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Instabilities on crystal surfaces: The two-component body-centered solid-on-solid model
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The free energy of crystal surfaces that can be described by the two-component body-centered solid-on-solid
model has been calculated in a mean-field approximation. The system may model ionic crystals with a bcc
lattice structure(for instance CsQl Crossings between steps are energetically favored, which leads to the
formation of networks of steps and of sharp edges between facets and rounded areas. There is a strong
tendency to faceting even at finite temperatures, as seen experimentally in simple cubic ionic @gls
Transfer-matrix calculations corroborate these res[f$063-651X%96)51306-]

PACS numbd(s): 64.60.Cn

The shape of crystals in thermodynamic equilibrium canapproximation for certain ionic crystals whefeand B are
be found by minimizing the surface free energy at a givernions with opposite charge, interacting mainly through Cou-
fixed volume. Usually this shape shows flat facets normal tdombic forces. An example of such a crystal, with the desired
low-index directions, in many cases connected to each othdattice structure, is CsCI.
by rounded regions. Typically, at low temperatures, the The model can be mapped onto the six vertex model in a
rounded parts occupy a small portion of the total surface andimple way[3]. Since the height differences between neigh-
the shape of the crystal is dominated by large flat areas; oboring surface atoms assume only the valtids the surface
increasing the temperature, the facets tend to shrink unttonfigurations can also be represented by arrows on the dual
they disappear from the equilibrium crystal shdB€S ata lattice, which may point in two opposite directions. The con-
characteristic, facet-dependent temperatlire called the vention is that, seen from the arrow, the higher of the two
roughening temperaturesee, for instancd,1]). Below Tg, neighboring surface atoms is at the right side. Uniqueness of
when the facet is still present in the ECS, rounded regionshe height variables restricts the vertex configurations to
either are connected smoothly to the facet, or they formthose six for which théce rule holds: at every vertex there
sharp edges with the facet, when certain orientations beconae two arrows pointing inwards and two outwardsg.
unstable and disappear from the ECS. 1(a@)]. The energy defined by the Hamiltonidth) can be

In this article we show how instabilities arise for certain reexpressed as a sum of vertex energies, defined as in Fig.
orientations in the two-component BCS@Body centered 1(a) on two sublattices | and I, which alternate as the
solid-on-solid model. This model, which was shown before squares of different colors on a chess board.
to yield a rich phase diagrafi2] for the (001) crystal sur-

face, describes as well a whole range of surface orientations ;) I )
of the form ¢s1) with [t|+]s|<1. 1 , A
The bulk structure of the bcc crystal is composed of two »1—» £ €
different types of atom# andB occupying the corners and 5 110(112(3(2|3
the centers of an elementary cube, respectively. We consider 4_% e € ol1lol1l 21112
a Hamiltonian of the form 3 Lol1lz231213
> € €
€ A LA € B . opl(2]3y2|1|2
H=p 2 If-nfl+ 5 2 fhe-hPl. @ “ g, 1]0[1]2]3]2]3
where surface configurations are given by a set of integer 5 011101212 1]2
variablesh?*, h? denoting the heights of the surface atoms 9%" 0 0 1,0/110/1a2)3
with respect to a reference plane parallel to the (001) orien- 6 ol-110[-1]0f1]2
tation. According to our conventioh* andhg are odd and < 0 0 L

even integers, respectively. TieandB atoms at neighbor-

ing surface positions are constrained to have height differ- £ 1 (5 The six possible vertices and their energies on the
ence* 1. The couplings between atoms of the same speciego suplattices | and II, antb) a surface configuration represented
on next-nearest-neighbor positions for AA and €' for  in terms of heights and vertices: tife and B atoms are always
BB, respectively are taken to be negative and slightly dif- found at odd and even heights, respectively. Notice that the arrow
ferent from each other. We define’=€+26, with  directions make 45° angles with the horizontal axes of the cubic
|e|>5>0. This choice of parameters may be a reasonableattice.
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The ground state of the model is twofold degenerate. In
its vertex representation the arrows in subsequent columns or @
rows alternately point all up or all down, respectively, all
right or all left, an arrangement known as the Manhattan
lattice. The resulting surface &{2X2) reconstructed, with
one componen{B) at a constant height and the othg)
with alternating heights above and below the first one. Figure
1(b) shows two elementary excitations of the ground state, a
closed step and a step running between the boundaries of the
system. A step is the boundary between two surface regions
with a height difference of 2due to the inequivalence of the
two sublattices no single-height step ocgurk the six-
vertex representation it appears as a connected chain of re-

versed arrows. In reversing arrows one has to preserve the 0L : :

. . . . . . 0.10 0.15 0.20 0.25 0.30
ice rule, which limits the possible trajectories. At a vertex BS

site the step has two options: either to go straight, maintain-

ing its previous direction, with an energy cost of,2or to ®) © @

turn opposite to the direction of an arrow on the Manhattan
lattice, which costs an energy e. If at a given vertex all
arrows are reversed, we interpret this as the crossing of two -
steps, rather than two steps touching at a corner. The reason: ‘ T
is that corners are very rare, because of their high energy, 1 BE BN %J
whereas the crossing of two steps costs no energy: on the .| | [~ ‘ '
contrary, one regains the energy 4hat would have to be

invested if the_ steps Wou_ld_ not f:ross. FIG. 2. (a) Bfs(¢) for steps of two different orientations as
Our analysis can be divided into two parts. function of 86 and withe/ 5= — 10. The solid lines are calculations
(A) First we evaluate the free energy obimgle isolated  done using the random-walk model, while the dotted lines are ob-

step The step partition function is approximated with that of tained from TM techniques. Possible patterns of steps=ad (b)

a random walk on the Manhattan lattice with weight??’  and at finite values off (c); a faceted surface af=0 with a

for each straight segment aefe for each turn. At low tem- (011) and a (001) facet joining at a sharp eddje For convenience

peratures, whee?¢< g 269 steps consist of elongated seg- we have drawn only the reversed arrows on the Manhattan back-

ments with only rare turns and self-correlations can be neground.

glected. We also neglect interactions with closed sfepsh

as the one shown in Fig.(d)], since those give a relevant At T=0 and fixedp and q a surface configuration is

contribution to the single-step free energy only if present at generated by a network of perfectly straight horizontal and

reasonable density. A comparison with numerical results wilvertical steps. Turns are not allowggig. 2(b)]. For homo-

give good indications regarding the range of validity of thesegeneous step densitigsand g the ground-state energy per

Lol

approximations. unit projected area is given by
The single-step free energy per unit of lendtli¢), ob-
tained in the Manhattan walk approximation, is shown in eo(P,9)=48(|ql+|p|)— dlqp|. (2

Fig. 2@ (solid lineg, for walks making an angleb=0 or
¢=ml4 with one of the main axes of the vertex lattice. The The linear terms represent the contribution of isolated verti-
dotted lines are finite size results obtained from transfereal and horizontal steps forming the network, while the qua-
matrix (TM) calculations, giving exact numerical values of dratic term is due to the decrease of energy at the crossings.
step free energies on strips of sikke<c, shown for some This form for the ground-state energy is a nonconvex func-
values ofN in the figure. At low temperatures, TM data tion of p andq, implying that a uniform network of steps is
extrapolate very well towards the values calculated with theunstable with regard to faceting, in other words, to phase
random-walk model. Close to the roughening temperatureeparation of an unstable surface orientation into stable ones
the random-walk approximation fails, because the interact1]. A stable configuration for the cage=q is illustrated in
tions with closed steps become important, whereas the TNFigure Zd). It consists of a (011) and a (001) facet joining
results extrapolate to the correct exponentially vanishing beat a sharp edge. Figuré shows a possible configuration of
havior of the step free enerdy]. steps at nonzero temperature. If the temperature is suffi-
(B) Next we evaluate the free energy of a collection ofciently low the free energy as a function pfandq remains
interacting stepsor equivalently the free energy of an ori- concave for some range of values forand g, which will
entation tilted with respect to the reference (001) fdest lead to faceting again, with the disappearance of some crystal
done above we neglect closed loops of reversed ajroMie  orientations from the ECS.
polarizations of the vertex lattic@=n;—n , g=n_—n_ We calculatedf(p,q), the free energy of a surface of
(ny, n;, n_, andn_ are the densities of up, down, right, given orientatiorp andq (per unit of projected ar¢aunder
and left arrows are related to the slope parameteends of  the assumption that this orientation is generated by a homo-
the surface by the relationships (q—p)/2; s=(q+p)/2. geneous density of steps forming an angle arctanf/q)
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FIG. 3. (a) Surface free energies per unit of projected area at
Be=—3 and 86=0.3 and fora=0,1/2,1 (solid lineg. Ground-
state energies given by E(R) for a«=1/2,1 (dashed lines In the
inset: the second derivative ¢{q) along the linea=0. (b) The
corresponding ECSseen from abovyehas a tiny rounded area
around the corner between the (001), (101), and (011) facets.

®)

0.10 -
with the vertical axis of Fig. (b). In a mean-field approxi-

mation the total free energy is equal to the free energy of a
step in a “background” of other stefp$( )] times the step
density: 005 |

02+ g2 a=0
f(p.a)= " T(@), €

pf(eq.q)

0.00 L L . L
0.0 02 04 0.6 0.8 1.0

wherefg(¢) has been calculated in the Manhattan random-
walk approximation, taking into account that the step has @ £ 4. As in Fig. 3a) at higher temperature&) Be=—2 and
certain probability of intersecting other stefpise details will B6=0.2 and(b) Be=— 1.5 andBs=0.15. The dashed line i) is
appear in a longer publicatidd]). Equation(3) reduces to 4 straight line, as guide for the eye. (I all the orientations in the
Eq. (2) in the limit T—0. range G<q=<(,~0.5 along the liner=1 are unstable, as shown by
Figures 3 and 4 show the free energipsr unit of pro-  the Maxwell construction. In the insets: TM calculations on finite-
jected arepfor different orientations, calculated at three tem-size systems performed along the liae=1, where the lowest
peratures. The curves are plotted as a function of the verticalurves correspond to the smallest sizes. In the insébjtgoints
polarizationq at a constant ratigp/q=a [the correspon- measured at equal values bfare connected along the different
dence betweem and the crystallographic axes is shown in curvesfy(q).
Fig. 3(b)]. As can be shown easily, fof=1 and irrespective

of the value ofp, the exact value of the free energy in the \;cing| orientations surrounding the (001) facet. This implies
thermodynamic limit is simply equal . This is reproduced o existence of a sharp ridge between this facet and the
correctly by our mean-field calculations. As indicated beforemunded regions surrounding it, which are caused by the

we expect these results to be best at low temperatures ar(1&%mpetition between attractive and repulsive step-step inter-

large values ofe|/o. - . ) actions.Attractionsare due to the energy gained at crossings
The two upper solid lines of Fig.(8 are the mean-field .
and would favor a total phase separation between the facets

free energies calculated along the lines1,1/2. The two = . .
dotted lines are the values of the ground-state energy. Th|8<e at T=0 [see Eq.(2)]. Repulsionsare due to entropic

free energy alongr=0, which atT=0 is a straight lindEq. effe_cts: steps Qannot occupy the same bonds of the vertex
(2)], becomes concave at smallwhile it is convex at larger 1atticé and their entropy is reduced when they are brought
values ofq [see inset of Fig. @]. The ECS at this value of tog_ether[S]. _At low step densities attractions QOmmate,
the temperature is shown in Figls: only a small area at the whlle_ _entr0|_O|c repulsions becomg_effectlve at higher step
corner formed by the (001), the (011), and the (101) facet ifleénsities with the effect of stabilizing the surface free en-
rounded. ergy.

At higher temperatures the rounded area in the ECS be- As to the connections between the (011) and (101) facet:
comes larger. The orientations along the lme 1 are still ~ for g near unity andx near zero our mean-field calculations
all unstable forBe= —2.0 and85=0.2, so the (001) and the Yield a concave (p,q) along lines of constard. This sug-
(011) facet are still joined directly. ABe=—1.5 and gests a sharp ridge between the facets, extending into a ridge
B6=0.15 the two facets are separated by a rounded regiofetween rounded areas and ending in a critical point. There
For all temperatures analyzed we find a region of unstablgould be no conical point, as described in Rig]. This,
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however, may well be due to the mean-field approximatiorfinite-size scaling of the TM data, but the existence of partial
used and deserves further investigation. phase separation is qualitatively confirmed.

We performed TM calculations to check the predictions In conclusion, we have evaluated free energies of surfaces
of the mean-field theory. External fieldsandv (the vari-  vicinal to the (001) facet in the two-component BCSOS
ables that are conjugate poandq), may be used to produce model. Mean-field calculations show phase separaitmn
orientations tilted with respect to the (001) facet. Choosingpending upon temperatyrbetween the (001) facet and ei-
h=v we generated all the orientationsstQ from (001) to  ther the (011) facet or rounded side orientations, with a
(011) alonga=1. We calculated y(h), the free energy as a sharp edge at the facet boundary in either case. A similar
function of the applied field, and its Legendre transformfeature has been suggested before for a different ni@jel
fn(q) for an Nx oo strip. The latter is nothing but the free but was abandoned lat¢®] as a possible artifact of the
energy as function of the polarizations for=q [7]. It can be ~ mean-field approximation. Our TM results make us quite
directly compared with the mean-field results in the limit confident that the sharp edge is not an artifact in the present
N—o. The insets of Figs. @) and 4b) show fy(q) vs q case[10]. Our model follows quite closely the thermal evo-
measured at equally spaced valueshofcircles; no insta- lution found experimentally in NaCJ11] and investigated
bilities show up for finite systems, and the curviagq) theoretically[8,12] in models for ionic crystals of the rock-
indeed are always convex. Yet the trend towards phase sepgalt type. Although there are some differences, which will be
ration can be observed, by considering the scaling behavidfiscussed in more detail elsewhé¢#g, the common features
with N. In the inset of Fig. &), for large sizes, all the points are a strong tendency towards faceting even at finite tem-
tend towards the values=p=0 andq=p=1, which ac- Peratures.
cording to our mean-field results are the only stable orienta-
tions. In the inset of Fig. &) instead the points seem to ~ We thank D.J. Bukman, J.W.M. Frenken, and J.D. Shore
separate partially betweeg=0 and around 04qg<0.6. for valuable comments and discussions; G.M. was supported,
Unfortunately, the largest size accessible to our numericah part, by grant No. ERBCHBGCT920197 from the EC Hu-
calculations N=12) is not large enough to allow a detailed man Capital and Mobility Programme.
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