
Useful Cycles in Probabilistic Roadmap

Graphs

Dennis Nieuwenhuisen Mark H. Overmars

institute of information and computing sciences, utrecht university

technical report UU-CS-2004-064

www.cs.uu.nl

Useful Cycles in Probabilistic Roadmap Graphs

Dennis Nieuwenhuisen Mark H. Overmars

December 2004

Abstract

Over the last decade, the probabilistic road map method (prm) has become one of the
dominant motion planning techniques. Due to its random nature, the resulting paths tend
to be much longer than the optimal path despite the development of numerous smoothing
techniques. Also, the path length varies a lot every time the algorithm is executed. In this
paper we present a new technique that results in higher quality (shorter) paths with much
less variation between the executions. The technique is based on adding useful cycles to
the roadmap graph.

1 Introduction

Automated motion planning has become important in various fields. Originally the problem
was mainly studied in robotics, but in the past few years many new applications arose in fields
such as animation, computer games, virtual environments, maintenance planning and training
in industrial CAD systems. Such applications put new demands on the motion planner.

Over the years, many different approaches to solving motion planning problems have been
suggested. See Latombe [18] and the proceedings of the yearly IEEE International Conference
on Robotics and Automation (ICRA) or the Workshop on Foundations of Robotics (WAFR).

The probabilistic roadmap planner (prm) has become a popular technique to solve the
motion planning problem. It has been developed at different sites [3, 4, 15, 16, 20, 23]. Glob-
ally speaking, the prm approach samples the configuration space for collision-free positions.
These are added as vertices to a roadmap graph. Pairs of promising vertices in the graph are
chosen and a simple local planner is used to try to connect such placements with a path. This
process is repeated until the graph covers the connectedness of the space.

While over the years many techniques have been proposed to create a roadmap that covers
the configuration space as good as possible to increase the probability of finding a path, these
techniques are generally not good at finding short paths. The reason for this is that, in order
to save expensive collision checks, standard prm does not add cycles to the roadmap graph
since these do not contribute to the connectivity of the graph. In this paper we propose a new
connection strategy resulting in a graph that has the choice between alternative routes, so
that the shortest one can be selected, while still keeping the number of collision checks low.
We will prove that the path length converges to a constant times the optimal path length
if the sampling time increases. We will also show that the variation in path length of our
technique is much lower than that of traditional connection strategies.

Beside its obvious benefit for finding shorter paths, there are a number of other advantages
of adding relevant cycles to the graph. It makes the roadmap more robust to dynamic changes

1

2 THE PRM METHOD 2

in the scene (e.g. the addition of an obstacle). Also, it allows the planner to pick alternative
routes which is important to avoid repetitive motion and to help avoid collision when multiple
entities move in the same space.

1.1 Previous work

Most previous techniques use smoothing as a postprocessing step to improve the path. While
smoothing is generally good at removing artifacts from the path, it is not good at finding al-
ternative routes that differ considerably from the original one (see Fig. 1 for a trivial example).
Kim et al. [17] use an augmented version of Dijkstra’s shortest path algorithm to improve all
sorts of path optimization problems, but their approach depends on having a well connected
graph, which is expensive because of the high number of collision checks. Schmitzberger et
al. [21] propose a technique to list all homotopic solutions. But to improve path quality this
only works well in 2D since in 3D, solutions are often in the same homotopic class but are
so hard to convert into each other that smoothing fails to do so. c-prm [22] can be used to
improve all sorts of variable requirements. Since it postpones most of the collision checks to
the query phase, it is very similar to a single shot method. Our approach on the other hand
computes alternatives as part of the preprocessing, improving the query time.

1.2 Paper Structure

In Sections 2 and 3 we will explain in more detail the prm method, and show why it usually
fails to find a short path. In Section 4 we will present our new connection adding strategy
and show that it leads to shorter paths. Next, in Section 5 we will prove that our technique
always converges to the optimal path. Finally, in Section 6 we will give empirical results that
show that our technique results in shorter paths compared to traditional techniques.

2 The PRM method

Motion planning is usually performed in configuration space (C space). Every dimension in
C space corresponds to a degree of freedom of the robot. All obstacles are transformed into C

space. Together the obstacles form the forbidden space (Cfor) where the robot is not allowed
to move. The space between the obstacles is called the free space (Cfree). The robot itself
is a point in C space. The motion planning problem of a robot among a set of obstacles in
workspace is now translated to planning a (collision free) path for a point in C space. A path
is collision free if it is entirely contained in Cfree.
The probabilistic roadmap method tries to create a map that covers Cfree as good as possible.
Over the last years many techniques have been proposed, all based on the same underlying
concept.

The main loop of the prm method selects random configurations c in Cfree. These con-
figurations are the vertices V in a graph G. For every c, a set of neighbor configurations Nc

is selected. Then a local planner is used to try to connect c to each of its neighbors. If the
local planner succeeds, the connection is added to the list of edges E in G. The idea is to
keep the local planner as simple as possible, allowing for fast collision detection. Typically the
local planner checks if the straight line connection between two configurations in C space is
collision free. Practically this means that (binary) interpolation between two configurations is

3 CONNECTION STRATEGIES 3

used to check if the path is collision free. The construction of the roadmap is shown in pseudo
code in Algorithm 1.

Algorithm 1 ConstructRoadmap

Let: V ← ∅; E ← ∅;
1: loop

2: c← a (random) configuration in Cfree

3: V ← V ∪ {c}
4: Nc ← a set of neighbor vertices chosen from V

5: for all c′ ∈ Nc do

6: if the line (c, c′) is collision free then

7: add the edge (c, c′) to E

After adding a number of vertices and edges, the graphs tends to get connected and reflects
the connectivity of Cfree. Now the graph can be used to solve motion planning queries. First
the start and goal configurations are added to the graph using the local planner. Then a
simple shortest path algorithm (like Dijkstra’s algorithm) can be used to find the shortest
path between the start and goal configurations.

In order to create the graph, the local planner needs a distance measure between configu-
rations. This is not trivial since the distance does not only depend on the Euclidian distance,
but also on the amount of rotation needed to move from one configuration to another. A lot
of effort has been put in finding an appropriate distance measure (see for example [2]), but
often it is problem dependent.

Since the collision checks are by far the most expensive step in the algorithm, their number
has to be kept as low as possible. Adding an edge to a configuration already in the same
connected component does not contribute to the exploration of Cfree, so usually only edges
that connect two different connected components are allowed in G.

Many improvements that have been proposed aim at lowering the number of collision
checks, and thus lowering the creation time of the graph. Usually this is done by adapting
the sampling strategy by allowing only those configurations that contribute to exploring the
Cfree space. Examples of such improvements include [7, 8, 13, 19, 24, 12, 6, 14]. An overview
and comparison of numerous sampling and neighbor selecting strategies can be found in [11].

3 Connection strategies

While many techniques are successful in covering the Cfree space, they are often not very
good at finding short and efficient paths. This is why the query path is usually smoothed as
a postprocessing step. In its most basic form, smoothing consists of repeatedly selecting two
random configurations c and c′ on the query path and sending them to the local planner. If
the local planner succeeds, the connection between c and c′ is added to the path, and the
previous path between c and c′ is removed. This is repeated for some time.

Definition 3.1 (Homotopy). Two paths P 0 and P 1 are said to be in the same homotopic
class only if P 0 can be continuously distorted in P 1 in Cfree.

Definition 3.2 (Convertibility). If two paths are in the same homotopic class, and one can
be distorted into the other by a series of smoothing steps as described above, the path is said
to be convertible to the other.

4 ADDING CYCLES TO THE GRAPH 4

Figure 1: Even though the shortest path is in the same homotopy class as the current one,
they are impossible to convert into each other using standard smoothing.

By definition, smoothing is good at finding paths that are convertible from the current
path (like removing artifacts), but usually cannot find other paths (see Fig. 1 for an example).
Since the path resulting from a query is often not convertible to the optimal (shortest) path,
traditional techniques don’t find a path close to the optimal path.

The reason that a path, found after a query, is often not convertible to the optimal path
is that the graph is a forest. This implies that there is at most one path in G from one
configuration to another. Thus, the path found after the query phase depends heavily on the
random choices that were made in the preprocessing stage.

A number of different connection strategies have been proposed over the last couple of
years which can be used to increase the number of alternative paths. The easiest solution
would seem to connect every configuration to all of its neighbors. This is called the nearest-
n method. It simply tries to connect to all nearest n neighbors. While this method finds
many alternative routes and thus often succeeds in finding a short path, most connections are
redundant and the running time of the algorithm increases.

Component-n tries to connect to n configurations in each connected component in the
neighbor set. Many connections do not contribute to exploring the C space and the running
time increases because of the many extra collision checks.

4 Adding cycles to the graph

To increase the probability of finding a short path, we need to have alternative routes in the
graph. Since adding too many edges to G would result in a high running time, we would like
to add only those edges that have a low probability of being found after smoothing i.e. we
add only those edges that have a high probability of adding a path that is not convertible to
an existing one. We call such an edge useful.

Definition 4.1 (Useful edge). Let c be a random chosen configuration in Cfree and Nc its
set of neighbors. c′ is a configuration in Nc and d(c, c′) is the distance between c and c′. The
graph distance between c and c′ is G(c, c′), this is the length of the shortest path in the graph
from c to c′. If there is no path from c to c′, G(c, c′) is ∞. The edge E(c, c′) is K-useful if:

K · d(c, c′) < G(c, c′) (1)

We will talk about useful edges, where the dependence on K is implicitly understood. So
only cycles that improve the graph distance between c and c′ by a substantial factor K are
added to the graph. Changing the value of K influences the number of cycles that are added

5 THEORETICAL RESULTS 5

to the graph. A small value of K adds more cycles, a large value of K adds less. If K is smaller
than 1, all edges are allowed, since G(c, c′) can never be smaller than d(c, c′). If K = ∞ no
cycles are allowed and the resulting graph is a forest.

A major algorithmic question is how to compute G(c, c′). Since adding a new edge to the
graph can influence all existing graph distances, these cannot be maintained and a shortest
path algorithm (like Dijkstra) has to be executed for every potential connection, in order to
calculate G(c, c′). When the number of vertices in the graph becomes large, the calculation
of Dijkstra will become a dominating factor in the running time.

To speed this up we proceed in a way similar to the A∗ algorithm. Suppose we want to
know if edge E(c, c′) is a useful edge. Dijkstra calculates the shortest graph distance from the
source to all other vertices. But we don’t need the exact distance; we are only interested in
whether G(c, c′) is larger than K · d(c, c′). Since Dijkstra visits vertices in increasing graph
distance from c, we know that when vertex v is selected by the algorithm (and c′ has not yet
been selected), G(c, c′) is at least G(c, v). We can use this property to prune the search, let:

Gd(c, v) = G(c, v) + d(v, c′) (2)

We now let Dijkstra select vertices based on the value of Gd. If a vertex v is selected, it
gets a value equal to the shortest graph distance from that configuration to c. Gd(c, v) is a
lower bound of G(c, c′), because, once Dijkstra selects a vertex v, we know that it takes at
least another d(v, c′) to reach c′.

If Gd(c, v) of a vertex v is larger than K · d(c, c′) we can stop the calculation of Dijkstra,
because we know that G(c, c′) will be at least Gd(c, v). In this case the edge (c, c′) will be
added to the graph. If we reach c′ before the threshold is reached, we also stop the search and
do not add the edge.

The resulting graph is no longer a tree because of the cycles. We will call this prunded
version of Dijkstra the usefulness test. In the query phase the normal version of Dijkstra’s
algorithm can be used to find the shortest path in the graph that is hopefully convertible to
the actual shortest path. Afterward, standard smoothing can be used to optimize the path.

In practice there is a maximum number of neighbors (Mn) to which a configuration is
connected. If V is the collection of vertices, then, after preprocessing, the maximum number
of edges in the graph, is Mn ·|V |. During preprocessing the worst case running time of Dijkstra
increases linear with the number of vertices in the graph.

An alternative to the usefulness test is using a dynamic all pairs shortest path algorithm
[9], [10]. Because our experiments (see Section 6) show that the usefulness test is not the
dominating factor in all but the simplest scenes, we did not implement this.

5 Theoretical results

In this section we will show that, using the usefulness property, the path length of our tech-
nique converges to K times the optimal path length.

Let cl > 0 be a small clearance and let Πcl be the optimal path with clearance cl. We
assume that cl has been chosen small enough such that Πcl exists. Let len(Πcl) denote the
length of this path. We will show that, when time goes to infinity, our approach will find a
path with a length converging to K · len(Πcl).

Let δ > 0 be a sufficiently small constant. We will approximate the path Πcl with (hyper-)
cylinders of radius δ. Choose the cylinder length l such that

5 THEORETICAL RESULTS 6

Π0

Π1

Π2

Π3 Π4 Π5

Πcl

(a) The path Πcl divided in
parts using points Πi.

Πcl

(b) Using the points Πi to ap-
proximate Πcl with cylinders.

Figure 2:

cl

d
δ

(a) Because d is smaller or
equal than cl, the cylinders are
collision free.

Θ

(b) Connecting the points Πi

to create the path Θ.

Figure 3:

√

l2 + δ2 < cl (3)

We pick points Πi on Πcl as follows: Π0 is the start point of the path. Next, as Π1 we pick
the first point on the path that has a straight-line distance l from Π0. Π2 is the first point at
distance l from Π1, etc. (See Fig. 2(a).) Finally we add the goal point of the path. Assume
in total we added n + 1 points. We approximate Πcl with n cylinders. The centers of their
bottom and top are the points Πi (Fig. 2(b)) and the cylinders have radius δ.

Lemma 5.1 (Collision free cylinder). The cylinders as defined above are guaranteed to be
collision free.

Proof: Let Πi be the start point of the cylinder. Let d be the distance from Πi to the furthest
point in the cylinder. By the choice of l and δ we have

d =
√

l2 + δ2 < cl (4)

As point Πi lies on the path Πcl it has a clearance of at least cl. Hence the cylinder must
be collision free. (See also Fig. 3(a)).

Consider the path Θ that is created by connecting every Πi to Πi+1 by a straight line
motion in configuration space (Fig. 3(b)). It is easy to see that

len(Θ) ≤ len(Πcl) (5)

Now assume that after long enough sampling, each cylinder i contains a sample ci. Let
Θi be the closest point on Θ from ci (Fig. 4(a)). Consider path Φ that is constructed by
connecting every Θi to Θi+1 with a straight-line motion (Fig. 4(b)). Since Θi and Θi+1 are
both within the collision-free sphere of Fig. 3(a), the straight line path (Θi,Θi+1) is also
collision free. It is easy to see that

len(Φ) ≤ len(Θ) (6)

6 EXPERIMENTAL RESULTS 7

ic

Θi i+1c

Θi+1

(a) The point Θi is the closest
point on Θ from ci.

Φ

(b) Connecting the points Θi

to create the path Φ.

Figure 4:

G
ic

i+1c

(a) The path G.

G
ic

i+1c

(b) If the radius δ of the cylin-
ders approaches 0, the points
ci approach Πcl.

Figure 5:

Let ci and ci+1 be the samples in two consecutive cylinders. Clearly their distance can be
bounded as follows:

d(ci, ci+1) ≤ 2 · δ + d(Θi,Θi+1) (7)

Since the straight-line connection between ci and ci+1 is collision-free, we know from the
usefulness property that there is a bound on their graph distance (Fig. 5(a)):

G(ci, ci+1) ≤ K · d(ci, ci+1) ≤ K · (2 · δ + d(Θi,Θi+1)) (8)

Because Equation 8 holds for every segment we can bound the graph length as follows:

Theorem 5.1 (Graph length). The graph length G(c0, cn) is bounded by:

K · (2 · n · δ + len(Φ)) ≤ K ·
(

2 · n · δ + len(Πcl)
)

(9)

If we decrease the radius of the cylinders and thus let δ approach to 0 (Fig. 5(b)), the
length of the graph path between c0 and cn approaches K · len(Πcl). When cl approaches 0
as well, the length approaches K times the length of the optimal path Π0.

For each cl > 0 and δ > 0 the cylinders have an equal constant-size area. So if time goes
to infinity the chance that each cylinder indeed contains a sample approaches 1. (Actually,
this is not true for the last cylinder but that cylinder already contains the goal configuration
as a sample).

6 Experimental results

Our algorithm has been implemented in (Visual) C++ using our motion planning system
SAMPLE (System for Advanced Motion PLanning Experiments). All tests were run on a
Pentium 2.4GHz with 1GB internal memory. We used SOLID 3.5 [5] for collision detection.
To test our algorithm we used several benchmark scenes (see Figs. 6(a) to 6(d)). All tests
consisted of a preprocessing and a postprocessing (smoothing) phase.

6 EXPERIMENTAL RESULTS 8

(a) Test scene 1. (b) Test scene 2.

(c) Test scene 3. (d) Test scene 4.

Figure 6: The test scenes

Scene 1 This is a scene with a number of long boxes that are slightly shorter than the
scene height. The robot used is a cylinder that needs rotation to get through the passages
between the boxes. Since the right choice for a passage in every row of obstacles is crucial for
a short path, we expect our algorithm to outperform standard prm.

Scene 2 This scene consists of 500 randomly distributed tetrahedra. The robot is an L-
shaped object which needs a lot of rotation to maneuver through the scene. The whole scene
consists of one convertible class and we expect smoothing to work well in this scene, so we
don’t expect a big difference between the two methods.

Scene 3 The robot is a complicated flamingo figure consisting of 7049 polygons. It has to
maneuver out of a cage (1032 triangles). Since the choice from which hole to leave the cage
is crucial, we expect our algorithm to outperform standard prm.

Scene 4 Here, a simple sphere object has to move from one position to another in a
complicated house scene consisting of 1600 polygons. There are roughly two solutions for this
scene; one that uses the interior of the house, and a longer one that uses the “garden.” Since
smoothing will probably not be able to convert one type of path into the other, the choice for
the right type of path is important.

6 EXPERIMENTAL RESULTS 9

0

5000

10000

15000

20000

25000

30000

35000

0 5 10 15 20 25 30 35

R
u

n
n

in
g

 t
im

e
 (

m
s
)

80

130

180

230

280

330

380

P
a
th

 l
e
n

g
th

Running time Query path length Smoothed path length

Figure 7: Establishing an optimal K value for scene 3. We determined the running time, the
query path length and the smoothed path length. For every value we took the average of 100
runs.

First we need to establish the best K value for our algorithm. Connecting every configu-
ration to all of its neighbors (equal to a K value of 1) results in the best graph and thus the
shortest paths. But the price to pay for the increased running time is huge. Once the standard
prm finds a path, further preprocessing time will not help in improving the path length. For
the cycle method additional preprocessing time will lead to additional, potentially shorter
paths. This means that for a fair comparison the running time is crucial. On the other hand
it depends on the application of the motion planning problem which price you are willing to
pay for a shorter path.

In our experiments we resolved this issue as follows. For every scene we established the
number of vertices (n) for which standard prm always (> 99%) finds a path. Then, we used
this value to find an optimal K value. We let K increase from 1.0 to 30.0 using a step size
of 1 for K ≤ 10 and a stepsize of 4 for K > 10 and measured the running time and query
path length after creating n configurations. All other parameters were fixed. From previous
experiments we know that for scene 1, connecting to a maximum of 10 neighbors is optimal.
For scenes 2 and 4 we used a value of 15 and for scene 3 we used a maximum of 20. The
maximum neighbor distance was half the size of the bounding box in every scene. The local
planner used binary interpolation to check an edge for collision. The distance between two
configurations was calculated by taking the radius of the robot, multiplying this with the
rotation angle and adding the Euclidian distance.

As an example, we show the graph for scene 3 (Fig. 7). As can be seen from the graph,
the lower the value of K, the more edges are being added to the scene and thus the more
time the collision checks take. This results in a higher total running time and smaller query
distance. For example for a K value of 6, the preprocessing time is about 7.5 seconds, the
average path length is 200 and the smoothed path length is 100. There is no such thing as the
optimal K value, it depends on the price the user is willing to pay for a shorter path. Here,
we choose a K value of 6 for scene 3.

We also ran this test for several other scenes. They all have their own optimal K value.
Which K value this is, is dependent on the complexity of the scene and the preferences of
the user. For every potential connection a decision has to be made whether to add it or not.
If both configurations are in the same connected component, the usefulness test has to be
initialized and executed to make the decision. If the complexity of the scene is very low, the

6 EXPERIMENTAL RESULTS 10

usefulness test costs a lot of time compared to the collision check. In these circumstances it
is better to prune the usefulness test very quickly (by using a low K value) and add the edge
if it is collision free. If the scene is more complex, collision checks are more expensive, and
dominate the running time. These scenes have a higher optimal K value. In practice we had
no problem in estimating a good K value since the range of K values for which the algorithm
performs well is broad. After preprocessing, the query paths were smoothed using standard
smoothing. The smoothing time was chosen such that more smoothing did not yield further
improvement of the path length.

Scene 1 We created a graph of 180 configurations. Experiments showed that using a
postprocessing time (smoothing) of more 0.2 seconds, did not result in shorter paths, so we
used a value of 0.2 seconds. We chose a K value of 3 in this scene. The results for this scene
are shown in Fig. 8(a) and 8(b). In the graphs we show the path length relative to the shortest
path length. The lines in the graphs show the minimum and maximum values. The boxes show
the area between the first and third quartiles. The square shows the average value. As can
be seen from the results, our technique performs better in this scene compared to standard
prm. Also the variation in path length is much smaller by allowing useful cycles. But when
looking at the results after smoothing we conclude that the results are not as good as we
expected beforehand. The reason for this is that, in this scene, smoothing is sometimes able
to convert between paths that take a different route between the boxes. Also, collision checks
are relatively cheap in this scene. As a result, the usefulness test is relatively expensive and
thus the running time of the cycle method is higher (800ms vs 450ms on average).

Scene 2 Here we added 250 configurations to the graph. After each run, the path was
smoothed for 1 second. The results are shown in Fig. 8(c) and 8(d). Again it is clear that
adding useful cycles lowers both the path length and the variation in path length. In this
scene it is very easy for smoothing to find shorter paths. This is why the average path length
after smoothing for both techniques does not differ a lot. Still, the variation in the smoothed
path length is slightly lower when cycles are used. The average running time of the cycle
method was about 1 second higher (3.3s vs 2.3s).

Scene 3 We added 150 configurations to the graph, followed by 2 seconds of standard
smoothing. The key problem in this scene is finding a path through the correct hole in the cage.
If this hole is found, then standard smoothing is able to remove the rough edges and redundant
rotation in the path. Since a specific rotation is needed to get through a hole, smoothing will
usually keep the path in the same homotopy class. There is a huge improvement in path length
variation, even after smoothing. See Fig. 8(e) and 8(f) for the results. The running time of
the cycle method was 7.4 seconds on average; that of the forest method was 5.5 seconds on
average.

Scene 4 A graph was created consisting of 350 configurations, followed by a smoothing
phase of 1 second. Roughly speaking there are two solutions for this scene: a short one that
stays inside the house, and a long one that uses the ”garden.” Once the forest method has
found a path that uses the garden, it will never find the short one through the house. The
cycle method is able to improve its path, by introducing a cycle and thus finding both paths.
This is also the main reason that the average path length of the forest method is large; about
one out every five paths uses the “garden.” Smoothing will never be able to convert between
the two types of paths, so even after smoothing the average path length of the forest method
is much longer. Again the variation in path length is smaller when using useful cycles. The
results for scene 4 are shown in Fig. 8(g) and 8(h). The average running time of the cycle
method was slightly larger (11.0s vs 9.5s) because collision checks are time-consuming in this

6 EXPERIMENTAL RESULTS 11

0

100

200

300

400

500

600

K (3.0) query length forest query length

p
a
th

 s
iz

e
 i
n
 %

 l
o
n
g
e
r

th
a
n
 s

h
o
rt

e
s
t

p
a
th

(a) Scene 1: query path.

0

20

40

60

80

100

120

140

160

K (3.0) smoothed length forest smoothed length

p
a
th

 s
iz

e
 i
n
 %

 l
o
n
g
e
r

th
a
n
 s

h
o
rt

e
s
t

p
a
th

(b) Scene 1: smoothed path.

0

50

100

150

200

250

300

350

400

450

500

K (4.0) query length forest query length

p
a
th

 s
iz

e
 i
n
 %

 l
o
n
g
e
r

th
a
n
 s

h
o
rt

e
s
t

p
a
th

(c) Scene 2: query path.

0

10

20

30

40

50

60

K (4.0) smoothed length forest smoothed length

p
a
th

 s
iz

e
 i
n
 %

 l
o
n
g
e
r

th
a
n
 s

h
o
rt

e
s
t

p
a
th

(d) Scene 2: smoothed path.

0

100

200

300

400

500

600

700

800

K (6.0) query length forest query length

p
at

h
 s

iz
e
 in

 %
 lo

n
g
er

 th
a
n
 s

ho
rt

e
s
t
p
at

h

(e) Scene 3: query path.

0

50

100

150

200

250

300

K (6.0) smoothed length forest smoothed length

p
a
th

 s
iz

e
 i
n
 %

 l
o
n
g
e
r

th
a
n
 s

h
o
rt

e
s
t

p
a
th

(f) Scene 3: smoothed path.

0

200

400

600

800

1000

1200

K (6.0) query length forest query length

p
a
th

 s
iz

e
 i
n
 %

 l
o
n
g
e
r

th
a
n
 s

h
o
rt

e
s
t

p
a
th

(g) Scene 4: query path.

0

100

200

300

400

500

600

700

K (6.0) smoothed length forest smoothed length

p
a
th

 s
iz

e
 i
n
 %

 l
o
n
g
e
r

th
a
n
 s

h
o
rt

e
s
t

p
a
th

(h) Scene 4: smoothed path.

Figure 8: The results of the various scenes. The boxes show the area between the first and
third quartiles. The lines show the highest and lowest value. The black squares show the
average values.

7 CONCLUSIONS 12

scene.

7 Conclusions

We presented a new connection technique for probabilistic roadmaps that decreases the av-
erage path length and also decreases the variance of the path length without increasing the
preprocessing time considerably. It works well in scenes where standard smoothing is unable
to convert a long path into a short one. In very simple scenes the difference is not so large
because the running time of the repeatedly executed usefulness test tends to dominate the
overall running time. In more complex scenes the technique works much better and both the
path length and its variation decrease a lot. Having alternative routes is also important for
other applications. For example it allows for variation in the routes computer entities in a
game take. Also it can be used to avoid deadlock situations when multiple robots move in the
same environment. Finally, it is useful in dynamic scenes where additional obstacles might
appear. We are currently investigating these applications.

Acknowledgment

This research was supported by the IST Programme of the EU as a Shared-cost RTD (FET
Open) Project under Contract No IST-2001-39250 (MOVIE - Motion Planning in Virtual
Environments). Part of this research has been funded by the Dutch BSIK/BRICKS project.
We would like to thank Roland Geraerts for writing the SAMPLE software.

References

[1] N. Amato, O. Bayazit, L. Dale, C. Jones, D. Vallejo, OBPRM: An obstacle-based PRM
for 3D workspaces, in: P.K. Agarwal, L.E. Kavraki, M.T. Mason (eds.), Robotics: The
algorithmic perspective, A.K. Peters, Natick, 1998, pp. 155–168.

[2] N. Amato, O. Bayazit, L. Dale, C. Jones, D. Vallejo, Choosing good distance metrics and
local planners for probabilistic roadmap methods, Proc. IEEE Int. Conf. on Robotics and
Automation, 1998, pp. 630–637.

[3] N. Amato, Y. Wu, A randomized roadmap method for path and manipulation planning,
Proc. IEEE Int. Conf. on Robotics and Automation, 1996, pp. 113–120.

[4] J. Barraquand, L. Kavraki, J.-C. Latombe, T.-Y. Li, R. Motwani, P. Raghavan, A random
sampling scheme for path planning, Int. Journal of Robotics Research 16 (1997), pp. 759–
774.

[5] G. van den Bergen, Collision Detection in Interactive 3D Environments, Morgan Kauf-
mann In press 2003.

[6] M. Branicky and S. Lavalle and K. Olson and L. Yang, Quasi randomized path planning,
IEEE Int. Conf. on Robotics and Automation, 2001.

REFERENCES 13

[7] V. Boor, M.H. Overmars, A.F. van der Stappen, The Gaussian sampling strategy for
probabilistic roadmap planners, Proc. IEEE Int. Conf. on Robotics and Automation, 1999,
pp. 1018–1023.

[8] R. Bohlin, L.E. Kavraki, Path planning using lazy PRM, Proc. IEEE Int. Conf. on
Robotics and Automation, 2000, pp. 521–528.

[9] C. Demetrescu, G.F. Italiano, Fully Dynamic All Pairs Shortest Paths with Real Edge
Weights, IEEE Symp. on Foundations of Computer Science, 2001, pp. 260-267.

[10] C. Demetrescu, G.F. Italiano, A New Approach to Dynamic All Pairs Shortest Paths,
Proc. 35th Annual ACM Symposium on Theory of Computing 2003.

[11] Roland Geraerts, Mark H. Overmars, A Comparative Study of Probabilistic Roadmap
Planners, Proceedings WAFR 2002-2003 2002, pp. 40–54.

[12] David Hsu and Tingting Jiang and John Reif and Zheng Sun, The Bridge Test for
Sampling Narrow Passages with Probabilistic Roadmap Planners, Proc. IEEE Int. Conf.
on Robotics and Automation, 2003.

[13] D. Hsu, L. Kavraki, J.C. Latombe, R. Motwani, S. Sorkin, On finding narrow passages
with probabilistic roadmap planners, in: P.K. Agarwal, L.E. Kavraki, M.T. Mason (eds.),
Robotics: The algorithmic perspective, A.K. Peters, Natick, 1998, pp. 141–154.

[14] P. Isto, Constructing Probabilistic Roadmaps with Powerful Local Planning and Path
Optimization, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2002, pp. 2323–
2328.

[15] L. Kavraki, Random networks in configuration space for fast path planning, PhD thesis,
Stanford University, 1995.

[16] L. Kavraki, J.C. Latombe, Randomized preprocessing of configuration space for fast path
planning, Proc. IEEE Int. Conf. on Robotics and Automation, 1994, pp. 2138–2145.

[17] J. Kim, R. Pearce, N. Amato, Extracting optimal paths from roadmaps for motion plan-
ning, unpublished.

[18] J. C. Latombe, Robot motion planning, Kluwer Academic Publishers, Boston, 1991.

[19] C. Nissoux, T. Siméon, J.-P. Laumond, Visibility based probabilistic roadmaps, Proc.
IEEE Int. Conf. on Intelligent Robots and Systems, 1999, pp. 1316–1321.

[20] M.H. Overmars, A random approach to motion planning, Technical Report RUU-CS-92-
32, Dept. Comput. Sci., Utrecht Univ., Utrecht, the Netherlands, 1992.

[21] E. Schmitzberger, J.-L. Bouchet, M. Dufaut, W. Didier, R. Husson, Capture of homo-
topy classes with probabilistic road map, IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2002.

[22] G. Song, Shawna Miller, N. M. Amato, Customizing PRM Roadmaps at Query time,
Proc. IEEE Int. Conf. on Robot. Autom. (ICRA) 1999, pp. 2958–2963.

REFERENCES 14

[23] P. Švestka, Robot motion planning using probabilistic roadmaps, PhD thesis, Utrecht
Univ., 1997.

[24] S.A. Wilmarth, N.M. Amato, P.F. Stiller, MAPRM: A probabilistic roadmap planner
with sampling on the medial axis of the free space, Proc. IEEE Int. Conf. on Robotics
and Automation, 1999, pp. 1024–1031.

