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We study the elastic properties of single heteropolymers. By means of exact enumeration of
conformations, Monte CarldMC) simulation, and variational principles, we calculatguilibrium
force-extension curves of heterocopolymers for specific arrangements of the monomer types along
the sequence. At a given extensipnthe time averaged measured force is the weighted sum of
restoring forces for various configurations. Using variational principles, we calculate
force-extensiorif-z) curves of heteropolymers with fixed extensiam3 hese results are compared

with f-z curves obtained from MC simulations and exact enumeration of all conformations. Typical
random sequences manifest several piecewise unfoldings of blocks of various size, which are
overlapping due to thermal fluctuations. The shape of the elastic response of a heteropolymer
reflects the disorder in the primary block structure and the binding energies of these bld2B85 ©
American Institute of Physic§DOI: 10.1063/1.1874853

I. INTRODUCTION is to study how the sequence of a single chaimich has
disorder and heterogeneitys projected onto its elastic re-
Inspired by a series of remarkable single moleculesponses. We calculate equilibriufyz curves of various ran-
experiments;® the statics and dynamitsf single polymer  domly created sequences and designed proteinlike se-
chains has drawn much attention in recent years. These e§uences. The possibility of a reversed analysis is discussed in
periments using atomic force microscéﬁ/and optical and Ref. 12.
magnetic tweezer€ show that molecules unfold domain by In a previous Stud?/,we minimized the free energy of a
domain by applying mechanical stress resulting in a sawself-assembled heteropolymer agiaen force This theoret-
tooth shape in the force-extension curve. Essential featurggal method uses a Gaussian trial function for a given ran-
of biomolecules such as DNA, RNA, and proteins are hetdomly generated sequence and we obtained distance correla-
erogeneity in monomer types and disorder in their arrangetions of all monomer pairs corresponding to the global or
ment. The biOlOgical aCtiVity and function relies on the Spa-|ocal energy minimum. As expected' the characteristic fea-
tial conformation of the folded structures mainly determinediyre of f-z curves is the occurrence of plateaus when do-
by the chemical sequence of different monomer types. Theénains unravel. The extension increases abruptly bysz
chain adapts its conformation to minimize the free energy afyhen the elastic energy gain is comparable with increase of
a given (quenchegl sequence of monomers such as aminothe potential energy. We note that this plateau might be re-
acids. The linear sequence of a heteropolymer contains afhted to the unfoldings of several domains of similar binding
necessary information for the proper spatial arrangement ofnergies. Therefore, sequence information is partly washed
the chain. away under the constant force description. Thus, for the
When an external force is applied, the folded chain unmgre explicit comparison of-z curves and primary struc-
dergoes an unfolding transition. The force-extensi®)  tyre, we are motivated to provide a theoretical framework to
curve seems to reflect detailed knowledge of the informatioryescripe the elastic response at an imposed exteaskor-
stored in the chain sequence. For example, a chain in itga|ly, we incorporate a Lagrangian multiplier in a previously
native structure undergoes a very sharp transition, while @sed variational methott-
heteropolymer with an arbitrary random sequence manifests  Fyrthermore, we also evaluate curves using extensive
smooth continuous unfoldings. Monte Carlo simulations on a cubic lattice. We use exact
Although there exist several theoretical studies of elastiGnumeration of conformations as well as the density of states
properties of heteropolymers at the coarse grained fevl, (DOS) method in the scheme of Monte Carlo simulations to
the complete connection relating primary structure & compute f-z curves and free energies of chain
curves seems to be still missing especially for heteropolygonformations*™’ For the systematic comparison between
mers whose free energy landscape is rugged. Our main goglimary sequence information and elastic responses, we in-
vestigate simple block copolymers with various block sizes,
¥Electronic mail: lee@sejong.ac.kr copolymers with disorder such as HP 2-letter random hetero-
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copolymers(RHP) (Refs. 18 and 19 and a 20-letter amino- F=(E)-T(S). 2)
acid model® which resembles model proteins. In the HP
model, there are only two types of monomers, hydrophobi
H and hydrophilic or polar P groug€?*In the more elabo-
rate 20-letter matrix we distinguish all 20 different types o
amino acids and their mutual interaction enerﬁf’dérom the
DOS method, we can access to the corffeetcurve in ther-
modynamic equilibrium.

(Assuming Gaussian statistics for the released segment of
lengthN,, the entropy of the conformation is k&2?/2N,. At
flarge imposed extension, the elastic part of the free energy is
mainly originating from entropic penalties. To calculate the
f-z curve, we should find the proper partition sum at gizen

If there aren, conformations of extensiom, each of them

Several molecular dynamics simulations based on a prolith an energy,, the partition sume(2) is sum of statistical
weights of all contributing conformations, Z(2)

tein modef>?>report very sharp transitions itz curves at ' e _ ,
least for small globular proteins. Such sharp transitions dem==>n€ " © - The restoring force is thus
onstrate that the energy of the ground state is separated from aln Z(2)
the energies of the other conformations. When the primary f=-keT————.
structure consists of random sequences, the density function
is a smooth function of and thef-z curve manifests several However, because of the disorder present in the sequence
smoothened saw-tooth shapes, each of them is originatingrrangement, it is not straightforward to calculate this sum.
from the unfolding of a small “domain.” Thus the overall Later we will show that exact enumeration of the configura-
shape of the elastic response reflects the degree of disordertion space is possible for relatively short chains living on a
the primary structure as well as the binding energy. In thiscubic lattice. In Sec. IIA, we present variational
study, we will discuss in detail the sequence dependence gifrinciple$’° for heteropolymers which provide the upper
the shape off-z curves of heteropolymers. We present ourbound of the free energy of the disordered system.
variational calculations of(z) followed by MC simulations. If an unfolding occurs at the transition poi(e’), there
For simplicity, we assume that the chain is flexible for bothare two main conformations characterized by different ener-
the variational method and the MC simulations and we use gies and contour length$E;,N;) and (E,,N,) with statisti-
fixed bond length in the MC simulations. cal weights cexg-E;/kgT] and «exg-E,/kgT], respec-
tively. The f(z) curve is characterized by a saw-tooth shape;
a maximum atz" followed by a force drop. The change of
contour lengthSN=N,—N; varies according to the sequence
disorder. The elastic response arounhdan be approximated

We consider a polymer chain consistingimonomers by the overlap of the elastic responses befatenoted as
of size b. Formally, the Hamiltonian of a heteropolymer fi(2)] and after[denoted asf,(2)] the unfolding. The sug-

pe 3)

Il. GAUSSIAN DESCRIPTION OF A HETEROPOLYMER

chain is described by gested fitting function in Ref. 12 is the overlapping elastic
| , responses of both sidef(N;,z) andf,(N,,2),
H d dr(s v ~ ~
ﬁ% ﬁj dS(%) +de8 dézif f(2) = f1(N,2)0(Z - 2) + F2(N, 2 6z~ 2), (4)
W where d(Z -2)=1/(1+exp{-[(Z -2)/Z 12e/kgT}) ande be-
X r(s)—r(s)]+ gf f f ds ds ds’ ing the potential energy differend®—E,. The fitting func-
: tion is obtained by interpolating free energy difference
X qF(s) - F(s)]8r(s) - ()], (1) Ex2-Ei(2) as 2(Z -2)/Z in the vicinity of the transition.

This means that the broadening of the saw-tooth shape is
wherer(s) is the position of monomer amalong the contour.  proportional to the size of the thermal fluctuations as the
The first term corresponds to the elastic propert@snec-  crossover in thed function occurs around-ksTZ /2. Be-
tivity) of the polymer chain and is approximated by thelow, we show that the interplay between the sequence disor-

Wiener measufé with d being the dimensionality. The other der and thermal fluctuation determine the shape offtae
terms contain all interactions between monomers. In particueyrves.

lar, two- and three-body interactions of the virial expansion

are included here. The inclusion of three-body interactionsA Variational princioles
prevents the chain from collapsing to a single point. The ~ princip
interaction between each monomer pair is taken into account Here we apply the variational method to study stretching
in the second virial coefficienisy in units of b%. The two-  experiments of a single heterocopolymer with imposed end-
body interactions can be attractive or repulsive depending otp-end distance. We prescribe the continuous description of
the type of the monomer pairs. The density of the collapseéhe monomer position and the harmonic bond potential.
structure is then determined by the balance between three- To generalize the variational method for the constraint
body repulsions and two-body attractions. In the HP modelsystem, the minimization procedure includes the following
vsg Can take three different valuespp, vyp=vpH,vpK- constraint:

Below the critical temperature, the chain is a compact Fy=Fi =2 (5)
folded globule. When an external force is applied, the chain N
undergoes a structural transition. The total free energy of do take this constraint into account we introduce a Lagrang-
chain with given extensioam is ian multiplier| in the Hamiltonian. Then Eql) reads
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FIG. 1. The illustration show&) the linear structure of a HP copolymé) Y 10 20 30
self-assembly of domains, ar(d) another conformation after two blocks
have been pulled out. Each domdiconsisting mostly of H monomers b) 2 J T T T
forms a compact globule by itself. [ [oe (@)
1.5¢ *—‘@ i
L |+-=(iii)
H = Hhetero* | -(|FN—F1|—Z). (6) ? 1-
The variational principle assumes a trial Hamiltoniafy 05
with well known properties and makes use of Feynman’s
inequality s
F<Fy=(H-Hoo+Fo, (7) 0

where(- - -)o stands for the average over the variational prob-
ability distribution: ©)

P, ... ) = 25 exp(= Ho(fr, ... F)/Ke T}, (8)

where Z,, is the normalization constant satisfyind?,=1
andFo=-kgT In Z\,.

To describe the chain deformation caused by pulling we
distinguish the deformation in the parallel and perpendicular
directions with respect to the pulling direction. In terms of
the two components of the correlation function, the choice of
trial Hamiltonian™ is written in discrete notation,

40

FIG. 2. (a) Force-extension curves for copolymers with block sizes 4 and 5

d N . with N=40, and 6 and 7 wittN=42. The second virial coefficients are
Ho(F1, ... Fr)/kgT = => [G[l(j,l)ﬁ]‘ 'Flll vpn=—1.0% vpp=0, vyp=-0.8% (b) Force-extension curves for copoly-
2jy|:1 mers of sizeN=40 with block sizes generated with a different probability
) (see text Specific sequences are given below and the total polé@ditfer-
+ Gll(j i, - F'L], (9 ence between the number of H and P monomniergiven in the parenthesis.

) _ ) _ The second virial coefficients arg;;=-1.00% vpp=0, vyp=-0.80° (i)
whereG(j,l) andG, (j,l) are correlation functions between ¢=0.7  1H-1P-1H-1P-1H-1P-14P-1H-1P-1H-1P-1H 1P-1H-2P-3H-
monomerg andl in the parallel and perpendicular directions ;ghi:-iE?:ﬁlppiwi}fiw;fész‘g’2(|:)1(£:5?4'61éH1£éE]_%;:§P(-}|)4-

; j | a i -4H-1P-1H2P-1H-1P-1H-2P-3H-1P-2H-1P-5H-1P- , (i
with res_p_ect to the pulllng dlrectloﬂanq r qn_dr indicate $=0.5 1H-2P-3F-TP-BH-1P-2H-2P-2H-1P-14R-2H-3P-3H3P-1H-2P-
the position of monomerg andl. By minimizing the free 14 (2H), (v) ¢=0.4 6H-1P-5H-1P-2H-2P-2H-1P-14P-2H-6P-3H-
energy with respect t&, , G;, and a Lagrangian multiplidr ~ 1P-3H(8H), (v) $=0.3  6H-1P-5H5P-3H-1P-2H-2P-8H3P-1H-
we obtain two sets of equations which must be solved self3P] (10H). The underlined segments unravel easily at small forces leading

istently. F detall Id like t fer th to transitions in thé-z curves. The parts of the chain in square brackets can
consistently. For more detalls we wou Ike 10 reter ey, sretched out easily but unravelings of these parts do not lead to any

reader to the Appendix. transitions.(c) The force-extension curve of a sequence 3P-6H-5P-5H-3P
-3H-2P-2H-3P-10H-3P-3H for,;=-1.00%, vyp=-0.70% vpp=0. The
symbols(c) indicate a fit using Eq(4).

B. Results of the variational method
We consider heteropolymer chains of lengthconsist- various different block sizeN, are considered here. To keep

ing of hydrophobic H blocks and hydrophilic P blocks in an the block size fixed for each copolymer, we use 40 for
alternating order[Fig. 1(@)]. With the choice ofuv,y No=4,5andN=42forN,=6,7.0nly for the case oN,=6,
=-1b%,vpp=0,v44 <vup<0, a sequence splits into several there is the “imbalance” between hydrophobic H and hydro-
domains each time there are more than two consecutive Philic P groups. This imbalance might play an important role
monomers. Each domain can form a compact globule byor the unfolding of a compact globule of a single domain
itself. Before considering sequences with disorder, we firseequence where the number of H groups determines the
consider regular block copolymers constructed from repeatdinding energy. However, the first few transitions occur by
ing (H-P) units of the same sizM,, separating a H block from a large globule and not by unrav-
In Fig. 2(@) we showf-z curves of regular block copoly- eling of a globular structure. Here, the binding energy mainly
mers obtained from our variational method. Copolymers ofdepends on the H-block size due to the interaction with
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neighboring H blocks. Thus we focused on the distances banopolymer whose elastic response is also expected to be
tween the transition points and their correlation with the consimilar to that of a homopolymer. For sma#, if the total
necting P-block size. chain length is comparable to the average block sié,

A block copolymer forms a self-assembled micellar ~ 1, the disorder in blocky sequences is not self-averaging.
structure where all H blocks belong to a single globduiey.  Thus there is a high probability to construct a unique block
1(b)]. Upon pulling, a pair offH-P) blocks becomes sepa- structure(besides local degenergcyf ¢ is very small(¢
rated from the large globule and aligns in the direction of<1), our chain includes only H-type or P-type monomers
pulling. Separating an end block is more favorable from theresulting in a homopolymer. Hence, to form a sequence that
point of minimizing the surface energy if all H blocks have folds into a unique structure, the total chain leniishould
equal sizes. Splitting the globule into two smaller globules ofbe long enough to include a sufficient number H monomers
similar size will cost more surface energy because of a largemecessary to form a stable globular structure but also short
surface area. These conformations are thus less favorable.gxough to avoid any repetitions of blocks which causes
separated segment of H monomers still forms a collapsedegeneracy.
globule by itselffsee Fig. {c)]. Neglecting the collapsed size The disorder present in the block sizes influences the
of a H globule, the increase of total contour length is mainlydomain binding energy as well as the linear size of do-
determined by the length of the released P blocks. As thenainsél. For homopolymers consisting of all H-type mono-
extension increases, the elastic response exhibits a seriesraérs, there is only a single energy scatepy, /b associ-
smooth saw-tooth shapes. Each peak of the saw-tooth patteated with the collapse of the chain. It is shown by Halperin
corresponds to a conformational transition. and Zhulind? that the unfolding of a homopolymer globule

Without thermal fluctuations, the saw-tooth shape woulds a first-order phase transition and this transition occurs
have a sharp peak and an abrupt force drop. At the point ovhen the characteristic force equdis=kgT7/b. Contacts
the nth transition(z;), the most probable state is switched among different monomer types and different segment sizes
from the conformation of linear lengthN, to (n+1)N,. The introduce various spectra in binding energy. If there are sev-
size of force-drop is related to the binding energy&fz; eral domains with different binding energies, several transi-
=e. For a Gaussian chain, as is assumed in the variationailons should appear at different characteristic forces. In the
description, elastic responses before and after this transitiosetup of controlled displacement, several peaks appear with
are linear responsed;=3z/N;b?kgT and f,=3z/N,b%ksT,  increasing peak values at certain displacementsTransi-
respectively. We note that the slope fdf) before and after tions with a largedl and a smallde occur earlier. For con-
the transition[1/N;(kgT/b?] should be inversely propor- secutiventh and(n+1)th transitions, the following inequality
tional to the linear length\; (i=1,2). The position of theith  holds: I,/ €,> 1.1/ €,+1. However, due to the large thermal
transition point isz’;z yn(n+1)eNyb and the maximum force broadening for smalkt, early transitions with smal are not
is f(z,)=z,/Ny(kgT/b?). Both z, and f(z,) are increasing distinguishable unlesél is large enouglisee Fig. 20)].
functions ofn. Thus, from the knowledge on the distance Figure Zb) shows elastic responses of random chains
between transition$z' and the size of force drop, one can constructed with different probabilitys. At each large or
estimate the block sizNy, and its binding energy. small force drop, some part of the chain unfolds. The under-

At finite temperature, the saw-tooth shapefaf curves  lined segments in the caption of Figlb® show the parts of
is broadened due thermal fluctuations. The width of thermathe chain that unfold easily at small force. For sequefiiogs
broadening iS\’kBTZ:/ZS, which is growing with increasing and(v) (¢=0.4 and 0.3 there are large domains which are
n. The curves of later transitions are strongly overlappingclearly separated from each oth@y underlined segments
and smoothened out. Therefore, the first few transitions arg@he transition of sequendgév) at z=35 is very pronounced
more pronounced assuming the same binding energy for eadJecause the associated unraveling segment length is large.
unfolding[see Fig. 23)]. In the presence of thermal fluctua- Two domains become separated after this transition. All
tions, we can accesN, and ¢ by fitting f-z curves using smaller transitions overlap due to thermal fluctuations. For
Eq. (4). sequencdiii) (¢=0.5 most of the domains are small so the

At this point, we consider the influence on disorder inelastic response of these domains overlaps. Sequénees
the primary structure. We created several HP sequences by(i) consist of even smaller blocks. Therefore, the elastic re-
Markovian process in whickb is the probability that mono- sponse of these chains does not show the individual breaking
meri has a different type than monomierl. This resembles of these small blocks.

a polymerization process in which the chemical reaction  Figure Zc) shows thef-z curve and the fitting result
strongly depends on the type of end monomer. The numbeysing Eq.(4) (Ref. 12 with parameterdN;=8.6, N,=11.7.

of created blocks,= ¢N follows from a Poisson distribution The fitting around the second transition assumes that H
with mean block sizé€x)=1/¢. The block size distribution monomers form a spherical globule when folded. The best fit
equals P(x)=(¢N)V*exd -¢N]/(N/x)! (for large N) with predicts a binding energy af=5.8gT.

fluctuations in the block sizéx~ (¢)~%?/N. The correlation Despite the fact that the HP model does not guarantee a
between monomers decays exponentially with the charactetnique native structure, we have shown how the magnitude
istic length 1. If ¢=0.5, the sequence is completely ran- of disorder is reflected in thé-z curves. In the following
dom. Small values o result in large block sizes. =1, section, using exact enumeration and MC simulations we
the generated sequences are frequently alternating. An altegxplicitly calculate the weight function of each conformation
nating sequence can be thought of as a coarse-grained hcharacterized by extensianWe will study interaction types
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beyond the HP model focusing on the difference between dF(2) 1
proteinlike sequences and random heteropolymers. f= d =~ B[F(ZO+ b) - F(z)], (12
=2
whereb is the lattice constant. The free enefgfz,) is given
I1l. MONTE CARLO SIMULATIONS ON STRETCHING by
HETEROPOLYMER

1
F =-—In Nz—- E,zexp[- BE]|. (13
A. Simulation technique (20) B [EE EZ (2-2)9(E.2exp[- FE|. (13
To gain further insight intd-z curves at thermodynamic  The specific hea€, is the derivative of the average energy

equilibrium, we explore the phase space of all conformationgg) with respect to the temperatufe and this is equal to the
E,(2) at given extensiorz. Each conformation of enerdy, fluctuations of the energg:

contributes with statistical weigHtcexd —E,(2)/kgT]}. Cal- ) 5
culation of thef-z curves of a random heterocopolymer re- - (‘9<E>> _KED (B (14)
quires exploration of the rugged potential energy landscape. aT )y kg T?

The equilibrium force-extension relation for the particular
heteropolymer sequence can be obtained via the calculatio&hb

of DOSg(E, 2) as a function of the enerdy and extension computationally very expensive. Therefore, we have esti-

via exact enumeration. W'e'have computeq this quantlty f.anated the density of states using a flat histogram MC scheme
polymers up to length 18 living on a three-dimensional Cublcﬁrst introduced by Wang and Land&Y” For N=18 we

Lﬁttlce Off Iattui_e constartb_, for thl)(l:h exact er:jumeranogﬁ(:f have checked that the density of states computed using this
€ conlormation Space IS possibie on a modern COMPULEr-y, e carlo scheme accurately reproduces the density of

For example, exact _enun"_neratlon .Of an 18-mer regults tates obtained by exact enumeration of configurations.
78 955042 017 configurations which takes approximately We have investigated two types of model polymers all

35 h on a Intel Pentium IV 2.40 GHz PC running Linux. living on a cubic lattice. The bond length between two neigh-

Onci thg dens(;t;((ﬁ?f sltat;]eﬁE)Elénown, (Ensemble a\:j- boring monomers is fixed by the lattice constant~or all
erages that depen only [here(A(E))] can be compute systems, only the nearest neighbors of a monomer contribute

at all temperatures using to the total energyE. However, interactions between con-
secutive monomers along the chdmonomersi andi+1)
fdrA(r)exp[— BE()] > A(E)g(E)exp[- BE] are excluded. In the HP model, the interaction energies are
__E €up=€pp=0 andey=-1 (Refs. 18 and 1Pin units ofkgT.
> g(E)exp[- BE] The interactions between monomeysis related to the sec-
E ond virial coefficient byv;;=b3;;/kgT.

The second model we investigate is the 20-letter amino-
acid interaction matrix from Ref. 20, Table VI. The amino-
acid sequences for this interaction matrix that we have inves-
tigated have the same unique, native structure. We have also
simulated sequences with a@®pe interaction potentiéfﬁ
In the Go-model, ;=-1 only for those monomer paii$
that are nearest neighbors in the predefined native structure.

equils *gT In Zeg(E)exp [_tﬁE]. . . For all other monomer pairs as well as consecutive mono-
0 compute an ensemble average at given extersion mers, €;=0. Although this model is conceptually very
we have to compute the density of states as a twog.

: ) . ; : _ simple, it contains many aspects of protein foldffg.
d!mensmnal'functlorg(E,z). ngpllng of two-d|men§|onal The sequences of amino acids that we have investigated
histograms is often computationally more demanding thar.l;lre listed in Table I. Sequences 1-12 are HP models, se-
one-dimensional histogran]lg.Onceg(E,z) is obtained, for

lied forcd and i h quences 13—14 ared@nodels of different compact configu-
any applied forcef and inverse temperatui, the average | iqng. Sequences 15-18 are proteinlike sequeritBs

For chains with more than 18 monomers living on a
ic lattice, exact enumeration of configurations becomes

(A)=
Jdr exp[— BE(r)]

(10)

in which 8=1/(kgT). The brackets: --) denote an average in
the canonical ensemble. Other ensemble averages such
(E) can be computed in this way. The entrofycan be
computed usingF=(E)-TS in which the free energyF

extension(z) can easily be computed using monomers, 4 468 911 678 configuratipmesigned by Bet-
ancourt and Thirumalai using a 20-letter interaction mattix.
> 2 zgE,2exp[- BE - {2)] Enin is the minimum energy of all configurations of a certain
(2)= E ¢ . (12) sequence. It turns out that only sequences 13—14 and protl—
> > o(E,2exp[- B(E-f2)] prot4 have a unique native state.
E z

It is important to note that the density of states is symmetric?" Results of MC simulations

i.e.,g(E,2)=g(E,-2), which implies thatz);_,=0. Density of statesUsing the DOS method and exact enu-
The force at a given extensiay can be computed by meration, we explore the phase space of various sequences
taking the derivative of the free enerdy with respect to listed in Table I. This list consists of randomly created HP
the extension, which we approximate for a lattice model bysequences, HP sequences with regular block structures, G
using model sequences, and proteinlike sequences. By “protein-

Downloaded 31 Jan 2006 to 130.37.129.78. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



114904-6 Jarkova, Vlugt, and Lee J. Chem. Phys. 122, 114904 (2005)

TABLE I. Sequences used in this study. Sequence 1-12 are HP models, sequences 13-6ldadelSof different compact configuratioff88 monomers,

78 955 042 017 configurationsSequences protl—prot4 are proteinlike sequefit®@snonomers, 4 468 911 678 configuratipdssigned by Betancourt and
Thirumalai using a 20-letter interaction matiiRef. 36. E,;, is the minimum energy of a sequence. Onlg-&quences 13-14 and proteinlike sequences
protl—prot4 have a unique native stgfe.is the inverse folding temperature.

Number Sequence Enmin Be=1/kgT, Remark

1 HHHPPHHHHHHHPPPPPP -7 1.885 Random k&,0.3
2 HPHHPPHHHHPPHHHHPP -10 1.953 Random k2 0.4
3 HPPHPHPPHHPHPHHHHH -10 2.057 Random K#20.5
4 HPHHPPHPHHPPPPHHPP =7 2.430 Random #£0.6
5 HHPHPPHHPHHPHHPPHP -9 2.141 Random R,0.7
6 HHPPHHPPHHPPHHPPHH -10 2.014 Block HP

7 HHHPPPHHHPPPHHHPPP -5 2.161 Block HP

8 HHHHHHPPPPPPHHHHHH -10 1.835 Block HP

9 HHHHHHHHHHHHHHHHHH -16 2.058 Homopolymer

10 PPPPPPPPPPPPPPPPPP 0 N.A. Homopolymer
11 HHHPPHHHPPPPPPPPPPPPHHHPHHHHPHHH =17 1.664 Dumbbell HP
12 HHHPPHHHPPPPPPPPPPPPPPPPHHHPPHHH -12 1.989 Dumbbell HP
13 G5 model (18-me) -16 1.663 Compact structurex23 x 3
14 G5 model (18-me) -14 1.957 Compact helix
protl APSHNYRDNQQKDRC -13.33 1.380 Proteinlike

prot2 VEFSHGYKGGQQGDKH -18.60 1.015 Proteinlike

prot3 MPQRKIGDKGIDDAW -48.98 0.396 Proteinlike

prot4 PCSCEWKKDEMKVFC -75.8725 0.260 Proteinlike

like,” we refer to those sequences which have a unique Clearly, the peak of the specific he@f(T) or C,(f) cap-
ground state conformation. The energy spectrum of HP seures temperature-induced and force-induced phase transi-
guences is measured in units kKET. For proteinlike se- tion, respectively. In Fig. 4, we show tl@& as a function of
quences, the energy resolution of 0.0kybis given by the both temperature and force for a few representative se-
interaction matrix® guences. The calculation of the specific heat below the fold-

As can be seen in Table | of Ref. 36, the folding tem-ing temperature shows that the force induced transition is
perature increases with the absolute value of the ground stateore dramatic than the temperature induced transition.
of energyE,. All ground states of sequences protl-prot4  Various conformations of sequence 12 at extension
are nondegenerate. The inverse folding temperatygggor =0,4,8(B=2.0 are shown in Fig. 5. Although only one
proteinlike sequences are well defined and they are belowonfiguration is shown for each energy, we can see the loss
B=2.0. It it difficult to define the “folding temperature” for of entropy for larger extensions where fewer conformations
the random HP sequences because the folded structure is nge allowed. The force-induced transition of sequence 12 oc-
unique and the transition between a folded and an unfoldedyrs at the characteristic forde=0.3%gT/b whereC,(f) has
structure is not sharp. We determine the folding temperaturghe maximun{Fig. 4(b)]. At the first transition, the dominant
(shown in Table ) by the temperature where the specific heatconformation switches from a single globule structure to a
is maximum at zero forcgsee Fig. 4a)]. For most of HP  qumbbell-like conformation.
sequences, the inverse folding temperaturg.ts 2.0. Table The f-z curves obtained from two different set ups are
I confirms the correlation between folding temperature andhown in Figs. 6 and 7. The symbols represent the measured
binding energy.

In Fig. 3 we plot the probabilityP(E) « g(E)exd —BE]

that the system has an eneryat temperaturgd=2.0. Pro- 08 et
teinlike sequences have a sharp maximum at the ground state ’ |
which is separated from the higher energy states. Below the 06 oo :z |
folding temperature, this implies a funnel-shape potential _ ——» bps
landscape towards the native state. On the other hand, at the SO gl
same temperature, random HP sequences are close to the i
transition point and their energy spectrum is broad. A maxi- 02 8.

mum appears at larger value than ground state energy. At ‘E I

lower temperature, the maximum moves toward the ground oLt Lukdah P | Tt |\
state but the distribution remains relatively broad. 20 5 10 S 0 3

Force induced transitions and-# curves Applying an

external force also induces structural transitions of hetFIG. 3. The probability distributior>(E) for proteinlike sequences and

eropolymers. The unfolding transition occurs when the fre%anFiom sequences BE2. For the protglnllke sequences, the probability to
e in the ground state energy is dominant and separated from other energy

energy difference bet_Ween two cqnformatioﬂv‘s_:Fl—Fz IS states. The distribution is broad for random sequences for which there is no
comparable the elastic energy gain by unfoldifigz. such separation.

Downloaded 31 Jan 2006 to 130.37.129.78. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



114904-7

Stretching a heteropolymer

a) 40 T I T I T I T | T
- — seql2, Bc=2.430 1
30 - soqd, B=1.989 H
- prot2, B =1.015 4
U 20 =
10 —
I Mkt TP
0
6 8 10
1k, T

b) 200 T I '{ I T I T
- : |l — seql2,£=023 | o
150 — 1t |--— seq4,unfolded | —
i 1) [--- pro2,£-148 | |
sl .
- 1 1 -

! 1

50 ;o —
- ! \ -

iy ‘\J. | 1

0 o — L o |
0 1 2 3 4
force (k,T/b)

FIG. 4. (a) Specific heaC, as a function of3. The unfolding temperature is
displayed in the legendb) C, during the force induced transition for sev-
eral sequences; randof®equence ¥ dumbbell(sequence 12 and protein-
like (prot2 sequences g8=2.0. Sequence 12 and prot2 are at below the
folding temperature and the unfolding for€eis given in the legendC, is

represented in units d.

force values(f(z)) at the given extensiom. The lines are

measured extensiofz(f)) when the external force is given.
The (z(f)) curve has the characteristic “plateaus”
transition—i.e., an abrupt increase of extension at fixed forc

—_— 7
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FIG. 6. Force-extension curves of sequences 3 and 12 below the folding
temperaturg 3=2.5). Symbols stand for the measured force at a given ex-
tension[Eq. (12)] and lines represent the measured extension at a given
force[Eqg. (12)]. The small force regime is blown-up in the inset. The local
maximum of sequence 12 depicts the unfolding transition from single glob-
ule conformation to a double globule conformation.

while (f(2)) is characterized by a “saw-tooth” shape consist-
ing of a “peak” and a “force-drop.” Maxwell's construction
merges both approaches. In the following, we discuss the
shape off(z)) in which we expect to see a saw-tooth shape
at conformational transitions.

However, a saw-tooth shape hardly appears for short HP
chains (sequence 1-10N=18) even at considerably low
temperatureg=<2.5. A random HP sequence normally con-
tains several domains responding to different values of the
characteristic forces and their elastic responses often appear
to be continuous transitior(see, for example, sequence 3 in
at theFig. 6). A saw-tooth shape appears only when two domains
are clearly separated by a lo@large block consisting only
of P-type monomeys for example, in sequences 11 and 12
(see Fig. 6. Here the distance between transitions is large
enough compared to the overlap widftkgT/2s.

pos At very low temperaturegFig. 7), small force-drops ap-
s ooz L x _& pear at the length scale of several monomer sizes. As we
: [ Q_o? J oy showed earlier, the resolution of the saw-tooth shape strongly
:; “‘}' L ) depends on temperature. The domain size responding to a
—OL. 0 -1 2 -3 4 - certain force is also a function of temperature. For a very low
> . . temperature(kgT<be,/z,) where thermal fluctuations are
!fg . fj ah 5-3 Jﬁ C_;Ii very small, the width of thermal broadening is only of the
- 1 P -12 order of a few monomer sizes. Thus, the elastic response
[ ° 2 ~ reveals the interaction energy at the monomer Iése¢ Fig.
‘“—'ﬂa P i ’j;,‘-v 33 ,—’n 7). At higher temperaturékgT>be,/z,), as the overlapping
4 ! . ,é . v 4 ¥ N region grows with temperature, force-drops at the monomer
Lootbes gl P8 g 10
Bgriee 1T ooffl enfl G
-5 6 -7 -8 -9 8
b 4 [T ige é\
ng'm o 1 =, 6
1 = &
3] 0 w -1 -2 B
9 4
7=8 =
_ 8 s g 2
93] 9_:” ?1 j ”’L‘3 e £
Rl R -5 - Y

FIG. 5. Various conformations of sequence 12 with extension8,4,8

around the folding transition temperatyse 2.0. The energy is specified for

FIG. 7. Force-extension curves of prot2 below and above the folding tran-

each conformation. Dark spheres are hydrophobic units and half-transparesition temperature. Symbols are the measured force at a given extggion

spheres are hydrophilic units.

(12)] and lines are the measured extension at a given fdtge(11)].
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HOTTT T TTT T ArTTTrT eropolymers. The resolution of saw-tooth patterns is
- 1 [rd ] determined by the interplay between thermal fluctuations,
L [ . | L . binding energies, and the domain sizes involved in the un-
Sioff: -4 S2MAL - folding transition.
A e 11 ] Additional insight into how heteropolymer unfolding de-
i ml ] | ] pends on the sequence can be obtained from kinetic studies
e T R incorporating the pulling speed dependence of the force-
Force (k,T/b) Force (ky T/b) extension curves. The hysteresis of these curves will provide

a starting point for investigations of the energy barrier of the

YOI T T N L B B rugged potential landscape of heteropolymers.
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FIG. 8. (@) Thezf curves((z(f))) and fluctuations of the extensi¢z)* for The correlation functioR, (i,j) between two monomers
HP polymers aj3=2.0 and(b) for proteinlike sequences #=2.0. i andj is defined by

scale are no longer present. We observe a single sharp un- R\(0,)) = G\(1,1) + Gy(1,)) = Gy(0.]) = GA(1. 1), (AD)

folding for proteinlike sequences and continuous smooth inwhere \ indicates both components &, namely, parallel

crease for random random sequences. and perpendicular components. The square of the mean end-
In the strong stretching limit, the restoring force is largerto-end distancéR?(1,N)) is thus determined by the quantity

at high temperaturéFig. 7). This is because the restoring R,(1,N). We express the imposed distarcas

force at large extension is mainly due to the suppression 1,2 T

of entropy upon stretching. For example, the external force (LN)=[fy =13, (A2)

to keep a Gaussian chain of lengitb at certain distance The elastic energy term is only related to the parallel com-

z>\Nbis f= 2kgTz/N and this increases linearly with tem- ponent of the correlation function. Straightforward calcula-

perature. tions lead to the following expression for the variational free
Finally, Figs. §a) and 8b) demonstrate the difference in energy in units okgT:

elastic responses between proteinlike sequences and random 1 R A d

HP sequences. The extensi@ is measured for each given FUG)=-=[Trin G+ (d-1Trin G,]- =N?

force. For proteinlike sequences, the transitioffi-incurve is 2 2

sharp and the fluctuations in are also sharply peaked at N-1

transition and suppressed elsewheré-rodel sequences szz [R(n,n+1)+R, (n,n+1)]+V,+V;

show similar behavior. The fluctuations mshow a maxi-

mum at the characteristic force for the transition. The fluc- 1

tuations at zero force is already large for random sequences kBT[R” (1.N) -], (A3)

(sequences 1 and) Svhich implies that there is no unique

native structure. Fluctuations in other HP sequences are algghereV, and V3 are the free energy corresponding to the

slightly larger than proteinlike sequences. two-body and three-body interactions, respectively:
1 d/r2

IV. CONCLUSION V,= ( ) S S SR (n,m) R, (n,m)@D72
2m m nem 2

The main issue in this study was to show how different
sequences with disorder respond to external forces. w/ 1\d

We developed a generalized variational method to de- V3‘g o

. . . . . k#n#m
scribe stretching experiments of heteropolymers with im-

posed end-to-end distance. This was realized by constraining XR(k,n) V2R (k,n) @ V2R (n,m)"%2
the imposed end-to-end distance using Lagrangian multipli- —(d-1)/2
S . o XR, (n,m) . (A4)
ers. Within a Gaussian approximation, we can access all
monomer-monomer correlations of a heteropolymer. In the HP model, the interactions between different type of

The force-extension curve is also evaluated by the exaqtairs are described by the second virial coefficients
enumeration of all conformation with a fixed extension. Thevyp, vpp, anduHH.37'38The Flory mixing parametey is re-
obtained saw tooth patterns reveal the size of released blockated to the second virial coefficients by=vyp—(vpy
as well as the binding energy. The distance between the corvpp)/2. Here we use attractive interactions between differ-
secutive transitions and the magnitude of the force-drop proent monomer typeSvpp<vyp<0). This allows us to
vide additional insight into the primary structure of the het-“sense” the demixing transition of P monomers from H

Downloaded 31 Jan 2006 to 130.37.129.78. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



114904-9 Stretching a heteropolymer J. Chem. Phys. 122, 114904 (2005)

monomers by the applied force. The correlation functionsum ruleZ;.;G,(i,j)=—G,(i,i). We removed this degree of
R\(i,]j) represents the statistical average of the square of thieeedom(zero modg by eliminating the first row and col-
mutual distance between tlh andjth monomers. umn.

The next step is to compute the Euler equations by mini- By solving Eqs(A7) we obtain correlation functions for
mizing our expression for the free energy in terms of theall monomer pairs as well as the corresponding force at the
propagatoiG, (i, j), imposedz. The resultingf-z curve is the elastic response in

thermodynamic equilibrium.
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