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We study a number of Monte Carlo algorithms for the simulation of ice models, and compare their effi-
ciency. One of them, a cluster algorithm for the equivalent three-color model, appears to have a dynamic
exponent close to zero, making it particularly useful for simulations of critical ice models. We have performed
extensive simulations using our algorithms to determine a number of critical exponents for the square ice and
F models.[S1063-651X98)09301-5
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[. INTRODUCTION and its four neighbors there are hydrogen bonds, represented
by the lines of the grid. Commonly, arrows are drawn on the
Ice models are a class of simple classical models of théonds to indicate the positions of the protons: the arrow
statistical properties of the hydrogen atoms in water ice. Irpoints towards the vertex which the proton is nearest to. The
ice, the oxygen atoms are located on a lattice, and each oxyirst ice rule above then corresponds to the condition that
gen atom has four hydrogen bonds to neighboring oxygethere should be exactly one arrow on each bond. The second
atoms, giving a fourfold-coordinated lattice. However, as hasce rule says that each vertex should have exactly two arrows
long been known, the protaiydrogen atomwhich forms a  pointing towards it, and two pointing away. This gives us six
hydrogen bond is located not at the center point of the lingypes of vertices, and for this reason ice models are some-

between two oxygens, but at a point closer to one of the tWoymes also referred to as six-vertex models. The six vertices
Bernal and Fowlef1] and Pauling[2] proposed that the ..o ilustrated in Fig. 1.

protons are arranged qccording to two rules, known as the ice In the first part of this paper we study the simplest six-
rules: (1) there is precisely one hydrogen atom on each hy-

drogen bond ang@) there are precisely two hydrogen atoms vertex model, in which all types of vertices are assigned the
near each oxygen atom. same energy. This model is usually called “square ice.” The

Ice models are a class of models mimicking the behaviof2M€ 1S spmewhat confusing, since other ice models on
of systems which obey these rules. The most widely studiegduare lattices, such as the KDP dhdnodels of Sec. VII,
ice model is the model on a square lattice in two dimensions2'€ Not also called square ice. However, since the name is
A version of this model was solved exactly by Ligb-5]. widely used, we W|II fol'low convention _and use it here too.
The exact solution gives us, for instance, the critical temBecause all configurations of square ice possess the same
perature and the free energy of the model. However, therénergy, the model's properties are entirely entropically
are a number of quantities of interest which cannot be obdriven, and variations in temperature have no effect on its
tained from the exact solution, and for these quantities wéehavior. It turns out that the square ice model is equivalent
turn to Monte Carlo simulation. to three other well-studied models in statistical physics: the

In this paper we introduce a number of Monte Carlo al-three-coloring model, a random-surface model on a square
gorithms for the simulation of ice models, and compare theifattice, and the “fully packed loop model” of Nienhuis.
efficiency. We will show that one of them, the three-color
cluster algorithm for square ice described in Sec. V, pos-
sesses a very small dynamic expongrassibly zer@ and so
suffers very little from critical slowing down. We also ex-  Lenard[3,6] showed an important result about square ice
tend this algorithm to the case of energetic ice models in Sesvhich will help us in the design of an efficient Monte Carlo
VII. Using these algorithms we determine numerically sev-algorithm for the simulation of the model. Lenard demon-
eral critical exponents which have not been accurately meastrated that the configurations of an ice model on a square
sured previously: the dimensionality of the percolating clus-attice can be mapped onto the configurations of a lattice of
ter of symmetric vertices in the= model at critical squares colored using three different colors, with the restric-
temperature, the scaling of the largest loop in the loop rep-
resentation of both square ice and themodel at critical (6)

@ @ 3) “) 5)
temperature, and the scaling of the trajectory of a wandering
defect in square ice. ‘.\ l‘ ’ T
Il. ICE MODELS \ l‘

Our ice model is as follows. Oxygen atoms are arranged FIG. 1. The six possible vertex configurations of an ice model
on the vertices of a square grid, and between each oxygem a square lattice.

A. Coloring models
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Given this three-color mapping, it is clear that the square

1 ) 1 5 T3 2 ¥ 3 ) ice model is also equivalent to tlig=3 Potts antiferromag-

- RN & | SR S - net on a square lattice in the limit of infinite couplidgthe

2 1 LY 2 1YY three colors correspond to the three states of the Potts model,
- R S and the infiniteJ ensures that no two adjacent sites can pos-

1 31 |31 ) 1 2 sess the same color.

3 5x 1 2 1 2 3 2 1 B. Random surfaces

Square ice is also equivalent to a random surface model in
AAAAA which heights are assigned to the plaquets of a square lattice.

5, Vis ) 1 ) g 3 : ) ! If we assign these heights in such a way that adjacent
. i ! Vo plaguets have heights which differ by exactly 1, then again
: ; ; : there is a one-to-one mapping between the configurations of
1 2 34 2 3 2 3 2 . ? L.
| S [ 1 .t the ice model and the random surface: the mapping is iden-
’ ) g 3 ; ) g 3 » 3 1 3 tical to the three-color mapping of Sec. Il A, except for the

absence of the modulo operation. There has in fact been
considerable recent interest in the connection between color-

FIG. 2. Athree coloring of a square lattice and its correspondindng (and Potty models and models of random surfacsee,
configurations of arrows and fully packed loops. for example, Ref[7]), another reason for the development of
efficient Monte Carlo algorithms for these problems.

tion that no two nearest-neighbor squares have the same
color. It is actually not very difficult to demonstrate this
equivalence. The procedure for working out the configura- The six-vertex model is also equivalent to the “fully
tion of the arrows of the ice model, given a suitable coloringPacked loop model’[8,9], in which (nondirectedl loops are:

of the plaquets on the lattice, is shown in Fig. 2, in which theformed by joining the vertices of the square lattice with
three colors are represented by the numbers 1, 2 and 3. ThANKS” in such a way that each site on the lattice belongs to
rule is that we imagine ourselves standing on one of th xactly one_self—av0|d|ng I(_)op. To de_monst_ra_lte this equiva-
squares of the lattice and looking toward one of the adjace gnee, consider the. foIIpwmg rule. First, divide the lattice
ones. If the number in the adjacent square is one highe]'Pto even and odd sites in a checkerboard pattern. Now place

(modulo 3 than the number in the square we are standin inks along all bonds whose arrows are pointing away from
q %n even vertex. Since each such arrow must also point to-

iht. Otherwi d o0 the left. Th d Svards an odd vertex, and since each vertex has two ingoing
ngnt. Erwise, we draw an arrow to the [efl. The procedure,,q o outgoing arrows, this creates two links to every site

is then repeated for every other bond on the lattice. on the lattice. Hence the lattice is fully covered by closed
Clearly the resulting configuration of arrows obeys theself-avoiding loops.

first ice rule; since neighboring plaquets must have different pyoying the reverse result, that each configuration of

colors, the prescription above will place one and only on&gops corresponds to exactly one configuration of arrows, is
arrow on every.bon_d. The second ice rule requires that eacqually simple: we place outgoing arrows on each bond ad-
vertex has two ingoing and two outgoing arrows. If we walkjoining an even site which is part of one of our loops. The

from square to square in four steps around a vertex, thegirection of all the remaining arrows is then fixed by using
each time we cross a bond separating two squares, the colffe second ice rule.

either increases or decreases by one, modulo 3. The only way

to get back to the go!or we started wi_th when we have gone |;; MONTE CARLO ALGORITHMS FOR SQUARE ICE

all the way around is if we increase twice and decrease twice.

This means that the vertex we walk around must have two In this paper we develop a number of different Monte

ingoing and two outgoing arrows, exactly as we desire. Thu€arlo algorithms for calculating the average properties of ice

each configuration of the three-coloring model correspondsnodels on square lattices. In the case of square ice, in which

to a unique correct configuration of square ice. all configurations of the lattice have the same energy, the
We can also reverse the process, transforming an icgecessary steps for creating such an algorithm (8rd¢o

model configuration into a three-coloring configuration. Wechoose a set of elementary moves which take us from one

are free to choose the color of one square on the lattice as watate of the model to anothe(ii) to demonstrate that these

wish, but once that one is fixed, the arrows on the bondgnoves can take us from any state of a finite lattice to any

separating that square from each of its neighbors uniquelgther in a finite number of steffthe condition of ergodicity

determine the color of the neighboring squares, and, by reand (iii) to construct an algorithm from these moves such

peated application of the rule given above, the color of alithat in equilibrium the rate at which a particular move occurs

the rest of the squares in the lattice. Thus the number of wayshich takes us from a staje to a statev is the same as the

in which the squares of the lattice can be colored is exactlyate for the reverse move from to x (the condition of

the number of configurations of the ice model on the samaletailed balange It is then straightforward to show that,

lattice, regardless of the size of the lattice, except for a factoover a sufficiently long period of time, we will sample all

of 3. states on a finite lattice with equal probability. However, the

C. Fully packed loop models
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@ (® © rows correspond to OHand HO" ions respectively. We
can remove the defect at the new vertex by choosing at ran-
i dom one of the two outgoing arrows at this vertex and re-
(:__} versing it(c). (There are actually three outgoing arrows at
this vertex, but one of them is the arrow we reversed in the
first move, and we exclude this one from our set of possible
choices to avoid having the loop retrace its stefphis cre-
ates another defect at the other end of that arrow, and so
forth. In this manner one of the two defects created by the
reversal of the first arrow diffuses around the lat{ide until

by chance it finds itself back at the starting site once more, at
which point it annihilates with the defect there, resulting in a
new configuration of the lattice which satisfies the ice rules
(e). The net result is the reversal of a loop of arrows on the
lattice.

FIG. 3. Flipping arrows one by one along a line across the In the figure we illustrate the case of the smallest possible
lattice allows us to change the configuration and still satisfy the icdoop, which on the square lattice involves the reversal of just
rules. The only problems are at the ends of the line, but if the twdfour arrows. However, provided the size of the lattice allows
ends eventually meet one another, forming a closed loop of flippedor it, the loops can be arbitrarily long, and for this reason we
arrows, this problem goes away too. will refer to this algorithm as the “long loop algorithm.” At

each step around the loop we have a choice to make between
choice of an elementary move is not obvious, since there igvo possible arrows that we could reverse, and if we make
no local change we can make to the directions of the arrowghese choices at random with equal probability we generate a
on the lattice which will preserve the second ice rule. Therepecies of random walk across the lattice. This walk could
is no equivalent of the reversal of a single spin in an Isingquite possibly take a long time to return to its starting point.
model, for example. In the next few sections we will con- However, on the finite lattices we use in our Monte Carlo
sider four different candidate nonlocal update moves fosimulations, we are guaranteed that the walk will eventually
square ice, which lead us to four different Monte Carlo al-return. And long loops are not necessarily a bad thing, since,
gorithms of varying efficiency. Two out of these four algo- although they take longer to generate, they also flip a larger
rithms have been described before by other authors, but it isumber of arrows, which allows the system to decorrelate
still worth our going over them here, because in Sec. VII wequicker.
will make use of some of the same ideas to develop algo- An alternative, but entirely equivalent scheme, makes use
rithms for energetic ice models. These latter algorithms havef so-called Bjerrum defectl2], rather than the ionic de-

@ (e)

not, to our knowledge, been described before. fects we have employed. A Bjerrum defect is a violation of
the first ice rule: a bond containing two protons, one at either
A. Standard ice algorithm end of the bonda BjerrumD defec}, or a bond containing

. . ._no protons(a BjerrumL defec}. One can construct a Monte
First, we look at the standard algorithm for square ice p sa Bj s

101 hich invol g th dal Carlo move using Bjerrum defects just as we did with ionic
[10,11], WRICh INVOIVES Teversing the arrows around a 100bgetects hy removing an arrow from a bond, and placing it on
on the lattice. It is clear that one possible move which take

Another bond. This creates obedefect and oné. defect.

us from an.allowed configuration of arrows in an ice mOdeIThese defects can also wander around and eventually recom-
to another is the reversal of all the arrows in a loop choserg)ine resulting in a new state of the lattice

such that all arrows point in the same direction around the The process in which two defectsither ionic or Bjer-

Iootp.fSuchha Ioc:_p_ha? one airow po[[rrl]tl?gt]r:n and onel p?'nltl'n?um) are created and diffuse around the lattice until they find
out or each participating vertex, so that th€ reversal ot all 0ly,e 5nther again is actually very similar to what goes on in

those in the fully packed loop model described above. In thaéround the lattice. The density of defects is very smal—

case the arrows along the _Ioop point in altern_atmg d'reCt'onsaIready at—10 °C, only about one in five million bonds is
and their reversal would violate the second ice rule.

How do we find a loop in which all arrows point in the occupied by a Bjerrum defect, and the number of ionic de-

S ) fects is smaller even than thig3].
same direction around the loop? The most straightforward i3]

method is illustrated in Fig. 3. Starting with a correct con-
figuration of the modela), we choose a single vertex at
random from the lattice. We then choose at random one of We have now specified a move that will take us from one

the two outgoing arrows at this vertex and revergb)it(We  correct configuration of the arrows to another, and our pro-
could just as well choose an ingoing arrow—either is jine. posed Monte Carlo algorithm for square ice is simply to

This creates a violation of the second ice rule at the initialcarry out a large number of such moves, one after another.
vertex, and also at a new vertex at the other end of thélowever, as we remarked above, we still need to demon-
reversed arrow. In ice terminology these are referred to astrate that the algorithm satisfies the criteria of ergodicity and
ionic defects: the vertices with one and three outgoing ardetailed balance.

B. Ergodicity
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] once we have wandered sufficiently far away from it, and
_W thus it may take a long time to generate even one move. In
i _ o response to this problem, Rahman and StillingEd] pro-
o fﬁn posed a second algorithm which also reverses the arrows
%‘3 I around a closed loop of bonds, but which generates shorter
I roeTony loops. For obvious reasons we call this the “short loop algo-

rithm.” Here we describe a slightly refined version of the

FIG. 4. The difference between any two configurations of thealgorithm due to Yanagawa and Nagjil].
six-vertex model can be decomposed in a number of I¢gosch The short loop algorithm works in a similar way to the
may run around the periodic boundayiel all the arrows along long loop algorithm: we choose a starting s&gat random
these loops are reversed, we go from one configuration to the othe|rr0m the lattice, and reverse one of the outgoing arrows at

that vertex, thereby creating two defects. We then reverse

First, consider ergodicity, whose proof is illustrated in further arrows so that one of the defects wanders around the
Fig. 4. The figure shows how the difference between twdattice randomly. However, rather than waiting until the two
configurations of the model on a finite lattice can be decomeefects find one another again, we now continue only until
posed into the flips of arrows around a finite number ofthe wandering defect encounters a site, casit, which it
loops. We can demonstrate the truth of this statement for anyas encountered before in its path across the lat8ge: S
two configurations by the following argument. Each of thewith | <m. From this point, we retrace our stepackwards
vertices in Fig. 1 differs from each of the others by the re-down the old path of the defect, until we reaSg again,
versal of an even number of arrows. This fact follows di-reversing all the arrows along the way. The net result is that
rectly from the ice rules. Thus, if we take two different con- we reverse all the arrows along the path from Seto S
figurations of the model on a particular lattice and imaginefwice (which means that they are the same before and after
drawing lines along the bonds on which the arrows differ, wethe move, and all the arrows in the loop frof to S, once.
are guaranteed that there will be an even number of suciihus we have again reversed all the arrows around a loop. In
lines meeting at each vertex. Thus these lines must form a sebntrast with the long loop algorithm however, the wander-
of (possibly intersectingloops covering a subset of the ver- ing defect does not have to find its way back to its original
tices on the lattice. It is not difficult to show that these loopsstarting point; it only needs to find any site on its previous
can be chosen so that the arrows around each one all point gath. This guarantees that the length of its walk will never
the same direction. Since the reversal of the arrows aroungxceedN steps, and in practice the typical move is much

these loops are precisely our Monte Carlo moves, and sincshorter than this(In fact, the number of steps tends to a
there are a finite number of such loops, it follows that we carinite limit as the lattice becomes large—see Sec. VI B.
move from any configuration to any other in a finite number  As with the previous algorithm, we need to demonstrate
of steps, and thus the system is ergodic. Note that it is imergodicity and detailed balance. The proof of ergodicity is
portant to allow the loops to pass through the periodicidentical to that for the previous case: the difference between

boundary conditions for this to worlk4]. any two states on a finite lattice can be reduced to the rever-
sal of the spins around a finite nhumber of loops. Since the
C. Detailed balance algorithm has a finite chance of reversing each such loop, it

n connect any two states in a finite number of moves.
The proof of detailed balance is also similar to that for the
ng loop algorithm. Consider again a move which takes us
from stateu to statev. The move consists of choosing a
starting siteS, at random, then a patR={S,, ...,S} in
which the arrows are left untouched, followed by a Idop

Our Monte Carlo move consists of choosing a starting sité?
Sy and reversing a loop of arrows starting at that site anq
ending,m steps later, at the same sg=S;. The probabil- 0
ity of selecting a particular sit&, as the starting site is N/
whereN is the number of sites on the lattice. The probability
of making a particular choice from the two possible outgoing ) )
arrows at each step around the loog fer each step, so that =S, ... ’Sm}. |n.wh|ch We reverse the grroweRemember
the probability that we chose a certain sequence of steps stat the last site in the_looﬁﬂ is necessarily the same as the
equal to 2™, and the probability of generating the entire St Si-) The probability that we chos&, as the starting

loop is 2-™/N. For the reverse move, in which the same |ooppoint is 1N, whereN is the number of sites on the lattice.
of arrows is flipped back again to take us from stateack After that we have a choice of two directions at each step

P long the starting path and around the loop, so that the prob-
to stateu, the exact same arguments apply, again giving us &1 . ;
probabi/ILity of 27™N for malging the m?)?/g, a?]d hgncegde— ability that we end up taking the pafhis equal to 2!, and

1 ‘o (m—|
tailed balance is observed. This, in combination with theln€ Probability that we follow the loop is 2 (M. After

demonstration of ergodicity above, ensures that our algotn€ 100p reaches sitg, =S, we do not have any more free

rithm will sample all states of the model with equal probabil- €10ices. The probability that we move from a configuration
ity. wu to configurationv by following a particular pattP and

loop L is thus

IV. AN ALTERNATIVE ALGORITHM, 1
INVOLVING SMALLER LOOPS P(u—v)= N2"2‘<”“'>= 2™, 1)

A practical problem which arises in the algorithm pre-
sented above is that, if we simulate a large lattice, the prob- For the reverse move, the probability of startingSgtis
ability that we return to the starting sit®, is quite small again 1N, and the probability of following the same pah
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as before to sitéS is 27! again. However, we cannot now  There are a couple of points to notice about this algo-
follow the same loojh. from S, to S, as we did before, since rithm. First, the cluster possesses no nearest neighbors of
the arrows along the loop are reversed from what they wereither colorA or color B, and therefore all its nearest neigh-
in statew. On the other hand, we can follow the loop in the bors must be of the third coldE. In the simplest case, the
reverse direction, and this again has probability(™".  seed square has no neighbors of c@aat all, in which case
Thus we have the cluster consists of only the one plaquet. It is crucial to the
working of the algorithm that such moves should be pos-
sible. If we had chosen instead to seed our cluster by picking
two neighboring plaquets and forming a cluster with their
colors, single-plaquet moves would not be possible, and we
exactly as before. This demonstrates detailed balance for thould find that the algorithm satisfied neither ergodicity nor
algorithm and, in combination with the demonstration of er-detailed balance. Notice also that within the boundary of

godicity, ensures that all possible states will be sampled witi§olor C, the cluster oA’s andB’s must form a checkerboard
equal probability. pattern, since no twé's or B’s can be neighbors.

We are now in a position to prove that our algorithm
satisfies the conditions of ergodicity and detailed balance. In
this case it turns out that detailed balance is the easier to
prove. Consider, as before, a Monte Carlo move which takes

We now have two Monte Carlo algorithms which cor- us from a stateu to a statev, and suppose that this move
rectly sample the states of the square ice model, and since, Bw/olves a cluster ofn squares. The probability of choosing
we showed in Sec. Il A, the states of this model can beour seed square in this clusterngN, whereN is the total
mapped onto the states of the three-color lattice model, weumber of plaguets on the lattice. The probability that we
can of course use the same algorithms to study the thre¢hen choos® as the other color for the clusterjsand after
color model. In this section however, we will explore the that there are no more choices: the algorithm specifies ex-
other side of the same question: is there a natural Montactly how the cluster should be grown from here on. Thus
Carlo dynamics for the three-coloring model which couldthe total probability for the move fronu to v is m/(2N).
then be used to sample the states of the ice model? It turrtsxactly the same argument applies for the reverse move
out that there is, and the resulting algorithm provides nofrom v to u with the same values ah andN, and hence the
only an efficient way of simulating ice models, but will also rates for forward and reverse moves are the same. Thus de-
prove useful when we move to the energetic ice models ofailed balance is obeyed.

Sec. VI, in which different types of vertices are assigned The proof of ergodicity is a little trickier. It involves two
different energies. steps. First, we show that from any configuration we can

In the three-coloring representation the degrees oévolve via a finite sequence of reversible moves to a check-
freedom—the colors—are located on the plaquets of the laterboard coloringa configuration in which one of the three
tice, rather than at the vertices, and, as we showed earlier, ttmlors is absent Then we show that all checkerboard color-
ice rules translate into the demand that nearest-neighbdngs are connected through reversible moves.
squares have different colors. Just as in the case of the square Any configuration of the lattice can be regarded as a num-
ice model, there is no obvious update move which will takeber of checkerboard regions consisting of only two colors,
us from state to state. Although there are some states idivided by boundaries. This result is obvious, since each site
which the color of one square can be changed from one valuef color A must have at least two neighbors with the same
to another without violating the ice rules, there are also statesolor, and therefore each square on the lattice belongs to a
in which no such moves are possible, and therefore singlezheckerboard domain of at least three squares. However, un-
plaguet moves of this kind cannot reach these states, and sier the dynamics of our proposed Monte Carlo algorithm,
do not lead to an ergodic dynamics. Again then, we musthe boundaries between these domains can move. If we have
resort to nonlocal moves, and the most obvious such move i@ domain of color® andB and another oB andC, then by
to look for clusters of nearest-neighbor plaquets of only twochoosing one of the plaquets on the boundary as the seed
colors, call themA andB, entirely surrounded by plaquets of square for our Monte Carlo move, aBdas one of the colors
the third colorC. A move which exchanges the two colgks  for the cluster, we can make the boundary move one square
and B in such a cluster but leaves the rest of the latticein one direction or the other, with the direction depending on
untouched satisfies the ice rules, and this suggests the folvhether the other color for the cluster wAsor C. In this
lowing cluster-type algorithm for square ice: way we can take a single simply connected cluster of one

(1) We choose a plaquet at random from the lattice as theheckerboard pattern and, over a number of steps, grow its
seed square for the cluster. Suppose this plaguet hasAolor border until the cluster covers the entire lattice, leaving the

(2) We choose another coldd+# A at random from the lattice in a checkerboard state.
two other possibilities. There are six of these checkerboard colorings, and from

(3) Starting from our seed square, we form a cluster byany one of them the others can easily be reached, since on a
adding all nearest-neighbor squares which have either colaheckerboard the color of any square can be changed on its
A or colorB. We keep doing this until no more such nearestown without changing any other squares. Thus, for example,
neighbors exist. we can move from a checkerboard of coldr&ndB to one

(4) The colorsA and B of all sites in the cluster are of A andC by changing all theB’s to C’s one by one. All
exchanged. other combinations can be reached by a similar process.

p zizflzwmfl):z—m 5
(v—p) N : 2

V. MONTE CARLO ALGORITHMS
FOR THE THREE-COLOR MODEL
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Since we can move from any stateto a checkerboard col- T — %
oring and from any checkerboard to any other, all via revers-
ible moves, it follows that our algorithm is ergodic.

The algorithm presented above, a single-cluster algorithm,
resembles in spirit the Wolff single-cluster algorithm for the
Ising model[15]. It is also possible to construct a multi-
cluster algorithm for the three-coloring model, similar to the
Swendsen-Wang algorithm for the Ising mo@&6]. In this
algorithm we start by choosing at random a pair of colars
and B. Then we construct all clusters of nearest-neighbor L
spins made out of these two colors, and for each cluster we i e
choose at random with 50% probability whether to exchange I S
the two colors or not. This algorithm satisfies ergodicity for 10 e
the same reason the single-cluster algorithm did—we can 10 100
repeatedly choose two colors for the move until a single
cluster grows to fill the entire lattice, giving a checkerboard
pattern. But we can move from any checkerboard to any FIG. 5. The mean lengttm) of loops in the long loop algo-
other, so that any state can be reached in a finite number @thm as a function of system siz&. We find that (m)
steps on a finite lattice. The algorithm also satisfies detailed- [ 16550-002
balance: the probability of selecting a particular two out of
the three colors for a move i and the probability of ex- an observable,,, which we define to be the density of the
changing the colors in a particular set of clusters is,2 symmetric vertices 5 and 6 in Fig. 1. As Fig. 6 shows, when
wheren is the number of clusters. The probability for the we measure time in Monte Carlo steps we find a correlation
reverse move is exactly the same, and hence detailed balanfige 7qepe-L%%%%3 It is, however, more commorand
is upheld. more convenient for the comparison of our algorithrtts

This full-lattice algorithm is in fact precisely the same asmeasure time in “sweeps” of the lattice, which in this case
an algorithm proposed in 1990 by Wang, Swendsen, aneéheans arrow flips per bond on the lattice. On average, each
Kotecky [17]. Although their algorithm was designed to Monte Carlo step corresponds {m)/(dL%) sweeps on a
simulate a Potts antiferromagnet, it o@s they pointed olit  d-dimensional lattice, which means that the correlation time
also be used to simulate square ice, via the correspondene@d our two-dimensional lattice goes as
between the two models pointed out in Sec. Il A.

10 F * E

mean number of steps <m>
L)

lattice size L

1.67
T~ LO.68 — LO'SSIO'OS). (3)

VI. COMPARISON OF ALGORITHMS FOR SQUARE ICE L2

In previous sections, we proposed four algorithms for theThis quantity measures the amount of computer effort we
simulation of square ice: the long loop algorithm, the shorthave to invest, per unit area of the lattice, in order to generate
loop algorithm, the single-cluster three-coloring algorithm,an independent configuration of the arrows.
and the full-lattice three-coloring algorithm. In this section The square ice model is a critical model, possessing an
we consider these algorithms one by one and compare theinfinite correlation lengti5]. Thus it comes as no surprise
computational efficiency. that the correlation time scales as a nonintegral power law

with system size. The exponent0.35 is the dynamic ex-

A. Long loop algorithm

The long loop algorithm involves the creation of a pair of N
ionic defects, one of which diffuses around the lattice until it i 1
recombines with the first, in the process reversing all the =
arrows along the path of its diffusion. To assess the effi-
ciency of this algorithm, we first measure the average num-
ber of steps which the wandering defect takes before it re-
combines as a function of the system dizé~or an ordinary
random walker on a square lattice, this number scalés’as
In the case of the wandering defect however, we find that it L
scales instead ds'®”—see Fig. §18]. The amount of CPU I =
time required per step in our algorithm increases linearly )
with the size of the loop, and hence we expect the CPU time . e
per Monte Carlo step also to increase with system size as 10 100
L1 This is not necessarily a problem; since longer loops
reverse more arrows as well as taking more CPU time, it is
unclear whether longer is better in this case, or worse. To FIG. 6. The correlation time in Monte Carlo steps of the long
answer this question we need to consider the correlation timeop algorithm as a function of system sikze The best fit straight
of the algorithm. We have measured the correlation time fofine gives rggps~L%% %%,

._.
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i
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correlation time T,

lattice size L
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ponent for the critical system—the anomalous scaling of the C. Single-cluster three-coloring algorithm

correlation time over and above thé scaling expected of a  Our third algorithm is the single-cluster three-coloring al-
system far from criticality. As dynamic exponents go, this isgorithm outlined in Sec. Il A. For this algorithm the average
a reasonably small one. The Metropolis algorithm for thecpy time per Monte Carlo step scales as the average cluster
normal Ising model in two dimensions for example has asjze(c). Like the loop length in the long loop algorithm, this

dynamic exponent of aboat=2.17[19], making simulations  quantity scales up with increasing lattice size, and numeri-
of the model very time consuming for large lattices close toca|ly we find that

criticality. However, as we will see, some of our other algo-
rithms for square ice do better still, possessing dynamic ex- (cy~L1> 5)
ponents not measurably different from zero.

The correlation time per Monte Carlo step goes as

B. Short loop algorithm

. . . Tstepsfv Ll'S, (6)
The short loop algorithm of Sec. IV also involves creating

a pair of defects, anq haymg one of them Q|ﬁuse aroundand hence the correlation time in steps per site goes as

Recall, however, that in this case the wandering defect only

has to findany of the sites which it has previously visited in |15

order to close the loop and finish the Monte Carlo step. If the F~L18 =13 @)

diffusion were a normal random walk, then this process 2

would generate loops of a finite average length. Although the

diffusion of defects in square ice is not a true random walk,jndicating that the single-cluster algorithm is a poor algo-

it turns out once more that the same result applies. Numerkthm for studying square ice on large lattices.

cally we find that the average number of steps per move is

(my=13.1, independent of the lattice size, for a sufficiently D. Full-lattice three-coloring algorithm

large lattice. This figure includes the steps taken at the end of . ) i

the move, which simply flip a number of arrows back to their . OUr last algorithm, the full-lattice three-coloring algo-

starting configuration and therefore have no net effect on théthm, also described in Sec. Il A, generates clusters in a way

state of the systertsee Sec. Y. We find that typically about S|r_n|Iar to the single-cluster algorithm, but rathe_r than gener-

58% of the arrows reversed during a move have to be redling only one cluster per Monte Carlo step, it covers the

stored in their original state. This is certainly a source ofWhole lattice with them. For this algorithm we find numeri-

inefficiency in the algorithm. cally that the co'rrelatlon time gepsmeasured in Monte (?arlo'
The correlation time measured in Monte Carlo stepsSt?pS is a_pprommately constant as a function 01_‘ lattice size

Teteps fOF the same observabj,, as above, increases b (Flg. 8). Sllnce each Monte Carlo move updates sites over the

(Fig. 7). Since the mean number of steps in a loop is inde£ntire lattice, the CPU time per move scaled.4sand hence

pendent ofL, the correlation time per unit volume goes as (he correlation time in moves per site is

LO 0"2 0
7~L? 5 =const. (4) =L ==L ®)

Thus the short loop algorithm scales optimally with systemThus, like the short loop algorithm, this one possesses opti-
size. To the accuracy of our simulations the dynamic expomal scaling as lattice size increases, with a measured dy-
nent isz=0.00+0.01. namic exponent of= —0.12+0.07.(This figure agrees with
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0.7 . ———r . to form a domain on a square lattice consisting only of
type-1 vertices, or only of type 2. Thus there are two degen-
| erate ground states of the KDP model in which the lattice is
TN, entirely covered with vertices of one of these two types, and
N the model displays a symmetry-breaking phase transition
from a high-temperature phase in which the two appear with
equal probability to a low-temperature one in which one or
the other dominates. A suitable order parameter to describe
| this transition is the polarization, or average direction of the
- arrows:

©

n
T
,

;

probability P,
.

| P=—=2,n, €)

0.3 o : V2N

10 100

lattice size L

where the vecton; is a unit vector in the direction of thigh
FIG. 9. The probability?, that a site belongs to the longest loop arrow. In the thermodynamic limit the polarization will be
in the fully-loop-covered representation of square ice, as a functiozero above the critical temperatufg, and nonzero below it
of system sizd.. We find thatP,~ L ~0-25-0.002 with a direction either upwards and to the right, or down-
wards and to the left, and a magnitude which approaches
the results for the =3 Potts antiferromagnet from Re¢fL7], unity asT—0.
in which it is also found that the full-lattice algorithm has a  Another widely studied energetic ice model is the so-
zero dynamic exponent. calledF model[21], in which vertices 5 and 6 in Fig. 1 are
Comparing the four algorithms, clearly the most efficientgiven a lower energy- €, and all the others are given energy
ones for large systems are the short loop algorithm and theero. This model has a ground state in which vertices 5 and
full-lattice three-coloring algorithm. In both other algo- 6 alternate in a checkerboard pattern across the lattice. There
rithms, the computer time required to generate an indeperare again two possible such ground states, depending on
dent configuration of the lattice increases with system sizewhich type of vertex falls on the even sites of the checker-
The larger impact of the larger moves in these algorithmsoard and which on the odd, and there is a symmetry-
does not compensate for the extra effort invested in generabreaking phase transition from the high-temperature phase in
ing them. Between the short loop algorithm and the full-which the two vertices fall on even and odd sites with equal
lattice three-coloring algorithm, it is harder to decide theprobability. Since neither vertex 5 nor vertex 6 possesses any
winner, since both have the same scaling of CPU requirenet polarization, the value & is zero in the thermodynamic
ments with system size. Our results show in fact that the twdimit for the F model, regardless of temperature. However,
algorithms are comparable in speed, both giving on the ordesne can define an antiferroelectric order parameter which
of 1000 000 site updates per second on the workstationdoes become nonzero in the low-temperature phagg.
used for this study. The loop algorithm is perhaps slightly A third energetic ice model which has attracted some at-
faster(maybe 10%—-20%and has the advantage of working tention recently is the staggered, body-centered solid-on-
on lattices of other topologies as well as the square latticesolid model[22,23. In this model the square lattice is di-
used here. The three-coloring algorithm, on the other hand, igided into even and odd sites, and the vertex types are
considerably more straightforward to program. divided into three groups. On even lattice sites, vertices of
As an example of the use of our algorithms, we measuretypes 1 and 2 have energyand types 3 and 4 have energy
one of the simplest nontrivial critical exponents for the €’;: on odd lattice sitess ande’ are reversed, and vertices of
square ice model. As we showed in Sec. Il C, each state afpes 5 and 6 have energy zero everywhere. The values of
the square ice model corresponds to a configuration of ande’ may be either positive or negative. In the height rep-
square lattice which is entirely covered by closed, non-selfresentation discussed in Sec. Il B, this model is believed to
intersecting loops. Using our full-lattice three-coloring algo- describe roughening transitions in certain ionic crystals with
rithm, we measured the probabiliBj that a particular site is the CsCI structure.
visited by the largest loop in such a model as a function of
lattice sizeL. The results are shown in Fig. 9. The data . .
closely follow a power lawP,~L 925 Monte Carlo algorithms for energetic ice models
In Sec. VI we developed a variety of elementary ergodic
VIl. ENERGETIC ICE MODELS moves for sampling the states of ice models on square lat-
tices, and showed how these could be used to create Monte
There are a number of other systems besidg® kvith  Carlo algorithms for the square ice model, in which all states
fourfold-coordinated hydrogen bonds, the most studied beinfave the same energy. We can use the same sets of elemen-
potassium dihydrogen phosphdieH ,PO,), also known as tary moves to create Monte Carlo algorithms for the ener-
KDP. Slater{20] argued that KDP at low temperatures could getic ice models as well. The simplest method is to employ a
be modeled using a six-vertex model in which vertices 1 andetropolis-type scheme in which, instead of always carrying
2 in Fig. 1 are favored by giving them an energy, while  out every move generated by the algorithm, we carry them
all the others are given energy zero. Notice that it is possibl@ut with an acceptance probabiliy which depends on the
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FIG. 10. Symmetric vertices become nonsymmetric if a loop 310° & o
passes through thefa). Nonsymmetric vertices stay nonsymmetric 2 /I
if the loop through them goes straight throu@h, but become
symmetric if the loop makes a tuxo). 10 ’ , o
10 100

energy differencE=E,—E, between the statgs and v

latti ize L
of the system before and after the move attice size

~BAE i AE>0 FIG. 11. The correlation timeg,s0f the short loop algorithm
p= e ! (10) for the F model measured in Monte Carlo steps, as a function of
1 otherwise. system size. The best fit straight line givegs L*%% %%,

Here we give examples of algorithms for tkemodel, but  show the correlation timerg,,s measured in Monte Carlo
the same ideas can easily be adapted for use with other esteps for this algorithm, and the best fit to these data gives us
ergetic ice models.

The Hamiltonian of the&® model is given by Toteps~ LZ2. (13

As with square ice, the number of sites updated by a single
H=- EEi (8y, 51 0y, 6) (1) Monte Carlo step tends to a constant for large lattices, so that
the correlation time in steps per site is

wherev; is a number corresponding to the type of vertex at Lo
sitei, using the numbering scheme illustrated in Fig. 1. T~L20 =0 (14)

Let us first consider algorithms in which the proposed L
moves involve reversing the directions of the arrows around ] . ] )
a loop on the lattice, as in the long and short loop algorithmd © the accuracy of our simulations then, this algorithm has a
of Secs. IIl and IV. For these moves the only vertices whichZero dynamic exponeri24]. However, it turns out that this
change type(and hence energyare those which the loop a!gonthm is spl_l quite inefficient for temperatures in the re-
passes through. As is shown in Fig. 10, a symmetric verte@ion of the critical temperature gnq below. For example, at
(type 5 or 6 always becomes nonsymmetric if the loop TC_ the measured acceptance ratlo_ is 36%, so that r!early two-
passes through it, thereby increasing the total energy. If thEhirds of the computational effort is wasted. For this reason
loop passes straight through a nonsymmetric vertex, the velve have investigated a number of other algorithms for simu-
tex remains nonsymmetric and its energy is unchanged. Olgting theF model. _
the other hand, if the loop makes a turn as it passes through How can we increase the acceptance ratio of our Monte
a nonsymmetric vertex, the vertex becomes symmetric anffarlo algorithm? We would like to propose moves that are
the energy decreases. Thus, given a particular loop, we cdfiSs likely to cost energy. For example, if we can encourage
calculate the value oAE by counting the numbem of  the loop to make turns in nonsymmetric vertices, we will on
symmetric vertices which the loop passes through and th@verage end up with a lower final energy, since a reversal of
numbern of nonsymmetric vertices in which it makes a 90° the arrows around the loop will create more symmetric ver-

turn, and applying the formula tices. Unfortunately, it turns out to be quite complicated to
formulate a correct algorithm along these lines, and the ex-
AE=(m—n)e. (12) pression for the acceptance ratio becomes quite tedious.

There is, however, an elegant alternative, which is to employ
The density of symmetric vertices in tHe model in- a three-coloring algorithm of the type discussed in Sec. V.

creases with decreasing temperature, so that the avera eThe_equivaIent of a symmetric vertex in the three-colcring
number of symmetric vertices through which a loop passe odel is a group (?f four squares in which both of the dlago_—
grows as we go to lower temperatures. Since each symmetrflany opposing pairs share the same color_. In nonsymmetric
vertex which we pass adds an amoso AE, it is clear that vertices only one of these two diagonal pairs share the same
loop moves will carry an energy cost which increases WithC|_|°|0r:ItM‘?‘k'ngf ttheEI}: of t(;"? é)bselri/atllor:hwi can write the
their length and that long loops will be very energetically "amtonian o model[Eq. (11)] in the form
costly, especially at low temperatures. This suggests that the
short loop algorithm of Sec. IV will be more efficient for the H=—€>, (5, ¢~ 1)=Ne— €D S, ¢ (15)

i ] i

simulation of theF model at finite temperature. In Fig. 11 we N [i.i] (i
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FIG. 12. Sample configurations of thE
model for increasings. Grey squares denote ver-
tices of types 1, 2, 3, and 4. White vertices denote
either vertices of type 5 on even lattice sites, or
vertices of type 6 on odd lattice sites. Other ver-
tices are black. Top row3/B8.=0.5, 0.8, and 0.9.
Bottom row: 8/B.=1.0, 1.1, and 1.2.

where the summation runs over all pairs of next-nearesta temperature-dependent probability< 1, whose value we
neighbor squarefi,j], andc; is the color of squaré. We  calculate below in order to satisfy the condition of detailed
see that it is energetically favorable to have pairs of nextbalance. We go on adding squares to the cluster in this way
nearest-neighbor squares with the same color. We can makmtil no more additions are possible.

use of this observation to create an efficient algorithm for the (4) The colorsA and B of all sites in the cluster are
three-coloring model. In this algorithm, as in the algorithmsexchanged.

for square ice discussed in Sec. V, we build clusters of We can also make a full-lattice version of this algorithm
nearest-neighbor plaquets of two colors, but now, in addiin exactly the same way as for the square ice case. We
tion, we also add to the cluster next-nearest-neighbochoose two coloré andB at random, and create clusters all
plaquets as well. In detail our algorithm is as follows. over the lattice from these two, using the method above.

(1) We choose a plaguet at random from the lattice as the It is straightforward to prove ergodicity for these algo-
seed square for the cluster. Suppose that this plaquet haghms. Since our three-coloring algorithms for square ice
color A. were ergodidsee Sec. Y, and since each move in the square

(2) We choose another cold+ A at random from the ice algorithms is also a possible move in ¢tsimodel algo-
two other possibilities. rithm (as long asx<<1), the result follows immediately.

(3) Starting from our seed square, we form a cluster by Detailed balance is a little more tricky. We outline the
adding all nearest-neighbor squares which have either colargument here for the single-cluster version of the algorithm.
A or colorB, and in addition we now also add to the cluster As before, consider two states and » which differ by the
the squares which are next-nearest neighbors of some squagechange of colors in a single cluster of squares. The
i which is already in the cluster, provided they haveshme  probability of choosing the seed square in this clusten/isl
color as square. However, we make this latter addition with
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FIG. 14. The probabilityP, that a site is visited by the longest

loop, as a function of system side for the F model at critical

FIG. 13. The correlation timerge,s Of the full-lattice three-
L70.270t0.002

coloring algorithm for th&e model measured in Monte Carlo steps temperature. At critical temperature we find thjt-
as a function of system size. The best fit straight line gimgss  which is very close to the exponent measured in the case of square
~ | 0.005-0.022 ice (Sec. VI D).
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i
. AE=E,—E,=—¢€ X [3&(c!” c{")—a(c* ciM)].
gl I : [i,j1dis
* . ] (19
*
-~ E 3
(; - In order to satisfy the condition of detailed balance we want
= - the ratio of the rate®(u— v) andP(v— u) to be equal to
§ 0.1 . the ratio exp{- BAE) of the Boltzmann weights of the two
= states. Comparing Eqél8) and(19), we see that this can be
= arranged by setting In(Aa)=—Be, or
*
a=1—e Pe, (20
. Lol el
10 100 1000 The proof of detailed balance for the full-lattice version of
lattice size L the algorithm follows from the single-cluster version, just as
N o in the case of the square ice model.
FIG. 15. The probabilityC, that a site is part of the largest  |n Fig. 12 we show some results of simulations of the
cluster, as a function of system sike for the F model at critical  model using the full-lattice version of the algorithm de-
temperature. scribed above. In this figure we have colored areas of the two

low-energy domaingcheckerboards of symmetric vertiges
and the probability that we choose the correct second colaf, black and white—type-5 vertices on even lattice sites and
to create this particular cluster js just as in the square ice type-6 vertices on odd lattice sites are black, while type-6
case. However, we now also have a factoraofor every  vertices on even lattice sites and type-5 vertices on odd lat-
square which we add to the cluster which is only a nexttice sites are white. All other vertices are in gray.
nearest neighbor of another and not a nearest neighbor. And The phase transition is clearly visible in the figure as a
we have a factor of & « for every such site which we could change from a state in which black and white appear with
have added but did not. Thus the overall probability of mak-equal frequency to one in which one or the other dominates.
ing the move fromu to v is Analytically it is known that this transition takes place at
T.= €/In2. This number is rather difficult to measure numeri-
m (1) (W cally, however, since the phase transition is of infinite order;
Plu—v)= ﬁ[iq “[il._][. (1=a)™e570, (16) no matter how often you differentiate the energy or the den-
Jleon ) ldis sity of symmetric vertices with respect to temperature, you
hv_viII not see a singularity. Nonetheless there is a phase tran-
§ition. For instance, the absolute value of the difference in
density of black and white squares on an infinite lattice is
strictly zero above the critical temperature, while nonzero
below, ruling out any analytic behavior.
The full-lattice three-coloring algorithm does well at
INP(p—v)=—In(m/2N)+Ine >, 1 simulating theF model, even at the critical temperature.
[i2i]con There is no measurable increase in the correlation time in
number of lattice sweeps with system sizeTat our best
(1) () estimate of the dynamic exponentZs-0.005+0.022 (see
+In(1—a) > 8(c™ ciM). 17 Fig. 13,
[F et Because of the infinite order of the phase transition in the
F model, we cannot define critical exponents in the normal
fashion to describe power-law behavior of the order param-
eters as we approach criticality. However, there are a number
of nontrivial exponents governing the behavior of the model
at the critical temperature. As noted previously, the configu-
rations of an ice model on a square lattice can be represented
| P(u—v) —In(1—a) > 8™ c®)y—sc™ ,c). as sets of closed loops covering the entire lattice, and~the
P(v—u) il b model corresponds to such a fully packed loop system in
(18)  which the loops have “stiffness:” symmetric vertices corre-
spond to straight segments of the loop and are energetically
The energy differencA E between stateg andv is equal to  favored in theF model. Using our full-lattice three-coloring
€ times the change in the number of identically colored next-algorithm, we have measured the probabiftythat a site is
nearest-neighbor squargsee Eq.(15)]. The only contribu-  visited by the largest loop in this representation of the model,
tion to this sum comes from next-nearest-neighbor pairgust as we did for square ice in Sec. VI D. The results are
[i,j], such thai belongs to the cluster arjddoes not, since presented in Fig. 14. At the critical temperature, the data are
all other pairs contribute the same amount to the Hamiltoniamvell fitted by a power law with an exponent 6f0.27, very
in stateu as in statev. Thus close to the value in the square ice case, indicating that in-

where the two products run over pairs of next-nearest neig
bors which are connected to or disconnected from the cluste
respectively. We will find it easier to work with the loga-
rithm of this probability:

The expression for R(v— ) is identical except for the ex-
change of the labelg andv.

We want to know the ratio of the probabilities for the
forward and reverse moves:
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troduction of stiffness to the loops does not significantly in-ponents governing nonlocal quantities in square ice and the

fluence the value of this exponent. F model. We find that, in square ice, the average number of
We have also used our Monte Carlo algorithm to measurateps taken by a defect before it returns to its starting point

as a function of system sidethe probabilityC, that atT. a  scales ad.'®’. The probability that a site belongs to the

given site is part of the largedipercolating cluster of largest loop in the loop representation of the model scales as

nearest-neighbor symmetric vertices. The results are shown 2% In the F model, the probability of belonging to larg-

in Fig. 15. Interestingly, there is no clear power-law behaviorest loop scales with a very similar exponént®?”, although

in these data, despite the fact that the measurements wettee prefactor is different.

made atT.. Possibly this is the result of strong finite-size

effects in this system. Below the critical temperature, by con-
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