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The chaotic properties ofdiffusivesystems withstatic disordercan be calculated from a free-energy-type
function, the Ruelle pressure,c(b) depending on an inverse temperaturelike variable,b. For a typical system
of physical interest, we show that, in the thermodynamic limit, the Ruelle pressure has a singularity and two
branches~a high and low temperature ‘‘phase’’!, corresponding to transitions between different localized
states, with an extended state possible at the transition point. More generally, for all systems with static
disorder in any number of dimensions, the Ruelle pressure depends sensitively on rare atypical fluctuations in
the static disorder, and is independent of the global structure of the disorder that determines the transport
coefficients.@S1063-651X~96!50408-3#

PACS number~s!: 05.45.1b, 05.20.Dd, 05.60.1w

A challenging question in the physics of fluids out of
equilibrium is to understand how irreversible and complex
macroscopic behavior stems from simple reversible micro-
scopic evolution laws. In the past few years, dynamical sys-
tems theory has successfully been used to relate macroscopic
transport coefficients such as diffusion coefficients to funda-
mental dynamical quantities such as Lyapunov exponents
and Kolmogorov-Sinai entropies@1#. A unifying method for
deriving these and related quantities from a single function
is the thermodynamic formalism of Ruelle, Sinai, and
Bowen @2,3#. In this formalism the Ruelle or topological
pressurec(b) is defined in terms of the long time limit of a
‘‘free energy’’ per unit time, obtained from a dynamical par-
tition function, andb is an inverse temperaturelike variable.
The thermodynamic formalism has been proven to be a pow-
erful tool to calculate Lyapunov exponents and other dy-
namical properties for the many body systems of interest in
statistical mechanics@3,5–7#. It can be studied by typical
statistical mechanics methods, such as molecular dynamics
@8# and kinetic theory methods@5,9#. Moreover, nonanalyt-
icities in b have been interpreted, in chaos theory, as dy-
namical phase transitions@3,4#. In the many particle systems
of interest to statistical mechanics, similar nonanalyticities
and phase transitions occur. Demonstration of their existence
and their interpretation as transitions between different local-
ized states is the subject of this paper.

The goal of this paper is to investigate the large system-
size behavior of the Ruelle pressure for diffusive systems
with static disorder. Here we restrict ourselves to a simple
model, in which independent particles move diffusively in a
random static environment characterized by scatterers dis-
tributed in space~or on a lattice!, namely the Lorentz~lat-
tice! gas~LLG! @5#. But the same conclusions apply to more
general models of random walks in random environments
@10#. For these models it was possible to calculatec~b,r!

near b51 using a mean field theory@5,10#, yielding
Lyapunov exponents, escape rates, etc. for open systems that
depend on the density of scatterersr @5# and even on the
configuration of scatterers@10#. These quantities can be
related to nonequilibrium properties such as transport co-
efficients. Using a method described in@5#, one can also
determine these chaos quantities from computer simulations
averaging over different configurations of scatterers. For one
dimensional systems, the results are in reasonably good
agreement with the mean field predictions, and the more ad-
vanced methods of kinetic theory can be used to calculate
corrections beyond the Boltzmann or mean field approxima-
tion.

Simulation results for the Ruelle pressure have been ob-
tained for one-dimensionalfinite LLG systems with up to
104 sites at differentb values (0<b<2). We present an
explanation of the simulation results based upon a theoretical
argument that for large LLG systems in a given configura-
tion, the Ruelle pressure forb,1 ~respectivelyb.1) is
determined by the largest cluster of scatterers~empty sites!.
In the limit of large system sizeL this pressure is extremely
sensitive to rare spatial fluctuations in the distribution of ran-
domness, and localization of trajectories in the ‘‘most’’ or
‘‘least’’ chaotic regions makes its value no longer represen-
tative for the whole disorder in the system.

This is the case for allb, except in a small region around
b51 whose size we have estimated, and which shrinks to a
point in the limit of infinite systems. At this point the system
is in an extended state, where trajectories explore the whole
system. For all other values ofb, c(b) tends to a value
c6(b) which is independentof the densityof scatterers.
Here the~6! subscript refers to the caseb.1, respectively
b,1. The two branches are identical to the Ruelle pressure
of a system withall sites occupied (2) or empty (1), which
corresponds to localization, respectively, on clusters of scat-
terers or in large empty regions.

All this implies that in the thermodynamic limit the
Ruelle pressure away from the singularb values carries no
dynamical information specific to transport properties, which
do depend on the structure and correlations of the quenched
randomness.
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This peculiar behavior of the thermodynamic formalism
should be a general feature of diffusive systems with static
disorder, both for discrete and continuous systems. Moreover
we show that the approach of the Ruelle pressure to its lim-
iting value is extremely slow, ofO„(lnL)2a

…, wherea de-
pends on the model and on the sign of 12b.

We consider a Lorentz lattice gas on ad-dimensional cu-
bic lattice. A fractionr5N/Ld of all Ld sites, chosen at
random, are impurity sites, occupied by a scatterer. A par-
ticle moves at timest50,1,2, . . . ballistically from site to
site with velocity equal to a nearest-neighbor lattice vector
per unit time until it hits an impurity site, where the moving
particle is transmitted, reflected or deflected with probabili-
ties p,q,s normalized asp1q12(d21)s51. The dynami-
cal statext5$r t,ct% of the moving particle at timet is given
by its positionr t and velocityct . We consider both the case
of absorbing boundary conditions~open systems! and peri-
odic boundary conditions~closed systems!.

To study the chaotic properties of LLG’s we use@5# the
thermodynamic formalism, where a partition function is in-
troduced as a sum over all pointsV in a dynamic phase
space

ZL~b,tux0!5(
V

@P~V,tux0!#b. ~1!

A point V consists of a possible trajectory oft time steps,
i.e., V5$x1 ,x2 , . . . ,xt%, and P(V,tux0) is the probability
that the system follows a trajectoryV starting fromx0 at
t50. The temperaturelike parameterb has no direct physical
interpretation, but it allows us to scan the structure of the
probability distributionP. The correspondingRuelleor to-
pological pressureis defined as

cL~b!5 lim
t→`

1

t
^ lnZL~b,tux0!&r̂, ~2!

which is independent ofx0. The average denoted by^•••&r̂

is performed overall configurations of scatterers.
The probabilityP can be expressed in terms of the tran-

sition matrixw(xuy), i.e.,

P~V,tux0!5 )
n51

t

w~xnuxn21!, ~3!

where(xw(xuy)<1 for open and closed systems.
It has been demonstrated@5# that the Ruelle pressure is

related to the largest eigenvalueLL(b) of the matrix
wb(xuy)[@w(xuy)#b by cL(b)5^ lnLL(b)&r̂, where
wb(xuy) is a large random matrix with a rank of orderL,
whose elements depend upon the realized configuration of
scatterers. Numerically, the Ruelle pressure can be computed
by determiningLL(b) for a number of randomly generated
configurations and averaging lnLL(b) over the different real-
izations.

We outline the main arguments for the one-dimensional
~1D! case. Elsewhere@11# we will generalize these results to
higher dimensions and present more rigorous derivations.
We begin by pointing out that at full coverage of the lattice
by scatterers, the LLG reduces to a persistent random walk.
For this case the largest eigenvalue is known to be@5#

LL
PRW~b!5~a1b!F12

a

2b
k2G1O~k3!, ~4!

wherea[pb , b[qb with p1q51, andk50 for closed
systems andk5p/L for open systems.

To demonstrate thatcL(b,r) tends toc6(b) in the ther-
modynamic limit (L→`), we construct upper and lower
bounds which approach each other asL→`. We start by
observing thatZL(b) in ~1! is a sum of positive terms, in
which (x@w(xuy)#b<W(b) with W(b)[1 for b.1 and
W(b)[a1b for b,1, both for closedand opensystems.
Repeated application of this inequality yields the
L-independent upper bound for the topological pressure
c2(b)5 ln(a1b) for b,1 andc1(b)50 for b.1.

Next we construct the lower bounds by considering a
fixed configuration of scatterers, starting with the case
b,1. We observe that for each configuration of scatterers
there exists a largest cluster of scatterers, the length of which
is M . ~If there are several clusters of maximal size, we
choose one of them arbitrarily.! If we restrict the sum in~1!
to any subset of trajectories, we get a lower bound for
ZL(b,t) as all terms are positive. We choose to keep only
those terms for which the particle remains inside the largest
cluster. The sum over this set of trajectories is precisely the
partition function for a persistent random walk on a lattice of
sizeM with open boundaries. Thus we have the inequalities

^ lnZM
PRW~b,t !&r̂<^ lnZL~b,t !&r̂<t ln~a1b!, ~5!

where the left-hand term will be determined using~4!.
To obtain our lower bound on the Ruelle pressure we

need the probability distribution for the largest cluster size,
M , which can be obtained from the literature. For our pur-
poses a qualitative estimate will suffice, and more precise
estimates will be given in Ref.@11#. The average value of
M is roughly determined by the relationLr^M &(12r)2;1.
Indeed the cluster can be located atL different sites, has to
be limited by two empty sites, and containsM scatterers.
ConsequentlyM; lnL typically, so that^1/M2&r̂;(lnL)22

and vanishes in the thermodynamic limit. Thus forb,1 the
Ruelle pressure approaches the branchc`(b,r)
5c2(b)5 ln(a1b). A lower bound for the partition function
for b.1 is obtained by keeping only those trajectories in~1!
which remain in the largest region free of scatterers, i.e., the
largest hole, whose size is again denoted byM . In fact for a
given initial state there is only one trajectory which remains
confined to the largest hole, once the particle finds it. This is
the trajectory where the particle is continually reflected back
into the hole by the scatterers at either end. Its contribution
to the partition function isqbnB wherenB is the number of
backscatterings of the particle at the boundary sites of the
hole. For larget, nB;t/M so thatZL(b,tux0)>qbt/M and
the lower bound for the pressure is

cL~b,r!>b^1/M &r̂lnq. ~6!

The distribution for the largest hole is simply related to that
for the largest cluster and we find that^1/M &r̂;O„(lnL)21

…

which vanishes asL→`. Consequently we find that for LLG
models, in the thermodynamic limit,c`(b,r)5c1(b)50,
for b.1.
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For the 1D LLG we have tested the above predictions
against numerical measurements of the largest eigenvalue
LL(b) typically averaged over 10

4 configurations of scatter-
ers. Forb50, Fig. 1 compares numerical measurements of
the topological entropyhT5cL(0,r) ~open symbols! with
the lower bound in Eq.~5! ~continuous lines! for system
sizesL5100 ~triangles! and L5104 ~squares!. All points
remain below the upper bound of ln2. ForL5100 we
checked that the estimates based upon the largest cluster are
indeed lower bounds. As the system size becomes larger it
becomes more likely to find a very large cluster dominating
the sum in ~1!. Indeed for L5104 measurements of
cL(0,r) and predictions for the lower bounds essentially co-
incide, except at small densities. The prediction plotted here
uses the distribution for the size of the largest cluster as
evaluated numerically from random configurations. Similar
results were obtained when using theoretical estimates. It
should be noted that as the Ruelle pressure converges to its
limiting value only logarithmically with system size, the final
limit is not accessible numerically. By defining effective
‘‘high density’’ clusters with a density above average@12#
the lower bounds can be improved to provide a very good
estimate forhT , also atL5100, as is shown by the dashed
line in Fig. 1.

Simulation results atb52 are also in agreement with the
lower bound based on the largest hole. For strong back-
scattering (p50.2), it is not only a lower bound but also a
good estimate for the Ruelle pressure for all system sizes
~see Fig. 2!. This is not the case for weak backscattering
(p50.8), where it is less likely that the particle will remain
in the largest hole. In all cases the numerical results are
found between the upper and lower bounds.

We conclude that in the large system limit, forb away
from singular points, properties calculated from the thermo-
dynamic formalism are totally independent of the properties
of the disordered lattice such as the density of impurity sites.
Nevertheless the thermodynamic formalism appears to be of
considerable value even for these systems in a small region

aboutb51. For instance, without the thermodynamic for-
malism, a calculation of the Lyapunov exponents requires
not only the largest eigenvalueLL(1) of the matrix
w(xuy), but also the corresponding left and right eigenvec-
tors. The question remains as to the size of the region about
b51 where the dominant orbits extend over the entire sys-
tem. The scaling of the most relevant physical properties of
the system by 1/L2 suggests replacingb in the thermody-
namic formalism by the scaled variable (12b)L2. By com-
paring our lower bounds onLL(b) for a givenL with the
corresponding mean field estimates obtained in@5#—which
give a good estimate for the contributions of the extended
orbits—we find that the region aboutb51 where extended
orbits dominate the pressure is at most of order 1/(lnL)a

wherea52 for b,1 anda51 for b.1 @11#.
In summary, we have shown analytically that the Ruelle

pressurec~b! in LLG’s has a singularity atb51 in the ther-
modynamic limit. The preceding results for the Ruelle pres-
sure can be generalized to hopping models on bond and site
disordered lattices@10,11#. In general there exists a finite set
of singularities. Forb values away from these points, the
dominant orbits are localized on the largest cluster with a
well-defined periodic structure~e.g., compact clusters of the
same type of ‘‘impurity’’ bonds or sites@10,11#, or of alter-
nating ‘‘impurity’’ and ‘‘regular’’ bonds or sites@10#!. At the
singular points the trajectories are extended over the whole
system~b51! or over larger clusters with a well-defined de-
gree of disorder, which is lower than that of the whole sys-
tem. The different localized states may be considered as
‘‘phases,’’ separated by singularities where the states are
fully or partially extended.

It is worth pointing out the striking similarity between the
dominance of large clusters or holes for the LLG models in
determining the pressure, and the nonexponential decay of
the density in diffusive systems with fixed random traps,
which is also due to the rare occurrence of large areas with-
out traps@13#. Other related phenomena are Griffiths singu-
larities @14# and Lifshitz tails@15#.

The above results can be generalized tod-dimensional
lattices, and the same conclusions about the Ruelle pressure
apply in the thermodynamic limit. In fact we conjecture that

FIG. 1. Ruelle pressure as a function of the densityr for
L5100 (n) or L510,000 (h). Lower bounds from a numerical
determination of the largest cluster size distribution~solid lines! and
from an estimate based on effective high density clusters~dashed
line!.

FIG. 2. Ruelle pressure as a function of the system size in the
case of strong backscattering (p50.2) for r50.2 (s) or r50.8
(h). Lower bounds~solid lines! were obtained using a numerical
determination of the largest cluster size distribution.

54 R1015THERMODYNAMIC FORMALISM IN THE . . .



in the thermodynamic limit all diffusive systems with static
disorder have orbits that are localized forb,1 on the largest
cluster with the most ‘‘chaotic’’ scattering and forb.1 on
clusters with the least ‘‘chaotic’’ scattering.

For continuous Lorentz gases this would imply that the
orbits forb.1 are localized in the largest empty regions. For
b,1 the situation is less simple. In the case of randomly
distributed hard nonoverlapping spherical scatterers of equal
radius the escape rate formalism@1# leads to similar results
as obtained here for the LLG@11#. The essential difference
between periodic and random arrangements of scatterers is
that in the thermodynamic limit the dominant orbits always
remain extended in the former case but are always localized
on rare spatial density fluctuations in the latter, and do not
explore the typical spatial arrangements of the scatterers.

Finally, based on our experience with these models of
static disorder, we conjecture that models of fluids where all
particles move will have a more interesting Ruelle pressure
for b,1, but a trivial Ruelle pressure forb.1, since that
region will be dominated by rare trajectories where the par-
ticles do not collide.
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