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Equilibrium shapes and faceting for ionic crystals of body-centered-cubic type
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A mean-field theory is developed for a calculation of the surface free energy of the staggered body-centered
solid-on-solid~or six vertex! model as function of the surface orientation and temperature. The model approxi-
mately describes surfaces of crystals with nearest neighbor attractions, and next nearest neighbor repulsions.
The mean-field free energy is calculated by expressing the model in terms of interacting directed walks on a
lattice. The resulting equilibrium shape is very rich with facet boundaries and boundaries between recon-
structed and unreconstructed regions, which can be either sharp~first order! or smooth~continuous!. In addi-
tion, there are tricritical points where a smooth boundary changes into a sharp one, and triple points where
three sharp boundaries meet. Finally our numerical results strongly suggest the existence of conical points, at
which tangent planes of a finite range of orientations all intersect each other. The thermal evolution of the
equilibrium shape in this model shows a strong similarity to that seen experimentally for ionic crystals.

PACS number~s!: 64.60.Cn
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INTRODUCTION

Crystals in thermal equilibrium are typically composed
flat regions~facets! corresponding to high symmetry direc
tions in the crystal lattice, and possibly some rounded pa
At sufficiently low temperatures the equilibrium cryst
shape is dominated by the facets, while with increasing te
perature more and more rounded regions occupy larger a
of the crystal surface. At a given temperature a facet m
shrink completely and disappear from the equilibrium sha
this corresponds to arougheningtransition, which is charac
terized microscopically by the vanishing of the step free
ergy on the facet@1#.

Another interesting phenomenon occurring on crystal s
faces is that offaceting, or phase separation of unstable o
entations@1,2#. An orientation is unstable~or metastable!
when the total surface free energy of the crystal can be l
ered by replacing that orientation by a combination of ot
orientations, connected to each other under sharp edges,
an average orientation equal to the original one. This proc
is similar to that of liquid-gas phase separation, where
free energy of the system at a given homogeneous den
can be lowered by combining the free energies of a den
liquid phase and a more dilute gas phase@3#. In the case of
crystal surfaces the step density is the equivalent of the
ticle density in the liquid-gas phase separation.

A third phenomenon observed frequently on crystal s
faces isreconstruction, implying that the unit cell of the
surface in equilibrium is larger than that obtained by mak
a section through the bulk crystal structure. The most co
mon cause for this is lowering of surface energy due to
rearrangement of atoms in the surface layer. Raising the t
perature often destroys reconstructions at adeconstruction
temperatureas a result of increasing entropy. In many cas
there is a subtle interplay between reconstruction and
other two phenomena.

In this paper we describe the thermal evolution of t
PRE 621063-651X/2000/62~6!/7646~12!/$15.00
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equilibrium shape for a model describing equilibrium su
faces of crystals of body-centered-cubic~bcc! type. Using a
mean-field approximation, we calculate the surface free
ergy as function of the surface orientation and temperat
The model has a rich phase diagram showing roughen
faceting, and deconstruction transitions, and it provides
approximate description of ionic crystals of CsCl type, whe
ions of the same type repel each other, while there is a str
attraction between nearest neighbors, which are oppos
charged.

The paper is organized as follows: In Sec. I, we introdu
the model, and in Sec. II we present the mean-field appr
mations that we employ to calculate the surface tension
the crystal as a function of surface orientation and tempe
ture. In Sec. III we discuss the evolution of the equilibriu
crystal shape as function of the temperature. In Sec. IV
summarize the results obtained, and make a comparison
known models and experiments showing similar features

A preliminary account of this work was already present
in Ref. @4#. Here we develop a different mean-field theo
which has several advantages over that of the previous
proach.

I. MODEL

We consider a bcc crystal composed of two differe
types of atoms, sayA and B, which occupy the sites of the
two interpenetrating cubic lattices that form the bcc stru
ture. In the solid-on-solid approximation the surface config
rations are given by integershi

A and hj
B describing the

heights of the surface atoms with respect to a refere
plane.hi

A andhj
B are odd and even integers, respectively.

We consider the Hamiltonian@5#

H5J0(̂
i j &

~ uhi
A2hj

Bu21!1
e

2 (
(kl)

uhk
A2hl

Au

1
e12d

2 (
(mn)

uhm
B2hn

Bu, ~1!
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where the sums are constrained to neighboringAB, AA, and
BB pairs „^•& and (•) denote summations over nearest a
next nearest neighbors, respectively….

We take the limitJ0→`, so that height differences be
tween neighboring atoms are restricted to their minim
value (61), and the model can be mapped onto a six ver
model @6,7#. The correspondence between vertices a
height variables is shown in Fig. 1. Each vertex satisfies
ice rule, requiring that two of its arrows point inward an
two point outward. We stress that ifdÞ0 the model is
mapped onto astaggeredsix vertex model with the vertex
lattice subdivided into two sublattices on which the vertic
1, . . . ,4have different energies, as shown in Fig. 1. As t
two representations are completely equivalent in the res
the paper we will sometimes use the term BC-SOS~body-
centered solid-on-solid! model, and sometimes six verte
model.

We takee,0 and 0,d!2e. This model may give a
good approximate description of ionic crystals, whereA and
B are ions with opposite charges. With our choice of energ
neighboringA and B atoms strongly attract each other (J0
→` in the model!, and atoms of the same type repel ea
other (e, e12d,0); thus the model may be expected
give at least a good qualitative picture of real ionic crysta
even though further neighbor interactions are ignored.
choosingd.0 we assumed that in addition to Coulomb r
pulsion between equal species there is some other cont
tion to the Hamiltonian, which makes the interaction en
gies between next nearest neighborAA andBB pairs slightly
different.

The ground state, whene is negative, describes ac(2
32) reconstructed (001) facet with one component~B! at a
constant height~say,hj

B50), and the other~A! with alternat-

FIG. 1. The six vertices and their energies in the two disti
sublattices (d and 3). At each vertex, the four integers deno
possible height variables.

FIG. 2. Connected walks of reversed arrows~thick lines! denote
excitations with respect to the Manhattan background~thin lines!.
Integers are height variables in the BC-SOS representation.
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ing heights (hi
A561) above and below the first one. In th

vertex lattice all the arrows point alternatingly up and dow
or left and right, a configuration which we will refer to as
‘‘Manhattan lattice.’’ Figure 2 shows some elementary ex
tations of the ground state~thick lines denote excitations
with respect to the Manhattan ground state configurati
indicated by thin lines!. Reversed arrows on a closed loo
produce a closed terrace of surface atoms two lattice u
higher ~or lower! than their ground state heights. A con
nected path of reversed arrows running between two bou
aries of the Manhattan lattice corresponds to a step on
(001) facet for the BC-SOS model. On the six vertex latt
such a path can be described as a self avoiding walk
cannot visit the same bond twice, but is allowed to cro
itself. In reversing arrows the step/walk has to preserve
ice rule, and this limits its possible trajectories. At each no
crossing site, the walk has two options: either to go straig
maintaining its previous direction, with an energy cost of 2d,
or to turn in the direction allowed by the Manhattan lattic
which costs an energy2e ~since we consider the case
,d!2e, typically walks will be composed of very long
segments with rare turns!. Steps can cross each other,
shown in Fig. 2; step crossings are energetically favored:
crossing point a ground state vertex is replaced by a ve
with the same energy with all four arrows reversed. There
a gain in energy of 4d, in comparison to the energy th
system would have to pay for two straight noncrossing s
ments of unit length.

The six vertex model describes not only the (001) surfa
of a bcc crystal, but also all the side orientations (ts1) with
utu1usu<1. Given a configuration of vertices, the horizont
and vertical polarizationsq andp are defined by

q5n↑2n↓ , p5n→2n← , ~2!

wheren↑ , n↓ , n→ , n← are the densities of up, down, lef
and right arrows, respectively. Afully polarized state,
namely, a state with all arrows pointing~say! up and to the
right describes a (011) facet of the bcc crystal. The relati
ships between the variablest,s and p,q are given byt5(p
1q)/2, s5(q2p)/2. Please note we have chosen the pr
cipal axes of the crystal under angles of 45° with the prin
pal axes of the vertex lattice.

Figure 3 shows excitations on (011) type facets. In t

t

FIG. 3. Excitations~thick lines! with respect to the fully polar-
ized statep5q51, corresponding to steps on the (011) facet. W
distinguish between even and odd columns and rows.
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case no closed loops are possible, since they would vio
the ice rule, and excitations can be described asdirected
walkson the lattice, i.e., walks that can only step down or
the left. Two walks cannot visit the same lattice bond, b
they can cross each other, as shown in the figure. The m
field calculation of the free energy of the six vertex mod
presented in this paper takes as starting point the fully po
ized stateq5p51. The rows and columns are subdivide
into even and odd ones as in Fig. 3; the polarizationsp andq
are given by

p5
p11p2

2
and q5

q11q2

2
~3!

in terms of the sublattice polarizationsp1 , p2 , q1, andq2. In
states withq5q15q2 and p5p15p2 arrows are reversed
with respect to the fully polarized state with equal probab
ties on the two sublattices, i.e., the surface is unrec
structed. If, on the other hand, one finds states withq1Þq2
or p1Þp2, the surface is reconstructed. Since the energy
configuration is invariant under the interchange of sublatti
1 and 2@or, equivalently, a translation over the lattice vec
~1,1! on the vertex lattice#, each reconstructed state is dege
erate with another one with the values ofp1 ,q1 and p2 ,q2
interchanged. For either of the states the 1-2 exchange s
metry is spontaneously broken. For example, the two M
hattan states are given byq15p152q252p2561.

II. CALCULATION OF THE MEAN-FIELD FREE ENERGY

A. Energy and ground state properties

It is instructive, before presenting the details of the me
field approach, to consider the ground state properties of
model, as this will provide already important information o
the low temperature behavior of the system. Throughout
rest of the paper we set the ground state energy of the M
hattan state equal to zero by a shift of all the vertex ener
over an amounte, so the lowest vertex energy becomes ze
With this convention the energy per site of the fully pola
ized state~where all arrows point, say, up and to the righ!
becomesd. We will take this state as starting point for ou
mean-field calculations. All other allowed vertex configur
tions can be represented by a set of directed walks on
lattice, as illustrated in Fig. 3. The lattice points will be di
tinguished into four different typesi j , with i , j 51,2. The 11
points for example will be the crossing points of odd ro
with odd columns of arrows. For a given configuration
directed walksci j and t i j will indicate the total numbers o
crossings and turns, respectively, at sites of typei j .

For instance, for the configuration of Fig. 3 one hasc22
51, c115c125c2150 andt2252, t115t125t2150. An iso-
lated straight path of reversed arrows on the fully polariz
state does not change the energy, since it is formed b
collection of vertices with alternating energies 2d and
22d, which sum to zero. However, crossings and turns
contribute to the energy. A given configuration withci j
crossings andt i j turns at sites of typei j has a total energy

E~ci j ,t i j !5N2d24d~c111c22!14d~c121c21!2e~ t111t22!

2~e12d!~ t121t21!, ~4!
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since for crossings on 11 or 22 sites one has a gain of en
4d, crossings on 12 or 21 sites cost an energy 4d, while
turns on sites of types 11, 22 or 12, 21 cost energy2e and
2e22d respectively.

This expression indeed becomes minimal for the Manh
tan states, where one hasc115c225N2/4 andc125c215t i j
50. One may look for the minimal energy of states with
homogeneous distribution of polarization on each of the s
lattices. For given sublattice polarizationsqi andpi the num-
ber of crossings may be estimated as

ci j 5
N2

16
~12pi !~12qj !, ~5!

an expression that becomesexact if no turns are allowed at
all ~as occurs at zero temperature!. Inserting this value into
Eq. ~4! and minimizing with respect toqi and pi at fixed 0
<q,p<1 one finds the homogeneous ground state ene
per vertex,

e0~p,q!5d~p1q!2dpq, ~6!

which is obtained either forq152q21, p152p21, p2
5q251 or for q15q251, p252p21, q252q21. These
solutions describe doubly degenerate reconstructed surfa
with the Manhattan states obtained in the limitq,p→0.

However, the homogeneous ground state energy@Eq. ~6!#
is a nonconvex function ofp andq. It is well known~see, for
instance, Ref.@1#! that instabilities arise when the free e
ergy per unit of projected area is a nonconvex function of
surface orientation. These will give rise to faceting of su
faces with orientations in a nonconvex range. The equi
rium shape constructed from Eq.~6! is shown in Fig. 4; it
consists of flat facets only: the ‘‘top’’ facet (001) an
‘‘side’’ facets (011), (101), (01̄1), and (1̄01).

Note that Eq.~6! implies that instabilities ought to persis
over some range of temperatures, where entropic effects
not sufficiently strong to turn the concave free energy int
convex~i.e., stable! one. The only exception to this will be
found at the linesq50 or p50, where the bilinear term in
Eq. ~4! vanishes. These lines correspond to orientations
tween the (101) and (011) facets of Fig. 4. It is natural th
to expect that finite temperature effects~i.e., the appearance
of rounded regions! will first manifest themselves along th
common edges of these facets. Summarizing, these sim
considerations related to theT50 properties of the system
lead us to conclude that~1! sharp edges between the (00
and (011) facets will persist at finite temperatures, and~2!
the corners between the facets and the edges betwee
(011) type facets will probably become rounded first.

FIG. 4. The equilibrium crystal shape atT50.
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B. Entropy and free energy

In the sequel we will focus on the behavior of the syst
for d!2e, and restrict ourselves to temperatures that are
too high, when directed walks are typically composed
long straight segments, because the Boltzmann weight f
turn exp(be), is very small. As a result of this, differen
walks can hardly develop any local correlations, and
mean-field analysis should be very accurate.

For given sublattice polarizationspi and qi the numbers
of crossingsci j in a homogeneous state can still be estima
to be given by Eq.~5!, thanks to the absence of correlatio
between directed walks. The energy of such a state is
given by Eq.~4!, with ci j following from Eq. ~5!. To obtain
the free energy at a nonzero temperature, we need both
average numbers of turnst i j and the entropy of the system
In our mean-field approximation both are obtained from
same calculation.

Let us consider as an example the contribution to the
tropy resulting from thet11/2 turns from a column 1 to a row
1. There areN2(12q1)/8 inverted arrows on type-1 column
pointing toward an 11 site, andc11 of those are occupied b
crossings. There are thus

G11
c→r5

N2

8
~12q1!2c11 ~7!

sites available for thet11/2 turns. The superscriptc→r indi-
cates that we are considering turns from columns to ro
For turns from rows to columns one finds, analogously,

G11
r→c5

N2

8
~12p1!2c11. ~8!

Both these equations are readily generalized for turns f
rows/columns to columns/rows of either type. Neglecti
again correlations, one finds that the number of poss
ways of making the turns from a column to a row on sitesi j
is then given by the binomial coefficient ofG i j

c→r and t i j /2.
Collecting the contributions from all possible turns, one fin

S5kB(
i j

F lnS G i j
c→r

t i j /2
D 1 lnS G i j

r→c

t i j /2
D G , ~9!

wherekB is Boltzmann’s constant.
Combining Eqs.~4!, ~5!, and~9!, one finds the total free

energyF5E2TS as function of the parameterspi , qi , and
t i j . It is convenient to minimize first with respect to th
numbers of turns. The equations]F/]t i j 50 for i , j 51,2
yield, to lowest order inebe,

t i j 5
N2

4
A~12pi

2!~12qj
2! eb(e12dd i j ), ~10!

with d i j a Kronecker delta. The dependence on the num
of turnst i j can thus be eliminated, and to lowest order inebe

the free energy per site becomes
ot
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f ~q1 ,q2 ,p1 ,p2!5dF12
1

4
~q12q2!~p12p2!G

2
1

8b(
i j

eb(e12dd i j )A~12pi
2!~12qj

2!.

~11!

It is more convenient to express the sublattice polarizati
as

q15q2a, p15p2g,

~12!

q25q1a, p25p1g,

wherep andq are the average slopes of the surface, anda
andg can be interpreted as order parameters for the rec
structed state; if they are both zero the polarizationsq1 , p1
and q2 , p2 of the two sublattices are identical and the su
face is in an unreconstructed state.

The mean-field free energy can be found by minimizat
of ~11! for fixed q andp:

f MF~p,q!5 min
$a,g%

f ~q2a,q1a,p2g,p1g!. ~13!

The unreconstructed state corresponding toa5g50 has a
free energy given by

f MF
(u)~q,p!5d2C~b!A~12p2!~12q2!, ~14!

with

C~b!5
1

4b
ebe~e2bd11!. ~15!

The solution witha5g50 is always a stationary point o
the free energy of Eq.~11!; however, it is not always aglo-
bal free energy minimum, as we will see. For arbitraryp and
q we implemented the minimization numerically, exce
along some symmetry lines where it is possible to solve
problem analytically. We will start discussing these spec
cases first.

1. Orientations 0ÏpÄqÏ1

For q5p we takea5g in Eq. ~13!, and the free energy to
be minimized takes the form

f ~a!5d~12a2!2
1

4b
ebe$e2bd@12~q21a2!#

1A@12~q2a!2#@12~q1a!2#%, ~16!

with q21<a<q11. Setting] f /]a50, one obtains the fol-
lowing equation:

2aH d2
eb(e12d)

4b
2

ebe

4b

12~a22q2!

A@12~a2q!2#@12~a1q!2#
J 50.

~17!
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The solutiona50 of course corresponds to the unreco
structed state, for which on the symmetry lineq5p the free
energy takes a simple parabolic shape:

f MF
(u)~q,q!5d2C~b!1C~b! q2. ~18!

The other possible solution of Eq.~17! can be found by
defining firstD[a22q2; squaring Eq.~17!, one obtains a
quadratic equation forD, with a solution

D512q
2d2C~b!2C̃~b!

A@d2C~b!#@d2C̃~b!#
, ~19!

with C̃(b)5ebe(e2bd21)/4b. This equation can also be re
written in the form

a25~q02q!S 1

q0
2qD , ~20!

with

q05Ad2C~b!

d2C̃~b!
<1. ~21!

Note that the reconstructed solution withaÞ0 exists only
for a limited range of temperatures and orientations, nam
for d.C(b) and uqu<q0, where the right hand side of Eq
~20! and the argument of the square root of Eq.~21! are both
positive. Note also that asq→q0

2 the reconstruction orde
parametera vanishes asa;Aq02q, i.e., with the mean-
field exponent 1/2.

Substituting the value ofD given by Eq.~19! into Eq.
~16!, for the reconstructed free energy one finds

f MF
(r ) ~q,q!52A@d2C~b!#@d2C̃~b!#q

2@d2C~b!2C̃~b!# q2. ~22!

In the range of parameters where the reconstructed solu
exists, this always has a lower free energy than the unre
structed solution of Eq.~18!. At zero temperatures (b→
1`) the reconstructed free energy@Eq. ~22!# yields the ex-
act ground state energy obtained in Eq.~6!. For q5q0 the
reconstructed@Eq. ~22!# and unreconstructed@Eq. ~18!# free
energies take the same value with equal derivatives.

Figure 5 shows the free energies~solid lines! along the
line p5q for different values of the temperature. The dott
lines are the analytical continuations of the unreconstruc
free energy in the regions (q,q0), where this is not the
absolute minimum of the free energy@Eq. ~11!#. For suffi-
ciently large temperatures@e.g. curve~d! in Fig. 5#, the ab-
solute minimum always corresponds to an unreconstru
surface. Note that at low temperatures the reconstructed
energy@Eq. ~22!# is concave, as we expected from the ana
sis of the ground state energy@Eq. ~6!#.

Stable orientations can be found from the double tang
or Maxwell construction, which is shown as a dashed line
the figure. In Fig. 5~a! the only stable orientations along th
q5p line areq50 andq51. In Fig. 5~b! the Maxwell con-
struction connects the orientationsq50 with q5q̂, whereq̂
-

y,

on
n-

d

d
ee
-

nt
n

is given in Eq.~36!. Therefore, only the orientations in th
rangeq̂<q<1 andq50 are stable.

Above a temperatureTs obtained from the condition

d5C~bs!1C̃~bs!, ~23!

the reconstructed free energy@Eq. ~22!# becomes stable@see
Fig. 5~c!#. In this case all the surface orientations along t
line q5p are stable, and in the range 0<q<q0 these are
reconstructed. The properties of this free energy and of
equilibrium shape along the symmetry axisp5q will be dis-
cussed in more detail in Sec. II B 2.

2. Orientations pÄ0, 0ÏqÏ1

For p50 we minimize the free energy@Eq. ~13!# with
respect to the parametersa and g. The solutions take the
form

a25~ q̃02q!S 1

q̃0

2qD , ~24!

g25
1

q̃0

q̃02q

12qq̃0

, ~25!

with

q̃05
1

d
Ad22C2~b!. ~26!

This yields the following value for the reconstructed fr
energy,

f MF
(r ) ~0,q!5Ad22C2~b! q, ~27!

which is valid forq<q̃0 andd.C(b).
This free energy is linear as function of the slope para

eter q. The numerical analysis of the free energy for sm

FIG. 5. ~Solid lines! mean-field free energies as function of th
slopeq calculated along the directionp5q and for four different
temperatures withe522.0 andd50.2: ~a! T50.80,~b! T51.111,
~c! T51.333, and~d! T51.818.~Dotted lines! analytic continuation
of the unreconstructed free energy in the regionq,q0. ~Dashed
lines! Maxwell construction connecting stable orientations.
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values ofq shows that the reconstructed orientations w
small p are not stable, implying that the equilibrium cryst
shape has sharp edges along this orientation as we will
cuss in detail in Sec. III.

3. Orientations qÄ1, 0ÏpÏ1

The exact value of the free energy atq51 can be calcu-
lated easily. We show here that in this limiting case t
mean-field free energy reproduces the exact result. Le
consider a vertex lattice of sizeN3N: q51 describes a se
of orientations where all the vertical arrows are up, in a st
of maximal polarization~the state is composed of vertices
and 4!. The horizontal arrows can point either to the left or
the right, but once a horizontal arrow at a boundary is fix
all the arrows connected to it along a horizontal line point
the same direction; otherwise the ice rule would be violat
The average energy per site isd since along horizontal lines
there is an alternating sequence of vertices of energies 0
2d. The total entropy of theN3N lattice is of orderN, since
the vertical arrows are frozen and the horizontal ones alon
row are identical. Therefore, the free energyper site be-
comes

f ~p,q51!5d1O~1/N!, ~28!

and in the thermodynamic limitN→` the entropic term can
be neglected. This limiting value of the free energy is rep
duced correctly by our mean-field calculations at all te
peratures. The free energy for vicinal orientations very cl
to ~011! type facets can also be calculated exactly. It j
involves calculating the free energy of isolated steps on th
facets. This calculation is worked out in the Appendix.
turns out that our mean-field approximation also descri
the free energy of these vicinal orientations correctly. This
no surprise, since for these orientations crossings are
rare and unimportant, so that our method for estimating
entropy and the numbers of turns becomes exact.

4. Orientation pÄqÄ0

The other limiting case to be considered is the orientat
with q5p50. In this case, ford.C(b), Eq.~13! yields two
minima with a5g561, which correspond to the twore-
constructed Manhattan states withf MF

(r ) (p50,q50)50.
Since the ground state energy of the system equals zer
expect that in realityf (p50,q50),0 at finite temperatures
The reason we do not find this in our mean-field approxim
tion is due to the fact that we have neglected correlati
between directed walks. For example, at very low tempe
tures the most important excitations of the ground state
closed loops around an elementary square on the Manh
lattice. These obviously exhibit strong correlations; fo
turns are located on the corners of the same elemen
square. However, their contribution tof is of the order
exp(4be) and therefore ignoring these terms is consist
within our approximation scheme. Above the temperat
TMF51/(kBbMF), satisfying

d5C~bMF!, ~29!

the minimum of Eq.~11! corresponds toa5g50, and the
orientation p5q50 is unreconstructed, with free energ
is-
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given by Eq.~14!, which is negative as expected. So for th
orientation our mean-field theory predicts a phase transi
where the reconstruction order parameters (a and g) jump
from 61 to zero and the step free energy vanishes wit
mean-field exponent 1/2, as can be seen from the free e
gies @Eqs.~22! and ~27!#.

Transfer matrix calculations@8# strongly suggest that in
reality the reconstruction transition and the roughening tr
sition occur at separate temperatures, and that both are
tinuous. However, the temperature difference between
two transitions decreases very rapidly with increasingueu
~our estimates@8# yield an approach ase12be), and, asueu
becomes larger, the increase ofb f from practically zero to
appreciable values occurs within an increasingly narr
range ofbe. Since we expect our mean-field approximati
to become exact in the limitueu/d→`, the predicted coinci-
dence of roughening and deconstruction, as well as the
order character of this phase transition, are in fact to be
pected.

5. Properties of the free energy for arbitrary p and q

At the pointsp5q5q0 andp50, q5q̃0 the reconstruc-
tion parametera becomes zero, as follows from Eqs.~20!
and~24!. One can find the locusa50 for generalp andq by
settingq15q2a, q25q1a andp15p2g, p25p1g, and
requiring that the matrix of the second derivatives of the f
energy with respect to the parametersa andg has zero de-
terminant fora5g50. This requirement yields the follow
ing condition:

C~b!2p q C̃~b!5dA~12p2!~12q2!. ~30!

This line may be interpreted as a spinodal line for the rec
struction transition. Its stable part describes a smooth bou
ary between reconstructed and unreconstructed regions
we will see later, part of this line is actually thermodynam
cally unstable.

At this point we should also discuss the symmetry pro
erties of the surface and its free energy. Obviously the la
should be invariant under the transformationsp→2p, q→
2q, andp,q→q,p. Our expression for the unreconstructe
free energy satisfies all these requirements. The one for
reconstructed free energy is invariant under the last trans
mation and underp,q→2p,2q, but it is not invariant under
reflection ofp or q alone. A little thinking reveals that we
have broken this symmetry by our identification of positivep
and q with given arrow directions; if one identifies the op
posite horizontal arrow direction with positivep andchanges
the sign of the actual horizontal polarization, obviously o
expression for the free energy does not change. So, to re
the required symmetry, one has to adopt the convention
positive p and q should correspond to the direction of th
majority of the horizontal respectively vertical arrows. Th
does not look unreasonable: our mean-field assumptions
viously work better the smaller the number of overturn
arrows with respect to the fully polarized state. On the ot
hand, in stable reconstructed states the fraction of overtur
arrows often is close to one half, so the mean-field desc
tion used here may be less accurate than one might like
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III. EQUILIBRIUM CRYSTAL SHAPES

A. Maxwell construction

Unstable or metastable regions on a free energy sur
can be stabilized by applying aMaxwell construction. This
amounts to connecting all pairs of points on the free ene
surface by tie lines, constructing the lower envelope of
free energy surface combined with the set of all the tie lin
putting this in place of the original free energy surface, a
repeating this procedure until it converges. The new po
that are generated this way represent ‘‘coexisting states
two or three stable orientations. In other words, the m
favorable way for the crystal to realize surfaces of the c
responding orientations is byfaceting; that is, by replacing
these surfaces with a combination of two or three differ
surface elements with the same average orientation. Sur
orientations that give rise to faceting do not appear in
equilibrium shape of the crystal; they are not thermodyna
cally stable.

B. Orientations 0ÏpÄqÏ1

The dashed lines in Fig. 5 show an example of the M
well construction applied to the orientations 0<p5q<1.
From the stable free energyf, one finds the equilibrium shap
using @1#

x5
] f

]p
, y5

] f

]q
and z5 f 2p

] f

]p
2q

] f

]q
~31!

up to an arbitrary prefactor. These equations can be use
expressz as a function ofx and y. For the unreconstructe
rounded parts of the surface, one has to substitute Eq.~14!
for f. This yields a shape equation of the form

z5d2CAS 11
x2

C2D S 11
y2

C2D , ~32!

whereC was defined in Eq.~15!. From Eqs.~31! applied to
the unreconstructed free energy, one also finds thatxy
5C2pq; it then follows that the boundary of thep5q51
facet is simply given by a hyperbola:

xy5C2. ~33!

Applying the Maxwell construction is not very practica
since the surface free energy depends on two slope pa
eters. Instead one may obtain the equilibrium shape of
crystal by just applying Eqs.~31! and discarding unstabl
wings, as described in Ref.@1#. That is, all points withz
.0 are unstable, as they would require some noncon
surface part to reach them from the top facet, which is
cated atz50. Unstable wings can also occur in the regi
z<0, as will be shown in the numerical analysis of the eq
librium shape for genericp andq.

Along the symmetry linep5q one can use the analyti
expressions~22! and~18! for the reconstructed and unreco
structed free energies. One finds that at low temperatures
~31! gives z.0, except for the two facets which are the
connected directly under a sharp edge as atT50. The shape
along the symmetry line is then given by
ce
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q.

z5H 0 for uxu5uyu<d/2

d22uxu for uxu5uyu>d/2.
~34!

At higher temperatures in the vicinity of theq5p51
facet, some unreconstructed orientations become stable.
condition for this to happen is that the Maxwell constructi
connectsq5p50 with q5p5q̂,1 @see Fig. 5~b! for an
example# or, equivalently, that in Eq.~32! a range of orien-
tations will give rise toz,0. Applying Eqs.~31! and~14! for
p,q→1, one finds thatz5d22C(b). Equating this to zero,
one obtains the so-called edge rounding temperatureTER
from

d52C~bER!. ~35!

For T.TER there is a range of stable unreconstructed ori
tations connected to the (001) facet under a sharp e
where the stateq5p50 coexists with a stateq5p5q̂. The
value of q̂ can be found either by applying the Maxwe
construction or again from the requirementz(x5y)50 in
Eq. ~32!. One finds

q̂5Ad2C

C
. ~36!

For TER,T,Ts, with Ts given by Eq.~23!, the shape pro-
file is given by

z5H 0 for uxu5uyu< x̂

d2C2x2/C for x̂<uxu5uyu<C

d22uxu for uxu5uyu>C,

~37!

with x̂5Cq̂. Note thatz(x) has a jump in the first derivative
at x5 x̂ ~sharp edge!, and in the second derivative forx5C
~smooth edge!.

As pointed out in Sec. II, above a temperatureTs @see Eq.
~23!# there is a range of temperatures where the rec
structed free energy@Eq. ~22!# becomes stable. Applying
Eqs. ~31! to the reconstructed free energy, one finds
shape profile

z55
0 for uxu5uyu<xf

A~xf2x!2 for xf<uxu5uyu<x0

d2C2x2/C for x0<uxu5uyu<C

d22uxu for uxu5uyu>C,

~38!

with

xf5A~d2C!~d2C̃!, ~39!

x05CAd2C

d2C̃
, ~40!

A52
1

C1C̃2d
. ~41!
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The rounded regions in the rangexf<uxu5uyu<x0 are thus
reconstructed and connected smoothly to the top fa
~which is also reconstructed!, and to the unreconstructe
rounded regions. As remarked previously, by approach
the boundary between reconstructed and unreconstructe
gions from the reconstructed side, i.e., forx5y→x0

2 , one
finds that the reconstruction order parametera vanishes con-
tinuously with a mean-field exponent 1/2, as is easily s
from Eq.~20! combined withx5Cq. At this point the shape
profile is also singular, as the second derivative ofz(x) has a
jump atx5x0. Note that the shape is parabolic in the vicini
of the (001) and (011) facets, i.e.,z2z8;(x2x8)2. This is
typically a mean-field result; the actual exponent ought to
3/2 instead of 2, as found in exactly solved models@1#. Fi-
nally, at the temperatureTMF @see Eq.~29!#, one hasxf , x0
→0, confirming the simultaneous occurrence of a rough
ing and a deconstruction transition discussed already in
II. For T>TMF , the rounded part of the crystal is describ
entirely by Eq.~32!.

Figure 6 schematically shows the top view of the equil
rium crystal shape in the vicinity of the linex5y at different
temperatures. At low temperaturesT,TER, the (001) and
(011) facets are connected to each other along the seg
EE. The (011) facet boundary, starting from the pointsE, is
described by the two branches of the hyperbola given in
~33!. The coordinates of pointsE can be found exactly from
the intersection of Eq.~33! with the constant height contou
@Eq. ~32!# for z50, where the hyperbola intersects the (00
facet. One finds

xE5Ad2

2
2C21dAd2

4
2C2, ~42!

yE5Ad2

2
2C22dAd2

4
2C2. ~43!

The two points of coordinates (xE ,yE) and (yE ,xE) merge
into a single one at the edge rounding temperatureT

FIG. 6. Thermal evolution of the crystal shape~top view! in the
vicinity of the line x5y. Thick lines denote sharp edges in th
shape. For a detailed description, see the text. Above the temp
ture TMF the (001) facet, as well as the reconstructed orientatio
disappear from the crystal, and the global shape is described by
~32!.
et

g
re-

n

e

-
c.

-

ent

q.

)

5TER), wherexE5yE5d/2. For T,TER the boundary be-
tween the two pointsE is described by the equationx1y
5d, as forT50. ForTER,T,Ts the (001) and (011) fac-
ets are completely separated from each other. The full an
sis for genericp andq shows~more details below! that the
(001) facet edge is sharp only between the two pointsP
shown in Fig. 6~c!. Beyond these points one finds round
reconstructed regions and a smooth (001) facet edge. Fin
for Ts,T,TMF the (001) facet edge is surrounded b
curved reconstructed orientations, and it connects smoo
to the rounded regions along its full circumference in t
whole crystal.

C. General shape

For genericp and q we have calculated the mean-fie
equilibrium shape numerically, except outside the bound
given by Eq.~30!, where the unreconstructed state preva
and the equilibrium shape is given by Eq.~32!. Figure 7
shows a top view of the equilibrium crystal shape~ECS! for
e522, andd50.2, and for a temperatureT51.0, i.e. below
the edge rounding temperatureTER'1.065. Thick lines mark
those parts of the (001) facet boundary which are sharp.
EE segments are sharp and straight as atT50. ThePE parts
are also sharp; here the (001) facet is connected to unre
structed rounded regions. ThePP parts are smooth, and th
(001) facet is connected to reconstructed rounded regi
The shape of the crystal around the pointsP, in the vicinity
of the axesx50 and y50, will be discussed later. The
boundaries of the (011) facets with rounded regions are
ways smooth and marked by thin lines originating fro
pointsE.

Figure 8 shows the ECS forT51.25, i.e. above the edg
rounding temperature. Now all facets are separated fr
each other by rounded regions. The~001! facet boundary is
sharp in the part marked by thick solid lines; here the~001!
facet is connected to unreconstructed rounded regions.

ra-
s,
q.

FIG. 7. Equilibrium crystal shape~top view! for e522, d
50.2 andT51.0, i.e., below the edge rounding temperature (TER

'1.065). Thick and thin lines denote sharp and smooth facet ed
respectively. The boundaries of the (011) facets with the roun
regions are always smooth. For a detailed description of pointE
andP, see the text.
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7654 PRE 62ENRICO CARLON AND HENK van BEIJEREN
ure 9 shows a blowup of the equilibrium crystal shape in
vicinity of the x50 axis forT51.111 . . . . Thearea below
theP-A-P curve belongs to the (001) facet. As in Figs. 7 a
8, thick solid lines denote sharp edges. Thinner lines
smooth boundaries, either facet edges~as the segmentsA-P)
or boundaries between the reconstructed and unreconstru
regions ~curve P-Ctrc). To facilitate the description of the
crystal shape, we have plotted some contour lines co
sponding to constant values ofz. They have been drawn soli
in the unreconstructed part of the crystal and dashed in
reconstructed regions. The (001) facet hasz50, and the
contours correspond to the respective valuesz520.0001,
20.0003,20.0007,20.00125, and20.0018. Starting from

FIG. 8. As in Fig. 7 for a temperatureT51.25, i.e., above the
edge rounding temperature. The part of the facet edge betwee
two pointsP, indicated with a thick solid line, is sharp. Betwee
two pointsP, and close to the axesx50 andy50, there are two
wings of reconstructed rounded regions, which are shown in s
detail for T51.111 . . . in Fig. 9.

FIG. 9. Top view of an enlargement of the ECS close to
intersection of the edge of the (001) facet with the axisx50, for
e522, d50.2, andT51.111 . . . . Thethinnest lines denote con
tours for fixed values ofz. The (001) facet is located atz50, and
the other lines correspond toz520.0001 and20.0003 ~a!, z5
20.0007~b!, z520.00125~c!, andz520.0018.
e

re

ted

e-

e

the contour line~a! at x'0.15, i.e., in the unreconstructe
rounded region and shifting toward smaller values ofx, one
first encounters theP-Ctrc boundary which separates the u
reconstructed region from the reconstructed region; the c
tal shape at this boundary is smooth, in the sense that the
derivatives ofz(x,y) as functions ofx andy are continuous,
but higher derivatives are not. Proceeding further along
contour line~a!, one terminates in theA-Ctrp segment, which
is a sharp ridge in the rounded part of the crystal@9#. For the
contour line~b!, which corresponds to a lower value ofz, a
similar behavior to that for~a! is found, except that the re
constructed region terminates in the segment Ctrp-Ctrc and
not atx50. The inset of Fig. 9 shows an enlargement of t
contour line~b! in the area aroundCtrp-Ctrc . The contour line
is obtained from the Legendre transform of the full free e
ergy, without applying the Maxwell construction. This pr
cedure produces an unstable wing which must be elimina
from the shape. Unstable wings are rather easy to iden
and indicate the existence of a sharp boundary in the cry
shape. The contour~c! crosses the boundary in two point
and in both points the boundary is smooth; in this case
did not observe any unstable wing along the line. PointCtrc
marks the end of the first order line, and is atricritical point.
Point Ctrp where the three first order lines merge is atriple
point. Note that the reconstructed region is rather small;
area is hardly visible on the scales of Figs. 7 and 8. As
temperature is increased the reconstructed areas occu
larger portion of the crystal surface.

The coordinates of pointP can be found analytically from
the intersection of Eq.~30! with the unreconstructed crysta
shape Eq.~32! with z50. One obtains

xP5Ad22C22C̃22A@d22~C1C̃!2#@d22~C2C̃!2#

2
,

~44!

yP5Ad22C22C̃21A@d22~C1C̃!2#@d22~C2C̃!2#

2
.

~45!

At a temperatureTs obtained from the condition~23! the
two pointsP merge into a single point (xP5yP). Above Ts
the pointsP disappear, and the whole edge of the (001) fa
connects smoothly to the rounded regions surrounding
~001! facet. Still, in the vicinity of the axesx5y50, one has
tricritical and triple points as in Fig. 9. As discussed abo
there is a temperatureTMF where the (001) facet vanishe
~roughening! and the reconstruction simultaneously disa
pears.

We conclude the discussion of the crystal shape with
analysis of the properties of pointP, which turn out to be
very interesting. A numerical solution of Eqs.~13! and ~31!
leads to the results illustrated in Fig. 10. Several lines c
necting points with equal values ofp/q intersect each othe
at the common pointP, with a wide range of values forp and
q assumed in this point. This corresponds to the geometr
the tip of a cone, where one also has tangent planes of a w
range of orientations. Therefore we will refer toP as as a
conical point. An analogous point was found in a nonsta
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gered version of the six vertex model@10#, which is exactly
solvable. Figure 10 shows an enlargement of the reg
around pointP. The temperature is the same as in Fig. 9. T
thick solid line denotes the sharp~first order! boundary
which opens up inP into two continuous boundaries. Th
lower one is the smooth (001) facet edge, and the upper
is the boundary between reconstructed and unreconstru
rounded regions. The thin lines are trajectories obtained
keeping the ratioq/p constant; they are indeed seen to int
sect each other atP. Note thatP is at the facet edge; there
fore, z50. The parts of the lines to the left ofP correspond
to z,0, and are stable. The parts to the right ofP have
positive z, and describe an unstable wing, which has to
eliminated from the equilibrium shape. In some sense p
P is highly degenerate, since a continuous set of valuesq
andp coexist. In a plot of the free energy vs orientation, i.
of f as a function ofp andq, this is reflected in the form of a
flat area for a certain range of orientations, namely, th
physically realizable orientations that are tangent at the c
cal point and all their convex combinations. The existence
such a flat area is a direct consequence of Eq.~31!; for dif-
ferent points on thef (p,q) surface to give rise to the samex,
y, andz, they have to lie in a common plane. From a physi
point of view the existence of such a flat area in thef (p,q)
surface looks extremely surprising. It corresponds to a fin
range of step densities for which the step dependent pa
the free energy is strictly proportional to the step dens
i.e., steps are apparently noninteracting. It should be stres
however, that so far almost all our evidence for the coni
character ofP is numerical. Although the accuracy of ou
calculations is very high and all our results indicate a con
behavior, we cannot exclude the possibility that on an e
finer scale the lines of variousp/q will not intersect exactly,
and in fact the single conical pointP will extend into some
folds and creases, the extensions of which certainly hav
be very small. However, there is one important piece of a
lytical support for a strictly conical behavior ofP, which is
the behavior off (p,q) at the temperatureTs . Here the two
pointsP, as drawn in Fig. 7, merge into a single point. A

FIG. 10. Enlargement of the top view of the ECS around
point P (T51.111 . . . ).Thin lines are trajectories obtained at co
stant ratiosp/q. The fact that all these intersect atP indicates thatP
is a conical point.
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cording to Eq. ~22! all orientationsp5q with 0,q,q0

5AC̃(bs)/C(bs) indeed join at pointP. This is a limiting
case of a conical point, where the opening angle of the c
becomes zero. There seems as little physical reason fo
coincidence of all these orientations inP as in the genera
case, but of course this does not provide a proof for con
behavior in general.

Note that in a previous mean-field calculation@4# the two
facets (101) and (011) were found to be connected und
sharp edge at largep andq values. This is an artifact of the
approach of Ref.@4#, which has the following drawbacks: In
the description of Ref.@4#, the starting point of the mean
field calculation was the Manhattan lattice. Therefore,
description of orientations near the (011) type facets is l
accurate than in the present method. But it now turns
that, in addition to the facet orientations, these are the o
ones that are actually found in the equilibrium shapes at
temperatures. In addition, both mean-field approximatio
give the same result for the free energy of the~001! facet, so
no accuracy is lost there. Finally the present mean-field
proximation is much more amenable to an analytical tre
ment, and for instance symmetries under sublattice excha
and/or arrow reversal remain much more transparent.

IV. DISCUSSION

The model studied in this paper is expected to give
fairly good description of surfaces of ionic crystals of b
type, such as CsCl. We find an equilibrium shape with
tended facets and mostly sharp edges for the~001! facet at
low temperatures. The shape is very rich, and exhibits c
cal points of various natures, such as triple, tricritical, a
conical points. This richness stems from the fact that, in
dition to the facet edges of the~001! and ~011! facets the
model also has boundaries between reconstructed and u
constructed regions. The interplay between the former
the latter produces a rich phase diagram. There exists a
number of other models of equilibrium shapes which ha
been solved either in a mean-field approximation@11# or by
transfer matrix methods, but we are not aware of cases w
the shape is as complex as in the case presented here
ticularly striking is the likely appearance of conical point
which, as pointed out above, have a special degeneracy,
continuous set of different slopesp and q coexist in such
points. Indicating the coordinates of the conical point w
(xP , yP , zP), from Eq. ~31! we have f (p,q)5zP1pxP
1qyP , i.e., the coexisting set of orientationsp andq is such
that their surface free energy has the form of a planar face
the f (p,q,) surface. Note that the opposite situation is mu
more common and easier to understand physically, i.e
singular point of conical type inf (p,q) produces a facet in
z(x,y).

Finally, it is interesting to point out that shapes of Na
crystals in thermal equilibrium were investigated by Heyra
and Métois @12#. They found that the shape of the crystal is
perfect cube up to a temperatureT'620°, and that the
roughening of the crystal starts from the corners of the c
and extends toward the edges. Hence it seems that the
ence of sharp facet boundaries, persisting at high temp
ture, is a common feature of crystals of ionic type.
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APPENDIX A: THE FREE ENERGY OF A STEP
ON THE „011… FACET

Excitations on the (011) facet of the six vertex models
easy to study. For this orientation the vertex lattice is fu
polarized, with all arrows pointing, say, up and to the rig
as shown in Fig. 3. No closed loops of reversed arrows
possible, since all reversed arrows point down or to the l
The only possible excitations are infinitely long steps~or
steps between two boundaries!. The steps can follow only
two directions, and cannot have self-intersection, so that
step free energy can be calculated exactly.

In order to calculate the free energy of an isolated step
introduce the 232 matrix G(k) as the ‘‘lattice Green func-
tion’’ in momentum space for straight step segments. T
matrix is written in the form

G~k!5S G33~k! G3d~k!

Gd3~k! Gdd~k!
D , ~A1!

where 3 and d denote the two different types of lattic
points, defining the two sublattices of the staggered six v
tex model, as indicated in Fig. 3. In this notationG33(k),
for instance, stands for the sum of the Boltzmann weights
straight horizontal segments between two points of type3 of
length n, multiplied by eikn. The Boltzmann weight count
the energies of the changed vertices between the end p
of the segment and, by convention, the energy of the tur
the beginning of the segment. The straight segments of s
have Boltzmann weightse22bd ande2bd in lattice points of
type d and 3, respectively. Turns have weightsebe in d

andeb(e22d) in 3. For G33(k) this yields

G33~k!5eb(e12d)e22bd (
n51

`

e2ikn5
ebe

e22ik21
. ~A2!

The matrix@Eq. ~A1!# is given by

G~k!5
ebe

e22ik21
S 1 e2 ik

e2 ik22bd e2bdD . ~A3!

The full lattice Green function is obtained by consideri
all possible alternating sequences of horizontal and vert
segments; the contributions of the latter can be accounted
by the same matrixG, with an argumentkv instead ofkh , for
the horizontal steps. One obtains

Ĝ~kW !5G~kh!1G~kv!1G~kh!G~kv!1G~kv!G~kh!1•••

5„11G~kv!…
1

12G~kh!G~kv!
„11G~kh!…21, ~A4!
,
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e
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whereh and v denote the two orthogonal directions of th
axes of the vertex lattice.

For the calculation of the partition function as a functio
of step orientation and step length, one transforms bac
real space:

Z~L,f!5(
i j

E
2p

1p dkW

4p2
e2 ikhLh e2 ikvLv Ĝi j ~kW !. ~A5!

Here L denotes the total length, andLh5L cosf and Lv
5L sinf. Note that we sum over all possible entries
Ĝ(kW ), which is a sum over all possible types of initial an
final positions (i , j 5$3,d%). Settingz5eikh, one can per-
form an integration overkh exactly. It becomes an integra
tion along the unit circle in the complexz plane. For the
remaining integral overkv one can use the saddle point a
proximation, and in the limitL→` one obtains an expres
sion of the type

Z~L,f!;e2Lb f s
(011)(f), ~A6!

with f s
(011)(f) the step free energy per unit of length. For

step running under an anglef5p/4 with the principal axes
of the vertex lattice, the calculation is particularly simple: t
step free energy is

b f s
(011)S p

4 D52
1

A2
log@~11ebe!~11eb(e12d)!#.

~A7!

The reason this quantity is negative is that, for convenien
we have calculated the increase of the free energy due to
presence of a step on the (011) facet,per unit of projected
area onto the(001) facet. Calculating the same quantity pe
unit of projected area onto the (011) orientation one find
positive step free energy. For a step of an arbitrary orien
tion f, the calculation becomes somewhat more com
cated. The resulting step free energy is of the form

b f s
(011)~f!52Acosf sinf ~11e2bd! ebe. ~A8!

From the single step free energy one obtains the sur
free energy in the neighborhood of the (011) facet, tak
into account only noninteracting steps, which gives a con
bution linear in the step density@13#. One finds

f ~p,q!'d2
A~12uqu!~12upu!

2b
~11e2bd! ebe, ~A9!

which is valid to lowest order in an expansion around t
~011! facet whereq5p51. Comparing Eq.~A9! with Eq.
~14!, one concludes that the mean-field free energy rep
duces the exact surface free energy in the neighborhoo
the (011) facet to linear order in the step density.

APPENDIX B: LIMIT d\0

In the limit d→0, the six vertex model has been solve
exactly@14#, and the exact solution can be compared with
mean-field results in the limit of smallebe. For small values
of q andp, the exact solution yields@15#
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f ~p,q!5 f ~p50,q50!1
r

4b
@p21q2#, ~B1!

with cosr[12e2be/2. For smallebe one has@see Ref.@14#,
Eq. ~8.11.7!#

f ~p50,q50!52
ebe

2b
1O~e3be/2!. ~B2!

Combining Eqs.~B1! and ~B2!, and noting that at lowes
f
e

ab
tio

nn
o

t-

et
n,
order in ebe one hasr 5ebe, as an expression for the exa
free energy one obtains

f ~p,q!52
ebe

2b S 12
p21q2

2
,D , ~B3!

which agrees with the mean-field free energy@Eq. ~14!# for
d50, and to lowest order inp andq.
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