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Two-step melting transition in confined hard spheres in three dimensions
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It is shown that certain geometrical constraints on a system of hard spheres lead to two distinct finite-size
analogs of melting transitions upon decreasing the average number of spheres at constant volume. Melting
takes place from an ordered crystal via an intermediate structure to a fluid. Sphere centers in the intermediate
state have a high probability to be found in localized regions that are dramatically different in size and shape.
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A collection of atoms may undergo phase transitions toof magnetically interacting colloids, geometrical constraints
and from a gas, liquid, and solid. Solids come in many strucdramatically change the phase behavior as was recently re-
tures, and upon variation of pressure and/or temperaturgorted in[12].
phase transitions between different solid structures may oc- The central quantity from which all thermodynamic func-
cur. For example, carbon may order into graphite and diations are calculated is the configurationally averaged volume
mond, and tin into its gray and white form. These structureghat is available for the center of ah{-1)th hard sphere in
are transformed into one another by symmetry-breakinga system containing\ hard spheres in a volume, VY.
first-order phase transitioris1 these examples from a soft to Speedy[13] derived an exact relation between available vol-
a strong soligdd From computer simulations it follows that ume(named “spare volume” by the authoof a system oN
solids may also undergo symmetry-conserved transifibhs hard spheres and the configuration integral, which implies
Highly charged colloids may undergo a body-centered-cubithat the(reduced configurational part of the Helmholtz free
(bco to face-centered-cubidcc) transition(see[2] and ref-  energy of a system containiig spheres is exactly given by
erences therejn which can be reproduced by computer the recursive relatiofl1]
simulation by assuming long-ranged repulsive interactions

(Yukawa potential between the spherg¢8]. p(N=1)

For hard disks in two dimensions, it is still being dis- ﬂFN:BFNl—ln( 0 ) (1)
puted whether such a system, upon decreasing the num- N
ber density, melts in two continuous steps via an hexatic
phase [Kosterlitz-Thouless-Halperin-Nelson-Young in which the reduced available volume{")=Vv{N/D?3,
(KTHNY) theory; se€[4] and references therdinr if the  \whereD is the diameter of a hard sphey@= 1/kT, with k
melting transition is first ordel5]. Boltzmann’s constant and the absolute temperature. A

The simplest model of interacting atoms in three dimen-small-system analog of a first-order phase transition in the
sions(3D), hard spheres under thermal agitation, has a singlganonical ensemble is evident if the Helmholtz free energy
freezing transition from a fluid to &cc) solid [6,7]. When a5 a function of the number of spheres has a region that is
hard spheres are confined in one direction, i.e., between twesoncave from below.” Strong evidence of a first-order
parallel plates, they exhibit many phase transitions{8¢#  phase transition in the grand ensemble follows from two

and references therein. In particular, when the plate separgeaks of the grand distribution functi¢m4]
tion is kept constant in between approximately 1.2 and 2

sphere diameters, and upon increasing the number density of N
the spheres, a first-order phase transition from a fluid to a pN—Z An 2
solid is found, followed by a solid-solid transition. The struc-
ture of the solid phases depend on the plate separation.
In this Brief Report, systems of hard spheres that are con- 7
fined in all three directions are studied. Very small systems /
(down to eight sphergésalready show the signature of the
freezing transitior}10,11]. Here the question is addressed as
to what the role of geometrical constraints is on the character
of the freezing transition. Geometrical constraints are im-
posed by the shapes of the boxes that keep the spheres to-
gether. Besides being interesting from a fundamental point of
view, the answer to this question may be relevant to the
behavior of simple fluids in highly porous media. In the case

a

FIG. 1. Boxes of different geometry, that define the angles and
*Electronic address: W.K.Kegel@chem.uu.nl length ratios given in Table I.
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TABLE I. Quantities that define the box geometries as depicted VIRV T 1T T
in Fig. 1. Only in the geometries | and Ib ca.,,, spheres be X
ordered into the equivalent of an fcc or hcp lattice fgvery) small 0+ §§ L b
system. The other geometries allow only distorted configurations J
with respect to this “true” close packing. 4] i
Code a B v |a|:|bl:|¢] Nmax (Close-packed
volume/D3 £~ 8- i
| 65.91 69.30 60 1:1:\2/3 8 V2 > 5
lb 6591 6930 60 1:1.273 27 &2 £ ol U T, b—" 1
I 90  69.30 60 1:1:\2/3 8 3/4 2 R \/
b 90  69.30 60 1:1:/2/3 27 6 Z-0 20
M 9 90 60 1:1\23 8 V3I2 161 = 15 V d I
1\ 90 90 90 1:1:1 8 1 1 0 4 8 12 16 20 24
'20 T !\l T T T T T
0 1 2 3 4 5 6 7
with the reduced canonical partition functign=e #~ and N

N3/ A By Bl )
B ptene EN e MEMS 16,2, v volumes() wveraged verat st Son
A N . . o igurationg as a function of the number of spheres, at several box
potential. zngzagquN is the grand partition function in volumes relative to the volume of the box where the maximum
which N max is the maximum number of spheres that can benumber of spheres are close packed, as quantifieg (see text
crammed intoV. Geometry ll(see Table)t 7»=4.79 (crossel 7=2.48 (diamonds,

The systems of hard spheres are contained in boxes with=1.68 (triangles, and »=1.49 (squares Also shown is the situ-
smooth hard walls and varying geometry. Their volumeation for geometry | withy=1.49 (solid circles as a comparison.
could be varied isomorphically. Inset: situation for geometry Ilb witly=1.47. Herev{") still has

The four different geometries of the boxes that were usedwo minima. Uncertainties are on the order of the symbol size for
are defined by Fig. 1, together with Table |. These boxeshe smallest values ofJ") and smaller for the other values.
envelop the centers of the hard sphefart of the spheres
can thus be outside the boyesnd their volumes define [11] it was shown that this increase corresponds to a small-
Vg)O)_ system analog of a first-order phase transition in the grand

Table | summarizes the values of the angles, defined b§nsemble. S
Fig. 1, and the ratios of the axis lengths that characterize a FOr the geometry encoded as II, the situation is more
box geometry. The sequence |, II, Ill, IV corresponds to ancomplicated, as shown in Fig. 2. As long 4% 2 (approxi-
increasing number of cubic axes in the boxes and thus gately), the available \{o!ume continuously decreases With
decreasing packing efficiency. The close-packed volume iét sSmaller (1.7), a minimum atN=6 occurs. But whery
defined as the volume of the box at whibh,,, spheres are 1S decreased even_fqrthepz 1.49 in this casg the avallab_le
close packed in the particular geometry defined by the valug&olume has two minima, one &t=4 and one aN=6. This
of the angles. For example, the box of the geometry encodelehavior is still apparent in geometry Ilb witl,,,=27 and
by | fits a true close-packed configuration of eight hard7=1.47: herep{") has two minima, one &ii=22 and one
spheres when its reduced volume equal@lh the situation  at N=24. In the following we shall concentrate on this ge-
that the system | is close packed, all centers of the har@metry, I(b), as the behavior of the other on$ and IV) is
spheres are fixed at the corners of the box. The codi#lp  not qualitatively different from (b). It should be noted that
refers to a box of the same geometry &8 ), but it is dilated ~ apparently a single cubic axis in tiemal) box geometry
to fit (at mos} 27 spheres. This situation was chosen in ordedepicted in Fig. 1 embodies a crossover between a single
to study effects of the size of the system while keeping thenminimum Ofv(()N) at N=4 (geometry |, no cubic axggo a
geometry constant. single minimum atN=6 (geometries Il and IV, with two

Throughout this paper, the volumes of the boxes are exand three cubic axes, respectivelin the case of the geom-
pressed relative to the close-packed geometry [; that is, it igtries Il and IV,vgN) goes to zero iN>4 and»<1.5.
defined by 7=v{/(AV2) if Npma=8 and n=v{/4v2 if At equal volumes, the Helmholtz free energ[€sy. (1)]
Na=27. of geometries Kb)—IV are always equal td¢at smallN) or

The available volumes were computed numerically, as ifarger (at largeN; N>4 for the systems witiN,,,=8) than
[11]. For the geometrieglh), Ill, and IV, its behavior quali- that of geometry(b), indicating that if the geometries of the
tatively looks like what was found ifl1] where geometry boxes were considered as a constraint imposed on the sys-
I(b) was studied; i.e., at constapt>2 (approximately, the  tems, the geometries that are different froth) lare meta-
available volume continuously decreases with the number aftable with respect talb) at high densities. This situation is
spheres, but when becomes small, the available volume for illustrated in Fig. 3, where the Helmholtz free energy as a
the small systemaN,.x=8) decreases up td=4 (system}  function of the number of spheres is plotted for the geom-
or N=6 (systems lll and 1V, and subsequently increases. In etries | and Il. It is also shown that geometry | has a region
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FIG. 3. Helmholtz free energies as a function of the number of g
spheres for systems (bolid circles and Il (open squares Inset:
expanded view with a linear term subtracted in order to clearly(b)
show the region whergF is concave from below. In both systems,
7n=1.49.

(in betweenN=4 and 8 that is concave from below, indi-
cating that in an ensemble of boxes with geometry |, if the
number of spheres in the system is such that on avexage
=5-7 (per boy, the system reduces its Helmholtz free en-
ergy by splitting intoN =4 and 8(the fractions of boxes with

N=4 and 8 being determined by the lever pulas was - _ _
indeed found to happen in the grand ensenfibig. It is also FIG. 5. Positions of sphere centers of kibnfigurations of ge-
clear from Fig. 3 that geometry Il has two regions that areMmetry Il andzy=1.49.(a) N=8, (b) N=7, (c) N=6, (d) N=5, and

concave from below, indicating two small-system analogs Ol(e) N=4. Thex, y, zaxes correspond to the directions of the vectors
' a, b, cin Fig. 1. Note that the axis is somewhat expanded relative

to thex andy axes.

0.5
0.4+ phase transitions or a melting transition that occurs in two
03] steps when decreasing the average number of spheres in the
’ boxes. As shown in Fig. 4, where the grand probability dis-
n® 021 1 tribution [Eq. (2)] is plotted, this behavior is corroborated in
01] the grand ensemble: there are two values o) Ithe chemi-
' cal potential where the grand probabiliti?, has two peaks.
004 ¢ . z) , , Note that the transition at the larger values ofzZJnig the
0 2 4 6 8 strongest of the two transitions; i.e., the probability of find-
(a) N ing systems containing numbers of spheres in between the
. - two peaks is very small relative to the first transition.
0.4
0
&Z 0 2 .E
= J
S o
. o
0.0{0—o—o0—o—o0—o-8-g-o-" o—o—o - S
14 16 18 20 22 24 26 28 =
X
(b) N a
FIG. 4. Py vs N for different values of Ir€). (a) Geometry |l
and = 1.49; solid circles correspond to M&12.7 where the first
maximum of o3=(N?)—(N)? appears. Open squares: 216
(second maximum ofrﬁ,). (b) Geometry llb with »=1.47; solid FIG. 6. Histogram of the positions of sphere centers alongthe
circles represent l@(=15.2 (first maximum of o), and open direction (in Fig. 5). Dashed lineN=4. Dotted line:N=6. Solid
squares Irf)=17.6 (second maximum otrﬁ). line: N=8.
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What is the structure of the system at high, intermediatethe sphere centers along tlxecoordinate are plotted, the
and low numbers of spheres in geometry [I? The positions oystem withN=6 clearly has a symmetry that is different
the centers oN spheres, of 1Dconfigurations, are plotted in  from the “fluid” N=4 and the crystaN=38. The situation
Fig. 5. WhenN =38, the system clearly is a crystal, with eight is less obvious in the larger system of geometry (ot
well-defined lattice position$Fig. 5a)]. The system is a shown), which probably is related to the observatigtig. 2
“defective solid” whenN=7 [there are eight lattice posi- that the minima ot (V) tend to become closer to one another
tions for seven spheres, Figth]. WhenN=4, the centers 5iong theN/N,,, axis when the system size is increased
tend to occupy positions at the corners and along the wall§¢he two minima should ultimately merge into a single one
but there are no distinct lattice positioffsig. €)]. Atinter- i the thermodynamic limjt This melting scenario is dif-
mediate values, in particular wheN=6 [Fig. 5c)], the  ferent from the situation where hard spheres are confined
sphere centers occupy localized lattice positions as well a§eryween parallel plates, where either fluid-solid or solid-
regions that clearly are localized, but still occupy a relativelysglid transitions have been obsenf@j9], and no structure
large volume of the box—they look more like “streaks” pag peen found that is a mixture of localized and not-so-
than they look like lattice positions. Similar structures have|gcqjized lattice positions, i.e., intermediate between fluid
not been found in the boxes with geometries that are differ4ng solid.
ent from. lI(b). .So for this structure to exist, h'cmer fceo) By applying geometrical constraints to small systems, |
like configurations should be suppressed, while at the samggye shown that melting of a small hard-sphere crystal can
time the system should be able to reach relatively highyceyr in two steps, where the structure of the intermediate
number densities. Looking at several configuratidnst  giate consists of localized regions of high probability to find

showrj, it fpllows that the streaks in the direction may 5 sphere center. Within thésingle crystal, these regions
contain a single sphere center that can be located anywhegger dramatically in size and shape.

in the streaks or two sphere centers with large probabilities
of being located at the extreme extensions of the streaks. As | thank Bill van Megen and Markus Kollmann for criti-
shown in Fig. 6, where the histograms of the positions ofcally reading the manuscript.
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