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We theoretically study binary mixtures of thin and thick hard rods with diameter ratio more extreme
than 1:4. The bulk phase diagram of these systems exhibits a triple point, where an isotropic �I� phase
coexists with two nematic phases (N1 and N2) of different composition. Using density functional theory,
we predict that the I-N2 interface is completely wet by N1 upon approach of the the I-N1-N2 triple
point. This entropic triple point wetting should be experimentally observable in colloidal suspensions of
rodlike particles.
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Sterically stabilized colloids are rigid mesoscopic
particles which, when suspended in a molecular solvent,
interact with each other via pairwise hard-core repulsions
only [1]. As a result a suspension of hard-core colloids is
athermal, i.e., its thermodynamics and structure are solely
determined by entropy (free volume). Despite the lack of
any cohesive energy, these systems exhibit a wealth of or-
dering phenomena. Classical examples of entropy-driven
ordering are the freezing of a hard-sphere suspension [2]
and the liquid crystalline (nematic) ordering of a hard-rod
suspension [3,4] upon sufficient compression. By now it is
also well known that entropy is not only capable of driving
disorder-to-order transitions but also demixing of mix-
tures. The depletion effect, whereby two large hard-core
particles attract each other effectively due to the presence
of a “sea” of smaller ones, is perhaps the best known
entropic demixing mechanism; it can, e.g., drive a gas-
liquid transition in colloid-polymer mixtures [5]. In
mixtures of hard rods, the object of study in this Letter,
another entropic demixing mechanism is at work: the
orientation entropy can drive an immiscibility gap in
the nematic phase if the two rod species are sufficiently
dissimilar [6,7]. The bulk phase diagram of such mixtures
not only features isotropic-nematic coexistence, but also
nematic-nematic coexistence and an isotropic-nematic-
nematic triple point (see Fig. 1 for an example). In anal-
ogy with simple liquids and metals, where bulk critical
and triple points are known to give rise to rich wetting and
layering phenomena [8,9] and to surface melting [10], we
expect a rich interface phenomenology in such colloidal
rod fluids. An important difference is, however, that the
driving mechanisms are entropic in hard-core systems,
as opposed to energetic in simple liquids and metals. It
is not at all obvious how the absence of cohesive energy
affects the structure of such entropic interfaces. In this
Letter we study, for the first time, the thermodynamics and
the structure of the free interfaces between the coexisting
bulk phases of binary mixtures of colloidal hard rods
with widely different diameters. Upon approach of the
bulk triple point we find a complete wetting phenomenon,
i.e., a thick film intruding between two coexisting bulk
phases. This can be seen as an entropic analog of surface
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melting in simple metals, where a liquid film develops
in the crystal-vapor interface upon approach of the triple
(melting) point [10].

We consider a binary mixture of hard spherocylinders
of length L and diameters Ds ø L at chemical potentials
ms , where s � 1, 2 labels the thin and thick species, re-
spectively. The thermodynamics and the structure of this
fluid are studied by means of the grand potential functional
V�r1, r2� of the one-particle distribution functions rs�q�,
where q � �r, v̂� is short for the center-of-mass coordi-
nate r and the orientation v̂ of the long axis of the rod.
The functional is such that (i) it is minimized, for given
�m1, m2�, by the equilibrium one-particle distributions, and
(ii) the minimal value of the functional is the equilib-
rium grand potential [11]. Here we use the second virial
functional

0.0 0.2 0.4 0.6 0.8 1.0
x

0

5

10

15

20

p*

N1 N2

I

N2

FIG. 1. Bulk phase diagram of a binary thin-thick mixture
of hard rods (diameter ratio D2�D1 � 4, equal length L ¿
D2), in the pressure-composition representation, with p� the
dimensionless pressure and x the mole fraction of the thicker
rods. We distinguish the low-pressure isotropic phase �I�, high-
pressure nematic phases (N1 and N2), triple coexistence �D�,
and an N1-N2 critical point ���. The grey regions, enclosed by
the binodals, denote the two-phase regime, and the tie lines that
connect coexisting phases are horizontal.
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where dq � drdv̂ and fss 0 � 21�0� is the Mayer
function of a (non)overlapping ss0 pair [1,3]. We use
units where kBT � 1, where T is the temperature and
kB is the Boltzmann constant. The minimum condition
dV�drs�q� � 0 yields the coupled nonlinear integral
equations,

ms � log�rs �q�L2Ds�

2

2X
s 0�1

Z
dq0 fss 0�q, q0�rs 0�q0� , (2)

to be solved for the equilibrium distributions rs�q� at fixed
ms . A (formal) insertion of the solutions to Eq. (2) into
the functional V leads to the minimum value V0 given by
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which is the equilibrium grand potential of the system
for given m1 and m2, i.e., for a given composition.
For a bulk system of volume V we have V0 � 2pV ,
with p�m1, m2� the pressure. The tension g�m

c
1, mc

2�
due to a planar interface of area A between coexist-
ing phases with chemical potentials mc

s follows from
V0 � 2pV 1 gA, where p�mc

1, mc
2� is the coexistence

pressure. We present our results in terms of the di-
mensionless combinations r�

s�q� � rs�q�L2D1 for the
profiles, n�

s�r� �
R

dv̂ r�
s�q� for the (local) total number

density of species s, p� � pL2D1�kBT for the pressure,
and g� � gLD1�kBT for the tension. In the “needle”
limit Ds�L ! 0, which we implicitly assume from now
on, the only structural length scale is L.

The functional of Eq. (1) is a low-density approxima-
tion, since cubic and higher order terms in rs are being
ignored. By considering the homogeneous, r-independent
distributions, rs�q� � rs�v̂�, one checks that the func-
tional reduces to the Onsager theory for hard-rod mixtures
in the isotropic and nematic bulk phases. It is well known
that the only homogeneous distributions that satisfy Eq. (2)
at sufficiently low ms are isotropic, rs�v̂� � ns��4p�,
with ns the bulk number density of species s [1,3,12,13].
At sufficiently high ms, uniaxially symmetric solutions
rs�v̂� � rs�u� exist, with u � arccos�v̂ ? n̂� being the
polar angle of v̂ with respect to the (arbitrary) nematic
director n̂. These solutions can easily be calculated nu-
merically, e.g., on a grid of Nu equidistant u [ �0, p�2�.
The thermodynamics follows from the evaluation of V0
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from Eq. (3). Using Nu � 30 we calculated the bulk phase
diagrams of the thick-thin mixtures for several diameter
ratios D2�D1 � d. In Fig. 1 we show the bulk phase di-
agram for d � 4 in the pressure-composition representa-
tion, where the composition variable x � n2��n1 1 n2�
denotes the fraction of thick rods. The striking features
of this phase diagram, in which the grey areas denote the
two-phase regions, include the strong fractionation at I-N2
coexistence, an N1-N2 immiscibility gap enclosed by a
critical (consolute) point ���, and I-N1-N2 triple coexis-
tence �D� at the triple pressure p�

t � 13.58. Consistent
with Ref. [7], where bulk phase diagrams of thin-thick
mixtures are presented for a number of d’s, we find that for
increasing d . 4 the triple point I and N1 phases approach
the pure-thin bulk coexistence (i.e., x ! 0), whereas the
composition of the triple point N2 phase shifts to a pure-
thick phase �x ! 1�. In addition, the critical pressure in-
creases dramatically with d up to d � dc � 4.29, where it
diverges. For d . dc there is no N1-N2 critical point [6,7].

We now turn to the thermodynamics and the structure
of the (free) interfaces between the coexisting phases.
Assuming these interfaces to be planar, with normal ẑ,
we can describe these by the inhomogeneous one-par-
ticle distributions rs�z, v̂�. Here z � ẑ ? r is the spa-
tial coordinate normal to the interface. The interfacial
distributions are solutions of the Euler-Lagrange equa-
tions (2) at the coexistence chemical potentials ms � mc

s ,
with rs�z ! 6`, v̂� � r�6�

s �v̂� being the two coexist-
ing bulk distributions (labeled by �1� and �2� here for
brevity). The kernels fss0 �q, q0� in the Euler-Lagrange
equations (2) can be reduced, in the planar geometry here,
to the in-plane integrated kernels Kss 0�z 2 z0, v̂, v̂0� �
2

R
dx0 dy0 fss0�r, v̂; r0, v̂0�, for which explicit analytic

expressions are given in Refs. [14,15]. The problem of
the free planar interface can then, in principle, be solved
straightforwardly by, e.g., iterating Eq. (2) on a �z, u, w�
grid, where u � arccos�v̂ ? n̂� is the polar angle of v̂ with
respect to the nematic bulk director n̂, and w the azimuthal
angle. It turns out, however, that the w dependence, i.e.,
the biaxiality, is very weak in the isotropic-nematic inter-
face of the one-component hard-rod fluid [15,16], even in
the “most biaxial” (and thermodynamically most stable)
geometry n̂�ẑ. The same is expected for the mixture
of interest here. We can therefore reduce the computa-
tional costs by projecting out the w dependence of rs .
This projection can also be seen as an expansion in the
biaxiality, truncated at lowest order [15]. The result-
ing uniaxial distributions rs�z, u�, with symmetry axis n̂
for all z, are solutions of the azimuthally smeared Euler-
Lagrange equation,

mc
s � log�rs �z, u�L2Ds� 1 2p

X
s 0

Z
dz0

Z
du0 sinu0

3 Kss 0�z 2 z0, u, u0�rs 0�z0, u0�, (4)

where Kss 0�z, u, u0� � �2p�22
R2p

0 dw
R2p

0 dw0 3
Kss 0�z, v̂, v̂0� is the doubly azimuthally averaged kernel
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FIG. 2. Thickness t (see text) of the I-N2 interface for diameter
ratio d � 4 as a function of the undersaturation e � 1 2 p�pt
from the triple point pressure pt . From the slope of the log-
arithmic growth of t for e ! 0 the bulk correlation length
j � 0.49L of the wetting N1 phase is deduced. The inset shows
the logarithmic growth of t�L for diameter ratios d � 4 ���,
4.2 ���, 4.5 �}�, 4.7 �D� and 5 ���.

[15]. By iteration of Eq. (4) we calculated rs�z, u� for
a number of state points �mc

s	 on the I-N1, I-N2, and
N1-N2 binodals. In all cases we used an equidistant
spatial grid of Nz � 200, 400 points zi [ �25L, 5L�
or �210L, 10L� with spacing zi11 2 zi � L�20,
and an equidistant angular grid of Nu � 30 points
uj [ �0, p�2� as for the bulk calculations. Note that
Kss0�z 2 z0, u, u0� need to be determined, on a simi-
lar grid, only once numerically. From the equilibrium
distributions rs �z, u� we calculate the local densities
ns�z� � 4p

Rp�2
0 du sinurs�z, u� for the two species

s � 1, 2, and the standard local nematic order parameters
Ss�z� � 4p

Rp�2
0 du sinuP2�cosu�rs�z, u��ns�z�, with

P2�x� � �3x2 2 1��2 the second Legendre polynomial.
The interface thickness t is taken as t � jz1 2 z2j,
where the positions z6 are defined by n000

2 �z6� � 0, i.e., at
the extrema of n00

2 �z�, where a prime indicates a derivative
with respect to z. This rather arbitrary measure for the
interface thickness, which is such that t�L � 0.697 for
the one-component isotropic-nematic interface, is chosen
because it provides a measure for the thickness of both
monotonic and nonmonotonic profiles, with and without
a thick film in between the asymptotic bulk phases
at z ! 6`.

The I-N1 interfaces, which only exist in a small pressure
regime p $ pt , closely resemble the isotropic-nematic in-
terface of the pure hard-rod fluid [15,16], i.e., the profiles
Ss�z� and the total density n1�z� 1 n2�z� change mono-
tonically from the bulk values in I to those in N1. The
thickness of this interface is very similar to that of the
pure system, and for d � 4 its tension takes the value
g

�
I-N1

� �0.2092 6 0.0002� at p � pt . The N1-N2 inter-
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face for d � 4 does not contain surprises either: its ten-
sion vanishes upon the approach of the critical point, and
for p # pt the profiles Ss�z� and ns�z� are monotonic,
t�L � 0.592 is microscopically thin, and the tension at
p � pt is given by g

�
N1-N1

� 0.0194 6 0.0002, i.e., an or-
der of magnitude smaller than g

�
I2N1

. The microscopic in-
terface thickness for p $ pt is to be contrasted with that
of the I-N2 interface at p , pt , which we find to diverge,
for all d $ 4, when p " pt . This can be seen in Fig. 2,
where t�L is plotted as a function of ´ � 1 2 p�pt , i.e.,
´ is a measure for the “undersaturation” with respect to
the triple point pressure pt. The logarithmic divergence of
t with e ! 0 is the first signature of a complete wetting
phenomenon in the I-N2 interface.

The nature of the film can be analyzed from the density
profiles ns�z� and the order parameters Ss�z�. This is
illustrated in Fig. 3, where the thick-rod density profile,
n�

2�z�, of the I-N2 interface is shown for d � 4 at several
values of the undersaturation ´. The asymptotic densities
at z ! 6` in Fig. 3 are those of the coexisting I and N2
bulk phases (at the corresponding e). The local density
of thick rods in the film is, for e ! 0, exactly that of
the bulk triple point N1 phase. This is indicated by the
dashed line in Fig. 3. The same identification can be made
for n�

1�z� and Ss�z�, and on this basis we conclude that
the complete wetting phenomenon under consideration is
complete triple point wetting of the free I-N2 interface
by N1.

So far, however, this conclusion is based only on the
structure and thickness of the films. In order to confirm
this conclusion thermodynamically we determine the ratio
of surface tensions
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FIG. 3. Density profiles n�
2�z� of the thick rods in the I-N2

interface for diameter ratio d � 4 at triple point undersaturations
´ � 1 2 p�pt � 0.29, 0.1, 0.01, 5 3 1024, 1.3 3 1024, 5 3
1025, 2.5 3 1025 from bottom to top. The bulk I phase is at
z ! `, and the bulk N2 phase is at z ! 2`. The dashed line
n�

2 � 3.977 represents the density of thick rods in the triple point
N1 phase. These profiles indicate the formation of a wetting N1
film in the I-N2 interface.
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R�e� �
gI-N2 �e�

limp#pt �gI-N1 1 gN1-N2 �
(5)

plotted in Fig. 4. For all diameter ratios considered here,
we see from this figure that lime!0R � 1, which implies
a vanishing contact angle. This constitutes the thermo-
dynamic proof of complete triple point wetting [9] in all
thick-thin hard-rod mixtures with d $ 4. In fact, we also
carried out a study of long-short mixtures of hard rods of
the same diameter. For length ratios more extreme than
1:3, these systems exhibit a bulk triple point [6] for which
we find the same triple point wetting phenomenon as found
in thin-thick mixtures.

The data presented here allow for a consistency check
by means of a twofold calculation of the bulk correla-
tion length j, in the direction perpendicular to the ne-
matic director, of the triple point N1 phase. On the one
hand, one expects, for the short-range interactions of in-
terest here, that the thickness of the N1 film in the I-N2
interface diverges as t � t0 2 j lne for e ! 0 [9]. From
the slope of the small-e part of Fig. 2 we find that, for
d � 4, j�L � 0.49 6 0.02. This value decreases, for in-
creasing d, to the limiting value j�L � 0.32 6 0.02 for
d $ 5. This value is the perpendicular correlation length
of the one-component coexisting nematic phase, i.e., the
N1 triple point for large d. On the other hand, one expects
[17] that the asymptotic decay of rs�z, u� to its N1 bulk
value r�N1�

s �u� is proportional to exp�2jzj�j�, for all u

and both species s � 1, 2. From the N1 side of the pro-
files obtained in the I-N1 and N1-N2 interface (at p # pt ,
not shown here), we find, consistently with the above re-
sults, that j�L � 0.48 6 0.02 for d � 4, which changes
to j�L � 0.32 6 0.02 for d $ 5. The fact that j is of
the order of L implies that, together with the fact that the
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FIG. 4 Surface tension ratio R [see Eq. (5)] as a function of
the triple point undersaturation e for diameter ratio d � 4. The
inset shows the same quantity for d � 4 ���, 4.2 ���, 4.5 �}�,
4.7 �D�, and 5 ���.
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tension g is of the order of kBT�LD1, the so-called wet-
ting parameter [9] v � kT��4pgj2� 
 D1�L ! 0. As a
consequence the wetting N1 film is in the stiff, mean-field
limit, where thickness fluctuations are unimportant. This is
an interesting addition to Onsager’s classic notion that the
second virial approximation is exact for thermodynamic
bulk properties of fluids of hard rods in the needle limit [3].

In conclusion, on the basis of an inhomogeneous ver-
sion of Onsager’s second virial functional we predict that
binary thin-thick mixtures of hard rods with a diameter ra-
tio d $ 4 exhibit entropic triple point wetting of the I-N2
interface by the N1 phase. This phenomenon should be
experimentally observable in, e.g., gene-manipulated To-
bacco Mosaic Virus mixtures, for which synthesis in this
regime of diameter ratios has been recently achieved [18].
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