
Mycobacteria, genes and the ‘hygiene hypothesis’
Joost J. Smit, Gert Folkerts and Frans P. Nijkamp

Purpose of review

The ‘hygiene hypothesis’ suggests that a relationship exists

between improved hygiene and an increase in allergic diseases.

As an underlying mechanism for this hypothesis it is proposed

that due to the lack of microbial stimulation either a misbalance

in T helper type responses or a misbalance in regulatory

mechanisms develops. As yet, however, a specific infectious

factor responsible for the hygiene hypothesis has not been

found.

Recent findings

Animal models have lent support for mycobacteria as important

candidates in the hygiene hypothesis. These animal studies

have also suggested that mycobacterial treatment generated

regulatory mechanisms which restored the immune balance. In

contrast, the relationship between mycobacterial infection or

treatment and the development of allergy and asthma in humans

is unclear and highly controversial.

Summary

Mycobacteria have been found to unambiguously reduce

allergic and asthmatic manifestations, suggesting that

mycobacteria perhaps can be used as an ‘anti-asthma’ vaccine.

Conflicting results in humans, however, confirm that the

complex and multifactorial interactions between the environment

and the genetic background of the individual contribute to the

development of allergic disease. Therefore, the hygiene

hypothesis should involve the genetic and the environmental

background of the individual.
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Introduction
Allergic diseases, such as allergic asthma, are steadily

increasing in developed countries [1]. Whereas allergic

diseases were a rare disorder restricted to the privileged

class in the nineteenth century, at present almost a

quarter of the population in some Western countries

demonstrate sensitization to one or more common

environmental allergens. In countries like Britain and

Australia, a quarter of the children under the age of 14

years have asthma and a fifth have eczema [2]. The

cause of the rise in allergic diseases must be sought in

environmental factors, such as increases in allergen

exposure due to housing isolation or breast feeding [3],

increases in environmental pollution [4], and changes in

the diet and the gut flora [5]. A lot of studies, however,

have drawn the conclusion that a change in the level and

the kind of early childhood infections could be the major

factor influencing the development of allergic diseases.

Already in 1976, Gerrard and colleagues [6] demon-

strated lower IgE levels in rural living Metis Indians in

Canada when compared with the local white community.

They stated ‘atopic disease is the price paid by some

members of the white community for their relative

freedom from diseases due to viruses, bacteria and

helminths’ [6, p. 99]. In 1989, Strachan [7] denoted the

suggested relationship between hygiene and allergic

disease the ‘hygiene hypothesis’. Basically, this hypoth-

esis states that improved hygiene in industrialized

societies, together with improved public health measures

and the use of vaccines and antibiotics have reduced the

incidence of infections that normally stimulate the

immune system in some way which protects against

development of allergic disease [8].

The epidemiological data that underlie the hygiene

hypothesis are extensive, but nonetheless highly con-

troversial. Several studies show that a large family size or

early placement in day care settings, and therefore a

presumed high exposure to infectious agents, protects

against the development of allergic disease [9]. Similarly,

exposure to farm animals early in life reduces the

likelihood of developing atopic sensitization or asthma,

possibly due to higher bacterial endotoxin levels [10]. So

far, a specific factor responsible for these observed

effects has not been identified. It was suggested that

Mycobacterium tuberculosis [11], hepatitis A [12], or

measles [13] infection during childhood prevents the

development of allergic disease later in life. The inverse

relationship between these infectious agents and devel-

opment of allergic asthma, however, has not been

confirmed in other studies [14–16]. Therefore, the
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relationship between infection and the development of

asthma still remains controversial and indefinite.

A mechanism for the hygiene hypothesis: T
helper type 1 and 2, and regulatory T cells
The first proposed mechanism for the hygiene hypoth-

esis was based on the T helper type 1 and 2 (Th1 and

Th2) dichotomy in specific murine and human immune

reactions [17]. Th2 cells, by secreting mediators such as

IL-4 and IL-5, are important in initiating and sustaining

the allergic and asthmatic response by regulating the

production of IgE and the growth, differentiation and

recruitment of eosinophils [18]. Th1 cells, secreting

IFN-g and involved in the immune response to a

number of intracellular pathogens, dampen the activity

of Th2 cells [17]. The immune system in newborns is

weakly Th2-biased [18]; infection in infants would lead

to stimulation of this Th2-biased immune system to

mature and to develop more Th1-biased immune

responses. For this reason, a lack of infections would

lead to less frequent stimulation of Th1-biased re-

sponses and, thereby, facilitate development of Th2-

biased immune responses [19,20]. In contrast with this

initially widely accepted mechanism is the observation

that a massive Th2-dominated immune reaction as seen

in helminth infections is associated with protection

against the development of allergy and asthma [21,22].

Moreover, the incidence of Th1-mediated autoimmune

diseases such as type 1 diabetes and multiple sclerosis is

increasing as well [23,24].

It is important therefore to realize that the connecting

link between allergic and autoimmune diseases is the

fact that both represent poorly regulated and hence

exaggerated immune responses. Most of the regulation

in the immune system is performed by various regulatory

T cells [25]. These cells prevent the activity of effector

T cells and other inflammatory cells, by secreting

inhibitory cytokines such as IL-10 and transforming

growth factor-b, but also by direct contact with effector

T cells or antigen presenting cells [26]. Since regulatory

T cells control immune reactions to commensal and

pathogenic bacteria, microbial exposure could have a

huge impact on regulatory T-cell development [27 .,28]

and therefore on the development of allergic or

autoimmune disease. This was elegantly illustrated in

experiments using germfree mice in which it was

impossible to elicit tolerance to an allergen [29].

Similarly, germfree rats were highly sensitive to arthritis

induction compared with specific pathogen free or

conventional rats [30]. The hygiene hypothesis may

not be explained by a mechanism which involves a

deregulated Th1/Th2 balance, but may involve a

mechanism employing a balance between regulated

and deregulated immune responses instead (Fig. 1)

[8,23]. Allergic disease is caused by a deregulated Th2

response, while in autoimmune diseases a deregulated

Th1 response is involved.

Mycobacteria
If the increase in diseases by a faulty immune regulation

is due to decreased exposure to certain microorganisms,

one may speculate that certain bacterial species can be

used as protective or therapeutical vaccines against

diseases such as allergic asthma. In this respect,

mycobacterial infections or vaccines are the subjects

most studied. Mycobacteria are in general saprophytes,

present in soil, water and dust in a natural environment.

Since the exposure to these bacteria is regulated by

lifestyle, the exposure to mycobacteria may be hugely

reduced in Western societies. Mycobacterial infections

usually have a very strong capacity to elicit Th1

responses [31,32]. As a result, the mycobacteria attracted

much attention in the hygiene hypothesis in which

initially the concept of Th1–Th2 balancing immune

regulation was applied. In addition, the impact of

mycobacteria on the immune system is indicated by

the existence of CD1-restricted T cells which were first

described to recognize only mycobacterial components

[33,34].

Mycobacteria express a whole range of ligands that

trigger signalling through pattern recognition receptors

such as the mannose receptor, toll-like receptor (TLR) 2

and TLR4 on host phagocytes and other immune cells.

This interaction results in activation of these cells and

the release of pro- but also antiinflammatory mediators.

The predominant antigen on mycobacteria is the

glycolipid lipoarabinomannan. While slow-growing my-

cobacteria such as bacillus Calmette-Guérin (BCG) and

M. tuberculosis express mannose-capped lipoarabinoman-

nan, fast-growing mycobacteria like M. vaccae probably

express arabinofuransyl-terminated lipoarabinomannan.

The lipoarabinomannan molecules differ in the velocity

and intensity of cytokine release from phagocytes [35].

In addition, mycobacteria express heat shock proteins

[36], which are important in the regulation of the

immune system during inflammation [37]. Both CD14

and the macrophage mannose receptor serve as lipoar-

abinomannan receptors, whereas TLR2 and -4 bind

lipoarabinomannan [35] and heat shock protein. Activa-

tion of the TLR leads to the induction of inflammatory

responses and to the development of adaptive immunity,

including regulatory T-cell development [38].

The experimental data in animal models of allergic

asthma supporting the candidature of mycobacteria in

the hygiene hypothesis are quite convincing; vaccination

with mycobacteria was found to suppress the develop-

ment of several allergic and asthmatic manifestations in

the mouse [39–41] and in the rat [42]. Treatment of mice

with heat-killed M. vaccae during allergen immunization
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or provocation reduced airway hyperresponsiveness and

eosinophilia and Th2 type responses (IgE and Th2

cytokine levels), although timing and dose of M. vaccae
were critical for effectiveness [43]. Interestingly, no

induction of allergen-specific Th1 responses was ob-

served, as demonstrated by other investigators as well

[39]. Therefore, mechanisms other than mere changes in

the balance between Th1 and Th2 are responsible for

the observed effects of mycobacterial treatment. Zuany-

Amorim and co-workers [44 ..] provided evidence that

the downregulatory effect of M. vaccae was probably

mediated through the induction of specific regulatory T

cells. The downregulatory effect was dependent on

production of IL-10 and transforming growth factor-b by

these cells, and not by induction of Th1 responses. This

was the first experimental proof that regulatory T cells

(elicited by mycobacteria) are implicated in the hygiene

hypothesis.

It remains to be investigated whether the induction of

regulatory T cells is the only mechanism by which

mycobacteria can inhibit the allergic response. Interest-

ingly, many of the observed effects of M. vaccae bear a
resemblance to the inhibition of allergic asthma symp-

toms after glucocorticoid treatment. It has been suggested

that (myco)bacterial infections directly, or indirectly, via

neural pathways, activate the hypothalamus–pituitary

gland–adrenal gland to secrete glucorticoids [45,46],

which subsequently may reduce allergic inflammation.

Mycobacteria and allergy in humans
In contrast, the relationship between mycobacterial

infection and the development of allergy and asthma

in humans is highly controversial. It was shown that M.
tuberculosis infection rates were significantly inversely

correlated with the prevalence of allergic [47] or

asthmatic [11] manifestations. Whether immunization

with the commonly used BCG vaccine is associated with

protection against development of allergic disease is still

a matter of debate. The first epidemiological study

showed that within a population of BCG-vaccinated

Japanese children, a positive tuberculin reaction at 6 and

12 years of age correlated with a reduced incidence of

allergic manifestations compared with children with

negative tuberculin reactions [48]. A similar study in

Guinea-Bissau confirmed that development of atopy was

lower in BCG-vaccinated children [49]. In contrast,

several retrospective studies in a variety of countries

failed to demonstrate a negative correlation between

BCG vaccination (as indicated by tuberculin responses)

during early childhood and the subsequent development

of atopy or asthma (summarized in [15,50.]). Studies

using BCG [51] or heat-killed M. vaccae [52] therapeu-
tically in established asthma or atopic dermatitis [53],

however, showed beneficial effects of mycobacterial

treatment, although the effect of M. vaccae in asthma

patients was not confirmed [54]. These contrasting

results might be explained by the fact that a lot of

variables were different in these studies, such as the age

at and the frequency of vaccination with mycobacteria,

the BCG strain used and the varying natural exposure to

mycobacteria (including M. tuberculosis) or allergens [55].
Moreover, the measurement of the tuberculin response

might not be a good reflection of successful mycobacter-

ial immunization [56]. Even more important might be a

genetic relationship in the possible inverse correlation

between (mycobacterial) infection and the development

of allergy and asthma.

Genes and the hygiene hypothesis
Besides the above-mentioned environmental factors,

genetic factors undoubtedly play a role in the pathogen-

��������

�Regulated immune
response’

Allergy, asthma

Autoimmunity

�Deregulated immune
response’

Th1

Th2

Treg

Figure 1. The balance between regulated and deregulated immune response

If regulatory activity is low, deregulated immune
response will develop. The nature of this
deregulated response depends on the balance
between T helper type 1 (Th1, autoimmune
disease) or T helper type 2 (Th2, allergy and
asthma). (Adapted from Rook and Brunet [23].)
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esis of asthma as well. A recent study suggested that 73%

of asthma susceptibility is due to genetic factors [57].

The complexity of the genetic contribution to the

development of asthma and other atopy-associated

phenotypes is reflected by the linkage of susceptibility

to allergy and asthma with several chromosomal regions

on chromosome 5, 6, 11, 14 and 12, which contain

numerous candidate genes. The chromosomal part 5q31

is particularly important because it contains a large

number of candidate genes, including the genes for IL-

12p40, IL-9, b-adrenergic receptor and the IL-4 cytokine

cluster, containing the genes for IL-4, IL-5 and IL-13

[58]. Nonetheless, the significant increase in the

prevalence of allergic diseases over the past few decades

cannot be explained by mere changes in gene frequen-

cies. It is more likely that various predisposing genetic

factors interacting with changes in the environment,

such as a decline in childhood infections, have caused an

increase in the percentage of the population that is

susceptible to allergic disease.

Studies investigating the interactions between genes

and microbial factors in allergy and asthma are scarce

and hampered by ethnic differences in the immune

response to infections. Nevertheless, some interesting

candidate genes that interact with the link between

infection and allergic disease have appeared recently.

First, Tim1, a mouse homolog of the human gene

encoding the receptor for hepatitis A, a virus associated

with protection from allergy and asthma [59], influenced

Th2 responses and the development of airway hyper-

responsiveness in allergic mice [60]. Second, a genetic

variation in the regulation for CD14, the endotoxin

receptor, is strongly correlated with IgE responses

[61,62]. Interestingly, the expression of both CD14

and TLR2 was higher in children from a farm (an

environment believed to lead to a lower prevalence of

allergic disease) compared with the children of non-

farmers [63.]. Finally, other candidate genes in this

respect are the genes for IL-12B [64], nitric oxide

synthase 1 [65], tumor necrosis factor-a [66] and IFN-g
[67], all important mediators of both resistance to

infection and players in the pathogenesis of allergic

disease [62]. Therefore, since the ability to mount a

response to mycobacterial antigens is highly heritable

[68,69], a genetic contribution to the inverse relation-

ship between mycobacterial infection and the develop-

ment of allergy and asthma is very plausible. Nramp1, a
gene that determines resistance to mycobacteria [69], is

associated with atopy in mice [70] and humans [71] and

with autoimmune disease in humans [72,73]. In fact,

this gene strongly affected efficacy of mycobacterial

treatment in mice [74 .]. These findings have important

implications for the possible future use of mycobacteria

and their components in the prophylaxis or treatment of

allergic disease.

Conclusion
Although several studies have shown that the level of

infection may affect the development of allergy and

asthma, a specific infectious factor responsible for this

effect has not been found as yet. In the search for such a

factor, the relation between mycobacterial infection and

allergic disease has attracted a lot of attention and

discussion. Experiments in rodents unambiguously have

demonstrated that mycobacterial infection or mycobac-

terial treatment is able to prevent allergic and asthmatic

manifestations. In contrast, in humans, the protective

effect of mycobacterial infection and of other infections

is still challenged and a matter for debate. Differences in

study design, mycobacterial preparations and back-

ground exposure to mycobacteria may explain the

contradictive results so far. In our opinion, however,

the genetic background of the individual may strongly

influence the outcome of the interaction between the

(infectious) environment and the development of

allergic disease. Genetic variations that evolved to

improve resistance to infections may very likely be

misdirected to promote allergic inflammation in the

absence of infection in Western societies. Studies

investigating this interaction should take into account

and elucidate the complex interaction between genes,

the environment and allergic disease.
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