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Two-step melting transition in confined hard spheres in three dimensions
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It is shown that certain geometrical constraints on a system of hard spheres lead to two distinct finite-size
analogs of melting transitions upon decreasing the average number of spheres at constant volume. Melting
takes place from an ordered crystal via an intermediate structure to a fluid. Sphere centers in the intermediate
state have a high probability to be found in localized regions that are dramatically different in size and shape.
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A collection of atoms may undergo phase transitions
and from a gas, liquid, and solid. Solids come in many str
tures, and upon variation of pressure and/or temperat
phase transitions between different solid structures may
cur. For example, carbon may order into graphite and d
mond, and tin into its gray and white form. These structu
are transformed into one another by symmetry-break
first-order phase transitions~in these examples from a soft t
a strong solid!. From computer simulations it follows tha
solids may also undergo symmetry-conserved transitions@1#.
Highly charged colloids may undergo a body-centered-cu
~bcc! to face-centered-cubic~fcc! transition~see@2# and ref-
erences therein!, which can be reproduced by comput
simulation by assuming long-ranged repulsive interacti
~Yukawa potential! between the spheres@3#.

For hard disks in two dimensions, it is still being di
puted whether such a system, upon decreasing the n
ber density, melts in two continuous steps via an hex
phase @Kosterlitz-Thouless-Halperin-Nelson-Youn
~KTHNY ! theory; see@4# and references therein# or if the
melting transition is first order@5#.

The simplest model of interacting atoms in three dime
sions~3D!, hard spheres under thermal agitation, has a sin
freezing transition from a fluid to a~fcc! solid @6,7#. When
hard spheres are confined in one direction, i.e., between
parallel plates, they exhibit many phase transitions; see@8,9#
and references therein. In particular, when the plate sep
tion is kept constant in between approximately 1.2 and
sphere diameters, and upon increasing the number dens
the spheres, a first-order phase transition from a fluid t
solid is found, followed by a solid-solid transition. The stru
ture of the solid phases depend on the plate separation.

In this Brief Report, systems of hard spheres that are c
fined in all three directions are studied. Very small syste
~down to eight spheres! already show the signature of th
freezing transition@10,11#. Here the question is addressed
to what the role of geometrical constraints is on the chara
of the freezing transition. Geometrical constraints are
posed by the shapes of the boxes that keep the sphere
gether. Besides being interesting from a fundamental poin
view, the answer to this question may be relevant to
behavior of simple fluids in highly porous media. In the ca
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of magnetically interacting colloids, geometrical constrain
dramatically change the phase behavior as was recently
ported in@12#.

The central quantity from which all thermodynamic fun
tions are calculated is the configurationally averaged volu
that is available for the center of an (N11)th hard sphere in
a system containingN hard spheres in a volumeV,V0

(N) .
Speedy@13# derived an exact relation between available v
ume~named ‘‘spare volume’’ by the author! of a system ofN
hard spheres and the configuration integral, which imp
that the~reduced! configurational part of the Helmholtz fre
energy of a system containingN spheres is exactly given b
the recursive relation@11#

bFN5bFN212 lnS v0
~N21!

N D , ~1!

in which the reduced available volumev0
(N)5V0

(N)/D3,
whereD is the diameter of a hard sphere.b51/kT, with k
Boltzmann’s constant andT the absolute temperature. A
small-system analog of a first-order phase transition in
canonical ensemble is evident if the Helmholtz free ene
as a function of the number of spheres has a region tha
‘‘concave from below.’’ Strong evidence of a first-orde
phase transition in the grand ensemble follows from t
peaks of the grand distribution function@14#

PN5
zNqN

J
, ~2!

FIG. 1. Boxes of different geometry, that define the angles a
length ratios given in Table I.
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with the reduced canonical partition functionqN5e2bFN and
the reduced activityz5(D3/L3)ebm, whereL is the thermal
de Broglie wavelength of a hard sphere andm is the chemical
potential. J5SN50

NmaxzNqN is the grand partition function in
which Nmax is the maximum number of spheres that can
crammed intoV.

The systems of hard spheres are contained in boxes
smooth hard walls and varying geometry. Their volum
could be varied isomorphically.

The four different geometries of the boxes that were u
are defined by Fig. 1, together with Table I. These bo
envelop the centers of the hard spheres~part of the spheres
can thus be outside the boxes!, and their volumes define
V0

(0) .
Table I summarizes the values of the angles, defined

Fig. 1, and the ratios of the axis lengths that characteriz
box geometry. The sequence I, II, III, IV corresponds to
increasing number of cubic axes in the boxes and thu
decreasing packing efficiency. The close-packed volum
defined as the volume of the box at whichNmax spheres are
close packed in the particular geometry defined by the va
of the angles. For example, the box of the geometry enco
by I fits a true close-packed configuration of eight ha
spheres when its reduced volume equals 1/&. In the situation
that the system I is close packed, all centers of the h
spheres are fixed at the corners of the box. The code Ib~IIb!
refers to a box of the same geometry as I~II !, but it is dilated
to fit ~at most! 27 spheres. This situation was chosen in or
to study effects of the size of the system while keeping
geometry constant.

Throughout this paper, the volumes of the boxes are
pressed relative to the close-packed geometry I; that is,
defined byh5v0

(0)/(1/&) if Nmax58 and h5v0
(0)/4& if

Nmax527.
The available volumes were computed numerically, as

@11#. For the geometries I~b!, III, and IV, its behavior quali-
tatively looks like what was found in@11# where geometry
I~b! was studied; i.e., at constanth.2 ~approximately!, the
available volume continuously decreases with the numbe
spheres, but whenh becomes small, the available volume f
the small systems (Nmax58) decreases up toN54 ~system I!
or N56 ~systems III and IV!, and subsequently increases.

TABLE I. Quantities that define the box geometries as depic
in Fig. 1. Only in the geometries I and Ib canNmax spheres be
ordered into the equivalent of an fcc or hcp lattice for a~very! small
system. The other geometries allow only distorted configurati
with respect to this ‘‘true’’ close packing.

Code a b g uaW u:ubW u:ucW u Nmax ~Close-packed
volume!/D3

I 65.91 69.30 60 1:1:A2/3 8 1/&
Ib 65.91 69.30 60 1:1:A2/3 27 4&
II 90 69.30 60 1:1:A2/3 8 3/4
IIb 90 69.30 60 1:1:A2/3 27 6
III 90 90 60 1:1:A2/3 8 )/2
IV 90 90 90 1:1:1 8 1
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@11# it was shown that this increase corresponds to a sm
system analog of a first-order phase transition in the gr
ensemble.

For the geometry encoded as II, the situation is m
complicated, as shown in Fig. 2. As long ash.2 ~approxi-
mately!, the available volume continuously decreases withN.
At smallerh ~1.7!, a minimum atN56 occurs. But whenh
is decreased even further~h51.49 in this case!, the available
volume has two minima, one atN54 and one atN56. This
behavior is still apparent in geometry IIb withNmax527 and
h51.47: here,v0

(N) has two minima, one atN522 and one
at N524. In the following we shall concentrate on this g
ometry, II~b!, as the behavior of the other ones~III and IV! is
not qualitatively different from I~b!. It should be noted tha
apparently a single cubic axis in the~small! box geometry
depicted in Fig. 1 embodies a crossover between a sin
minimum of v0

(N) at N54 ~geometry I, no cubic axes! to a
single minimum atN56 ~geometries III and IV, with two
and three cubic axes, respectively!. In the case of the geom
etries III and IV,v0

(N) goes to zero ifN.4 andh,1.5.
At equal volumes, the Helmholtz free energies@Eq. ~1!#

of geometries II~b!–IV are always equal to~at smallN! or
larger ~at largeN; N.4 for the systems withNmax58! than
that of geometry I~b!, indicating that if the geometries of th
boxes were considered as a constraint imposed on the
tems, the geometries that are different from I~b! are meta-
stable with respect to I~b! at high densities. This situation i
illustrated in Fig. 3, where the Helmholtz free energy as
function of the number of spheres is plotted for the geo
etries I and II. It is also shown that geometry I has a reg

FIG. 2. Available volumesn0
(N) ~averaged over at least 104 con-

figurations! as a function of the number of spheres, at several b
volumes relative to the volume of the box where the maxim
number of spheres are close packed, as quantified byh ~see text!.
Geometry II~see Table I!: h54.79 ~crosses!, h52.48 ~diamonds!,
h51.68 ~triangles!, andh51.49 ~squares!. Also shown is the situ-
ation for geometry I withh51.49 ~solid circles! as a comparison.
Inset: situation for geometry IIb withh51.47. Heren0

(N) still has
two minima. Uncertainties are on the order of the symbol size
the smallest values ofn0

(N) and smaller for the other values.
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~in betweenN54 and 8! that is concave from below, indi
cating that in an ensemble of boxes with geometry I, if t
number of spheres in the system is such that on averagN
55 – 7 ~per box!, the system reduces its Helmholtz free e
ergy by splitting intoN54 and 8~the fractions of boxes with
N54 and 8 being determined by the lever rule!, as was
indeed found to happen in the grand ensemble@11#. It is also
clear from Fig. 3 that geometry II has two regions that a
concave from below, indicating two small-system analogs

FIG. 4. PN vs N for different values of ln(z). ~a! Geometry II
andh51.49; solid circles correspond to ln(z)512.7 where the first
maximum of sN

2 5^N2&2^N&2 appears. Open squares: ln(z)516
~second maximum ofsN

2 !. ~b! Geometry IIb withh51.47; solid
circles represent ln(z)515.2 ~first maximum of sN

2 !, and open
squares ln(z)517.6 ~second maximum ofsN

2 !.

FIG. 3. Helmholtz free energies as a function of the numbe
spheres for systems I~solid circles! and II ~open squares!. Inset:
expanded view with a linear term subtracted in order to clea
show the region wherebF is concave from below. In both system
h51.49.
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phase transitions or a melting transition that occurs in t
steps when decreasing the average number of spheres i
boxes. As shown in Fig. 4, where the grand probability d
tribution @Eq. ~2!# is plotted, this behavior is corroborated
the grand ensemble: there are two values of ln(z) ~the chemi-
cal potential! where the grand probabilityPN has two peaks.
Note that the transition at the larger values of ln(z) is the
strongest of the two transitions; i.e., the probability of fin
ing systems containing numbers of spheres in between
two peaks is very small relative to the first transition.

FIG. 5. Positions of sphere centers of 104 configurations of ge-
ometry II andh51.49.~a! N58, ~b! N57, ~c! N56, ~d! N55, and
~e! N54. Thex, y, z axes correspond to the directions of the vecto
a, b, c in Fig. 1. Note that thez axis is somewhat expanded relativ
to thex andy axes.

FIG. 6. Histogram of the positions of sphere centers along thx
direction ~in Fig. 5!. Dashed line:N54. Dotted line:N56. Solid
line: N58.
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What is the structure of the system at high, intermedia
and low numbers of spheres in geometry II? The position
the centers ofN spheres, of 104 configurations, are plotted in
Fig. 5. WhenN58, the system clearly is a crystal, with eig
well-defined lattice positions@Fig. 5~a!#. The system is a
‘‘defective solid’’ when N57 @there are eight lattice posi
tions for seven spheres, Fig. 5~b!#. WhenN<4, the centers
tend to occupy positions at the corners and along the w
but there are no distinct lattice positions@Fig. 5~e!#. At inter-
mediate values, in particular whenN56 @Fig. 5~c!#, the
sphere centers occupy localized lattice positions as we
regions that clearly are localized, but still occupy a relativ
large volume of the box—they look more like ‘‘streaks
than they look like lattice positions. Similar structures ha
not been found in the boxes with geometries that are dif
ent from II~b!. So for this structure to exist, hcp-~or fcc-!
like configurations should be suppressed, while at the s
time the system should be able to reach relatively h
number densities. Looking at several configurations~not
shown!, it follows that the streaks in thez direction may
contain a single sphere center that can be located anyw
in the streaks or two sphere centers with large probabili
of being located at the extreme extensions of the streaks
shown in Fig. 6, where the histograms of the positions
03710
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the sphere centers along thex coordinate are plotted, the
system withN56 clearly has a symmetry that is differen
from the ‘‘fluid’’ N54 and the crystalN58. The situation
is less obvious in the larger system of geometry IIb~not
shown!, which probably is related to the observation~Fig. 2!
that the minima ofv0

(N) tend to become closer to one anoth
along theN/Nmax axis when the system size is increas
~the two minima should ultimately merge into a single o
in the thermodynamic limit!. This melting scenario is dif-
ferent from the situation where hard spheres are confi
between parallel plates, where either fluid-solid or sol
solid transitions have been observed@8,9#, and no structure
has been found that is a mixture of localized and not-
localized lattice positions, i.e., intermediate between fl
and solid.

By applying geometrical constraints to small systems
have shown that melting of a small hard-sphere crystal
occur in two steps, where the structure of the intermed
state consists of localized regions of high probability to fi
a sphere center. Within the~single! crystal, these regions
differ dramatically in size and shape.

I thank Bill van Megen and Markus Kollmann for criti
cally reading the manuscript.
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