PHYSICAL REVIEW E VOLUME 62, NUMBER 6 DECEMBER 2000

Equilibrium shapes and faceting for ionic crystals of body-centered-cubic type
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A mean-field theory is developed for a calculation of the surface free energy of the staggered body-centered
solid-on-solid(or six vertex model as function of the surface orientation and temperature. The model approxi-
mately describes surfaces of crystals with nearest neighbor attractions, and next nearest neighbor repulsions.
The mean-field free energy is calculated by expressing the model in terms of interacting directed walks on a
lattice. The resulting equilibrium shape is very rich with facet boundaries and boundaries between recon-
structed and unreconstructed regions, which can be either §iratporde) or smooth(continuous. In addi-
tion, there are tricritical points where a smooth boundary changes into a sharp one, and triple points where
three sharp boundaries meet. Finally our numerical results strongly suggest the existence of conical points, at
which tangent planes of a finite range of orientations all intersect each other. The thermal evolution of the
equilibrium shape in this model shows a strong similarity to that seen experimentally for ionic crystals.

PACS numbd(s): 64.60.Cn

INTRODUCTION equilibrium shape for a model describing equilibrium sur-
faces of crystals of body-centered-culfiicc) type. Using a
Crystals in thermal equilibrium are typically composed of mean-field approximation, we calculate the surface free en-
tions in the crystal lattice, and possibly some rounded parts! '€ model has a rich phase diagram showing roughening,
At sufficiently low temperatures the equilibrium crystal '2c€fing, and deconstruction transitions, and it provides an
shape is dominated by the facets, while with increasing temapproxmate description of fonic crystals of CsCl type, where

X ions of the same type repel each other, while there is a strong
perature more and more rounded regions occupy larger are

X Qftraction between nearest neighbors, which are oppositely
of the crystal surface. At a given temperature a facet MaYharged.

shrink completely and disappear from the equilibrium shape;” The paper is organized as follows: In Sec. I, we introduce
this corresponds to eugheningtransition, which is charac-  the model, and in Sec. Il we present the mean-field approxi-
terized microscopically by the vanishing of the step free enmations that we employ to calculate the surface tension of
ergy on the facef1]. the crystal as a function of surface orientation and tempera-
Another interesting phenomenon occurring on crystal surture. In Sec. Il we discuss the evolution of the equilibrium
faces is that ofaceting or phase separation of unstable ori- crystal shape as function of the temperature. In Sec. IV we
entations[1,2]. An orientation is unstabléor metastable  summarize the results obtained, and make a comparison with
when the total surface free energy of the crystal can be lowknown models and experiments showing similar features.
ered by replacing that orientation by a combination of other A preliminary account of this work was already presented
orientations, connected to each other under sharp edges, with Ref. [4]. Here we develop a different mean-field theory
an average orientation equal to the original one. This procesghich has several advantages over that of the previous ap-
is similar to that of liquid-gas phase separation, where théroach.
free energy of the system at a given homogeneous density
can be lowered by combining the free energies of a denser . MODEL

liquid phase and a more dilute gas pha3g In the case of We consider a bcc crystal composed of two different
crystal surfaces the step density is the equivalent of the patypes of atoms, sap and B, which occupy the sites of the
ticle density in the liquid-gas phase separation. two interpenetrating cubic lattices that form the bcc struc-

A third phenomenon observed frequently on crystal surture. In the solid-on-solid approximation the surface configu-
faces isreconstruction implying that the unit cell of the rations are given by integerlaiA and th describing the
surface in equilibrium is larger than that obtained by makingheights of the surface atoms with respect to a reference
a section through the bulk crystal structure. The most complane.hiA andh® are odd and even integers, respectively.
mon cause for this is lowering of surface energy due to the We consider the Hamiltonialb]
rearrangement of atoms in the surface layer. Raising the tem-
perature often destroys reconstructions alezonstruction H=J E (|hA—h5|—1)+
temperatureas a result of increasing entropy. In many cases Oy~
there is a subtle interplay between reconstruction and the 428

€

other two phenomena. (%) |hfq— hE|
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In this paper we describe the thermal evolution of the 2
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1 2 3 4 5 6 ing heights b*=+1) above and below the first one. In the
_w 0 1 + 0 -1 +_2 1 + R | + 0 1{/ 0 vertex Iatticg all the arrows p_oint al;ernatingl.y up and down
1 or left and right, a configuration which we will refer to as a
ol1 of1 of1 of1 ofa of1 “Manhattan lattice.” Figure 2 shows some elementary exci-
o ¢ ¢ €428 £425 0 0 tations of the ground statéhick lines denote excitations
X 8428 €425 c . 0 0 with respect to the Manhattan ground state configuration,

indicated by thin lines Reversed arrows on a closed loop
FIG. 1. The six vertices and their energies in the two distinctproduce a closed terrace of surface atoms two lattice units

sublattices @ and X). At each vertex, the four integers denote higher (or lowen than their ground state heights. A con-
possible height variables. nected path of reversed arrows running between two bound-
aries of the Manhattan lattice corresponds to a step on the
(001) facet for the BC-SOS model. On the six vertex lattice
such a path can be described as a self avoiding walk that
cannot visit the same bond twice, but is allowed to cross
We take the limitJy—, so that height differences be- ?tself. In revers_ing_ arrows the _Step/Wff"k ha_s to preserve the
tween neighboring atoms are restricted to their minimal® rule, and this limits its possible trajectories. At each non-

value (= 1), and the model can be mapped onto a six Verte)gro'ssin'g.sitg, the wglk ha; tW.O optigns: either to go straight,
model [6,7]. The correspondence between vertices andnaintaining its previous direction, with an energy cost 6f 2

height variables is shown in Fig. 1. Each vertex satisfies thé)rh'?ohtum in the direction allqwed by the Mgnhak'[]tan Iattlcg,
ice rule, requiring that two of its arrows point inward and which costs an energy- e (since we consider the case

two point outward. We stress that §#0 the model is <9<~ ¢ typically walks will be composed of very long

mapped onto ataggeredsix vertex model with the vertex segments with rare turhsSteps can cross each other, as

lattice subdivided into two sublattices on which the verticesShOWn n F'g' 2; step crossings are en_erget|cally favored: at a
rossing point a ground state vertex is replaced by a vertex

1, ... ,4have different energies, as shown in Fig. 1. As the®"! hth ith all f d Therei
two representations are completely equivalent in the rest of'th the same energy with all four arrows reversed. There is

the paper we will sometimes use the term BC-S@®8dy- a gain in energy of 4, in Comparison. to the energy the
centered solid-on-soljdmodel, and sometimes six vertex SYStém would have to pay for two straight noncrossing seg-
model. ments of unit length.

We takee<0 and 0<5<—e. This model may give a The six vertex model describe; not o_nly th_e (001) ;urface
good approximate description of ionic crystals, wharand ~ Of @ bce crystal, but also all the side orientatiofsl) with
B are ions with opposite charges. With our choice of energiedt| * |S|<1. Given a configuration of vertices, the horizontal
neighboringA and B atoms strongly attract each othelq( and vertical polarizationg andp are defined by
—oo in the model, and atoms of the same type repel each g=n,—n p=n_—n @)
other (e, e+25<0); thus the model may be expected to P R
give at least a good qualitative picture of real ionic crystals,Wr1erenT ,n,, n_, n_ are the densities of up, down, left,
even though further neighbor interactions are ignored. Byyng right arrows, respectively. Aully polarized state,
choosingé>0 we assumed that in addition to Coulomb re- namely, a state with all arrows pointirigay up and to the

pulsion between equal species there is some other contribyght describes a (011) facet of the bec crystal. The relation-
tion to the Hamiltonian, which makes the interaction energhips between the variablés andp,q are given byt=(p

gies between next nearest neighBagkx andBB pairs slightly +Qq)/2, s=(q—p)/2. Please note we have chosen the prin-

where the sums are constrained to neighboAlj AA, and
BB pairs({-) and (-) denote summations over nearest and
next nearest neighbors, respectiyely

different. , _ _ cipal axes of the crystal under angles of 45° with the princi-
The ground state, when is negative, describes &2 pal axes of the vertex lattice.
X2) reconstructed (001) facet with one compon@jtat a Figure 3 shows excitations on (011) type facets. In this

constant heightsay,h®=0), and the othefA) with alternat-
12121212121

ji5
i

=N = N= N =N

—
o= lo|=|lol=]|e

FIG. 2. Connected walks of reversed arroitfsck lines denote FIG. 3. Excitationgthick lineg with respect to the fully polar-

excitations with respect to the Manhattan backgro(théh lines. ized statep=q=1, corresponding to steps on the (011) facet. We
Integers are height variables in the BC-SOS representation. distinguish between even and odd columns and rows.
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case no closed loops are possible, since they would violate (001)
the ice rule, and excitations can be describeddi&scted 01D (101)
walkson the lattice, i.e., walks that can only step down or to
the left. Two walks cannot visit the same lattice bond, but P=q
they can cross each other, as shown in the figure. The mean-
field calculation of the free energy of the six vertex model
presented in this paper takes as starting point the fully polar- -0 )
ized stateq=p=21. The rows and columns are subdivided @ p=
into even and odd ones as in Fig. 3; the polarizatipasdq FIG. 4. The equilibrium crystal shape Bt=0.
are given by
since for crossings on 11 or 22 sites one has a gain of energy
p= P1t P2 and q= 91192 (3) 49, crossings on 12 or 21 sites cost an energy While
2 2 turns on sites of types 11, 22 or 12, 21 cost energyand
—e— 26 respectively.
in terms of the sublattice polarizatiops, p,, d;, andgs,. In This expression indeed becomes minimal for the Manhat-

states withgq=q,;=0q, and p=p;=p, arrows are reversed tan states, where one hag,=c,,=N?/4 andc;,= Cor1=1j;

with respect to the fully polarized state with equal probabili-=0. One may look for the minimal energy of states with a
ties on the two sublattices, i.e., the surface is unreconhomogeneous distribution of polarization on each of the sub-
structed. If, on the other hand, one finds states Wittt d, lattices. For given sublattice polarizatiopsandp; the num-

or p; # Py, the surface is reconstructed. Since the energy of &er of crossings may be estimated as

configuration is invariant under the interchange of sublattices

1 and 2[or, equivalently, a translation over the lattice vector N2

(1,1) on the vertex lattick each reconstructed state is degen- Cij :1_6(1_ pi)(1—q;), 5
erate with another one with the values f,q, and p,,q,

interch.anged. For either of the states the 1-2 exchange SYMn expression that becomesactif no turns are allowed at
metry s spontaneo_usly broken. For example, the wo Mang), (as occurs at zero temperaturénserting this value into
hattan states are given loy =p,= —g,=—p,=*1. Eq. (4) and minimizing with respect tg; andp; at fixed 0

<(,p<1 one finds the homogeneous ground state energy
Il. CALCULATION OF THE MEAN-FIELD FREE ENERGY per vertex,

A. Energy and ground state properties
o _ grant e _ brop _ €(p,q)=a(p+q)—4pq, (6)
It is instructive, before presenting the details of the mean-

field approach, to consider the ground state properties of thghich is obtained either fog,=2q—1, p;=2p—1, p,
model, as this will provide already important information on —q,=1 or for q;=q,=1, p,=2p—1, g,=2q—1. These
the low temperature behavior of the system. Throughout thgo|utions describe doubly degenerate reconstructed surfaces,
rest of the paper we set the ground state energy of the Mangith the Manhattan states obtained in the limjp—0.

hattan state equal to zero by a shift of all the vertex energies However, the homogeneous ground state enfEgy (6)]
over an amoung, so the lowest vertex energy becomes zerojs a nonconvex function gf anda. It is well known(see, for
With this convention the energy per site of the fully polar-instance, Ref[1]) that instabilities arise when the free en-
ized state(where all arrows point, say, up and to the right ergy per unit of projected area is a nonconvex function of the
becomess. We will take this state as starting point for our syrface orientation. These will give rise to faceting of sur-
mean-field calculations. All other allowed vertex Conﬁgura'faces with orientations in a nonconvex range. The equi”b_
tions can be represented by a set of directed walks on thgum shape constructed from E¢f) is shown in Fig. 4; it
lattice, as illustrated in Fig. 3. The lattice points will be dis- consists of flat facets only: the “top” facet (001) and
tinguished into four different type§g, withi,j=1,2. The 11 “side” facets (011), (101), (01), and (D1).

points for example will be the crossing points Qf odo_l FOWS " Note that Eq(6) implies that instabilities ought to persist
W.'th odd columns of arrows. Eor a given configuration of over some range of temperatures, where entropic effects are
directed walksc;; andt;; will indicate the total numbers of sufficiently strong to turn the concave free energy into a
crossings and tums, respectl_vely, _at sites .Of type convex(i.e., stablg¢ one. The only exception to this will be
For instance, for the configuration of Fig. 3 one ltas found at the linegy=0 or p=0, where the bilinear term in

=1, C11=C15=Cx1=0 andity;=2, 111=13,=1,1=0. AN iSO- £, 4y yanishes. These lines correspond to orientations be-
lated straight path of reversed arrows on the _fuIIy polarize ween the (101) and (011) facets of Fig. 4. It is natural then
state QOes not change t_he energy, since it is formed by expect that finite temperature effe¢te., the appearance
collection of vertices with alternating energiess and ¢ 5 nded regionswill first manifest themselves along the
—246, which sum to zero. However, crossings and tums dq,ommon edges of these facets. Summarizing, these simple
contribute to the energy. A given configuration Wity .,nsiderations related to the=0 properties of the system
crossings andj; turns at sites of typgj has a total energy g5 ys to conclude thdl) sharp edges between the (001)
E(Cii t:)=N286—45(Cy1+ Cop) + AS(Cyot Cop) — €ty +t and (011) facets will persist at finite temperatures, é)d

(Ciy i) (Cuat €22) (Crot C21) ~ €t F t20) the corners between the facets and the edges between the

—(€+268)(t1+tyy), (4) (011) type facets will probably become rounded first.
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B. Entropy and free energy

1

In the sequel we will focus on the behavior of the system F(A1,02,P1,P2) = 8 1= 7 (A1~ G2) (P2~ P2)
for 6< — €, and restrict ourselves to temperatures that are not
too high, when directed walks are typically composed of _iE eBe+200) (1= p?)(1-q?)
long straight segments, because the Boltzmann weight for a 884 ! e
turn expBe), is very small. As a result of this, different
walks can hardly develop any local correlations, and the
mean-field analysis should be very accurate.

For given sublattice polarizationg and g; the numbers s
of crossing;; in a homogeneous state can still be estimatedr;l
to be given by Eq(5), thanks to the absence of correlations Qu=q—a, pi=p—
between directed walks. The energy of such a state is then ! bt v
given by Eq.(4), with ¢;; following from Eq. (5). To obtain (12
the free energy at a nonzero temperature, we need both the —ata bt
average numbers of turtg and the entropy of the system. Q=qra P2=PTY,

In our mean-field approximation both are obtained from theWhere andq are the average slopes of the surface. and
same calculation. p q g p ,

Let us consider as an example the contribution to the en@nd ¥ can be interpreted as order parameters for the recon-

tropy resulting from the4/2 turns from a column 1 to a row structed state; if they are bOt.h zero the po_larlzathps P1
1. There ar\Z(1— q,)/8 inverted arrows on type-1 columns andq,, p, of the two sublattices are identical and the sur-

o . . face is in an unreconstructed state.
pointing toward an 11 site, angl, of those are occupied by r L
crossings. There are thus The mean-field free energy can be found by minimization

of (12) for fixed g andp:

(11)

It is more convenient to express the sublattice polarizations

2
C—r

11 —g(l—ql)—cn (7) fue(p,@)=minf(q—a,q+a,p—y,p+vy). (13
{e,7}

sites available for the;,/2 turns. The superscrigt—r indi- ~ 1he unreconstructed state correspondingrtey=0 has a
cates that we are considering turns from columns to rows{ree energy given by

For turns from rows to columns one finds, analogously, W 5 .
fue(d.p)=6—C(B) V(1-p)(1-0q°), (14

N? :
Iy °=-g (1=py)—cu. (g ~with

1
C(B)=—eP(e*P+1). 15
Both these equations are readily generalized for turns from () 4B ( ) (19

rows/columns to columns/rows of either type. Neglecting

again correlations, one finds that the number of possibldhe solution witha=+y=0 is always a stationary point of

ways of making the turns from a column to a row on sifes the free energy of Eq11); however, it is not always glo-

is then given by the binomial coefficient &%, " andt;;/2.  bal free energy minimum, as we will see. For arbitrargnd

Collecting the contributions from all possible turns, one findsq we implemented the minimization numerically, except
along some symmetry lines where it is possible to solve the

[re problem analytically. We will start discussing these special

ij ” ) cases first.

+In

l—‘_c_ﬁr
S=kg>, {m( !

1. Orientations Gsp=qg=<1

wherekg is Boltzmann’s constant. Fo.rqz_p we takea= vy in Eq.(13), and the free energy to
Combining Egs(4), (5), and(9), one finds the total free P& Minimized takes the form

energyF=E— TS as function of the parameteps, q;, and 1

tjj. It is convenient to minimize first with respect to the fla)=8(1—a?)— — eBefe?B 1 — (a2 + a2

numbers of turns. The equation&/dt;=0 for i,j=1,2 (a)=2o(1~a% 43 { [1=(g™+a)]

yield, to lowest order ire¢,

+V[1-(g—a)?][1-(9+a)?]}, (16)

N? with g— 1< a<q+1. Settingdf/da=0 btains the fol-

N T (e 208 q a<q+1. Settingdf/da=0, one obtains the fo
tij 4 (1=pH(1-qj) e . (10 lowing equation:

B(e+26) B _ 2_ (2
with &;; a Kronecker delta. The dependence on the numbep ! s e™ e 1-(a"—q%

—_—— — O
of turnst;; can thus be eliminated, and to lowest ordeeffq 4B 4B [1-(a—q)?[1—(a+q)?]
the free energy per site becomes a7
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The solutiona=0 of course corresponds to the unrecon- ' ' ' '

structed state, for which on the symmetry lige p the free | e /
energy takes a simple parabolic shape: 02 Frommmm ) g | (®)
(a
f{(a.q)=6—C(B)+C(B) o2 (18) T ©)
The other possible solution of Eq17) can be found by & 01F g
defining firstA=a?—q?; squaring Eq(17), one obtains a &
qguadratic equation foA, with a solution = %o
~ q
26-C(B)-C(B) 0.0 / 1
A=1-q — (19 %o ()
Jlo-cB)Io-Cp)]
ith C(8) = eP<(e2Bo— i i - -0.1 : : : :
W|t_h C({B) e’<(e 1)/4B8. This equation can also be re 00 02 04 06 08 10
written in the form q
a2= (q _q)(i_q) (20) FIG. 5. (Solid lineg mean-field free energies as function of the
0 do ' slopeq calculated along the directiop=q and for four different
. temperatures witle= —2.0 andé=0.2: (@) T=0.80,(b) T=1.111,
with (c) T=1.333, andd) T=1.818.(Dotted lines analytic continuation
of the unreconstructed free energy in the regepriqy. (Dashed
6—C(pB) lines) Maxwell construction connecting stable orientations.
Jo=\/ —=—=1. (21)
6—C(B)

is given in Eq.(36). Therefore, only the orientations in the

Note that the reconstructed solution with#0 exists only 'angeq=qg=1 andq=0 are stable. -

for a limited range of temperatures and orientations, namely, Above a temperatur& obtained from the condition
for 6>C(B) and|g|=q,, where the right hand side of Eq. ~

(20) and the argument of the square root of Etfl) are both 0=C(Bs)+C(Bs), (23)

positive. Note also that ag—(,_the reconstruction order o reconstructed free enerffiq. (22)] becomes stablisee
parametera vanishes asy~\qo—q, i.e., with the mean- rjg 5)]. In this case all the surface orientations along the

field exponent 1/2. _ . line q=p are stable, and in the range<@=q, these are
Substituting the value oA given by Eq.(19) into Eq.  reconstructed. The properties of this free energy and of the
(16), for the reconstructed free energy one finds equilibrium shape along the symmetry agis q will be dis-
— cussed in more detail in Sec. 11B 2.
fika.a)=2V[6-C(B)I[6-C(B)]a

~ 5 2. Orientations p=0, 0=qg=<1
“Lemcp-cpl g 22 For p=0 we minimize the free energhEq. (13)] with

In the range of parameters where the reconstructed solutidi¢SPect to the parameters and y. The solutions take the
exists, this always has a lower free energy than the unrecorlo™m

structed solution of Eq(18). At zero temperaturesg—

+0) the reconstructed free enerfigqg. (22)] yields the ex- o?=(q —q)(i—q (24)
act ground state energy obtained in E6).. For g=q, the 0 o '

reconstructedEg. (22)] and unreconstructelEq. (18)] free

energies take the same value with equal derivatives. 1 go—q
Figure 5 shows the free energiésolid lines along the yi== =, (25
line p=q for different values of the temperature. The dotted %0 1%

lines are the analytical continuations of the unreconstructe%ith
free energy in the regionsgq&qg), where this is not the
absolute minimum of the free enerdiq. (11)]. For suffi- 1
ciently large temperaturde.g. curve(d) in Fig. 5], the ab- qo=5v52—C2(B)- (26)
solute minimum always corresponds to an unreconstructed
surface. Note that at low temperatures the reconstructed fregyjs yields the following value for the reconstructed free
energy[Eq. (22)] is concave, as we expected from the a”a|Y'energy,
sis of the ground state ener{fgq. (6)].
Stable orientations can be found from the double tangent fﬁ?F(O,Q): V62—C?3(B) q, (27
or Maxwell construction, which is shown as a dashed line in
the figure. In Fig. %) the only stable orientations along the which is valid forq<4q, and §>C(B).
q=p line areq=0 andq=1. In Fig. §b) the Maxwell con- This free energy is linear as function of the slope param-
struction connects the orientatiogs- 0 with q=q, whereq eterg. The numerical analysis of the free energy for small
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values ofg shows that the reconstructed orientations withgiven by Eq.(14), which is negative as expected. So for this
small p are not stable, implying that the equilibrium crystal orientation our mean-field theory predicts a phase transition
shape has sharp edges along this orientation as we will disvhere the reconstruction order parametersapnd y) jump

cuss in detail in Sec. Ill. from =1 to zero and the step free energy vanishes with a
_ _ mean-field exponent 1/2, as can be seen from the free ener-
3. Orientations g=1, O=p=<1 gies[Egs.(22) and(27)].
The exact value of the free energyct 1 can be calcu- Transfer matrix calculationg8] strongly suggest that in

lated easily. We show here that in this limiting case thergglity the reconstruction transition and the roughening tran-
mean-field free energy reproduces the exact result. Let u%ltlon occur at separate temperatures,_and that both are con-
consider a vertex lattice of sizéxN: g=1 describes a set {inuous. However, the temperature difference between the
of orientations where all the vertical arrows are up, in a statdWo transitions decreases very rapidly with increasjaf

of maximal polarizatior(the state is composed of vertices 1 (our estimateg8] yield an approach ae'#), and, as|e|

and 4. The horizontal arrows can point either to the left or toP€comes larger, the increase @f from practically zero to

the right, but once a horizontal arrow at a boundary is fixed@Ppreciable values occurs within an increasingly narrow
all the arrows connected to it along a horizontal line point infange ofBe. Since we expect our mean-field approximation
the same direction; otherwise the ice rule would be violatedt0 become exact in the limjie|/ §—c°, the predicted coinci-
The average energy per sitedssince along horizontal lines, dence of roughenlng_ and deconstrpptlon, as well as the first
there is an alternating sequence of vertices of energies 0 afider character of this phase transition, are in fact to be ex-
25. The total entropy of thél X N lattice is of ordem, since  Pected.

the vertical arrows are frozen and the horizontal ones along a

row are identical. Therefore, the free energgr site be- 5. Properties of the free energy for arbitrary p and g

comes At the pointsp=q=g, andp=0, q= 0, the reconstruc-

f(p,g=1)=6+O(1IN), (28)  tion parameterr becomes zero, as follows from Ed0)
and(24). One can find the locus=0 for generap andq by

and in the thermodynamic limXl— the entropic term can Settingq;=q—a, d,=q+a andp,;=p—7y, p,=p+ v, and
be neglected. This limiting value of the free energy is reprofequiring that the matrix of the second derivatives of the free
duced correctly by our mean-field calculations at all tem-energy with respect to the parametersaand y has zero de-
peratures. The free energy for vicinal orientations very closéerminant fora=y=0. This requirement yields the follow-
to (011) type facets can also be calculated exactly. It justng condition:
involves calculating the free energy of isolated steps on these
facets. This calculation is worked out in the Appendix. It ~ > 5
turns out that our mean-field approximation also describes C(B)—paC(B)=45v(1-p9)(1-a%). (30
the free energy of these vicinal orientations correctly. This is
no surprise, since for these orientations crossings are VeRyhjs |ine may be interpreted as a spinodal line for the recon-
rare and unimportant, so that our method for estimating thgyyction transition. Its stable part describes a smooth bound-
entropy and the numbers of turns becomes exact. ary between reconstructed and unreconstructed regions. As
we will see later, part of this line is actually thermodynami-
cally unstable.

The other limiting case to be considered is the orientation At this point we should also discuss the symmetry prop-
with g=p=0. In this case, fo6>C(8), Eq.(13) yields two  erties of the surface and its free energy. Obviously the latter
minima with a=y= =1, which correspond to the twae-  should be invariant under the transformatigns —p, q—
constructed Manhattan states withf(}(p=0g=0)=0.  —d, andp,q—q,p. Our expression for the unreconstructed
Since the ground state energy of the system equals zero veee energy satisfies all these requirements. The one for the
expect that in realitf (p=0,g=0)<0 at finite temperatures. reconstructed free energy is invariant under the last transfor-
The reason we do not find this in our mean-field approximamation and undep,q— —p, —q, but it is not invariant under
tion is due to the fact that we have neglected correlationgeflection ofp or g alone. A little thinking reveals that we
between directed walks. For example, at very low temperahave broken this symmetry by our identification of positpe
tures the most important excitations of the ground state arandd with given arrow directions; if one identifies the op-
closed loops around an elementary square on the Manhatt@@site horizontal arrow direction with positipeandchanges
lattice. These obviously exhibit strong correlations; fourthe sign of the actual horizontal polarization, obviously our
turns are located on the corners of the same elementa§xpression for the free energy does not change. So, to restore
square. However, their contribution tbis of the order the required symmetry, one has to adopt the convention that
exp(48¢) and therefore ignoring these terms is consistenfositive p and g should correspond to the direction of the
within our approximation scheme. Above the temperaturénajority of the horizontal respectively vertical arrows. This

4. Orientation p=q=0

Twe=1/(kgBuE), satisfying does not look unreasonable: our mean-field assumptions ob-
viously work better the smaller the number of overturned
6=C(Bwmr), (29 arrows with respect to the fully polarized state. On the other

hand, in stable reconstructed states the fraction of overturned
the minimum of Eq.(11) corresponds tax=y=0, and the arrows often is close to one half, so the mean-field descrip-
orientation p=q=0 is unreconstructed, with free energy tion used here may be less accurate than one might like.
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lll. EQUILIBRIUM CRYSTAL SHAPES 0 for  |x|=|y|<él2

A. Maxwell construction = 5—2|x| for Ix|=|y|=dl2. (34

Unstable or metastable regions on a free energy surface . . S
can be stabilized by applying Maxwell construction This At higher temperatures in the vicinity of the=p=1
amounts to connecting all pairs of points on the free energfﬁcetz some un_reconstructeq orientations become stable_. The
surface by tie lines, constructing the lower envelope of thé_‘,Oﬂdltlon for this to happen is Ehat the Maxwell construction
free energy surface combined with the set of all the tie linesconnectsq=p=0 with g=p=g<1 [see Fig. %) for an
putting this in place of the original free energy surface, andexampld or, equivalently, that in Eq32) a range of orien-
repeating this procedure until it converges. The new pointéations will give rise ta<0. Applying Eqs(31) and(14) for
that are generated this way represent “coexisting states” op,d— 1, one finds thaz= 6—2C(3). Equating this to zero,
two or three stable orientations. In other words, the mospne obtains the so-called edge rounding temperaligg
favorable way for the crystal to realize surfaces of the corfrom
responding orientations is biaceting that is, by replacing
these surfaces with a combination of two or three different 0=2C(BerR)- (35
surface elements with the same average orientation. Surface ) )
orientations that give rise to faceting do not appear in thd0r T>Tgg there is a range of stable unreconstructed orien-
equilibrium shape of the crystal; they are not thermodynamifations connected to the (001) facet under a sharp edge,
cally stable. where the statg=p=0 coexists with a statg=p=q. The
value of g can be found either by applying the Maxwell
B. Orientations O<p=0g=<1 construction or again from the requiremer{x=y)=0 in

The dashed lines in Fig. 5 show an example of the MaxEd: (32 One finds
well construction applied to the orientations<s@=qg=<1.

From the stable free enerdyone finds the equilibrium shape q= o-C (36)
using[1] (N
of of of of For Ter<T<Ts, with T4 given by Eq.(23), the shape pro-
X=gpr Y=g and z=f=pzs—azy GBD e is given by
up to an arbitrary prefactor. These equations can be used to 0 for x| =y|<x

expressz as a function ofx andy. For the unreconstructed _ L2 : _
rounded parts of the surface, one has to substitute( . z o= CoxiC for x<|x|=lyl<C (37
for f. This yields a shape equation of the form 5—2|x] for Ix|=|y|=C,

Vg
z=6-C\/| 1+ =
CZ

whereC was defined in Eq(15). From Eqs.(31) applied to
the unreconstructed free energy, one also finds that
=C?pq; it then follows that the boundary of the=q=1
facet is simply given by a hyperbola:

1+ E (B2 atx=x (sharp edge and in the second derivative far=C
(smooth edge
As pointed out in Sec. Il, above a temperatiitd see Eq.
(23)] there is a range of temperatures where the recon-
structed free energyEq. (22)] becomes stable. Applying
Egs. (31) to the reconstructed free energy, one finds the
shape profile

yz) with Xx=Ca. Note thatz(x) has a jump in the first derivative

xy=C?. (33

0 for IX|=|y|<x;
Applying the Maxwell construction is not very practical, Axg—x)?  for  xe=|x|=]yl=xo
since the surface free energy depends on two slope param- Z=y §—C—x3/C for Xo=<|x|=]y|=<C (39)
eters. Instead one may obtain the equilibrium shape of the
5—2|x| for Ix|=|y|=C,

crystal by just applying Eqs31) and discarding unstable
wings, as described in Refl]. That is, all points withz
>0 are unstable, as they would require some nonconveyith
surface part to reach them from the top facet, which is lo-
cated atz=0. Unstable wings can also occur in the region % =V(5—C)(6—C) (39)
z=0, as will be shown in the numerical analysis of the equi- ’
librium shape for generip andq.

Along the symmetry lingg=q one can use the analytic o= C g (40)
expression$22) and(18) for the reconstructed and unrecon- 0 5—¢
structed free energies. One finds that at low temperatures Eq.
(31) gives z>0, except for the two facets which are then
connected directly under a sharp edge as-a0. The shape A=— — . (41)
along the symmetry line is then given by C+C-46
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04
Y T<Tph Y T=Tg
E ©011) E(011)
E 0.2

y y TS <T<Tye > 0.0
011)
X X
FIG. 6. Thermal evolution of the crystal shaftep view) in the -0.4 ' : :
o . A ) -0.4 -0.2 0.0 0.2 0.4
vicinity of the line x=y. Thick lines denote sharp edges in the X

shape. For a detailed description, see the text. Above the tempera-
ture Ty the (001) facet, as well as the reconstructed orientations, FIG. 7. Equilibrium crystal shapétop view) for e=—2, §
disappear from the crystal, and the global shape is described by Eg:0.2 andT=1.0, i.e., below the edge rounding temperatufeg(
(32. ~1.065). Thick and thin lines denote sharp and smooth facet edges,
respectively. The boundaries of the (011) facets with the rounded

The rounded regions in the range<|x| = |y|gxO are thus regions are always smooth. For a detailed description of pd&nts
reconstructed and connected smoothly to the top faceandP, see the text.
(which is also reconstructgdand to the unreconstructed
rounded regions. As remarked previously, by approaching=Tgg), Wherexg=yg= 6/2. For T<Tgg the boundary be-
the boundary between reconstructed and unreconstructed reveen the two point€ is described by the equationty
gions from the reconstructed side, i.e., fory—x, , one =4, as forT=0. ForTgr<T<T, the (001) and (011) fac-
finds that the reconstruction order parameteranishes con-  ets are completely separated from each other. The full analy-
tinuously with a mean-field exponent 1/2, as is easily seesis for generigp and g shows(more details beloythat the
from Eq.(20) combined withx=Cq. At this point the shape (001) facet edge is sharp only between the two pofts
profile is also singular, as the second derivative(of) hasa shown in Fig. 6c). Beyond these points one finds rounded
jump atx=x,. Note that the shape is parabolic in the vicinity reconstructed regions and a smooth (001) facet edge. Finally
of the (001) and (011) facets, i.e;z'~(x—x')2. Thisis  for Ta<T<Tye the (001) facet edge is surrounded by
typically a mean-field result; the actual exponent ought to be&urved reconstructed orientations, and it connects smoothly
3/2 instead of 2, as found in exactly solved moddls Fi- to the rounded regions along its full circumference in the
nally, at the temperatur€e [see Eq(29)], one has;, x,  Whole crystal.
—0, confirming the simultaneous occurrence of a roughen-
ing and a deconstruction transition discussed already in Sec. C. General shape
Il. For T=Tye, the rounded part of the crystal is described
entirely by Eq.(32).

Figure 6 schematically shows the top view of the equilib-
rium crystal shape in the vicinity of the line=y at different and the equilibrium shape is given by E@2). Figure 7

temperatures. At low temperaturds<Tgg, the (001) and . o2
(011) facets are connected to each other along the segmeshrﬁows a top view of the equilibrium crystal shaeC$ for

: = =—2,and6=0.2, and for a temperatufie=1.0, i.e. below
EE. The (011) facet boundary, starting from the poiBiss N ' o N -
described by the two branches of the hyperbola given in E the edge rounding temperatufgg~1.065. Thick lines mark

(33). The coordinates of points can be found exactly from nth I(E)Sseepr?nr(t;]tosf g;g éggrl) ;?lfje;tk:giu?](tjz%a\,\tl)hIE:I'T]SIE’EESh::tF; - The
the intersection of Eq33) with the constant height contour 9 P 9 ' P

_ : are also sharp; here the (001) facet is connected to unrecon-
]Eggét(gggéoanzdso’ where the hyperbola intersects the (001) structed rounded regions. TP parts are smooth, and the

(001) facet is connected to reconstructed rounded regions.
5 > The shape of the crystal around the poiRtdn the vicinity
o \/i—C2+5 /5__C2 42) of the axesx=0 andy=0, will be discussed later. The
E 2 4 ' boundaries of the (011) facets with rounded regions are al-
ways smooth and marked by thin lines originating from

5 52 pointsE.
=\/——C2-§5\/——c2 4 Figure 8 shows the ECS fdr=1.25, i.e. above the edge
Y= . (43 .
2 4 rounding temperature. Now all facets are separated from

each other by rounded regions. T(@®1) facet boundary is
The two points of coordinatesc¢,yg) and (yg,xg) merge  sharp in the part marked by thick solid lines; here tbel)
into a single one at the edge rounding temperatufe ( facet is connected to unreconstructed rounded regions. Fig-

For genericp and g we have calculated the mean-field
equilibrium shape numerically, except outside the boundary
given by Eq.(30), where the unreconstructed state prevails,
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0.20 . . . the contour line(a) at x~0.15, i.e., in the unreconstructed
(011) (011) rounded region and shifting toward smaller values,obne
first encounters th®-C,,. boundary which separates the un-
reconstructed region from the reconstructed region; the crys-
tal shape at this boundary is smooth, in the sense that the first
derivatives ofz(x,y) as functions ok andy are continuous,
but higher derivatives are not. Proceeding further along the
. contour line(a), one terminates in tha-C,, segment, which
is a sharp ridge in the rounded part of the cryg#dl For the
contour line(b), which corresponds to a lower value nfa
similar behavior to that fofa) is found, except that the re-
constructed region terminates in the segmegt-C,. and
not atx=0. The inset of Fig. 9 shows an enlargement of the
(011) (011) contour line(b) in the area aroun@,-C;. The contour line
is obtained from the Legendre transform of the full free en-
ergy, without applying the Maxwell construction. This pro-
cedure produces an unstable wing which must be eliminated
FIG. 8. As in Fig. 7 for a temperaturB=1.25, i.e., above the from the shape. Unstable wings are rather easy to identify,
edge rounding temperature. The part of the facet edge between tlad indicate the existence of a sharp boundary in the crystal
two pointsP, indicated with a thick solid line, is sharp. Between shape. The contouic) crosses the boundary in two points,
two pointsP, and close to the axes=0 andy=0, there are two  and in both points the boundary is smooth; in this case we
wings of reconstructed rounded regions, which are shown in somgid not observe any unstable wing along the line. PGipt
detail forT=1.111 .. . inFig. 9. marks the end of the first order line, and ifriaritical point.
Point C,, where the three first order lines merge igriple
ure 9 shows a blowup of the equilibrium crystal shape in thepoint. Note that the reconstructed region is rather small; this
vicinity of the x=0 axis forT=1.111. ... Thearea below area is hardly visible on the scales of Figs. 7 and 8. As the
theP-A-P curve belongs to the (001) facet. As in Figs. 7 andtemperature is increased the reconstructed areas occupy a
8, thick solid lines denote sharp edges. Thinner lines aréarger portion of the crystal surface.
smooth boundaries, either facet edges the segments-P) The coordinates of poirR can be found analytically from
or boundaries between the reconstructed and unreconstructtite intersection of Eq(30) with the unreconstructed crystal
regions (curve P-C,.). To facilitate the description of the shape Eq(32) with z=0. One obtains
crystal shape, we have plotted some contour lines corre-

> 0.00

-0.10 -

-0.20 . ; :
-0.20 -0.10 0.00 0.10 0.20

X

sponding to constant values ofThey have been drawn solid \/52_(:2_(:2_ \/[ 82— (C+T)?[*—(C-T)?]
in the unreconstructed part of the crystal and dashed in thex,= ,
reconstructed regions. The (001) facet l@as0, and the 2

contours correspond to the respective valmes—0.0001, (44)

—0.0003,—0.0007,—0.00125, and-0.0018. Starting from

\/52—02—62+ V[2—(C+8)2[ 82— (C-T)?]
Yp= .

0.169
2
45
0.168 - 49
At a temperaturd ¢ obtained from the conditiof23) the
0.167 T two pointsP merge into a single pointxg=yp). Above T,
the pointsP disappear, and the whole edge of the (001) facet
> 0.166 | j connects smoothly to the rounded regions surrounding the
(00Y) facet. Still, in the vicinity of the axes=y=0, one has
0165 tricritical and triple points as in Fig. 9. As discussed above,

there is a temperatur€,,: where the (001) facet vanishes

‘ \ (roughening and the reconstruction simultaneously disap-
0.164 (bH pears.

P We conclude the discussion of the crystal shape with an
0.163 , , analysis of the properties of poift, which turn out to be
-0.02 -0.01 0 0.01 0.02 very interesting. A numerical solution of Eq4.3) and (31)
leads to the results illustrated in Fig. 10. Several lines con-

FIG. 9. Top view of an enlargement of the ECS close to theN€Cting points with equal values pfq intersect each other
intersection of the edge of the (001) facet with the axis0, for ~ at the common poir®e, with a wide range of values fgrand
e=—2, 6=0.2, andT=1.111 . . . . Thethinnest lines denote con- g assumed in this point. This corresponds to the geometry of

tours for fixed values of. The (001) facet is located at=0, and  the tip of a cone, where one also has tangent planes of a wide
the other lines correspond to=—0.0001 and—0.0003 (a), z= range of orientations. Therefore we will refer Rbas as a
—0.0007(b), z=—0.00125(c), andz= —0.0018. conical point An analogous point was found in a nonstag-
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0.1650 ; . . - cording to Eq.(22) all orientationsp=qg with 0<q<qq
= \/E:(,BS)/C(/E}S) indeed join at pointP. This is a limiting

Unreconstructed case of a conical point, where the opening angle of the cone
Reconstructed becomes zero. There seems as little physical reason for the
0.1645 L 2< 0 coincidence of all these orientations has in the general
case, but of course this does not provide a proof for conical
behavior in general.

Note that in a previous mean-field calculatieq the two
facets (101) and (011) were found to be connected under a
0.1640 | 0 sharp edge at large andq values. This is an artifact of the
(001) approach_of_Re1[4], which has the f_ollowir_lg drawbacks: In

the description of Refl4], the starting point of the mean-
field calculation was the Manhattan lattice. Therefore, the
description of orientations near the (011) type facets is less
0.1635 : : ' : : accurate than in the present method. But it now turns out
001 0011 0012 0013 0014 0015 0016 that, in addition to the facet orientations, these are the only
X ones that are actually found in the equilibrium shapes at low

FIG. 10. Enlargement of the top view of the ECS around thel€mperatures. In addition, both mean-field approximations
point P (T=1.111 . .. ). Thin lines are trajectories obtained at con- give the same result for the free energy of (B81) facet, so
stant ratio/q. The fact that all these intersectRindicates thaP ~ N0 accuracy is lost there. Finally the present mean-field ap-
is a conical point. proximation is much more amenable to an analytical treat-

ment, and for instance symmetries under sublattice exchange

gered version of the six vertex moddl0], which is exactly  and/or arrow reversal remain much more transparent.
solvable. Figure 10 shows an enlargement of the region

around poinf. The temperature is the same as in Fig. 9. The

th|9k solid line Qenqtes the shar(jlrst orde) bogndary IV. DISCUSSION

which opens up irP into two continuous boundaries. The

lower one is the smooth (001) facet edge, and the upper one The model studied in this paper is expected to give a
is the boundary between reconstructed and unreconstructéairly good description of surfaces of ionic crystals of bcc
rounded regions. The thin lines are trajectories obtained byype, such as CsCIl. We find an equilibrium shape with ex-
keeping the rati@/p constant; they are indeed seen to inter-tended facets and mostly sharp edges for (0@l facet at

sect each other &. Note thatP is at the facet edge; there- low temperatures. The shape is very rich, and exhibits criti-
fore,z=0. The parts of the lines to the left & correspond cal points of various natures, such as triple, tricritical, and
to z<0, and are stable. The parts to the right®fhave conical points. This richness stems from the fact that, in ad-
positive z, and describe an unstable wing, which has to belition to the facet edges of th®01) and (011) facets the
eliminated from the equilibrium shape. In some sense poinmodel also has boundaries between reconstructed and unre-
P is highly degenerate, since a continuous set of valuesp of constructed regions. The interplay between the former and
andp coexist. In a plot of the free energy vs orientation, i.e.,the latter produces a rich phase diagram. There exists a fair
of f as a function op andgq, this is reflected in the form of a number of other models of equilibrium shapes which have
flat area for a certain range of orientations, namely, thoséeen solved either in a mean-field approximatfitt] or by
physically realizable orientations that are tangent at the conitransfer matrix methods, but we are not aware of cases where
cal point and all their convex combinations. The existence ofhe shape is as complex as in the case presented here. Par-
such a flat area is a direct consequence of (Bd); for dif- ticularly striking is the likely appearance of conical points,
ferent points on thé(p,q) surface to give rise to the same  which, as pointed out above, have a special degeneracy, i.e. a
y, andz, they have to lie in a common plane. From a physicalcontinuous set of different slopgsand g coexist in such
point of view the existence of such a flat area in fijp,q) points. Indicating the coordinates of the conical point with
surface looks extremely surprising. It corresponds to a finitdxp, Yp, zp), from Eq. (31) we havef(p,q)=zp+pXxp
range of step densities for which the step dependent part of qyp, i.e., the coexisting set of orientatiopsindq is such

the free energy is strictly proportional to the step densitythat their surface free energy has the form of a planar facet in
i.e., steps are apparently noninteracting. It should be stressettie f(p,q,) surface. Note that the opposite situation is much
however, that so far almost all our evidence for the conicamore common and easier to understand physically, i.e., a
character ofP is numerical. Although the accuracy of our singular point of conical type itfi(p,q) produces a facet in
calculations is very high and all our results indicate a conicak(x,y).

behavior, we cannot exclude the possibility that on an even Finally, it is interesting to point out that shapes of NaCl
finer scale the lines of varioys/ q will not intersect exactly, crystals in thermal equilibrium were investigated by Heyraud
and in fact the single conical poift will extend into some and Meois [12]. They found that the shape of the crystal is a
folds and creases, the extensions of which certainly have tperfect cube up to a temperatuie=620°, and that the

be very small. However, there is one important piece of anaroughening of the crystal starts from the corners of the cube
lytical support for a strictly conical behavior &, which is  and extends toward the edges. Hence it seems that the pres-
the behavior off (p,q) at the temperatur&,. Here the two ence of sharp facet boundaries, persisting at high tempera-
pointsP, as drawn in Fig. 7, merge into a single point. Ac- ture, is a common feature of crystals of ionic type.

Z
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APPENDIX A: THE FREE ENERGY OF A STEP

ON THE (011) FACET Here L denotes the total length, ard,=L cos¢ and L,

=L sing. Note that we sum over all possible entries of
Excitations on the (011) facet of the six vertex models areG(k), which is a sum over all possible types of initial and
easy to study. For this orientation the vertex lattice is fullyfinal positions {,j={Xx,®}). Settingz=e'*n, one can per-
polarized, with all arrows pointing, say, up and to the right,form an integration ovek,, exactly. It becomes an integra-
as shown in Fig. 3. No closed loops of reversed arrows argéion along the unit circle in the complex plane. For the
possible, since all reversed arrows point down or to the leftremaining integral ovek, one can use the saddle point ap-
The only possible excitations are infinitely long stef@s  proximation, and in the limiL— one obtains an expres-
steps between two boundaniedhe steps can follow only sion of the type
two directions, and cannot have self-intersection, so that the
step free energy can be calculated exactly. Z(L, ) ~e LB, (A6)
In order to calculate the free energy of an isolated step we
introduce the X 2 matrix G(k) as the “lattice Green func- with f{°"'%)(¢) the step free energy per unit of length. For a
tion” in momentum space for straight step segments. The&tep running under an angte= 7/4 with the principal axes
matrix is written in the form of the vertex lattice, the calculation is particularly simple: the

step free energy is
Gxx(k) Gxe(k)
(A1)

e Gexk) Gaath)’ e

v
4
where X and @ denote the two different types of lattice (A7)
points, defining the two sublattices of the staggered six ver-

tex model, as indicated in Fig. 3. In this notatién, (k), ~ The reason this quantity is negative is that, for convenience,
for instance, stands for the sum of the Boltzmann weights ofveé have calculated the increase of the free energy due to the
straight horizontal segments between two points of typef ~ Presence of a step on the (011) faqesr unit of projected
length n, multiplied by e*". The Boltzmann weight counts area onto theg(001) facet Calculating the same quantity per
the energies of the changed vertices between the end poirigit of projected area onto the (011) orientation one finds a
of the segment and, by convention, the energy of the turn dtositive step free energy. For a step of an arbitrary orienta-
the beginning of the segment. The straight segments of stefi®n ¢, the calculation becomes somewhat more compli-
have Boltzmann weights~2#? ande?#? in lattice points of ~cated. The resulting step free energy is of the form

type ® and X, respectively. Turns have weight$¢ in @

) =— %Iog[(lnL ef€)(1+efle+29)],

andef(<29) i x. For G, (k) this yields BEPM(p)=—cospsing (1+e) e (AB)
o e From the single step free energy one obtains the surface
Gy o (K)=B(c+20)g=285F g2ikn___ ~ . (A2) free energy in the neighborhood of the (011) facet, taking
n=1 e k1 into account only noninteracting steps, which gives a contri-
bution linear in the step densifL3]. One finds
The matrix[Eq. (A1)] is given by m m
V(A—[a)(1-]p])
~ S 286 €
G(k)= o2k | ek-285 285" (A3)

which is valid to lowest order in an expansion around the

(011 facet wheregq=p=1. Comparing Eq(A9) with Eq.

14), one concludes that the mean-field free energy repro-
uces the exact surface free energy in the neighborhood of
he (011) facet to linear order in the step density.

The full lattice Green function is obtained by considering
all possible alternating sequences of horizontal and vertic
segments; the contributions of the latter can be accounted fq
by the same matri, with an argumenk, instead ok, , for

the horizontal steps. One obtains
APPENDIX B: LIMIT 6—0

G(K)=G(kp)+G(k,)+G(ky)G(k,)+G(k,)G(kq) + - - - In the limit — 0, the six vertex model has been solved
exactly[14], and the exact solution can be compared with the
(1+G(ky)—1, (A4) mean-field results in the limit of sma’<. For small values

R (NI E—
( ( ))1_G(kh)G(kv) of q andp, the exact solution yieldgl5]
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roL, order ine? one has =ef¢, as an expression for the exact
f(p,q)=f(p=0,q=0)+@[p +9], (B1)  free energy one obtains
with cosr=1—e*¥/2. For smalle®c one hagsee Ref[14],
Eq. (8.11.7] e P’
q.(6.2L. fpa=-5g(1- =5/ (B3)
efe 3pel2
f(p=0,q=0)=—§+0(e ) (B2

which agrees with the mean-field free enef@yg. (14)] for
Combining Egs.(B1) and (B2), and noting that at lowest 6=0, and to lowest order ip andq.
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