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Thermodynamic formalism in the thermodynamic limit:
Diffusive systems with static disorder
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The chaotic properties dfiffusive systems withstatic disordercan be calculated from a free-energy-type
function, the Ruelle pressurg(3) depending on an inverse temperaturelike varigBlef-or a typical system
of physical interest, we show that, in the thermodynamic limit, the Ruelle pressure has a singularity and two
branches(a high and low temperature “phasg”corresponding to transitions between different localized
states, with an extended state possible at the transition point. More generally, for all systems with static
disorder in any number of dimensions, the Ruelle pressure depends sensitively on rare atypical fluctuations in
the static disorder, and is independent of the global structure of the disorder that determines the transport
coefficients [S1063-651X96)50408-3

PACS numbgs): 05.45+b, 05.20.Dd, 05.66-w

A challenging question in the physics of fluids out of near =1 using a mean field theory5,10], yielding
equilibrium is to understand how irreversible and complexLyapunov exponents, escape rates, etc. for open systems that
macroscopic behavior stems from simple reversible microdepend on the density of scattererg5] and even on the
scopic evolution laws. In the past few years, dynamical sysconfiguration of scatterer§10]. These guantities can be

tems theory has successfully been used to relate macroscoﬁfﬁated to nonequilibrium properties such as transport co-

transport coefficients such as diffusion coefficients to fundameients. Using a method d_e_scnbed i8], one can also_
mental dvnamical quantities such as Lvapunov ex Onentdetermlne these chaos quantities from computer simulations

y aqu . -yap P 3veraging over different configurations of scatterers. For one
and Kolmogorov-Sinai entropidd]. A unifying method for

- - ! . dimensional systems, the results are in reasonably good
deriving these and related quantities from a single fU”Ct'Orhgreement with the mean field predictions, and the more ad-
is the thermodynamic formalism of Ruelle, Sinai, andvanced methods of kinetic theory can be used to calculate
Bowen [2,3]. In this formalism the Ruelle or topological corrections beyond the Boltzmann or mean field approxima-
pressuraj(B) is defined in terms of the long time limit of a tion.

“free energy” per unit time, obtained from a dynamical par- ~ Simulation results for the Ruelle pressure have been ob-
tition function, andg is an inverse temperaturelike variable. tained for one-dimensiondinite LLG systems with up to

The thermodynamic formalism has been proven to be a powt0" sites at different3 values (0= 3<2). We present an

erful tool to calculate Lyapunov exponents and other dy_explanation of the simulation results based upon a theoretical

namical properties for the many body systems of interest irﬁrgument that for large LLG systems in a given configura-

e i . ) on, the Ruelle pressure fg8<1l (respectivelyf>1) is
statistical mechanics3,5-7. It can be studied by typical .determined by the largest cluster of scatteferspty sites

o 4R the limit of large system sizk this pressure is extremely
[8] and kinetic theory method,9]. Moreover, nonanalyt- - sensitive to rare spatial fluctuations in the distribution of ran-

icities in B have been interpreted, in chaos theory, as dydomness, and localization of trajectories in the “most” or

namical phase transition8,4]. In the many particle systems “least” chaotic regions makes its value no longer represen-

of interest to statistical mechanics, similar nonanalyticitiestative for the whole disorder in the system.

and phase transitions occur. Demonstration of their existence This is the case for a|B, except in a small region around

and their interpretation as transitions between different localg=1 whose size we have estimated, and which shrinks to a

ized states is the subject of this paper. point in the limit of infinite systems. At this point the system

The goal of this paper is to investigate the large systemis in an extended state, where trajectories explore the whole
size behavior of the Ruelle pressure for diffusive systemsystem. For all other values @, #(8) tends to a value
with static disorder. Here we restrict ourselves to a simpley..(8) which is independentof the density of scatterers.
model, in which independent particles move diffusively in aHere the(*) subscript refers to the cage> 1, respectively
random static environment characterized by scatterers digg<<1. The two branches are identical to the Ruelle pressure
tributed in spacdor on a lattice, namely the LorentZlat-  of a system wittall sites occupied+) or empty (+), which

tice) gas(LLG) [5]. But the same conclusions apply to more corresponds to localization, respectively, on clusters of scat-

general models of random walks in random environmentserers or in large empty regions.

[10]. For these models it was possible to calcula{,p) All this implies that in the thermodynamic limit the
Ruelle pressure away from the singujarvalues carries no
dynamical information specific to transport properties, which

*Permanent address: CNRS, LPS, Ecole Normale is2e, 24  do depend on the structure and correlations of the quenched
rue Lhomond, 75005 Paris, France. randomness.
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This peculiar behavior of the thermodynamic formalism
should be a general feature of diffusive systems with static ATRYMB)=(a+Db)
disorder, both for discrete and continuous systems. Moreover
we show that the approach of the Ruelle pressure to its limghere a= p?  b=qgP with p+q=1, andk=0 for closed
iting value is extremely slow, o©((InL)™ %), where a de- systems and= /L for open systems.
pends on the model and on the sign ofd. _ To demonstrate tha, (3,p) tends toy..(8) in the ther-

We consider a Lorentz lattice gas o alimensional cu- modynamic limit L —=), we construct upper and lower
bic lattice. A fractionp=N/L? of all L? sites, chosen at Lounds which approach each otherlas-o. We start by
random, are impurity sites, occupied by a scatterer. A Parghserving thaz, (8) in (1) is a sum of positive terms, in
ticle moves at time$=0,1,2 ... ballistically from site to \\hich EX[W(le)]B$W(ﬂ) with W(B)=1 for 8>1 and
site with velocity equal to a nearest-neighbor lattice vector\,v(B)Ea+b for B<1, both for closedand open systems.
per unit time until it hits an impurity site, where the moving Repeated application of this inequality vyields the
particle is transmitted, reflected or deflected with prObabi”'L-independent upper bound for the topological pressure
ties p,q,s normalized ap+qg+2(d—1)s=1. The dynami- w_(B)=In(a+b) for B<1 andy, (8)=0 for B>1.
cal statex;={r.,G} of the moving particle at time is given Next we construct the lower bounds by considering a
by its positionr; and velocityc;. We consider both the case fiyeq configuration of scatterers, starting with the case
of absorbing boundary conditioriepen systemsand peri- g1 \we observe that for each configuration of scatterers
odic boundary conditionglosed systems , there exists a largest cluster of scatterers, the length of which

To study the chaotic properties of LLG's we U the  j5 1. (if there are several clusters of maximal size, we

thermodynamic formalism, Wher_e a partition fun_ction is in- choose one of them arbitrariyif we restrict the sum ir(1)
troduced as a sum over all poin€s in a dynamic phase , any subset of trajectories, we get a lower bound for
Space Z.(B,1t) as all terms are positive. We choose to keep only
those terms for which the particle remains inside the largest
Z (BtIxo) =2, [P(Q,tx0) 7. (1)  cluster. The sum over this set of trajectories is precisely the
Q partition function for a persistent random walk on a lattice of
sizeM with open boundaries. Thus we have the inequalities

a
1- —k?

55 +0(k%), (4)

A point () consists of a possible trajectory bftime steps,
i.e., Q={X1,Xs, ... X, and P(Q,t|xq) is the probability INZPRY 8 t))-<(InZ (B.t))-<tIn(a+b 5

that the system follows a trajecto) starting fromx, at (Inzy™(8,0);=(InZL(B.D); ( ), ©
t=0. The temperaturelike paramefghas no direct physical \yhere the left-hand term will be determined usie),
interpretation, but it allows us to scan the structure of the 14 gptain our lower bound on the Ruelle pressure we

probability distributionP. The correspondin@Ruelleor to-  neeq the probability distribution for the largest cluster size,

pological pressuras defined as M, which can be obtained from the literature. For our pur-
1 poses a qualitative estimate will suffice, and more precise
P (B)=lim T<|nZL(IBrt|XO)>fJ! 2) est!mates will be given in Refl1]. The avN(Iarage vgllue of
tsos M is roughly determined by the relatidnp™)(1—p)2~1.

L Indeed the cluster can be locatedLadifferent sites, has to
which is independent of,. The average denoted ly--);  pe |imited by two empty sites, and contais scatterers.
is performed o_v_eall configurations of S(_:atterers. ConsequentiyM ~InL typically, so that(1/M 2>ﬁ~(|n|_)72

. _The propab|l|tyP can be expressed in terms of the ran-nq yanishes in the thermodynamic limit. Thus g« 1 the
sition matrixw(xly), i.e., Ruelle pressure approaches the branch..(B,p)

t =y _(B)=In(a+b). A lower bound for the partition function
P(Q,t|x0) = H W(Xn|Xn_1), (3) forlﬁ>1 is o_btc_alned by keepmg_only those trajectorles§mh
n=1 which remain in the largest region free of scatterers, i.e., the

largest hole, whose size is again denotedvbyln fact for a
where=,w(x|y)<1 for open and closed systems. _given initial state there is only one trajectory which remains
It has been demonstrat¢8] that the Ruelle pressure is confined to the largest hole, once the particle finds it. This is
related to the largest eigenvalug (B) of the matrix the trajectory where the particle is continually reflected back
wa(xly)=[w(x]y)]? by ¢ (B)=(INAL(B));, where into the hole by the scatterers at either end. Its contribution
wg(x|y) is a large random matrix with a rank of order o the partition function igj?"s whereng is the number of
whose elements depend upon the realized configuration @fackscatterings of the particle at the boundary sites of the
scatterers. Numerically, the Ruelle pressure can be computeble. For larget, ng~t/M so thatZ, (B,t|x0) =g and

by determiningA () for a number of randomly generated the lower bound for the pressure is

configurations and averagingAn(B) over the different real-

izations. L(B,p)=B(1M);Inq. (6)
We outline the main arguments for the one-dimensional

(1D) case. Elsewherl1] we will generalize these results to The distribution for the largest hole is simply related to that

higher dimensions and present more rigorous derivationdor the largest cluster and we find tI’(dI/M);yO((InL)*l)

We begin by pointing out that at full coverage of the lattice which vanishes ak—o. Consequently we find that for LLG

by scatterers, the LLG reduces to a persistent random walknodels, in the thermodynamic limity..(8,p)= ¢, (8)=0,

For this case the largest eigenvalue is known tg3e for g>1.
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FIG. 2. Ruelle pressure as a function of the system size in the
case of strong backscattering=€0.2) for p=0.2 (O) or p=0.8

FIG. 1. Ruelle pressure as a function of the densityor (8). Lower bounds(solid lineg were obtained using a numerical
L=100 (A) or L=10,000 (0). Lower bounds from a numerical determination of the largest cluster size distribution.
determination of the largest cluster size distributisalid lines and
from an estimate based on effective high density clust@ashed about 8=1. For instance, without the thermodynamic for-
line). malism, a calculation of the Lyapunov exponents requires

not only the largest eigenvalue\ (1) of the matrix

For the 1D LLG we have tested the above predictionsw(x|y), but also the corresponding left and right eigenvec-
against numerical measurements of the largest eigenvaluers. The question remains as to the size of the region about
A (B) typically averaged over fCconfigurations of scatter- B=1 where the dominant orbits extend over the entire sys-
ers. ForB=0, Fig. 1 compares numerical measurements otem. The scaling of the most relevant physical properties of
the topological entropyhr= 4, (0,0) (open symbolswith  the system by 1/2 suggests replacing in the thermody-
the lower bound in Eq(5) (continuous lines for system namic formalism by the scaled variable£J8)L2. By com-
sizesL =100 (triangles and L=10" (squares All points  paring our lower bounds oA, (B) for a givenL with the
remain below the upper bound of In2. Far=100 we corresponding mean field estimates obtainedSir—which
checked that the estimates based upon the largest cluster ajige a good estimate for the contributions of the extended
indeed lower bounds. As the system size becomes larger d@rbits—we find that the region aboy@=1 where extended
becomes more likely to find a very large cluster dominatingorbits dominate the pressure is at most of order LiIn
the sum in (1). Indeed for L=10* measurements of wherea=2 for <1 anda=1 for g>1[11].
¢ (0,p) and predictions for the lower bounds essentially co- In summary, we have shown analytically that the Ruelle
incide, except at small densities. The prediction plotted her@ressure/{8) in LLG’s has a singularity aB=1 in the ther-
uses the distribution for the size of the largest cluster asnodynamic limit. The preceding results for the Ruelle pres-
evaluated numerically from random configurations. Similarsure can be generalized to hopping models on bond and site
results were obtained when using theoretical estimates. Hisordered latticegl0,11]. In general there exists a finite set
should be noted that as the Ruelle pressure converges to i$ singularities. ForB values away from these points, the
limiting value only logarithmically with system size, the final dominant orbits are localized on the largest cluster with a
limit is not accessible numerically. By defining effective well-defined periodic structurée.g., compact clusters of the
“high density” clusters with a density above average?] same type of “impurity” bonds or sitegl0,11], or of alter-
the lower bounds can be improved to provide a very goodating “impurity” and “regular” bonds or site$10]). At the
estimate forh;, also atL =100, as is shown by the dashed singular points the trajectories are extended over the whole
line in Fig. 1. system(B=1) or over larger clusters with a well-defined de-

Simulation results aB=2 are also in agreement with the gree of disorder, which is lower than that of the whole sys-
lower bound based on the largest hole. For strong backem. The different localized states may be considered as
scattering p=0.2), it is not only a lower bound but also a “phases,” separated by singularities where the states are
good estimate for the Ruelle pressure for all system sizehilly or partially extended.
(see Fig. 2 This is not the case for weak backscattering It is worth pointing out the striking similarity between the
(p=0.8), where it is less likely that the particle will remain dominance of large clusters or holes for the LLG models in
in the largest hole. In all cases the numerical results aréetermining the pressure, and the nonexponential decay of
found between the upper and lower bounds. the density in diffusive systems with fixed random traps,

We conclude that in the large system limit, fBraway  which is also due to the rare occurrence of large areas with-
from singular points, properties calculated from the thermo-out traps[13]. Other related phenomena are Griffiths singu-
dynamic formalism are totally independent of the propertiedarities[14] and Lifshitz tails[15].
of the disordered lattice such as the density of impurity sites. The above results can be generalizeddtdimensional
Nevertheless the thermodynamic formalism appears to be déttices, and the same conclusions about the Ruelle pressure
considerable value even for these systems in a small regiaapply in the thermodynamic limit. In fact we conjecture that
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in the thermodynamic limit all diffusive systems with static ~ Finally, based on our experience with these models of
disorder have orbits that are localized 81 on the largest static disorder, we conjecture that models of fluids where all
cluster with the most “chaotic” scattering and f@>1 on  particles move will have a more interesting Ruelle pressure
clusters with the least “chaotic” scattering. for <1, but a trivial Ruelle pressure fg8>1, since that

For continuous Lorentz gases this would imply that theregion will be dominated by rare trajectories where the par-
orbits for 8>1 are localized in the largest empty regions. Fortjcles do not collide.

B<1 the situation is less simple. In the case of randomly . o . )
distributed hard nonoverlapping spherical scatterers of equal We thank C. Bokel for his contribution to the simulation
radius the escape rate formaligfi leads to similar results results of Fig. 1. J.R.D. thanks E. Slud for helpful remarks
as obtained here for the LLE1]. The essential difference and the National Science Foundation for support under Grant
between periodic and random arrangements of scatterers 0. NSF-PHY-93-21312. One of u&C.A.) acknowledges
that in the thermodynamic limit the dominant orbits alwayssupport of the foundation “Fundamenteel Onderzoek der
remain extended in the former case but are always localizeMlaterie” (FOM), which is financially supported by the
on rare spatial density fluctuations in the latter, and do notDutch National Science FoundatiofNWO), and of the
explore the typical spatial arrangements of the scatterers. “Centre National de la Recherche ScientifiqueCNRS).
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