 10 (1960) 93
- Ma 59g Mackin and Love, J. Inorganic Nuclear Chem. 10 (1959) 17
- Ma 60 Macefield and Towle, Proc. Phys. Soc. 76 (1960) 56
- Ma 60a Martin, Quisenberry, and Low, Phys. Rev. 120 (1960) 492
- Ma 60b Mani, McCallum, and Ferguson, Nuclear Physics 19 (1960) 535
- Ma 60c Mani, Tombrello, and Rao, Nuclear Physics 21 (1960) 344
- Ma 60d Macfarlane and French, Revs. Mod. Phys. 32 (1960) 567
- Ma 60e Mazari, Dominguez, Jaidar, Rickards, Alba, Lopez, and Ortiz de Lopez, Proc. Internat. Conf. Nuclidic Masses, Hamilton (1960)
- Ma 61 Mani, Barnard, Tombrello, and Rao, Bull. Amer. Phys. Soc. 6 (1961) 38
- Ma 61b MacDonald and Douglas, Nuclear Physics 24 (1961) 614
- Ma 61c Macefield, Towle, and Gilboy, Proc. Phys. Soc. 77 (1961) 1050
- Ma 61d Marion, Revs. Mod. Phys. 33 (1961) 139 and 33 (1961) 623 (Errata)
- Mc 49 McElhinney, Hanson, Becker, Duffield, and Diven, Phys. Rev. 75 (1949) 542
- Mc 50 McDaniel, Walker, and Stearns, Phys. Rev. 80 (1950) 807
- Mc 54 McClure, Phys. Rev. 94 (1954) 1637
- Mc 54a McPherson, Pederson, and Katz, Canadian J. Phys. 32 (1954) 593
- M 55 McCarthy, Phys. Rev. 97 (1955) 1234
- Mc 56 McNair, Glover, and Wilson, Phil. Mag. 1 (1956) 199
- Mc 57 McCormac, Steuer, Bond, and Hereford, Phys. Rev. 108 (1957) 116

- Mc 60b McCallum, Mani, and Ferguson, Nuclear Physics 16 (1960) 313
- McCullen and Kraushaar, Phys. Rev. 122 (1961) 555 Mc 61
- McCallum, Phys. Rev. 123 (1961) 568 Mc 61a
- Meye, Z. Physik 105 (1937) 232 Me 37
- Me 48 Metzger, Alder, and Huber, Helv. Phys. Acta 21 (1948) 278
- Me 51 Meadows and Holt, Phys. Rev. 83 (1951) 1257(L)
- Me 54 Meyerhof and Lindstrom, Phys. Rev. 93 (1954) 949(A)
- Me 57 Merritt, Campion, and Hawkings, Canadian J. Phys. 35 (1957) 16
- Me 57a Melkanoff, Nodvik, Saxon, and Woods, Phys. Rev. 106 (1957) 793
- Me 59 Mehta and Warke, Nuclear Physics 13 (1959) 451
- Me 59a Merzbacher, Crutchfield, and Newson, Annals of Physics 8 (1959) 194
- Me 60 Meichsner, Phys. Rev. 117 (1960) 489
- Me 60b Metzger, Swann, and Rasmussen, Nuclear Physics 16 (1960) 568
- Me 60c Meyer and Hintz, Phys. Rev. Lett. 5 (1960) 207
- Mi 50a Mims, Halban, and Wilson, Nature 166 (1950) 1027(L)
- Mi 52 Mileikowsky and Whaling, Phys. Rev. 88 (1952) 1254
- Mi 52a Miskel and Perlman, Phys. Rev. 87 (1952) 543(L)
- Mi 53 Middleton, El-Bedewi, and Tai, Proc. Phys. Soc. A 66 (1953) 95
- Mi 53a Mize and Zaffarano, Phys. Rev. 89 (1953) 902(A)
- Mi 54 Miskel and Perlman, Phys. Rev. 94 (1954) 1683
- Mi 54a Michalowicz, J. Phys. Rad. 15 (1954) 156
- Milani, Cooper, and Harris, Phys. Rev. 99 (1955) 645(A), and verbal report to Nuclear Mi 55 Data Group
- Milojević, Bull. Inst. nat. Sciences "Boris Kidrich" 6 (1958) 21 Mi 56
- Mi 57 Milone, Ricamo, and Rubbino, Nuovo Cimento 5 (1957) 528
- Mi 58 Mihailović and Povh, Nuclear Physics 7 (1958) 296
- Mihailović, Pregl, Kernel, and Kregar, Phys. Rev. 114 (1957) 1621 Mi 59
- Mikaélyan and Spivak, Zh. Eksp. Teor. Fiz. 37 (1959) 1168; JETP 10 (1960) 831 Mi 59a
- Miura, Wakatsuki, Hirao, and Okada, J. Phys. Soc. Japan 14 (1959) 239 Mi 59b
- Milman, Amsel, and Loyau, J. Phys. Rad. 20 (1959) 51 Mi 59c
- Mizobuchi, Katoh, and Ruan, J. Phys. Soc. Japan 15 (1960) 1737 Mi 60a
- Mitler, Nuclear Physics 23 (1961) 200 Mi 61
- Middleton and Hinds, Proc. Rutherford Jubilee Conf., Manchester (1961), and Nuclear Mi 6la Physics (to be published)
- Morganstern and Wolf, Phys. Rev. 76 (1949) 1261(L) Mo 49
- Motz and Humphreys, Phys. Rev. 80 (1950) 595 Mo 50
- Mooring, Koester, Goldberg, Saxon, and Kaufmann, Phys. Rev. 84 (1951) 703 Mo 51
- Morrison, Phys. Rev. 82 (1951) 209 Mo 5la
- Motz and Alburger, Phys. Rev. 86 (1952) 165 Mo 52
- Motz, Phys. Rev. 85 (1952) 501(L) Mo [≠]∠a
- Montalbetti, Katz, and Goldemberg, Phys. Rev. 91 (1953) 659 M > 53a
- Moszkowski and Peaslee, Phys. Rev. 93 (1954) 455 Mo 54
- Moljk and Curran, Phys. Rev. 96 (1954) 395 Mo 54a
- Morinaga, Phys. Rev. 97 (1955) 444 Mo 55
- Morinaga, Phys. Rev. 97 (1955) 1185(L) Mo 55a
- Morinaga, Phys. Rev. 100 (1955) 431(L) Mo 55c
- Morinaga and Bleuler, Bull. Amer. Phys. Soc. 1 (1956) 30, and verbal report to Mo 56 Nuclear Data Group
- Motz, Phys. Rev. 104 (1956) 1353 Mo 56a
- Morinaga, Phys. Rev. 103 (1956) 504(L) Mo 56b
- Morgan, Phys. Rev. 103 (1956) 1031, and verbal report to Nuclear Data Group Mo 56c
- Morinaga and Bleuler, Phys. Rev. 103 (1956) 1423 Mo 56d
- Moore, Kelley, and Enge, M.I.T., Laboratory for Nuclear Science Progress Report, Mo 58 May 31 (1958) 114
- Moore, Krumwiede, and Milne, Bull. Amer. Phys. Soc. 4 (1959) 366 1 fo 59
- Morpurgo, Phys. Rev. 114 (1959) 1075 Mo 59a

- Morinaga, Mutsuro, and Sugawara, Phys. Rev. 114 (1959) 1146 Mo 59b
- Motz, Carter and Fisher, Bull. Amer. Phys. Soc. 4 (1959) 477, and private communica-Mo 59c tion to Nuclear Data Group
- Mouton and Smith, Nuclear Physics 16 (1960) 206 Mo 60
- Morinaga and Ishii, Prog. in Theor. Phys. 23 (1960) 161 Mo 60a
- Monaro, Vingiani, and Van Lieshout, Physica 27 (1961) 985 Mo 61
- Mulder, Hoeksema, and Sizoo, Physica 7 (1940) 849 Mu 40
- Muller, Gelsema, and Endt, Physica 24 (1958) 577 Mn 58
- Mu 58a Münnich, Z. Physik 153 (1958) 106
- Muller, Annales de Physique 3 (1958) 739 Mu 58b
- Muto, J. Phys. Soc. Japan 15 (1960) 17 Mu 60
- Mukherjee, Ganguly, and Majumder, Proc. Phys. Soc. 77 (1961) 508 Mu 61
- Myers and Wattenberg, Phys. Rev. 75 (1949) 992(L) Mv: 49
- Nahmias and Yuasa, Comptes Rendus 236 (1953) 2399 Na 53
- Nagy, Acta Physica Acad. Sci. Hung. 3 (1953) 15 Na 53a
- Nathans and Halpern, Phys. Rev. 93 (1954) 437 Na 54
- Na 54a Nahmias, I. Phys. Rad. 15 (1954) 568
- Nahmias and Yuasa, Comptes Rendus 239 (1954) 47 Na 54b
- Nahmias and Wapstra, J. Phys. Rad. 15 (1954) 570 Na 54c
- Na 55 Nathans and Yergin, Phys. Rev. 98 (1955) 1296
- Na 56 Nahmias and Yuasa, J. Phys. Rad. 17 (1956) 373(L)
- Nakada, Anderson, Gardner, and Wong, Bull. Amer. Phys. Soc. 2 (1957) 32 Na 57
- Na 61 Nair, Ivengar, and Ramanna, Nuclear Physics 26 (1961) 193
- Ne 54 Newton, Phys. Rev. 96 (1954) 241(L)
- Ne 56 Nemilov, Zherebtsova, and Funstein, Physica 22 (1956) 1155(A)
- Ne 56a Nemilov and Litvin, Zh. Eksp. Teor. Fiz. 30 (1956) 686; [ETP 3 (1956) 523
- Ne 56b Nemilov and Litvin, Zh. Eksp. Teor. Fiz. 31 (1956) 719 (L); JETP 4 (1957) 606(L)
- Ne 58 Nethaway and Caretto, Phys. Rev. 109 (1958) 504
- Ne 59 Nessin, Eklund, and Kruse, Bull. Amer. Phys. Soc. 4 (1959) 18
- Ne 59a Nessin, Eklund, and Kruse, Bull. Amer. Phys. Soc. 4 (1959) 278
- Ne 59b Neuchadin, Teplov, and Tulinov, Zh. Eksp. Teor. Fiz. 37 (1959) 548; JETP 10 (1960) 387
- Ne 59c Newson, Block, Nichols, Tavlor, Furr, and Merzbacher, Annals of Physics 8 (1959) 211
- Ne 60 Nemets and Prokopets, Zh. Eksp. Teor. Fiz. 38 (1966) 693; JETP 11 (1960) 499
- Ne 60b Nemets and Prokopets, Izvest. Akad. Nauk, Ser. Fiz. 24 (1960) 869
- Ne 60c Neudachin Shevchenko, and Yudin, Zh. Eksp. Teor. Fiz. 39 (1960) 108; JETP 12 (1961) 79
- Ne 60d Newton, Nuclear Physics 21 (1960) 529
- Ne 60e Nessin, Thesis, Columbia Univ. (1960)
- Nelson, Carter, Mitchell, and Davis, Bull. Amer. Phys. Soc. 6 (1961) 235 Ne 61
- Ne 61a Nelson, Plendl, and Oberholtzer, Proc. Rutherford Jubilee Conf., Manchester (1961) Nier, Phys. Rev. 77 (1950) 789 Ni 50
- Nilsson, Trans. Chalmers Univ. Techn., Gothenburg, No. 125 (1952) Ni 52
- Nichols and Jensen, Phys. Rev. 94 (1954) 369 Ni 54
- Ni 57 Nielsen and Sheiline, Bull. Amer. Phys. Soc. 2 (1957) 260
- Ni 58 Nigam and Sundaresan, Canadian J. Phys. 36 (1958) 571
- Ni 61 Nichols, McAdams, and Jensen, Phys. Rev. 122 (1961) 172
- Ni 61a Nichols, McAdams, and Jensen, Phys. Rev. (to be published)
- No 60 Nordhagen (Oslo Univ.), private communication (1960)
- No 61 Nordhagen, Nuclear Instr. and Methods 12 (1961) 291, and private communication No 61a
- Nordhagen, Nuclear Physics 27 (1961) 112 No ôit
- Nordhagen and Smith (Utrecht Univ.), private communication (1961) Nu 53
- Nussbaum, Van Lieshout, and Wapstra, Phys. Rev. 92 (1953) 207(L) Nu 58
- Nurmia and Fink, Nuclear Physics 8 (1958) 139
- Nv 55 Nybö and Grotdal, Nature 175 (1955) 130(L)
- Nysten, Proc. of the Kingston Conf., p. 961 (Univ. of Toronto Press, 1960) Nv 60

- Od 59 Oda, Takeda, Hu, and Kato, J. Phys. Soc. Japan 14 (1959) 1255
- Od 59a Oda, Takeda, Hu, and Kato, J. Phys. Soc. Japan 14 (1959) 396
- Od 60 Oda, Takeda, Takano, Yamazaki, Hu, Kikuchi, Kobayashi, Matsuda, and Nagahara, J. Phys. Soc. Japan 15 (1960) 760
- Of 59 Ofer and Schwarzschild, Phys. Rev. Lett. 3 (1959) 384
- Og 60 Ogata, Itoh, Masuda, Takamatsu, Kawashima, Masaike, and Kumabe, J. Phys. Soc. Japan 15 (1960) 1719
- Oh 61 Ohmura, Ejiri, Nakajima, Horie, Etoh, Ohuchi, and Nogami, J. Phys. Soc. Japan 16 (1961) 593
- Ok 58 Okada, Miura, Wakatsuki, and Hirao, J. Phys. Soc. Japan 13 (1958) 541
- Ok 60 Okano, J. Phys. Soc. Japan 15 (1960) 28
- Ok 60a Okano, Tabata, Fukuda, and Muto, J. Phys. Soc. Japan 15 (1960) 1556
- Ok 60b Okamoto, Proc. of the Japanese Conf. on Low Energy Nuclear Physics, JAERI, p. 57 (1960)
- Ol 51 Ollano and Roy, Nuovo Cimento 8 (1951) 77
- Ol 54 Olsen and O'Kelly, Phys. Rev. 93 (1954) 1125(L)
- Ol 55 Olness and Lewis, Phys. Rev. 99 (1955) 654(A)
- Ol 58 Olness, Haeberli, and Lewis, Phys. Rev. 112 (1958) 1702
- Ol 60 Olness and Parker, Bull. Amer. Phys. Soc. 5 (1960) 56
- Op 58 Ophel, Proc. Phys. Soc. 72 (1958) 321
- Ov 49 Overstreet, Jacobson, and Stout, Phys. Rev. 75 (1949) 231
- Ov 56 Ovchinnikov, Nemilov, Aleksandrova, and Lomonosov, Izvest. Akad. Nauk, Ser. Fiz. 20 (1956) 1417
- Ov 59 Overseth and Peck, Phys. Rev. 115 (1959) 993
- Pa 52a Paganelli and Quareni, Phys. Rev. 86 (1952) 423(L)
- Pa 53 Paul and Clarke, Canadian J. Phys. 31 (1953) 267
- Pa 54 Paul, Gove, Bartholomew, and Litherland, Phys. Rev. 94 (1954) 749(A)
- Pa 55 Pasechnik, Geneva Conference Report 8/P/714 (1955)
- Pa 55a Paul, Gove, Litherland, and Bartholomew, Phys. Rev. 99 (1955) 1339
- Pa 55b Patterson, Newson, and Merzbacher, Phys. Rev. 99 (1955) 1625(A)
- Pa 55c Paris, Buechner, and Endt, Phys. Rev. 100 (1955) 1317
- Pa 36 Paul, Bartholomew, Gove, and Litherland, Bull. Amer. Phys. Soc. 1 (1956) 39
- Pa 56a Pandya, Phys. Rev. 103 (1956) 956
- Pa 57a Pandya and French, Bull. Amer. Phys. Soc. 2 (1957) 27
- Pa 57b Page and Heinberg, Phys. Rev. 106 (1957) 1220
- Pa 57c Pandya, Phys. Rev. 108 (1957) 1312
- Pa 57d Pandya, Prog. in Theor. Phys. 18 (1957) 668(L)
- Pa 58 Parkinson, Phys. Rev. 110 (1958) 485
- Pa 58a Paul and Montague, Nuclear Physics 8 (1958) 61
- Pa 61 Parkinson, Bull. Amer. Phys. Soc. 6 (1961) 259, and private communication
- Pa 61a Parry, Scott, and Swierszczewski, Proc. Phys. Soc. 77 (1961) 230
- Pa 61b Pandya and Shah, Nuclear Physics 24 (1961) 326
- Pa 61c Parry, Scott, and Swierszczewski, Proc. Phys. Soc. 77 (1961) 1024
- Pa 61d Paul, Evans and Montague, Proc. Rutherford Jubilee Conf., Manchester (1961)
- Pe 48 Peck, Phys. Rev. 73 (1948) 947
- Pe 48a Perlman and Friedlander, Phys. Rev. 74 (1948) 442
- Pe 53 Peaslee, Nuovo Cimento 10 (1953) 1349(L)
- Pe 56 Penning, Maltrud, Hopkins, and Schmidt, Phys. Rev. 104 (1956) 740
- Pe 57 Penning and Schmidt, Phys. Rev. 105 (1957) 647
- Pe 57a Peker, Gustova, and Chubinskii, Izvest. Akad. Nauk, Ser. Fiz. 21 (1957) 1013
- Pe 59 Penfold and Garwin, Phys. Rev. 114 (1959) 1139
- Pe 59a Persson and Johansson, Nuclear Physics 12 (1959) 432
- Pe 59b Petersen, Ehlers, Ewbank, Marino, and Shugart, Phys. Rev. 116 (1959) 734
- Pe 60 Peterson, Bratenahl, and Steering, Phys. Rev. 120 (1960) 521
- Pe 61 Pellegrini, Nuclear Physics 24 (1961) 372

- Ph 53 Phipps and Zaffarano, Report Iowa State College (1953) 443
- Pi 55 Pieper, Stanford, and Von Herrmann, Phys. Rev. 98 (1955) 1185(A)
- Pi 57 Pixley, Hester, and Lamb, Bull. Amer. Phys. Soc. 2 (1957) 377
- Pi 60 Piraino, Paris, and Buechner, Phys. Rev. 119 (1960) 732
- Pl 40 Plain, Herb, Hudson, and Warren, Phys. Rev. 57 (1940) 187
- Pl 60 Ploughe, Bleuler, and Tendam, Bull. Amer. Phys. Soc. 5 (1960) 247
- Pl 61 Ploughe, Bleuler, and Tendam, Phys. Rev. 124 (1961) 818
- Po 37 Pollard and Brasefield, Phys. Rev. 51 (1937) 8
- Po 49a Pontecorvo, Kirkwood, and Hanna, Phys. Rev. 75 (1949) 982(L)
- Po 52b Pool, Physica 18 (1952) 1304
- Po 53 Pool and Kundu, Phys. Rev. 91 (1953) 462(A)
- Po 56 Pohm, Waddell, and Jensen, Phys. Rev. 101 (1956) 1315
- Po 57 Porter, Wagner, and Freedman, Phys. Rev. 107 (1957) 135
- Po 59 Poularikas and Fink, Phys. Rev. 115 (1959) 989
- Po 59a Poelz and Schmidt-Rohr, Physikalisch Verhandlungen 10 (1959) 78
- Po 61 Pollehn and Neuert, Z. Naturf. 16a (1961) 227
- Po 61a Pope, Freck, and Evans, Nuclear Physics 24 (1961) 657
- Po 61b Popov and Shapiro, Zh. Eksp. Teor. Fiz. 40 (1961) 1610; JETP 13 (1961) 1132
- Pr 50 Pringle, Standil, and Roulston, Phys. Rev. 77 (1950) 841(L)
- Pr 56 Prosser, Baumann, Brice, Read, and Krone, Phys. Rev. 104 (1956) 369
- Pr 58 Preston and Hanna, Phys. Rev. 110 (1958) 1406
- Pr 58a Preston, Schiner, Lee, and Rosenzweig, Bull. Amer. Phys. Soc. 3 (1958) 380
- Pr 60 Prosser and Sellers, Bull. Amer. Phys. Soc. 5 (1960) 108
- Pr 60a Prêtre, Brugger, and Steiger, Helv. Phys. Acta 33 (1960) 583(A)
- Fr 61 Prosser, Neher, and Krone, Bull. Amer. Phys. Soc. 6 (1961) 250
- Pr 61a Presperin and Kulchitsky, Zh. Eksp. Teor. Fiz. 41 (1961) 60
- Qu 56 Quinton and Doyle, Phys. Rev. 101 (1956) 669
- Ra 49 Rae, Phil. Mag. 40 (1949) 1155
- Ra 55 Rayburn, Lafferty, and Hahn, Phys. Rev. 98 (1955) 701
- Ra 55a Ramanna, Veeraraghavan, and Iyengar, Nuovo Cimento 1 (1955) 623
- Ra 56 Raz and French, Bull. Amer. Phys. Soc. 1 (1956) 223
- Ra 56a Raz, Bull. Amer. Phys. Soc. 1 (1956) 336
- Ra 57 Rakavy, Nuclear Physics 4 (1957) 375
- Ra 58 Ranken, Bonner, Castillo-Bahena, Harlow, and Rabson, Phys. Rev. 112 (1958) 239
- Ra 59a Rasmussen, Metzger, and Swann, Nuclear Physics 13 (1959) 95
- Ra 60 Rabson, Bonner, Castillo-Bahena, Harlow, Haenni, and Ranken, Nuclear Physics 19 (1960) 314
- Ra 61a Rasmussen, Metzger, and Swann, Phys. Rev. 123 (1961) 1386
- Re 52 Reilley, Allen, Arthur, Bender, Ely, and Hausman, Phys. Rev. 86 (1952) 857
- Re 52a Reuterswärd, Arkiv. f. Fysik 4 (1952) 203
- Re 54 Recksiedler and Hamermesh, Phys. Rev. 96 (1954) 109
- Re 55 Renard, J. Phys. Rad. 16 (1955) 575
- Re 56 Reynolds and Standing, Phys. Rev. 101 (1956) 158
- Re 56a Reuterswärd, Arkiv. f. Fysik 11 (1956) 1
- Re 56b Read and Krone, Phys. Rev. 104 (1956) 1018
- Re 57 Renard, J. Phys. Rad. 18 (1957) 681
- Rh 50 Rhoderick, Proc. Royal Soc. A 201 (1950) 348
- Ri 37 Ridenour and Henderson, Phys. Rev. 52 (1937) 889
- Ri 41 Piezler, Phys. Z. 45 (1944) 191
- Ri 50 Richards, Smith, and Browne, Phys. Rev. 80 (1950) 524
- Ri 51 Ricamo, Nuovo Cimento 8 (1951) 383
- Ri 55 Ring, Phys. Rev. 99 (1955) 137
- Ri 58 Ridley, Nuclear Physics 6 (1958) 34
- Ri 58b Rightmire, Kohman, and Hintenberger, Z. Naturf. 13a (1958) 847

- Ri 59 Rightmire, Simanton, and Kohman, Phys. Rev. 113 (1959) 1069
- Risti and Grotdal, Univ. i. Bergen Årbok Naturvitenskapelig Rekke No. 14 (1958) **Ri 59**a
- Ri 60 Ricamo, Helv. Phys. Acta 33 (1960) 997(A)
- Roderick, Lönsjo, and Meyerhof, Phys. Rev. 97 (1955) 97 Ro 55
- Ro 55a Rothman, Hans, and Mandeville, Phys. Rev. 100 (1955) 83
- Ro 57 Robinson, Purdue University, Nuclear Physics Progress Report AECU-3515 (1957)
- Ro 58a Rossel and Weber, Helv. Phys. Acta 31 (1958) 727
- Ro 59 Robert, Annales de Physique 4 (1959) 89
- Ro 60 Robbins and Greenlees, Phys. Rev. 118 (1960) 803
- **Ro** 60a Robinson and Johnson, Phys. Rev. 120 (1960) 1321
- Ro 60b Rost and Austern, Phys. Rev. 120 (1960) 1375
- Ro 60c Romanov, Zh. Eksp. Teor. Fiz. 39 (1960) 1540; JETP 12 (1961) 1072
- Ro 60d Robinson and Fink, Revs. Mod. Phys. 32 (1960) 117
- Ro 61 Robinson and Johnson, Phys. Rev. 123 (1961) 1349
- Robinson, Rhode, and Johnson, Phys. Rev. 122 (1961) 879 **Ro** 61a
- Robinson, Lucas, and Johnson, Phys. Rev. 122 (1961) 202 Ro 61b
- Rosen, Brolley, and Stewart, Phys. Rev. 121 (1961) 1423 Ro 61c
- Ro 61d Rost, Austern, and Satchler, Bull. Amer. Phys. Soc. 6 (1961) 249
- Rowe, Clegg, Salmon, and Newton, Proc. Rutherford Jubilee Conf., Manchester (1961) Ro 6le
- Ru 51 Ruby and Richardson, Phys. Rev. 83 (1951) 698
- Ru 52 Rudstam, Stevenson, and Folger, Phys. Rev. 87 (1952) 358
- Ru 53 Rutherglen and Smith, Proc. Phys. Soc. A 66 (1953) 800
- Ru 54 Rutherglen, Grant, Flack, and Deuchars, Proc. Phys. Soc. A 67 (1954) 101
- Ru 54a Russel, Taylor, and Cooper, Phys. Rev. 95 (1954) 99
- Ru 54b Rubinson and Howland, Phys. Rev. 96 (1954) 1610
- Ru 55b Rubenstein and Snyder, Phys. Rev. 99 (1955) 189
- Ru 56 Rubin, Ajzenberg-Selove, and Mark, Phys. Rev. 104 (1956) 727
- Ru 56a Rudstam, Thesis, Univ. of Uppsala (1956)
- Ru 56b Rub(a, Johnson, and Reynolds, Phys. Rev. 104 (1956) 1444
- Rubin, Phys. Rev. 108 (1957) 62 Ru 57
- Ru 58 Russel, Bull. Amer. Phys. Soc. 3 (1958) 61
- Rubin, Bailey, and Passel, Phys. Rev. 114 (1959) 1110 Ru 59
- Rytz, Staub, Winkler, and Zych, Proc. Rutherford Jubilee Conf., Manchester (1961) Rv 61
- Sagane, Phys. Rev. 50 (1936) 1141 Sa 36
- Sawyer and Wiedenbeck, Phys. Rev. 76 (1949) 1535(L) Sa 49a
- Sailor, Phys. Rev. 77 (1950) 794 Sa 50
- Sawyer and Wiedenbeck, Phys. Rev. 79 (1950) 490 Sa 50a
- Sargent, Yaffe, and Gray, Canadian J. Phy 31 (1953) 235 Sa 53
- Sa 56 Saraf, Phys. Rev. 102 (1956) 466
- Sawicki, Physica 22 (1956) 1180(A) Sa 56a
- Sawicki and Satchler, Nuclear Physics 7 (1958) 289 Sa 58
- Sawicki, Nuclear Physics 7 (1958) 503 Sa 58a
- Satchler and Tobocman, Phys. Rev. 118 (1960) 1566 Sa 60
- Saladin and Marmier, Helv. Phys. Acta 33 (1960) 299 Sa 60a
- Santos-Ocampo and Conway, Phys. Rev. 120 (1960) 2196 Sa 60b
- Saha and Gupta, Proc. Nat. Inst. Sci. India A 26 (1960) 486 Sa 60c
- Sadeb, Phys. Rev. 123 (1961) 855 Sa 61
- Saudinos, Beurty, Catillon, Chaminade, Crut, Faraggi, Papineau, and Thirion, Comptes Sa 61a Rendus 252 (1961) 260
- Schelberg, Sampson, and Mitchell, Rev. Sci. Instr. 19 (1948) 458 Sc 48
- Schelberg, Sampson, and Cochran, Phys. Rev. 80 (1950) 574 Sc 50
- Schrank and Richardson, Phys. Rev. 86 (1952) 248(L) Sc 52
- Schoenfeld, Duborg, Preston, and Goodman, Phys. Rev. 85 (1952) 873 Sc 52a
- Scharff-Goldhaler and McKeown, Phys. Rev. 95 (1954) 613(A)
- Sc 54 Schwartz and De-Shalit, Phys. Rev. 94 (1954) 1257 Sc 54a

- Sc 54b Schneider, Martin, Sempert, and Sutter. Helv. Phys. Acta 27 (1954) 172(A)
- Sc 54c Schwartz, Phys. Rev. 94 (1954) 95
- Sc 54d Scherrer, Allison, and Faust, Phys. Rev. 96 (1954) 386
- Sc 55 Schiffer, Phys. Rev. 97 (1954) 428
- Sc 56 Schwarzschild, Rustad, and Wu, Phys. Rev. 103 (1956) 1796
- Sc 56a Scott and Segel, Phys. Rev. 162 (1956) 1557
- Sc 56b Schwartz, Corbett, and Watson, Phys. Rev. 101 (1956) 1370
- Sc 56c Schiffer, Gossett, Philips, and Young, Phys. Rev. 103 (1956) 134
- Sc 57 Schopper, Phil. Mag. 2 (1957) 710
- Sc 58 Schmitt, Bill. Amer. Phys. Soc. 3 (1958) 37
- Sc 58a Schiffer and Lee, Phys. Rev. 109 (1958) 2098
- Sc 58b Schweizer, Phys. Rev. 110 (1958) 1414
- Sc 59a Schrank and Warburton, Bull. Amer. Phys. Soc. 4 (1959) 220
- Sc 59c Schweizer and Richardson, Bull. Amer. Phys. Soc. 4 (1959) 459, and private communication
- Sc 61 Schmitt and Halperin, Phys. Rev. 121 (1961) 827
- Sc 61a Scott, Nuclear Physics 27 (1961) 490
- Sc 61b Schardt, Phys. Rev. 122 (1961) 1871
- Sc 61c Schlenker, Thesis, Iowa State Univ. (1961)
- Se 49 Seidlitz, Bleuler, and Tendam, Phys. Rev. 76 (1949) 861(L)
- Se 53 Seed, Phil. Mag. 44 (1953) 921(L)
- Se 54 Sehr, Z. Physik **137** (1954) 523
- Se 55 Seiler, Cooper, and Harris, Phys. Rev. 99 (1955) 340(A)
- Se 56 Selove, Phys. Rev. 101 (1956) 231
- Se 56a Severiens and Hanna, Phys. Rev. 104 (1956) 1612
- Se 58a Seidlitz, Bleuler, and Tendam, Phys. Rev. 110 (1958) 682
- Se 58b Seliger, Mann, and Cavallo, J. Research Nat. Bur. Standards 60 (1958) 447
- Se 59 Segel, Phys. Rev. 113 (1959) 844
- Se 59a Seward, Phys. Rev. 11 (1959) 514
- Se 60 Seward, Koch, Shafer, and Fultz, Bull. Amer. Phys. Soc. 5 (1960) 68
- Se 60a Seagondollar, Harris, and Rangan, Phys. Rev. 120 (1960) 251
- Se 61 Sevcik (Univ. of Michigan, Ann Arbor), private communication (1961)
- Sh 40 Sherr, Phys. Rev. 57 (1940) 937(L)
- Sh 49 Shull and Feenberg, Phys. Rev. 75 (1949) 1768(L)
- Sh 51 Shoemaker, Faulkner, Bouricius, Kaufmann and Mocring, Phys. Rev. 83 (1951) 1011
- Sh 51a Sher, Halpern, and Mann, Phys. Rev. 84 (1951) 387
- Sh 51b Sheline, Phys. Rev. 82 (1951) 954(L)
- Sh 51c Sheline, Holtzmark, and Fan, Phys. Rev. 83 (1951) 919
- Sh 54 Shapiro, Phys. Rev. 93 (1954) 290
- Sh 54b Sherr and Miller, Phys. Rev. 93 (1954) 1076
- Sh 54c Sherr. Li, and Christy, Phys. Rev. 96 (1954) 1258
- Sh 54d Sheline, Johnson, Bell, Davis, and McGowan, Phys. Rev. 94 (1954) 1642
- Sh 56 Shaw, Conzett, Slobodrian, and Summers-Gill, Bull. Amer. Phys. Soc. 1 (1955) 253
- Sh 56a Sheline, Nuclear Physics 2 (1956) 382
- Sh 57b Shimanskaia, Zh. Eksp. Teor. Fiz. 31 (1956) 393; JETP 4 (1957) 355
- Sh 58 Shafroth, Strait, and Levesque, Bull. Amer. Phys. Soc. 3 (1958) 37
- Sh 58a Shute and Fisher, Phil. Mag. 3 (1958) 726
- Sh 58c Sharp, Friedman, and Chase, Bull. Amer. Phys. Soc. 3 (1958) 419
- Sh 59 Shook, Phys. Rev. 114 (1959) 310
- Sh 59a Sharp, Chase, and Friedman, Bull. Amer. Phys. Soc. 4 (1959) 366
- Sh 59b Shipley, Owen, and Madansky, Phys. Rev. 115 (1959) 122
- Sh 19c Sh line, Nielsen, and Sperduto, Nuclear Physics 14 (1959) 140
- Sh 60 She'ine and Wildermuth, Nuclear Physics 21 (1960) 196
- Sh 61 Sharo, Chase, Warburton, and Friedman, Bull. Amer. Phys. Soc. 6 (1961) 46
- Sh 61a Sheline and Harlan, Bull. Amer. Phys. Soc. 6 (1961) 249
- Sh 61b Shoda, Kobayashi, Siina, Abe, and Kimura, J. Phys. Soc. Japan 16 (1961) 1031

- Si 36 Sizoo and Koene, Physica 3 (1936) 1053
- Si 46 Siegbahn, Phys. Rev. 70 (1946) 127
- Si 47 Siegbahn, Arkiv Mat. Astron. Fysik 34B (1947) No. 4
- Si 47a Siegbahn and Johansson, Arkiv Mat. Astron. Fysik 34A (1947) No. 10
- Si 50 Siegbahn and Du Toit, Arkiv f. Fysik 2 (1950) 211(A)
- Si 51 Sinclair and Holloway, Nature 167 (1951) 365(L)
- Si 52 Siegbahn, Arkiv f. Fysik 4 (1952) 223
- Si 54 Simanton, Rightmire, Long, and Kohman, Phys. Rev. 96 (1954) 1711(L)
- Si 57 Sinclair, Phys. Rev. 107 (1957) 1306
- Si 59 Singh, Davis, and Krone, Bull. Amer. Phys. Soc. 4 (1959) 17
- Si 59a Simons, Nuclear Physics 10 (1959) 215
- Si 59b Simons, Soc. Sci. Fennica Comm. Phys. Math. 23 (1959) No. 3
- Si 59c Simons, Phys. Rev. 114 (1959) 569
- Si 59d Singh, Phys. Rev. 115 (1959) 445
- Si 59e Singh, Davis, and Krone, Phys. Rev. 115 (1959) 170
- Si 59f Singh, Phys. Rev. 115 (1959) 1015
- Si 59g Singh, Dosso, and Griffiths, Canadian J. Phys. 37 (1959) 1055 (L)
- Si 61 Simms, Benczer-Koller, and Wu, Phys. Rev. 121 (1961) 1169
- Sl 52 Slätis and Siegbahn, Arkiv f. Fysik 4 (1952) 485
- Sl 59 Slaus and Alford, Phys. Rev. 114 (1959) 1054
- Sm 42 Smith, Phys. Rev. 61 (1942) 578
- Sm 51 Smith and Anderson, Nature 168 (1951) 429(L)
- Sm 54 Smith, Cooper, and Harris, Phys. Rev. 94 (1954) 749(A), and verbal report to Nuclear Data Group
- Sm 57 Smith and Breitenbecher, Bull Amer. Phys. Soc. 2 (1957) 59
- Sm 58 Smith and Endt, Phys. Rev. 110 (1958) 397
- Sm 58a Smith and Endt, Phys. Rev. 110 (1958) 1442
- Sm 59 Smith, Proc. of the Paris Conf., p. 655 (Dunod, Paris, 1959)
- Sm 60 Smith and Kuperus, Physica 26 (1960) 631(L)
- Sm 60a Smulders, Smith, and Endt, Proc. of the Kingston Cenf., p. 516 (Univ. of Toronto Press, 1960)
- Sm 61 Smith and Steigert, Phys. Rev. 122 (1961) 1527
- Sm 61a Smulders (Utrecht Univ.), private communication (1961)
- Sm 61b Smith and Van Rinsvelt (Utrecht Univ.), private communication (1961)
- Sm 61c Smith, "Charged particle cross sections", Los Alamos Report LA-2424 (1961)
- Sn 55 Snell and Pleasonton, Phys. Rev. 100 (1955) 1396
- So 50 Solomon, Phys. Rev. 79 (1950) 403(L)
- So 58 Sorokin, Valter, Malakhov, and Taranov, Zh Eksp. Teor. Fiz. 35 (1958) 1386; JETP 8 (1959) 969
- So 61 Sorokin, Popov, Storizhko, and Taranov, Zh. Eksp. Teor. Fiz. 40 (1961) 1253; JETP 13 (1961) 883
- So 61a Sosnowski, Wilhelmi, and Wojtkowska, Nuclear Physics 26 (1961) 280
- Sp 52 Sperduto and Buechner, Phys. Rev. 88 (1952) 574
- Sp 55a Spicer, Phys. Rev. 100 (1955) 791
- Sp 58 Sperduto and Buechner, Phys. Rev. 109 (1958) 462
- Sp 60 Springer and Wiedemann, Z. Naturí. 15a (1960) 828
- Sp 60a Spivak and Mikaélyan, Zh. Eksp. Teor. Fiz. 39 (1960) 574; JETP 12 (1961) 404
- Sp 61 Spivak, Mikaélyan, Kutikov, and Apalin, Nuclear Physics 23 (1961) 169
- Sr 51 Sreb, Phys. Rev. 81 (1951) 469(L)
- St 50 Steffen, Phys. Rev. 80 (1950) 115(L)
- St 51 Strait, Van Patter, Buechner, and Sperduto, Phys. Rev. 81 (1951) 747
- St 51a Stevenson and Deutsch, Phys. Rev. 83 (1951) 1202
- St 51b Stevenson and Deutsch, Phys. Rev. 84 (1951) 1071(L)
- St 52 Stoddart and Gove, Phys. Rev. 87 (1952) 262
- St 52a Stelson and Preston, Phys. Rev. 86 (1952) 807(L)
- St 53 Stähelin and Preiswerk, Nuovo Cimento 10 (1953) 1219

- St 53a Stähelin, Phys. Rev. 92 (1953) 1076(L)
- St 53b Stähelin, Helv. Phys. Acta 26 (1953) 691
- St 54 Stelson and Preston, Phys. Rev. 95 (1954) 974
- St 54a Stelson, Phys. Rev. 96 (1954) 1584
- St 55 Starfelt and Svantesson, Phys. Rev. 97 (1955) 708
- St 56 Stribel, Z. Naturf. 11a (1956) 166(L)
- St 56a Stribel, Z. Naturf. 11a (1956) 254(L)
- St 56b Stanford and Pieper, Phys. Rev. 103 (1956) 637
- St 58a Steffen, Purdue University, Nuclear Physics Progress Report AECU-3696 (1958)
- St 58b Strominger, Hollander, and Seaborg, Revs. Mod. Phys. 30 (1958) 585
- St 59 Stuart, Anderson, Gardner, McClure, Nakada, and Wong, Bull. Amer. Phys. Soc. 4 (1959) 257
- St 59a Steffen, Phys. Rev. Lett. 3 (1959) 277
- St 59b Steffen, Phys. Rev. 115 (1959) 980
- St 59c St. Pierre, Machwe, and Lorrain, Phys. Rev. 115 (1959) 999
- St 59d Storey and McNeill, Canadian J. Phys. 37 (1959) 1072(L)
- St 60 Stelson and McGowan, Bull. Amer. Phys. Soc. 5 (1960) 76
- St 60a Storey, Jack, and Ward, Proc. Phys. Soc. 75 (1960) 526
- St 61a Steffen, Phys. Rev. 123 (1961) 1787
- St 61b Storev and Oleksiuk, Canadian J. Phys. 39 (1961) 917
- Su 53 Summers-Gill, Haslam, and Katz, Canadian J. Phys. 31 (1953) 70
- Su 55 Suttle and Libby, Anal. Chem. 27 (1955) 921
- Su 58 Sun and Wright, Phys. Rev. 109 (1958) 109
- Su 59 Suzor and Charpak, J. Phys. Rad. 20 (1959) 25
- Su 59a Sukharevskii, Zh. Eksp. Teor. Fiz. 36 (1959) 1377; JETP 9 (1959) 981
- Su 59b Sukharevskii, Zh. Eksp. Teor. Fiz. 36 (1959) 52; JETP 9 (1959) 37
- Su 60 Sukharevskii, Zh. Eksp. Teor. Fiz. 38 (1960) 219; JETP 11 (1960) 159
- Su 60b Sugiyama, Tohei, Sugawara, Dazai, and Kanda, J. Phys. Soc. Japan 15 (1960) 1909
- Su 60c Suffert, Endt, and Hoogenboom, Physica 25 (1960) 659
- Su 61 Subba Rao, Nuovo Cimento 20 (1961) 178
- Sw 50 Swann, Mandeville, and Whitehead. Phys. Rev. 79 (1950) 598
- Sw 52 Swann and Mandeville, Phys. Rev. 87 (1952) 215(A)
- Sw 56 Swann and Porter, Bull. Amer. Phys. Soc. 1 (1956) 29
- Sw 61 Swenson and Cindro, Phys. Rev. 123 (1961) 910
- Sz 39 Szalay, Z. Physik 112 (1939) 29
- Sz 60 Szilvasi, Geiger, and Dixon, J. Nuclear Energy 11A (1960) 131
- Ta 46 Tangen, Det Kgl. Norske Videnskabers Selskabs Skrifter (1946) No.1
- Ta 53 Takemoto, Dazai, and Chiba, Phys. Rev. 91 (1953) 1024(L)
- Ta 54 Tauber and Wu, Phys. Rev. 93 (1954) 295
- Ta 54a Tauber and Wu, Phys. Rev. 94 (1954) 1307
- Ta 54b Taylor, Russell, and Cooper, Phys. Rev. 93 (1954) 1056
- Ta 57 Talmi, Phys. Rev. 107 (1957) 326(L)
- Ta 57a Talmi, Phys. Rev. 107 (1957) 1601
- Ta 58 Tai, Millburn, Kaplan, and Moyer, Phys. Rev. 109 (1958) 2086
- Ta 59 Tanner, Phys. Rev. 114 (1959) 1060
- Ta 60b Taylor, De S. Barros, Forsyth, Jaffe, and Ramavataram, Proc. Phys. Soc. 75 (1900) 772
- Ta 60c Talbert and Stewart, Phys. Rev. 119 (1960) 272
- Ta 60d Takeda, Kalo, Hu, and Takahashi, Proc. of the Kingston Conf., p. 400 (Univ. of Toronto Press, 1960)
 Ta 60e Takeda, L Phys. Soc. Japan 15 (1960) 557
- Ta 60e Takeda, J. Phys. Soc. Japan 15 (1960) 557 Ta 60t Janaka, Furukawa Mikumo Juata Nagi
- Ta 601 Fanaka, Furukawa, Mikumo, Iwata, Yagi, and Amano, J. Phys. Soc. Japan 15 (1960) 952
- Ta 61 Ta.:etani and Alford, Bull. Amer. Phys. Soc. 6 (1961) 38
- Ta 61a Tay.or and Wood, Nuclear Physics 25 (1961) 642
- Ta 61b Tanner, Thomas, and Earle, Proc. Rutherford Jubilee Conf., Manchester (1961)

- Te 54 Temmer and Heydenburg, Phys. Rev. %6 (1954) 426
- Te 54a Teener, Seagondollar, and Krone, Phys. Rev. 93 (1954) 1035
- Te 56 Temmer and Heydenburg, Phys. Rev. 104 (1956) 989
- Te 56b Teplov, Zh. Eksp. Teor. Fiz. 31 (1956) 25; JETP 4 (1957) 31
- Teplov, Iurev, and Markelova, Zh. Eksp. Teor. Fiz. 32 (1957) 156; JETP 5 (1957) 156 Te 57
- Teplov and Iurev, Zh. Eksp. Teor. Fiz 33 (1957) 1313; JETP 6 (1958) 1011 Te 57a Te 58
- Temmer and Heydenburg, Phys. Rev. 111 (1958) 1303 Te 58a
- Teplov and Iurev, Zh. Eksp. Teor. Fiz. 34 (1958) 334; JETP 7 (1958) 233
- Te 61 Tejera, Mazari, Jaidar, and Lopez, Revista Mexicana de Fisica 10 (1961) 229
- Th 54 Thompson, Phys. Rev. 96 (1954) 369
- Th 56 Thieberger and Talmi, Phys. Rev. 102 (1956) 923(L)
- Th 57 Thieberger and De-Shalit, Nuclear Physics 4 (1957) 469
- Th 57a Thiry, Bull. Soc. Roy. Sci. Liège 26 (1957) 29
- Thornton, Meads, and Collie, Phys. Rev. 109 (1958) 480 Th 58
- Th 58b Thornson, Cranberg, and Levin, Bull. Amer. Phys. Soc. 3 (1958) 365
- Thomas and Tanner, Proc. Phys. Soc. 75 (1960) 498 Th 60
- Thankappan and Pandya, Nuclear Physics 19 (1960) 303 Th 60a
- Ticho, Phys. Rev. 84 (1951) 847(L) Ti 51
- Ti 59 Tilley and Madansky, Phys. Rev. 116 (1959) 413
- Ti 61 Tickle and Hecht, Bull. Amer. Phys. Soc. 6 (1961) 259, and private communication
- To 51 Toms and Stephans, Phys. Rev. 82 (1951) 709
- To 52 Toops, Sampson, and Steigert, Phys. Rev 85 (1952) 280
- Toppel and Bloom, Phys. Rev. 91 (1953) 473(A) To 53
- To 55a Toller, Newson, and Merzbacher, Phys, Rev. 99 (1955) 1625(A)
- To 55b Tomnovec and Cook, Phys. Rev. 100 (1955) 1254(A)
- To 55c Tobailern, J. Phys. Rad. 16 (1955) 48
- To 57 Towle, Berenbaum, and Matthews, Proc. Phys. Soc. A 70 (1957) 84
- To 58 Toms and McElhinney, Phys. Rev. 111 (1958) 561
- To 59 Torki, Proc. of the Paris Couf., p. 557 (Dunod, Paris, 1959)
- To 59a Tobocman, Phys. Rev. 113 (1959) 98
- To 60 Tobin, Phys. Rev. 120 (1960) 175
- To 60a Tohei, J. Phys. Soc. Japan 15 (1960) 372
- Tr 56 Trumpy and Graue, Physica 22 (1956) 1155(A)
- Trumpy, Nuclear Physics 2 (1957) 664 Tr 57
- Tsytko and Antufev, Zh. Eksp. Teor. Fiz. 30 (1956) 1171; JETP 3 (1957) 993 Ts 56
- Turner and Cavanagh, Phil. Mag. 42 (1951) 636 Tu 51
- Tu 53 Turner, Australian J. Phys. 6 (1953) 380
- Turkevich and Samuels, Phys. Rev. 94 (1954) 364 Tu 54
- Tutakin, Tsytko, Lvov, Valter, and Gonchar, Atomnava Energiya 3 (1957) 336; Tu 57 J. Nuclear Energy 8 (1958) 253
- Tyrén and Tove, Phys. Rev. 96 (1954) 773 Ty 54
- Tyrén and Maris, Nuclear Physics 6 (1958) 446 Tv 58
- Uhlmann, Frauenfelder, Lipkin, and Rossi, Phys. Rev. 122 (1961) 536 UI 61
- Urbanec, Kopecký, and Kajfosz, Czechoslov. J. Pays. 9 (1959) 544 Ur 59
- Van Patter and Buechner, Phys. Rev. 87 (1952) -1 Va 52
- Van Patter, Sperduto, Endt, Buechner, and Enge, Phys. Rev. 85 (1952) 142(L) Va 52a
- Van Patter, Endt, Sperduto, and Buechner, Phys. Rev. 86 (1952) 502 Va 52b
- Van Loef (Univ. of Wisconsin, Madison), private communication (1953) Va 53
- Van Patter, Swann, Porter, and Mandeville, Phys. Rev. 103 (1956) 656 Va 56
- Varma, Proc. Phys. Soc. A 69 (1956) 641(L) Va 56b
- Van der Leun, Endt, Kluyver, and Vrenken, Physica 22 (1956) 1223 Va 56d
- Van Heerden and Prowse, Phil. Mag. 1 (1956) 967(L) Va 56e
- Van Patter, Rothman, Porter, and Mandeville, Phys. Rev. 107 (1957) 171 Va 57a
- Van Lieshout and Hayward (I.K.O., Amsterdam), private communication (1957) Va 57b

- Va 57d Van Patter, Porter, and Rothman, Phys. Rev. 106 (1957) 1016
- Va 58 Varma and Jack, Proc. Phys. Soc. 71 (1958) 100
- Va 58a Van der Leun and Endt, Phys. Rev. 110 (1958) 96
- Va 58d Van der Leun, Thesis, Univ. of Utrecht (1958)
- Va 58e Van der Leun and Endt, Physica 24 (1958) 1095
- Va 581 Vasilev and Shavtvalov, Izvest. Akad. Nauk, Ser. Fiz. 22 (1958) 788
- Va 58g Valter, Malakhov, Sorokin, and Taranov, Izvest. Akad. Nauk, Ser. Fiz. 22 (1958) 871
- Va 59 Vashakidze, Kopaleishvili, and Chilashvili, Zh. Eksp. Teor. Fiz. 37 (1959) 750; JETP 10 (1960) 535
- Va 59a Valter, Goncharov, Lvov, and Tsytko, Izvest. Akad. Nauk, Ser. Fiz. 23 (1959) 835
- Va 59b Valter, Malakhov, Sorokin, and Taranov, Izvest. Akad. Nauk, Ser. Fiz. 23 (1959) 846 Va 60 Van Oostrum, Thesis, Delft (1960)
- Va 60a Vanhuyse and Vanpraet, J. Phys. Rad. 21 (1960) 290
- Va 60c Vaughn, Imhof, Johnson, and Walt, Phys. Rev. 118 (1960) 683
- Va 60d Valter, Deineko, Sorokin, and Taranov, Izvest. Akad. Nauk, Ser. Fiz. 24 (1960) 884
- Va 60e Valter, Antufev, Gonchar, Lvov, Kopanets, and Tsytko, Izvest. Akad. Nauk, Ser. Fiz. 24 (1960) 891
- Va 60f Vasilev and Shavtvalov, Zh. Eksp. Teor. Fiz. 39 (1960) 1221; JETP 12 (1961) 851
- Va 61 Van Oostrum, Hazewindus, Wapstra, Olness, and Parker, Nuclear Physics 25 (1961) 409
- Va 61a Vasilev, Romanovskii, and Timushev, Zh. Eksp. Teor. Fiz. 40 (1961) 972(L); JETP 13 (1961) 678(L)
- Va 61c Valerio, Thesis, Iowa State Univ. (1961)
- Va 61d Valter, Tsytko, Antufev, Kopanets, and Lvov, Izvest. Akad. Nauk, Ser. Fiz. 25 (1961) 854
- Ve 56 Ve gors and Axel, Phys. Rev. 101 (1956) 1967
- Ve / Ja Vegors and Duffield, Bull. Amer. Phys. Soc. 1 (1956) 206
- Ve 57 Vertinski, Hurlimann, Stephens, and Winhold, Phys. Rev. 108 (1957) 779
- Ve 59 Vervier, Nuclear Physics 9 (1959) 569
- Ve 60a Velyukhov, Prokofev, and Starodubtsev, Zh. Eksp. Teor. Fiz. 39 (1960) 563; JETP 12 (1961) 395
- Ve 61 Vervier, Nuclear Physics 26 (1961) 10
- Vl 59 Vlasov, Kalinin, Ogloblin, and Chuev, Zh. Eksp. Teor. Fiz. 37 (1959) 1187; JETP 10 (1960) 844
- VI 60 Vlasov, Kalinin, Ogloblin, and Chuev, Zh. Eksp. Teor. Fiz. 39 (1950) 1468(L); JETP 12 (1961) 1020(L)
- VI 61 Viasov, Kalinin, Ogloblin, and Chuev, Izvest. Akad. Nauk, Ser. Fiz. 25 (1961) 115
- Vo 57a Von Herrmann and Pieper, Phys. Rev. 105 (1957) 1556
- Vo 58 V gelsang and McGruer, Phys. Rev. 109 (1958) 1663
- Vo 59 Voshage and Hintenberger, Z. Naturf. 14a (1959) 194 (L)
- Vo 59a Vorona, Olness, Haeberli, and Lewis, Phys. Rev. 116 (1959) 1563
- Vo 60 Vogt and McManus, Phys. Rev. Lett. 4 (1960) 518
- Wa 37 Walke, Phys. Rev. 52 (1937) 663(L)
- Wa 39 Watase and Itoh, Proc. Phys. Math. Soc. Japan 21 (1939) 626
- Wa 41 Watase, Proc. Phys. Math. Soc. Japan 23 (1941) 618
- Wa 48 Wäffler and Hirzel, Helv. Phys. Acta 21 (1948) 200
- Wa 50 Warshaw, Chen, and Appleton, Phys. Rev. 80 (1950) 288(L)
- Wa 52 Wapstra, Phys. Rev. 86 (1952) 561(L), and Arkiv f. Fysik 6 (1953) 263
- Wa 53 Warstra and Veenendaal, Phys. Rev. 91 (1953) 426(L)
- Wa 1 Wall, Phys. Rev. 96 (1954) 664
- Wa 56 Wäffler and Heinrich, Physica 22 (1956) 1146(A)
- Wa 56a Wetters, Phys. Rev. 103 (1956) 1763
- Wa 57 Wa.dorf and Wall, Phys. Rev. 107 (1957) 1602
- Wa 57a Wade, Conzett, and Gonzalez-Vidal, Bull. Amer. Phys. Soc. 2 (1957) 386
- Wa 59 Warner and Alford, Phys. Rev. 114 (1959) 1338
- Wa 59a Wagner and Heitzmann, Z. Naturf. 14a (1959) 784

- Wa 60 Wagner and Heitzmann, Z. Naturf. 15a (1960) 74
- Wa 60a Wallace and Welch, Phys. Rev. 117 (1960) 1297
- Wakatsuki, Hirao, Okada, and Miura, Progr. in Theor. Phys. 24 (1960) 918 Wa 60b
- Wa 60c Wakatsuki, Hirao, Okada, Miura, Sugimoto, and Mizobuchi, J. Phys. Soc. Japan 15 (1960) 1141
- Wa 60d Wakatsuki, Hirao, Okada, and Miura, Proc. of the Kingston Conf., p. 971 (Univ. of Toronto Press, 1960)
- Weimer, Kurbatov, and Pool, Phys. Rev. 66 (1944) 209 We 44
- Wennerblom, Zimen, and Ehn, Svensk. Kem. Tid. 63 (1951) 207 We 51
- Westermark, Phys. Rev. 88 (1952) 573 We 52
- Weinzierl, Z. Naturf. 9a (1954) 69 We 54
- Wetherill, Wasserburg, Aldrich, Tilton, and Hayden, Phys. Rev. 103 (2017) 987 We 56
- We 56a Weddell, Phys. Rev. 104 (1956) 1069
- We 57 Wetherill, Science 126 (1957) 545
- Wh 39 White, Delsasso, Fox, and Creutz, Phys. Rev. 56 (1939) 512
- Wh 41 White, Creutz, Delsasso, and Wilson, Phys. Rev. 59 (1941) 63
- Wh 60 White and Buechner, Phys. Rev. 118 (1960) 1331
- Wh 60a White, Phys. Rev. 119 (1960) 767
- Wilkins, Phys. Rev. 60 (1941) 365 Wi 41
- Wi 4la Witcher, Phys. Rev. 60 (1941) 32
- Wilson and Bishop, Proc. Phys. Soc. A 62 (1949) 457(L) Wi 49
- Wi 51 Wilkinson and Carver, Phys. Rev. 83 (1951) 466(L)
- Willard, Bair, Cohn, and Kingston, Bull. Amer. Phys. Soc. 1 (1956) 264 Wi 56
- Wi 56a Wilkinson, Phil. Mag. 1 (1956) 1031
- Wi 57 Williamson and Burton, Bull. Amer. Phys. Soc. 2 (1957) 182
- Wi 57a Winterberg, Z. Naturf. 12a (1957) 271
- Williamson, Hudspeth, Morgan, and Moore, Phys. Rev. 110 (1958) 139 Wi 58
- Williamson, Katman, and Burton, Phys. Rev. 117 (1960) 1325 Wi 60
- Wi 61 Wilenzick, Mitchell, Seth, and Lewis, Phys. Rev. 121 (1961) 1150
- Wo 50 Worth, Phys. Rev. 78 (1950) 378
- Wo 54 Wong, Phys. Rev. 95 (1954) 761
- Wolfsberg, Phys. Rev. 96 (1954) 1712(L) Wo 54a
- Wo 56 Wolf, Phil. Mag. 1 (1956) 102(L)
- Wo 60 Wolf, Nukleonik 2 (1960) 255
- Wright, Phys. Rev. 90 (1953) 159(L) Wr 53
- Wright, Wyatt, Reynolds, Lyon, and Handley, Nuclear Sci. and Eng. 2 (1957) 427 Wr 57
- Wu, Townes, and Feldman, Phys. Rev. 76 (1949) 692(L) Wu 49
- Wu, Revs. Mod. Phys. 22 (1950) 386 Wu 50
- Yaffe and Brown, Phys. Rev. 82 (1951) 332(A) Ya 51
- Yamabe, J. Phys. Soc. Japan 13 (1958) 237 Ya 58
- Yamabe, Yamazaki, and Toi, J. Phys. Soc. Japan 13 (1958) 777 Ya 58a
- Yavin and Farwell, Nuclear Physics 12 (1959) 1 Ya 59
- Yamamoto and Steigert, Phys. Rev. 117 (1960) 535 Ya 60
- Yamabe, Kondo, Kato, Yamazaki, and Ruan, J. Phys. Soc. Japan 15 (1960) 2154 Ya 60a
- Yamaguchi, Nonaka, Mikumo, Hitaka, Umeda, and Tabata (Tokyo Univ.), as quoted Ya 60b in Nuclear Sci. Abstr. 15 (1961) 1545
- Yamamoto and Steigert, Phys. Rev 121 (1961) 600 Ya 61
- Yergin, Phys. Rev. 104 (1956) 1340 Ye 56
- Yntema, Zeidman, and Raz, Phys. Rev. 117 (1980) 801 Yn 60
- Yoshiki, Phys. Rev. 117 (1960) 773 Yo 60
- Yuasa, Proc. of the Paris Conf., p. 571 (Dunod, Paris, 1959) Yu 59
- Zatzick and Eubark, Bull. Amer. Phys. Soc. 4 (1959) 141 Za 59
- Zaika and Nemets, Izvest. Akad. Nauk, Ser. Fiz. 23 (1959) 1460 Za 59a

- Zaika, Nemets, and Prokopenko, Zh. Eksp. Teor. Fiz. 38 (1960) 287(L); JETP 11 Za 60 (1960) 208; Izvest. Akad. Nauk, Ser. Fiz. 24 (1960) 872
- Za 61 Zatzick and Maxson, Bull. Amer. Phys. Soc. 6 (1961) 237
- Zeldes, Ketelle, Brosi. Fultz, and Hibbs, Phys. Rev. 86 (1952) 811(L) Ze 52
- Zi 60
- Ziegler, Nucleas Physics 17 (1960) 238 Zimmerman and Moe, Bull. Amer. Phys. Soc. 6 (1961) 47 Zi 61
- Zu 50 Zucker and Watson, Phys. Rev. 80 (1950) 966
- 324