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The free energy of crystal surfaces that can be described by the two-component body-centered solid-on-solid
model has been calculated in a mean-field approximation. The system may model ionic crystals with a bcc
lattice structure~for instance CsCl!. Crossings between steps are energetically favored, which leads to the
formation of networks of steps and of sharp edges between facets and rounded areas. There is a strong
tendency to faceting even at finite temperatures, as seen experimentally in simple cubic ionic crystals~NaCl!.
Transfer-matrix calculations corroborate these results.@S1063-651X~96!51306-1#

PACS number~s!: 64.60.Cn

The shape of crystals in thermodynamic equilibrium can
be found by minimizing the surface free energy at a given
fixed volume. Usually this shape shows flat facets normal to
low-index directions, in many cases connected to each other
by rounded regions. Typically, at low temperatures, the
rounded parts occupy a small portion of the total surface and
the shape of the crystal is dominated by large flat areas; on
increasing the temperature, the facets tend to shrink until
they disappear from the equilibrium crystal shape~ECS! at a
characteristic, facet-dependent temperatureTR , called the
roughening temperature~see, for instance,@1#!. Below TR ,
when the facet is still present in the ECS, rounded regions
either are connected smoothly to the facet, or they form
sharp edges with the facet, when certain orientations become
unstable and disappear from the ECS.

In this article we show how instabilities arise for certain
orientations in the two-component BCSOS~body centered
solid-on-solid! model. This model, which was shown before
to yield a rich phase diagram@2# for the (001) crystal sur-
face, describes as well a whole range of surface orientations
of the form (ts1) with utu1usu<1.

The bulk structure of the bcc crystal is composed of two
different types of atomsA andB occupying the corners and
the centers of an elementary cube, respectively. We consider
a Hamiltonian of the form
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where surface configurations are given by a set of integer
variableshi

A , hk
B denoting the heights of the surface atoms

with respect to a reference plane parallel to the (001) orien-
tation. According to our conventionhi

A andhk
B are odd and

even integers, respectively. TheA andB atoms at neighbor-
ing surface positions are constrained to have height differ-
ence61. The couplings between atoms of the same species
on next-nearest-neighbor positions (e for AA and e8 for
BB, respectively! are taken to be negative and slightly dif-
ferent from each other. We definee85e12d, with
ueu@d.0. This choice of parameters may be a reasonable

approximation for certain ionic crystals whereA andB are
ions with opposite charge, interacting mainly through Cou-
lombic forces. An example of such a crystal, with the desired
lattice structure, is CsCl.

The model can be mapped onto the six vertex model in a
simple way@3#. Since the height differences between neigh-
boring surface atoms assume only the values61, the surface
configurations can also be represented by arrows on the dual
lattice, which may point in two opposite directions. The con-
vention is that, seen from the arrow, the higher of the two
neighboring surface atoms is at the right side. Uniqueness of
the height variables restricts the vertex configurations to
those six for which theice rule holds: at every vertex there
are two arrows pointing inwards and two outwards@Fig.
1~a!#. The energy defined by the Hamiltonian~1! can be
reexpressed as a sum of vertex energies, defined as in Fig.
1~a! on two sublattices I and II, which alternate as the
squares of different colors on a chess board.

FIG. 1. ~a! The six possible vertices and their energies on the
two sublattices I and II, and~b! a surface configuration represented
in terms of heights and vertices: theA and B atoms are always
found at odd and even heights, respectively. Notice that the arrow
directions make 45° angles with the horizontal axes of the cubic
lattice.
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The ground state of the model is twofold degenerate. In
its vertex representation the arrows in subsequent columns or
rows alternately point all up or all down, respectively, all
right or all left, an arrangement known as the Manhattan
lattice. The resulting surface isc(232) reconstructed, with
one component~B! at a constant height and the other~A!
with alternating heights above and below the first one. Figure
1~b! shows two elementary excitations of the ground state, a
closed step and a step running between the boundaries of the
system. A step is the boundary between two surface regions
with a height difference of 2~due to the inequivalence of the
two sublattices no single-height step occurs!. In the six-
vertex representation it appears as a connected chain of re-
versed arrows. In reversing arrows one has to preserve the
ice rule, which limits the possible trajectories. At a vertex
site the step has two options: either to go straight, maintain-
ing its previous direction, with an energy cost of 2d, or to
turn opposite to the direction of an arrow on the Manhattan
lattice, which costs an energy2e. If at a given vertex all
arrows are reversed, we interpret this as the crossing of two
steps, rather than two steps touching at a corner. The reason
is that corners are very rare, because of their high energy,
whereas the crossing of two steps costs no energy: on the
contrary, one regains the energy 4d that would have to be
invested if the steps would not cross.

Our analysis can be divided into two parts.
~A! First we evaluate the free energy of asingle isolated

step. The step partition function is approximated with that of
a random walk on the Manhattan lattice with weighte22bd

for each straight segment andebe for each turn. At low tem-
peratures, whenebe!e22bd, steps consist of elongated seg-
ments with only rare turns and self-correlations can be ne-
glected. We also neglect interactions with closed steps@such
as the one shown in Fig. 1~b!#, since those give a relevant
contribution to the single-step free energy only if present at a
reasonable density. A comparison with numerical results will
give good indications regarding the range of validity of these
approximations.

The single-step free energy per unit of lengthf s(f), ob-
tained in the Manhattan walk approximation, is shown in
Fig. 2~a! ~solid lines!, for walks making an anglef50 or
f5p/4 with one of the main axes of the vertex lattice. The
dotted lines are finite size results obtained from transfer-
matrix ~TM! calculations, giving exact numerical values of
step free energies on strips of sizeN3`, shown for some
values ofN in the figure. At low temperatures, TM data
extrapolate very well towards the values calculated with the
random-walk model. Close to the roughening temperature
the random-walk approximation fails, because the interac-
tions with closed steps become important, whereas the TM
results extrapolate to the correct exponentially vanishing be-
havior of the step free energy@1#.

~B! Next we evaluate the free energy of a collection of
interacting steps, or equivalently the free energy of an ori-
entation tilted with respect to the reference (001) facet~as
done above we neglect closed loops of reversed arrows!. The
polarizations of the vertex lattice,p5n↑2n↓ , q5n→2n←
(n↑ , n↓ , n→ , andn← are the densities of up, down, right,
and left arrows! are related to the slope parameterst ands of
the surface by the relationshipst5(q2p)/2; s5(q1p)/2.

At T50 and fixedp and q a surface configuration is
generated by a network of perfectly straight horizontal and
vertical steps. Turns are not allowed@Fig. 2~b!#. For homo-
geneous step densitiesp andq the ground-state energy per
unit projected area is given by

«0~p,q!5d~ uqu1upu!2duqpu. ~2!

The linear terms represent the contribution of isolated verti-
cal and horizontal steps forming the network, while the qua-
dratic term is due to the decrease of energy at the crossings.
This form for the ground-state energy is a nonconvex func-
tion of p andq, implying that a uniform network of steps is
unstable with regard to faceting, in other words, to phase
separation of an unstable surface orientation into stable ones
@1#. A stable configuration for the casep5q is illustrated in
Figure 2~d!. It consists of a (011) and a (001) facet joining
at a sharp edge. Figure 2~c! shows a possible configuration of
steps at nonzero temperature. If the temperature is suffi-
ciently low the free energy as a function ofp andq remains
concave for some range of values forp and q, which will
lead to faceting again, with the disappearance of some crystal
orientations from the ECS.

We calculatedf (p,q), the free energy of a surface of
given orientationp andq ~per unit of projected area!, under
the assumption that this orientation is generated by a homo-
geneous density of steps forming an anglef5arctan(p/q)

FIG. 2. ~a! b f s(f) for steps of two different orientations as
function ofbd and withe/d5210. The solid lines are calculations
done using the random-walk model, while the dotted lines are ob-
tained from TM techniques. Possible patterns of steps atT50 ~b!
and at finite values ofT ~c!; a faceted surface atT50 with a
(011) and a (001) facet joining at a sharp edge~d!. For convenience
we have drawn only the reversed arrows on the Manhattan back-
ground.
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with the vertical axis of Fig. 1~b!. In a mean-field approxi-
mation the total free energy is equal to the free energy of a
step in a ‘‘background’’ of other steps@ f̃ s(f)# times the step
density:

f ~p,q!5
Ap21q2

2
f̃ s~f!, ~3!

where f̃ s(f) has been calculated in the Manhattan random-
walk approximation, taking into account that the step has a
certain probability of intersecting other steps~the details will
appear in a longer publication@4#!. Equation~3! reduces to
Eq. ~2! in the limit T→0.

Figures 3 and 4 show the free energies~per unit of pro-
jected area! for different orientations, calculated at three tem-
peratures. The curves are plotted as a function of the vertical
polarizationq at a constant ratiop/q5a @the correspon-
dence betweena and the crystallographic axes is shown in
Fig. 3~b!#. As can be shown easily, forq51 and irrespective
of the value ofp, the exact value of the free energy in the
thermodynamic limit is simply equal tod. This is reproduced
correctly by our mean-field calculations. As indicated before,
we expect these results to be best at low temperatures and
large values ofueu/d.

The two upper solid lines of Fig. 3~a! are the mean-field
free energies calculated along the linesa51,1/2. The two
dotted lines are the values of the ground-state energy. The
free energy alonga50, which atT50 is a straight line@Eq.
~2!#, becomes concave at smallq, while it is convex at larger
values ofq @see inset of Fig. 3~a!#. The ECS at this value of
the temperature is shown in Fig. 3~b!: only a small area at the
corner formed by the (001), the (011), and the (101) facet is
rounded.

At higher temperatures the rounded area in the ECS be-
comes larger. The orientations along the linea51 are still
all unstable forbe522.0 andbd50.2, so the (001) and the
(011) facet are still joined directly. Atbe521.5 and
bd50.15 the two facets are separated by a rounded region.
For all temperatures analyzed we find a region of unstable

vicinal orientations surrounding the (001) facet. This implies
the existence of a sharp ridge between this facet and the
rounded regions surrounding it, which are caused by the
competition between attractive and repulsive step-step inter-
actions.Attractionsare due to the energy gained at crossings
and would favor a total phase separation between the facets
like at T50 @see Eq.~2!#. Repulsionsare due to entropic
effects: steps cannot occupy the same bonds of the vertex
lattice and their entropy is reduced when they are brought
together @5#. At low step densities attractions dominate,
while entropic repulsions become effective at higher step
densities with the effect of stabilizing the surface free en-
ergy.

As to the connections between the (011) and (101) facet:
for q near unity anda near zero our mean-field calculations
yield a concavef (p,q) along lines of constantq. This sug-
gests a sharp ridge between the facets, extending into a ridge
between rounded areas and ending in a critical point. There
would be no conical point, as described in Ref.@6#. This,

FIG. 3. ~a! Surface free energies per unit of projected area at
be523 andbd50.3 and fora50,1/2,1 ~solid lines!. Ground-
state energies given by Eq.~2! for a51/2,1 ~dashed lines!. In the
inset: the second derivative off (q) along the linea50. ~b! The
corresponding ECS~seen from above! has a tiny rounded area
around the corner between the (001), (101), and (011) facets.

FIG. 4. As in Fig. 3~a! at higher temperatures:~a! be522 and
bd50.2 and~b! be521.5 andbd50.15. The dashed line in~a! is
a straight line, as guide for the eye. In~b! all the orientations in the
range 0<q<q0'0.5 along the linea51 are unstable, as shown by
the Maxwell construction. In the insets: TM calculations on finite-
size systems performed along the linea51, where the lowest
curves correspond to the smallest sizes. In the inset to~b! points
measured at equal values ofh are connected along the different
curvesf N(q).

53 R5551INSTABILITIES ON CRYSTAL SURFACES: THE . . .



however, may well be due to the mean-field approximation
used and deserves further investigation.

We performed TM calculations to check the predictions
of the mean-field theory. External fieldsh and v ~the vari-
ables that are conjugate top andq), may be used to produce
orientations tilted with respect to the (001) facet. Choosing
h5v we generated all the orientations (0s1) from (001) to
(011) alonga51. We calculatedf̂ N(h), the free energy as a
function of the applied field, and its Legendre transform
f N(q) for an N3` strip. The latter is nothing but the free
energy as function of the polarizations forp5q @7#. It can be
directly compared with the mean-field results in the limit
N→`. The insets of Figs. 4~a! and 4~b! show f N(q) vs q
measured at equally spaced values ofh ~circles!; no insta-
bilities show up for finite systems, and the curvesf N(q)
indeed are always convex. Yet the trend towards phase sepa-
ration can be observed, by considering the scaling behavior
with N. In the inset of Fig. 4~a!, for large sizes, all the points
tend towards the valuesq5p50 andq5p51, which ac-
cording to our mean-field results are the only stable orienta-
tions. In the inset of Fig. 4~b! instead the points seem to
separate partially betweenq50 and around 0.4<q<0.6.
Unfortunately, the largest size accessible to our numerical
calculations (N512) is not large enough to allow a detailed

finite-size scaling of the TM data, but the existence of partial
phase separation is qualitatively confirmed.

In conclusion, we have evaluated free energies of surfaces
vicinal to the (001) facet in the two-component BCSOS
model. Mean-field calculations show phase separation~de-
pending upon temperature! between the (001) facet and ei-
ther the (011) facet or rounded side orientations, with a
sharp edge at the facet boundary in either case. A similar
feature has been suggested before for a different model@8#,
but was abandoned later@9# as a possible artifact of the
mean-field approximation. Our TM results make us quite
confident that the sharp edge is not an artifact in the present
case@10#. Our model follows quite closely the thermal evo-
lution found experimentally in NaCl@11# and investigated
theoretically@8,12# in models for ionic crystals of the rock-
salt type. Although there are some differences, which will be
discussed in more detail elsewhere@4#, the common features
are a strong tendency towards faceting even at finite tem-
peratures.
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