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We study the elastic properties of single heteropolymers. By means of exact enumeration of
conformations, Monte CarlosMCd simulation, and variational principles, we calculateequilibrium
force-extension curves of heterocopolymers for specific arrangements of the monomer types along
the sequence. At a given extensionz, the time averaged measured force is the weighted sum of
restoring forces for various configurations. Using variational principles, we calculate
force-extensionsf-zd curves of heteropolymers with fixed extensionsz. These results are compared
with f-z curves obtained from MC simulations and exact enumeration of all conformations. Typical
random sequences manifest several piecewise unfoldings of blocks of various size, which are
overlapping due to thermal fluctuations. The shape of the elastic response of a heteropolymer
reflects the disorder in the primary block structure and the binding energies of these blocks. ©2005
American Institute of Physics. fDOI: 10.1063/1.1874853g

I. INTRODUCTION

Inspired by a series of remarkable single molecule
experiments,1–3 the statics and dynamics4 of single polymer
chains has drawn much attention in recent years. These ex-
periments using atomic force microscopy1–3 and optical and
magnetic tweezers5,6 show that molecules unfold domain by
domain by applying mechanical stress resulting in a saw-
tooth shape in the force-extension curve. Essential features
of biomolecules such as DNA, RNA, and proteins are het-
erogeneity in monomer types and disorder in their arrange-
ment. The biological activity and function relies on the spa-
tial conformation of the folded structures mainly determined
by the chemical sequence of different monomer types. The
chain adapts its conformation to minimize the free energy at
a given squenchedd sequence of monomers such as amino
acids. The linear sequence of a heteropolymer contains all
necessary information for the proper spatial arrangement of
the chain.

When an external force is applied, the folded chain un-
dergoes an unfolding transition. The force-extensionsf-zd
curve seems to reflect detailed knowledge of the information
stored in the chain sequence. For example, a chain in its
native structure undergoes a very sharp transition, while a
heteropolymer with an arbitrary random sequence manifests
smooth continuous unfoldings.

Although there exist several theoretical studies of elastic
properties of heteropolymers at the coarse grained level,7–11

the complete connection relating primary structure andf-z
curves seems to be still missing especially for heteropoly-
mers whose free energy landscape is rugged. Our main goal

is to study how the sequence of a single chainswhich has
disorder and heterogeneityd is projected onto its elastic re-
sponses. We calculate equilibriumf-z curves of various ran-
domly created sequences and designed proteinlike se-
quences. The possibility of a reversed analysis is discussed in
Ref. 12.

In a previous study,9 we minimized the free energy of a
self-assembled heteropolymer at agiven force. This theoret-
ical method uses a Gaussian trial function for a given ran-
domly generated sequence and we obtained distance correla-
tions of all monomer pairs corresponding to the global or
local energy minimum. As expected, the characteristic fea-
ture of f-z curves is the occurrence of plateaus when do-
mains unravel. The extensionz increases abruptly bydz
when the elastic energy gain is comparable with increase of
the potential energy. We note that this plateau might be re-
lated to the unfoldings of several domains of similar binding
energies.9 Therefore, sequence information is partly washed
away under the constant force description. Thus, for the
more explicit comparison off-z curves and primary struc-
ture, we are motivated to provide a theoretical framework to
describe the elastic response at an imposed extensionz. For-
mally, we incorporate a Lagrangian multiplier in a previously
used variational method.9,13

Furthermore, we also evaluatef-z curves using extensive
Monte Carlo simulations on a cubic lattice. We use exact
enumeration of conformations as well as the density of states
sDOSd method in the scheme of Monte Carlo simulations to
compute f-z curves and free energies of chain
conformations.14–17 For the systematic comparison between
primary sequence information and elastic responses, we in-
vestigate simple block copolymers with various block sizes,
copolymers with disorder such as HP 2-letter random hetero-adElectronic mail: lee@sejong.ac.kr
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copolymerssRHPd sRefs. 18 and 19d, and a 20-letter amino-
acid model20 which resembles model proteins. In the HP
model, there are only two types of monomers, hydrophobic
H and hydrophilic or polar P groups.19,21 In the more elabo-
rate 20-letter matrix we distinguish all 20 different types of
amino acids and their mutual interaction energies.20 From the
DOS method, we can access to the correctf-z curve in ther-
modynamic equilibrium.

Several molecular dynamics simulations based on a pro-
tein model22–25 report very sharp transitions inf-z curves at
least for small globular proteins. Such sharp transitions dem-
onstrate that the energy of the ground state is separated from
the energies of the other conformations. When the primary
structure consists of random sequences, the density function
is a smooth function ofz and thef-z curve manifests several
smoothened saw-tooth shapes, each of them is originating
from the unfolding of a small “domain.” Thus the overall
shape of the elastic response reflects the degree of disorder in
the primary structure as well as the binding energy. In this
study, we will discuss in detail the sequence dependence of
the shape off-z curves of heteropolymers. We present our
variational calculations offszd followed by MC simulations.
For simplicity, we assume that the chain is flexible for both
the variational method and the MC simulations and we use a
fixed bond length in the MC simulations.

II. GAUSSIAN DESCRIPTION OF A HETEROPOLYMER

We consider a polymer chain consisting ofN monomers
of size b. Formally, the Hamiltonian of a heteropolymer
chain is described by

Hhetero

kBT
=

d

2b2EN

dsSdrWssd
ds

D2

+E E ds ds8
vss8

2!

3dfrWssd − rWss8dg +
w

3!
E E E ds ds8 ds9

3dfrWssd − rWss8dgdfrWss8d − rWss9dg, s1d

whererWssd is the position of monomer ons along the contour.
The first term corresponds to the elastic propertiessconnec-
tivity d of the polymer chain and is approximated by the
Wiener measure26 with d being the dimensionality. The other
terms contain all interactions between monomers. In particu-
lar, two- and three-body interactions of the virial expansion
are included here. The inclusion of three-body interactions
prevents the chain from collapsing to a single point. The
interaction between each monomer pair is taken into account
in the second virial coefficientvss8 in units of b3. The two-
body interactions can be attractive or repulsive depending on
the type of the monomer pairs. The density of the collapsed
structure is then determined by the balance between three-
body repulsions and two-body attractions. In the HP model,
vss8 can take three different values:vPP,vHP=vPH,vHH.

Below the critical temperature, the chain is a compact
folded globule. When an external force is applied, the chain
undergoes a structural transition. The total free energy of a
chain with given extensionz is

F = kEl − TkSl. s2d

Assuming Gaussian statistics for the released segment of
lengthNr, the entropy of the conformation is −3kBz2/2Nr. At
large imposed extension, the elastic part of the free energy is
mainly originating from entropic penalties. To calculate the
f-z curve, we should find the proper partition sum at givenz.
If there arenr conformations of extensionz, each of them
with an energyEr, the partition sumZszd is sum of statistical
weights of all contributing conformations, Zszd
=onr

e−Erszd/kBT. The restoring force is thus

f = − kBT
] ln Zszd

]z
. s3d

However, because of the disorder present in the sequence
arrangement, it is not straightforward to calculate this sum.
Later we will show that exact enumeration of the configura-
tion space is possible for relatively short chains living on a
cubic lattice. In Sec. II A, we present variational
principles27–30 for heteropolymers which provide the upper
bound of the free energy of the disordered system.

If an unfolding occurs at the transition pointsz*d, there
are two main conformations characterized by different ener-
gies and contour lengths,sE1,N1d and sE2,N2d with statisti-
cal weights ~expf−E1/kBTg and ~expf−E2/kBTg, respec-
tively. The fszd curve is characterized by a saw-tooth shape;
a maximum atz* followed by a force drop. The change of
contour lengthdN=N2−N1 varies according to the sequence
disorder. The elastic response aroundz* can be approximated
by the overlap of the elastic responses beforefdenoted as
f1szdg and afterfdenoted asf2szdg the unfolding. The sug-
gested fitting function in Ref. 12 is the overlapping elastic
responses of both sides,f1sN1,zd and f2sN2,zd,

fszd = f1sN1,zdũsz* − zd + f2sN2,zdũsz− z*d, s4d

whereũsz* −zd=1/(1+exph−fsz* −zd /z*g2« /kBTj) and« be-
ing the potential energy differenceE2−E1. The fitting func-
tion is obtained by interpolating free energy difference
E2szd−E1szd as 2«sz* −zd /z* in the vicinity of the transition.
This means that the broadening of the saw-tooth shape is
proportional to the size of the thermal fluctuations as the
crossover in theu function occurs around,kBTz* /2«. Be-
low, we show that the interplay between the sequence disor-
der and thermal fluctuation determine the shape of thef-z
curves.

A. Variational principles

Here we apply the variational method to study stretching
experiments of a single heterocopolymer with imposed end-
to-end distancez. We prescribe the continuous description of
the monomer position and the harmonic bond potential.

To generalize the variational method for the constraint
system, the minimization procedure includes the following
constraint:

urWN − rW1u = z. s5d

To take this constraint into account we introduce a Lagrang-
ian multiplier l in the Hamiltonian. Then Eq.s1d reads

114904-2 Jarkova, Vlugt, and Lee J. Chem. Phys. 122, 114904 ~2005!

Downloaded 31 Jan 2006 to 130.37.129.78. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



H = Hhetero+ l · surWN − rW1u− zd. s6d

The variational principle assumes a trial HamiltonianH0

with well known properties and makes use of Feynman’s
inequality

F ø FV ; kH − H0l0 + F0, s7d

wherek¯l0 stands for the average over the variational prob-
ability distribution:

PVsrW1, . . . ,rWNd = ZV
−1exph− H0srW1, . . . ,rWNd/kBTj, s8d

where ZV is the normalization constant satisfyingePV=1
andF0=−kBT ln ZV.

To describe the chain deformation caused by pulling we
distinguish the deformation in the parallel and perpendicular
directions with respect to the pulling direction. In terms of
the two components of the correlation function, the choice of
trial HamiltonianH0 is written in discrete notation,

H0srW1, . . . ,rWNd/kBT =
d

2o
j ,l=1

N

fGi
−1s j ,ldrWi

j · rWi
l

+ G'
−1s j ,ldrW'

j · rW'
l g, s9d

whereGis j , ld andG's j , ld are correlation functions between
monomersj andl in the parallel and perpendicular directions
with respect to the pulling direction,31 and r j and r l indicate
the position of monomersj and l. By minimizing the free
energy with respect toG', Gi, and a Lagrangian multiplierl
we obtain two sets of equations, which must be solved self-
consistently. For more details we would like to refer the
reader to the Appendix.

B. Results of the variational method

We consider heteropolymer chains of lengthN consist-
ing of hydrophobic H blocks and hydrophilic P blocks in an
alternating order fFig. 1sadg. With the choice of vHH

=−1b3,vPP=0,vHH,vHP,0, a sequence splits into several
domains each time there are more than two consecutive P
monomers. Each domain can form a compact globule by
itself. Before considering sequences with disorder, we first
consider regular block copolymers constructed from repeat-
ing sH-Pd units of the same sizeNb.

In Fig. 2sad we showf-z curves of regular block copoly-
mers obtained from our variational method. Copolymers of

various different block sizesNb are considered here. To keep
the block size fixed for each copolymer, we useN=40 for
Nb=4,5 andN=42 for Nb=6,7.Only for the case ofNb=6,
there is the “imbalance” between hydrophobic H and hydro-
philic P groups. This imbalance might play an important role
for the unfolding of a compact globule of a single domain
sequence where the number of H groups determines the
binding energy. However, the first few transitions occur by
separating a H block from a large globule and not by unrav-
eling of a globular structure. Here, the binding energy mainly
depends on the H-block size due to the interaction with

FIG. 1. The illustration showssad the linear structure of a HP copolymer,sbd
self-assembly of domains, andscd another conformation after two blocks
have been pulled out. Each domainsconsisting mostly of H monomersd
forms a compact globule by itself.

FIG. 2. sad Force-extension curves for copolymers with block sizes 4 and 5
with N=40, and 6 and 7 withN=42. The second virial coefficients are
vHH=−1.0b3, vPP=0, vHP=−0.8b3. sbd Force-extension curves for copoly-
mers of sizeN=40 with block sizes generated with a different probabilityf
ssee textd. Specific sequences are given below and the total polaritysdiffer-
ence between the number of H and P monomersd is given in the parenthesis.
The second virial coefficients arevHH=−1.0b3, vPP=0, vHP=−0.8b3. sid
f=0.7 1H-1P-1H-1P-1H-1P-1H-4P-1H-1P-1H-1P-1H 1P-1H-2P-3H-
1P-2H-1P-2H-1P-1H-1P-1H-1P-6Hs6Hd, sii d f=0.6 1H-1P-1H-1P-1H-
2P-4H-1P-1H-2P-1H-1P-1H-2P-3H-1P-2H-1P-5H-1P-1H-f6Pg s2Hd, siii d
f=0.5 1H-2P-3H-1P-5H-1P-2H-2P-2H-1P-1H-4P-2H-3P-3H-3P-1H-2P-
1H s2Hd, sivd f=0.4 6H-1P-5H-1P-2H-2P-2H-1P-1H-4P-2H-6P-3H-
1P-3H s8Hd, svd f=0.3 6H-1P-5H-5P-3H-1P-2H-2P-8H-f3P-1H-
3Pg s10Hd. The underlined segments unravel easily at small forces leading
to transitions in thef-z curves. The parts of the chain in square brackets can
be stretched out easily but unravelings of these parts do not lead to any
transitions.scd The force-extension curve of a sequence 3P-6H-5P-5H-3P
-3H-2P-2H-3P-10H-3P-3H forvHH=−1.0b3, vHP=−0.7b3, vPP=0. The
symbolss+d indicate a fit using Eq.s4d.
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neighboring H blocks. Thus we focused on the distances be-
tween the transition points and their correlation with the con-
necting P-block size.

A block copolymer forms a self-assembled micellar
structure where all H blocks belong to a single globulefFig.
1sbdg. Upon pulling, a pair ofsH-Pd blocks becomes sepa-
rated from the large globule and aligns in the direction of
pulling. Separating an end block is more favorable from the
point of minimizing the surface energy if all H blocks have
equal sizes. Splitting the globule into two smaller globules of
similar size will cost more surface energy because of a larger
surface area. These conformations are thus less favorable. A
separated segment of H monomers still forms a collapsed
globule by itselffsee Fig. 1scdg. Neglecting the collapsed size
of a H globule, the increase of total contour length is mainly
determined by the length of the released P blocks. As the
extension increases, the elastic response exhibits a series of
smooth saw-tooth shapes. Each peak of the saw-tooth pattern
corresponds to a conformational transition.

Without thermal fluctuations, the saw-tooth shape would
have a sharp peak and an abrupt force drop. At the point of
the nth transitionszn

*d, the most probable state is switched
from the conformation of linear lengthnNb to sn+1dNb. The
size of force-drop is related to the binding energy«: dfzn

*

=«. For a Gaussian chain, as is assumed in the variational
description, elastic responses before and after this transition
are linear responses:f1=3z/N1b

2kBT and f2=3z/N2b
2kBT,

respectively. We note that the slope offszd before and after
the transitionf1/NiskBT/b2dg should be inversely propor-
tional to the linear lengthNi si =1,2d. The position of thenth
transition point iszn

* =Însn+1d«Nbb and the maximum force
is fszn

*d=zn
* /NbskBT/b2d. Both zn

* and fszn
*d are increasing

functions of n. Thus, from the knowledge on the distance
between transitionsdz* and the size of force drop, one can
estimate the block sizeNb and its binding energy«.

At finite temperature, the saw-tooth shape off-z curves
is broadened due thermal fluctuations. The width of thermal
broadening is,kBTzn

* /2«, which is growing with increasing
n. The curves of later transitions are strongly overlapping
and smoothened out. Therefore, the first few transitions are
more pronounced assuming the same binding energy for each
unfolding fsee Fig. 2sadg. In the presence of thermal fluctua-
tions, we can accessNb and « by fitting f-z curves using
Eq. s4d.

At this point, we consider the influence on disorder in
the primary structure. We created several HP sequences by a
Markovian process in whichf is the probability that mono-
mer i has a different type than monomeri −1. This resembles
a polymerization process in which the chemical reaction
strongly depends on the type of end monomer. The number
of created blocksnx=fN follows from a Poisson distribution
with mean block sizekxl=1/f. The block size distribution
equals Psxd=sfNdN/xexpf−fNg / sN/xd! sfor large Nd with
fluctuations in the block sizedx,sfd−3/2/N. The correlation
between monomers decays exponentially with the character-
istic length 1/f. If f=0.5, the sequence is completely ran-
dom. Small values off result in large block sizes. Iff.1,
the generated sequences are frequently alternating. An alter-
nating sequence can be thought of as a coarse-grained ho-

mopolymer whose elastic response is also expected to be
similar to that of a homopolymer. For smallf, if the total
chain length is comparable to the average block size,Nf
,1, the disorder in blocky sequences is not self-averaging.
Thus there is a high probability to construct a unique block
structuresbesides local degeneracyd. If f is very smallsf
!1d, our chain includes only H-type or P-type monomers
resulting in a homopolymer. Hence, to form a sequence that
folds into a unique structure, the total chain lengthN should
be long enough to include a sufficient number H monomers
necessary to form a stable globular structure but also short
enough to avoid any repetitions of blocks which causes
degeneracy.

The disorder present in the block sizes influences the
domain binding energy« as well as the linear size of do-
mainsdl. For homopolymers consisting of all H-type mono-
mers, there is only a single energy scale,t=vHH /b3, associ-
ated with the collapse of the chain. It is shown by Halperin
and Zhulina32 that the unfolding of a homopolymer globule
is a first-order phase transition and this transition occurs
when the characteristic force equalsfc=kBTt /b. Contacts
among different monomer types and different segment sizes
introduce various spectra in binding energy. If there are sev-
eral domains with different binding energies, several transi-
tions should appear at different characteristic forces. In the
setup of controlled displacement, several peaks appear with
increasing peak values at certain displacementszn

* . Transi-
tions with a largedl and a smalld« occur earlier. For con-
secutiventh andsn+1dth transitions, the following inequality
holds: ln/en. ln+1/en+1. However, due to the large thermal
broadening for small«, early transitions with small« are not
distinguishable unlessdl is large enoughfsee Fig. 2sbdg.

Figure 2sbd shows elastic responses of random chains
constructed with different probabilityf. At each large or
small force drop, some part of the chain unfolds. The under-
lined segments in the caption of Fig. 2sbd show the parts of
the chain that unfold easily at small force. For sequencessivd
and svd sf=0.4 and 0.3d there are large domains which are
clearly separated from each othersby underlined segmentsd.
The transition of sequencesivd at z=35 is very pronounced
because the associated unraveling segment length is large.
Two domains become separated after this transition. All
smaller transitions overlap due to thermal fluctuations. For
sequencesiii d sf=0.5d most of the domains are small so the
elastic response of these domains overlaps. Sequencessid and
sii d consist of even smaller blocks. Therefore, the elastic re-
sponse of these chains does not show the individual breaking
of these small blocks.

Figure 2scd shows thef-z curve and the fitting result
using Eq.s4d sRef. 12d with parametersN1=8.6, N2=11.7.
The fitting around the second transition assumes that H
monomers form a spherical globule when folded. The best fit
predicts a binding energy of«=5.8kBT.

Despite the fact that the HP model does not guarantee a
unique native structure, we have shown how the magnitude
of disorder is reflected in thef-z curves. In the following
section, using exact enumeration and MC simulations we
explicitly calculate the weight function of each conformation
characterized by extensionz. We will study interaction types
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beyond the HP model focusing on the difference between
proteinlike sequences and random heteropolymers.

III. MONTE CARLO SIMULATIONS ON STRETCHING
HETEROPOLYMER

A. Simulation technique

To gain further insight intof-z curves at thermodynamic
equilibrium, we explore the phase space of all conformations
Erszd at given extensionz. Each conformation of energyEr

contributes with statistical weighth~expf−Erszd /kBTgj. Cal-
culation of thef-z curves of a random heterocopolymer re-
quires exploration of the rugged potential energy landscape.
The equilibrium force-extension relation for the particular
heteropolymer sequence can be obtained via the calculation
of DOSgsE,zd as a function of the energyE and extensionz
via exact enumeration. We have computed this quantity for
polymers up to length 18 living on a three-dimensional cubic
lattice of lattice constantb, for which exact enumeration of
the conformation space is possible on a modern computer.33

For example, exact enumeration of an 18-mer results in
78 955 042 017 configurations which takes approximately
35 h on a Intel Pentium IV 2.40 GHz PC running Linux.

Once the density of statesgsEd is known, ensemble av-
erages that depend onE only fherekAsEdlg can be computed
at all temperatures using

kAl =
E drAsr dexp f− bEsr dg

E dr exp f− bEsr dg
=

o
E

AsEdgsEdexp f− bEg

o
E

gsEdexp f− bEg

s10d

in which b=1/skBTd. The bracketsk¯l denote an average in
the canonical ensemble. Other ensemble averages such as
kEl can be computed in this way. The entropyS can be
computed usingF=kEl−TS in which the free energyF
equals −kBT ln oEgsEdexp f−bEg.

To compute an ensemble average at given extensionz,
we have to compute the density of states as a two-
dimensional functiongsE,zd. Sampling of two-dimensional
histograms is often computationally more demanding than
one-dimensional histograms.16 OncegsE,zd is obtained, for
any applied forcef and inverse temperatureb, the average
extensionkzl can easily be computed using

kzl =

o
E

o
z

zgsE,zdexp f− bsE − fzdg

o
E

o
z

gsE,zdexp f− bsE − fzdg
. s11d

It is important to note that the density of states is symmetric,
i.e., gsE,zd=gsE,−zd, which implies thatkzl f=0=0.

The force at a given extensionz0 can be computed by
taking the derivative of the free energyF with respect to
the extension, which we approximate for a lattice model by
using

f = UdFszd
dz

U
z=z0

<
1

b
fFsz0 + bd − Fsz0dg, s12d

whereb is the lattice constant. The free energyFsz0d is given
by

Fsz0d = −
1

b
ln Fo

E
o

z

dsz− z0dgsE,zdexp f− bEgG . s13d

The specific heatCv is the derivative of the average energy
kEl with respect to the temperatureT, and this is equal to the
fluctuations of the energyE:

Cv = S ]kEl
]T

D
V

=
fkE2l − kEl2g

kBT2 . s14d

For chains with more than 18 monomers living on a
cubic lattice, exact enumeration of configurations becomes
computationally very expensive. Therefore, we have esti-
mated the density of states using a flat histogram MC scheme
first introduced by Wang and Landau.14–17 For N=18 we
have checked that the density of states computed using this
Monte Carlo scheme accurately reproduces the density of
states obtained by exact enumeration of configurations.

We have investigated two types of model polymers all
living on a cubic lattice. The bond length between two neigh-
boring monomers is fixed by the lattice constantb. For all
systems, only the nearest neighbors of a monomer contribute
to the total energyE. However, interactions between con-
secutive monomers along the chainsmonomersi and i +1d
are excluded. In the HP model, the interaction energies are
eHP=ePP=0 andeHH=−1 sRefs. 18 and 19d in units of kBT.
The interactions between monomersei j is related to the sec-
ond virial coefficient byvi j =b3ei j /kBT.

The second model we investigate is the 20-letter amino-
acid interaction matrix from Ref. 20, Table VI. The amino-
acid sequences for this interaction matrix that we have inves-
tigated have the same unique, native structure. We have also
simulated sequences with a Gō-type interaction potential.34

In the Gō-model, ei j =−1 only for those monomer pairsi j
that are nearest neighbors in the predefined native structure.
For all other monomer pairs as well as consecutive mono-
mers, ei j =0. Although this model is conceptually very
simple, it contains many aspects of protein folding.35

The sequences of amino acids that we have investigated
are listed in Table I. Sequences 1–12 are HP models, se-
quences 13–14 are Gō-models of different compact configu-
rations. Sequences 15–18 are proteinlike sequencess15
monomers, 4 468 911 678 configurationsd designed by Bet-
ancourt and Thirumalai using a 20-letter interaction matrix.36

Emin is the minimum energy of all configurations of a certain
sequence. It turns out that only sequences 13–14 and prot1–
prot4 have a unique native state.

B. Results of MC simulations

Density of states. Using the DOS method and exact enu-
meration, we explore the phase space of various sequences
listed in Table I. This list consists of randomly created HP
sequences, HP sequences with regular block structures, Gō-
model sequences, and proteinlike sequences. By “protein-

114904-5 Stretching a heteropolymer J. Chem. Phys. 122, 114904 ~2005!

Downloaded 31 Jan 2006 to 130.37.129.78. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



like,” we refer to those sequences which have a unique
ground state conformation. The energy spectrum of HP se-
quences is measured in units ofkBT. For proteinlike se-
quences, the energy resolution of 0.0775kBT is given by the
interaction matrix.36

As can be seen in Table I of Ref. 36, the folding tem-
perature increases with the absolute value of the ground state
of energyEmin. All ground states of sequences prot1–prot4
are nondegenerate. The inverse folding temperaturessbcd for
proteinlike sequences are well defined and they are below
b=2.0. It it difficult to define the “folding temperature” for
the random HP sequences because the folded structure is not
unique and the transition between a folded and an unfolded
structure is not sharp. We determine the folding temperature
sshown in Table Id by the temperature where the specific heat
is maximum at zero forcefsee Fig. 4sadg. For most of HP
sequences, the inverse folding temperature isbc.2.0. Table
I confirms the correlation between folding temperature and
binding energy.

In Fig. 3 we plot the probabilityPsEd~gsEdexpf−bEg
that the system has an energyE at temperatureb=2.0. Pro-
teinlike sequences have a sharp maximum at the ground state
which is separated from the higher energy states. Below the
folding temperature, this implies a funnel-shape potential
landscape towards the native state. On the other hand, at the
same temperature, random HP sequences are close to the
transition point and their energy spectrum is broad. A maxi-
mum appears at larger value than ground state energy. At
lower temperature, the maximum moves toward the ground
state but the distribution remains relatively broad.

Force induced transitions and f-z curves. Applying an
external force also induces structural transitions of het-
eropolymers. The unfolding transition occurs when the free
energy difference between two conformationsdF=F1−F2 is
comparable the elastic energy gain by unfolding,fcdz.

Clearly, the peak of the specific heatCvsTd or Cvsfd cap-
tures temperature-induced and force-induced phase transi-
tion, respectively. In Fig. 4, we show theCv as a function of
both temperature and force for a few representative se-
quences. The calculation of the specific heat below the fold-
ing temperature shows that the force induced transition is
more dramatic than the temperature induced transition.

Various conformations of sequence 12 at extensionz
=0,4,8 sb=2.0d are shown in Fig. 5. Although only one
configuration is shown for each energy, we can see the loss
of entropy for larger extensions where fewer conformations
are allowed. The force-induced transition of sequence 12 oc-
curs at the characteristic forcefc=0.3kBT/b whereCvsfd has
the maximumfFig. 4sbdg. At the first transition, the dominant
conformation switches from a single globule structure to a
dumbbell-like conformation.

The f-z curves obtained from two different set ups are
shown in Figs. 6 and 7. The symbols represent the measured

TABLE I. Sequences used in this study. Sequence 1–12 are HP models, sequences 13–14 are Gō models of different compact configurationss18 monomers,
78 955 042 017 configurationsd. Sequences prot1–prot4 are proteinlike sequencess15 monomers, 4 468 911 678 configurationsd designed by Betancourt and
Thirumalai using a 20-letter interaction matrixsRef. 36d. Emin is the minimum energy of a sequence. Only Gō-sequences 13–14 and proteinlike sequences
prot1–prot4 have a unique native state.bc is the inverse folding temperature.

Number Sequence Emin bc=1/kBTc Remark

1 HHHPPHHHHHHHPPPPPP −7 1.885 Random HP,f=0.3
2 HPHHPPHHHHPPHHHHPP −10 1.953 Random HP,f=0.4
3 HPPHPHPPHHPHPHHHHH −10 2.057 Random HP,f=0.5
4 HPHHPPHPHHPPPPHHPP −7 2.430 Random HP,f=0.6
5 HHPHPPHHPHHPHHPPHP −9 2.141 Random HP,f=0.7
6 HHPPHHPPHHPPHHPPHH −10 2.014 Block HP
7 HHHPPPHHHPPPHHHPPP −5 2.161 Block HP
8 HHHHHHPPPPPPHHHHHH −10 1.835 Block HP
9 HHHHHHHHHHHHHHHHHH −16 2.058 Homopolymer
10 PPPPPPPPPPPPPPPPPP 0 N.A. Homopolymer
11 HHHPPHHHPPPPPPPPPPPPHHHPHHHHPHHH −17 1.664 Dumbbell HP
12 HHHPPHHHPPPPPPPPPPPPPPPPHHHPPHHH −12 1.989 Dumbbell HP
13 Gō model s18-merd −16 1.663 Compact structure 23333
14 Gō model s18-merd −14 1.957 Compact helix
prot1 APSHNYRDNQQKDRC −13.33 1.380 Proteinlike
prot2 VFSHGYKGGQQGDKH −18.60 1.015 Proteinlike
prot3 MPQRKIGDKGIDDAW −48.98 0.396 Proteinlike
prot4 PCSCEWKKDEMKVFC −75.8725 0.260 Proteinlike

FIG. 3. The probability distributionPsEd for proteinlike sequences and
random sequences atb=2. For the proteinlike sequences, the probability to
be in the ground state energy is dominant and separated from other energy
states. The distribution is broad for random sequences for which there is no
such separation.
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force valueskfszdl at the given extensionz. The lines are
measured extensionkzsfdl when the external force is given.
The kzsfdl curve has the characteristic “plateaus” at the
transition—i.e., an abrupt increase of extension at fixed force

while kfszdl is characterized by a “saw-tooth” shape consist-
ing of a “peak” and a “force-drop.” Maxwell’s construction
merges both approaches. In the following, we discuss the
shape ofkfszdl in which we expect to see a saw-tooth shape
at conformational transitions.

However, a saw-tooth shape hardly appears for short HP
chains ssequence 1–10,N=18d even at considerably low
temperaturesbø2.5. A random HP sequence normally con-
tains several domains responding to different values of the
characteristic forces and their elastic responses often appear
to be continuous transitionsssee, for example, sequence 3 in
Fig. 6d. A saw-tooth shape appears only when two domains
are clearly separated by a loopsa large block consisting only
of P-type monomersd, for example, in sequences 11 and 12
ssee Fig. 6d. Here the distance between transitions is large
enough compared to the overlap widthz*kBT/2«.

At very low temperaturessFig. 7d, small force-drops ap-
pear at the length scale of several monomer sizes. As we
showed earlier, the resolution of the saw-tooth shape strongly
depends on temperature. The domain size responding to a
certain force is also a function of temperature. For a very low
temperatureskBT,b«n/znd where thermal fluctuations are
very small, the width of thermal broadening is only of the
order of a few monomer sizes. Thus, the elastic response
reveals the interaction energy at the monomer levelssee Fig.
7d. At higher temperatureskBT.b«n/znd, as the overlapping
region grows with temperature, force-drops at the monomer

FIG. 4. sad Specific heatCv as a function ofb. The unfolding temperature is
displayed in the legend.sbd Cv during the force induced transition for sev-
eral sequences; randomssequence 4d, dumbbellssequence 12d, and protein-
like sprot2d sequences atb=2.0. Sequence 12 and prot2 are at below the
folding temperature and the unfolding forcefc is given in the legend.Cv is
represented in units ofkB.

FIG. 5. Various conformations of sequence 12 with extensionsz=0,4,8
around the folding transition temperatureb=2.0. The energy is specified for
each conformation. Dark spheres are hydrophobic units and half-transparent
spheres are hydrophilic units.

FIG. 6. Force-extension curves of sequences 3 and 12 below the folding
temperaturesb=2.5d. Symbols stand for the measured force at a given ex-
tension fEq. s12dg and lines represent the measured extension at a given
force fEq. s11dg. The small force regime is blown-up in the inset. The local
maximum of sequence 12 depicts the unfolding transition from single glob-
ule conformation to a double globule conformation.

FIG. 7. Force-extension curves of prot2 below and above the folding tran-
sition temperature. Symbols are the measured force at a given extensionfEq.
s12dg and lines are the measured extension at a given forcefEq. s11dg.
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scale are no longer present. We observe a single sharp un-
folding for proteinlike sequences and continuous smooth in-
crease for random random sequences.

In the strong stretching limit, the restoring force is larger
at high temperaturesFig. 7d. This is because the restoring
force at large extension is mainly due to the suppression
of entropy upon stretching. For example, the external force
to keep a Gaussian chain of lengthNb at certain distance

z.ÎNb is f =2kBTz/N and this increases linearly with tem-
perature.

Finally, Figs. 8sad and 8sbd demonstrate the difference in
elastic responses between proteinlike sequences and random
HP sequences. The extensionkzl is measured for each given
force. For proteinlike sequences, the transition inf-z curve is
sharp and the fluctuations inz are also sharply peaked at
transition and suppressed elsewhere. Gō-model sequences
show similar behavior. The fluctuations inz show a maxi-
mum at the characteristic force for the transition. The fluc-
tuations at zero force is already large for random sequences
ssequences 1 and 5d which implies that there is no unique
native structure. Fluctuations in other HP sequences are also
slightly larger than proteinlike sequences.

IV. CONCLUSION

The main issue in this study was to show how different
sequences with disorder respond to external forces.

We developed a generalized variational method to de-
scribe stretching experiments of heteropolymers with im-
posed end-to-end distance. This was realized by constraining
the imposed end-to-end distance using Lagrangian multipli-
ers. Within a Gaussian approximation, we can access all
monomer-monomer correlations of a heteropolymer.

The force-extension curve is also evaluated by the exact
enumeration of all conformation with a fixed extension. The
obtained saw tooth patterns reveal the size of released blocks
as well as the binding energy. The distance between the con-
secutive transitions and the magnitude of the force-drop pro-
vide additional insight into the primary structure of the het-

eropolymers. The resolution of saw-tooth patterns is
determined by the interplay between thermal fluctuations,
binding energies, and the domain sizes involved in the un-
folding transition.

Additional insight into how heteropolymer unfolding de-
pends on the sequence can be obtained from kinetic studies
incorporating the pulling speed dependence of the force-
extension curves. The hysteresis of these curves will provide
a starting point for investigations of the energy barrier of the
rugged potential landscape of heteropolymers.
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APPENDIX: DERIVATION OF THE SELF-CONSISTENT
EQUATIONS

The correlation functionRlsi , jd between two monomers
i and j is defined by

Rlsi, jd = Glsi,id + Gls j , jd − Glsi, jd − Gls j ,id, sA1d

where l indicates both components ofG, namely, parallel
and perpendicular components. The square of the mean end-
to-end distancekR2s1,Ndl is thus determined by the quantity
Ris1,Nd. We express the imposed distancez as

z= Ri
1/2s1,Nd = urWN − rW1u. sA2d

The elastic energy term is only related to the parallel com-
ponent of the correlation function. Straightforward calcula-
tions lead to the following expression for the variational free
energy in units ofkBT:

FVsGd = −
1

2
fTr ln Ĝi + sd − 1dTr ln Ĝ'g −

d

2
N2

+
d

2b2o
n=1

N−1

fRisn,n + 1d + R'sn,n + 1dg + V2 + V3

+
l

kBT
fRi

1/2s1,Nd − zg, sA3d

where V2 and V3 are the free energy corresponding to the
two-body and three-body interactions, respectively:

V2 = S 1

2p
Dd/2

o
m

o
nÞm

vnm

2
Risn,md−1/2R'sn,md−sd−1d/2

V3 =
w

6
S 1

2p
Dd

o
kÞnÞm

3Risk,nd−1/2R'sk,nd−sd−1d/2Risn,md−1/2

3R'sn,md−sd−1d/2. sA4d

In the HP model, the interactions between different type of
pairs are described by the second virial coefficients
vHP, vPP, andvHH.37,38 The Flory mixing parameterx is re-
lated to the second virial coefficients byx=vHP−svHH

+vPPd /2. Here we use attractive interactions between differ-
ent monomer typessvPP,vHP,0d. This allows us to
“sense” the demixing transition of P monomers from H

FIG. 8. sad Thez-f curvesskzsfdld and fluctuations of the extensionsdzd2 for
HP polymers atb=2.0 andsbd for proteinlike sequences atb=2.0.
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monomers by the applied force. The correlation function
Rlsi , jd represents the statistical average of the square of the
mutual distance between theith and j th monomers.

The next step is to compute the Euler equations by mini-
mizing our expression for the free energy in terms of the
propagatorGlsi , jd,

d

dGlsi, jd
FVhGj = 0, sA5d

in which Ĝl stands for theN3N matrix with components

Glsi , jd. Given thatdfTr lnĜg /dGlsi , jd=Gl
−1si , jd, we obtain

coupled equations forG' andGi in the form ofN3N matrix
equations. For random copolymers with binary interaction
vi,j, we obtain the following set of the self-consistent equa-
tions:

1
2Gi

−1si, jd = Csi, jd + F2isi, jd + F3isi, jd + 1
2lRi

−1/2s1,Nd

3sdi,1d j ,1 + di,Nd j ,N − di,1d j ,N − di,Nd j ,1d

d − 1

2
G'

−1si, jd = sd − 1dCsi, jd + F2'si, jd + F3'si, jd,

sA6d

where F2l=s] /]GldV2si , jd and F3l=s] /]GldV3si , jd. The
matrix Csi , jd defines the connectivity between the mono-
mers,

Csi, jd =
1

b2fcnsiddi j − di,j+1 − d j ,i+1g, sA7d

wherecnsid=1 if i =1,N and cnsid=2 otherwise. Equations
sA7d must be solved self-consistently together with the con-
straint condition Eq.sA2d. Clearly, there is an analogy be-
tween l and the external force. In contrast to the constant
force variational method, herel is not a given constant but a
variable which needs to be calculated, i.e., it is the restoring
force.

In this construction, the bond length between two con-
secutive monomers is not fixed. Neighboring monomers are
connected by Gaussian springs with spring constant 3kBT/b2.
The distance between monomer pairs is determined by mini-
mizing the total free energy.

We start with the initial trial Gaussian matrix as the con-
nectivity matrix and the initial value ofl as a constant. At
each iteration, all components ofGlsi , jd are evaluated and in
turn, we solve l using the standard Newton–Rhapson
method. We repeat the iteration until all values ofGij con-
verge within the accuracy of 10−8. Each matrix satisfies the

sum ruleoiÞ jGlsi , jd=−Glsi , id. We removed this degree of
freedomszero moded by eliminating the first row and col-
umn.

By solving Eqs.sA7d we obtain correlation functions for
all monomer pairs as well as the corresponding force at the
imposedz. The resultingf-z curve is the elastic response in
thermodynamic equilibrium.
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