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We present the ab initio potential-energy surfaces of the NH–NH complex that correlate with two
NH molecules in their 3�− electronic ground state. Three distinct potential-energy surfaces, split by
exchange interactions, correspond to the coupling of the SA=1 and SB=1 electronic spins of the
monomers to dimer states with S=0, 1, and 2. Exploratory calculations on the quintet �S=2�, triplet
�S=1�, and singlet �S=0� states and their exchange splittings were performed with the valence bond
self-consistent-field method that explicitly accounts for the nonorthogonality of the orbitals on
different monomers. The potential surface of the quintet state, which can be described by a single
Slater determinant reference function, was calculated at the coupled cluster level with single and
double excitations and noniterative treatment of the triples. The triplet and singlet states require
multiconfiguration reference wave functions and the exchange splittings between the three potential
surfaces were calculated with the complete active space self-consistent-field method supplemented
with perturbative configuration interaction calculations of second and third orders. Full
potential-energy surfaces were computed as a function of the four intermolecular Jacobi coordinates,
with an aug-cc-pVTZ basis on the N and H atoms and bond functions at the midpoint of the
intermolecular vector R. An analytical representation of these potentials was given by expanding
their dependence on the molecular orientations in coupled spherical harmonics, and representing the
dependence of the expansion coefficients on the intermolecular distance R by the reproducing kernel
Hilbert space method. The quintet surface has a van der Waals minimum of depth De=675 cm−1 at
Re=6.6a0 for a linear geometry with the two NH electric dipoles aligned. The singlet and triplet
surfaces show similar, slightly deeper, van der Waals wells, but when R is decreased the weakly
bound NH dimer with S=0 and S=1 converts into the chemically bound N2H2 diimide �also called
diazene� molecule with only a small energy barrier to overcome. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2079867�
I. INTRODUCTION

The last 15 years have seen great progress in the cooling
of neutral atoms in the dilute gas phase. Experiments at ul-
tralow temperatures have succeeded in producing Bose-
Einstein condensates of several bosonic atoms1–4 and, more
recently, of fermionic 40K atoms.5 Also molecular
condensates6–9 of 6Li2 and 40K2 bosonic molecules have
been produced, starting from ultracold 6Li or 40K fermionic
atoms, via magnetically tuned Feshbach resonances.10 Meth-
ods are being developed to obtain cold molecules without
having to first cool the atoms. Paramagnetic atoms or mol-
ecules can be trapped and cooled down to a few hundreds of
milliKelvins in a magnetic field.11 The magnetically trapped
species are cooled by elastic collisions with a cold helium
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buffer gas. Another cooling method is to use a Stark decel-
erator acting on the electric dipole moment of a molecule to
slow it down to a near standstill. A magnetic trap or an elec-
trical quadrupole trap can be used for the storage of the mol-
ecules, once they are at rest.12,13

A promising candidate for directly producing �ultra�cold
molecules is NH.12 The NH molecule in its 3�− electronic
ground state has both a magnetic dipole moment of two Bohr
magnetons and an electric dipole of 1.389 D.14 In the NH
family, 14NH and 15ND are fermionic whereas 15NH and
14ND are bosonic. Recent calculations on the collisions of
14NH�3�−� molecules with helium atoms15 have shown that
it is theoretically possible to cool the 14NH�3�−� molecule
with a cold helium buffer gas in a magnetic trap. The very
low temperatures required to obtain Bose-Einstein condensa-
tion can be obtained, in principle, through an evaporative

cooling process by NH–NH collisions. The NH molecules
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stay in the trap during this process only if they are in a low
magnetic field seeking state, i.e., NH�MS=1�. A collision
dimer consisting of two such molecules is in the
NH–NH�MS=2� substate of the quintet �S=2� state. How-
ever, the collisions can change the spin projection MS of the
quintet state, or they can change the total spin S to produce
triplet or singlet collision dimers.

An extra complication is that in the singlet and triplet
states the two monomers can form the chemically stable
N2H2 molecule. The occurrence of such a deep binding-
energy well will probably produce resonant dimer states that
are long lived and can form N2H2 when they get rid of their
energy by collision with a third species. Other possible loss
channels are the chemical reactions NH+NH→NH2+N
and NH+NH→HNN+H, which are both exothermic.16,17

One of the NH bonds must be broken in these reactions,
however, so they probably involve rather high barriers and
have very small rates at the low temperatures in the magnetic
trap.

A feasibility study of the evaporative cooling process
requires the knowledge of the cross sections for elastic and
spin-changing NH–NH collisions. These quantities can be
theoretically determined by means of time-independent scat-
tering theory, which in turn requires the knowledge of the
NH–NH intermolecular potentials in the different spin states.
Such a study was previously conducted on O2�3�g

−�
−O2�3�g

−�,18 with the use of potential surfaces from our
group.19–21 The present paper describes the computation of
the four-dimensional NH�3�−�−NH�3�−� potential-energy
surfaces �PES’s� for the quintet, triplet, and singlet states.
Section II defines the set of coordinates used to represent the
van der Waals complex and gives a brief overview of the
electronic structure methods used. Exploratory calculations
with valence bond theory are the subject of Sec. III. Section
IV is dedicated to the calculation of the full four-dimensional
PES’s with accurate molecular-orbital �MO�-based quantum
chemical methods and to the analytic representation of the
ab initio computed interaction energies.

II. ELECTRONIC STRUCTURE OF THE DIMER

According to the Aufbau principle and Hund’s rules, the
electronic ground state of the NH molecule is a 3�− state.
Two unpaired � electrons are in nonbonding 2p orbitals on
the N atom and the triplet spin state is associated with the
�x

1�y
1 or, equivalently, the �+1

1 �−1
1 configuration. In the dimer,

the electronic spin of monomers A and B couple and the total
spin is either a singlet, a triplet, or a quintet. At very large
separations these spin states are quasidegenerate. When the
wave functions of monomers A and B overlap, the different
permutation symmetry of the dimer wave functions imposed
by the Pauli principle for the different total spin states leads
to different intermolecular exchange effects and the degen-
eracy is lifted. The most direct way to compute these ex-
change effects is by the valence bond �VB� method,22,23

which starts from the many-electron wave functions of

the free monomers, imposes the correct many-electron
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permutation symmetry, and properly deals with the nonor-
thogonality of the MO’s on different monomers. This VB
method was used in our first exploratory calculations. Both
weak noncovalent interactions and the formation of covalent
chemical bonds can be well understood with this method.
Refinements of this simple VB treatment allow the relaxation
of the monomer MO’s in the dimer, either by mixing with
MO’s on the same monomer or by mixing with MO’s on the
other monomer as well. We applied the valence bond self-
consistent-field �VBSCF� method24 implemented in the
TURTLE program25,26 as a part of the GAMESS-UK package.27

With this program it is possible to control the mixing be-
tween monomer MO’s in the optimization process.

The system under study is expected to be a van der
Waals complex with large amplitude motions. Jacobi coordi-
nates are used to describe the geometry of the dimer, see
Fig. 1. The NH molecule is treated as a rigid rotor and its
bond length was fixed to the experimental equilibrium
value28 re=1.0362 Å. The potential-energy surfaces depend
on the four coordinates: R, �A, �B, and �. The coordinate R is
the length of the intermolecular vector R which points from
the center of mass of the HANA diatom to the center of mass
of the HBNB diatom. The angles �A and �B are the angles
between the NH monomer axes, pointing from H to N, and
the vector R. They range from 0 to �. The � coordinate is
the dihedral angle between the planes through the vector R
and the two NH bond axes. This angle take values between
−� and �.

The group of feasible permutation-inversion �PI� opera-
tions of this complex contains four elements: the identity,
space inversion, the simultaneous permutation of the two N
and H atoms, and the product of the latter operation with
inversion. Equivalent points are described in Table I. This
symmetry reduces the computational effort because only
points with �A+�B�� and with � between 0 and � are

FIG. 1. Coordinates used to describe the NH�3�−�−NH�3�−� complex. The
HANA diatomic molecule is in the �Ox ,Oz� plane. �A and �B are the angles
between the axes of the diatomic molecules and the Oz axis. � is the dihe-
dral angle between the �HBNB ,Oz� plane and the �Ox ,Oz� plane.
required.

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



184302-3 NH–NH interaction J. Chem. Phys. 123, 184302 �2005�
Complete four-dimensional PES’s were computed with
the MOLPRO program29 by the supermolecule approach. The
interaction energy V was computed with the counterpoise
correction method of Boys and Bernardi,30

V�R,�A,�B,�� = EAB
DB�R,�A,�B,�� − EA

DB�R,�A,�B,��

− EB
DB�R,�A,�B,�� . �1�

Both the dimer and monomer energies are calculated in the
dimer basis �DB�. The high-spin quintet state can be de-
scribed at the Hartree-Fock level with a single Slater deter-
minant and the spin-restricted coupled cluster method with
single and double excitations and a perturbative treatment of
triples �RCCSD�T�� �Refs. 31 and 32� is employed to recover
a large part of the electron correlation energy. The triplet and
singlet states have to be described with a multireference
wave function and complete active space self-consistent-field
�CASSCF� theory followed by second- or third-order pertur-
bation theory ��CASPT2� or �CASPT3�� �Ref. 33� to include
excited configurations was used. Also the quintet interaction
energies were computed by the latter method, so that we
could use the RCCSD�T� results for the absolute interaction
energies and the CASPT2 or CASPT3 results for the energy
differences between the different spin states. As explained
above, these energy differences are determined by short-
range exchange �overlap� effects. The long-range electro-
static, induction, and dispersion interactions are probably
very similar for the different spin states. The RCCSD�T�
method is expected to be better especially for the dispersion
interaction.

III. VALENCE BOND CALCULATIONS

The MO’s obtained from a Hartree-Fock calculation of
the NH monomer with an aug-cc-pVTZ basis set34 were used
as starting orbitals in our VBSCF calculations. Three variants
of VBSCF were considered. In the first variant no optimiza-
tion of the MO’s is performed; the MO’s of a monomer
cannot adapt to the presence of the other monomer. In the
second variant, called VB with optimized monomer orbitals,
the MO’s of each monomer are allowed to mix with other
orbitals on the same monomer only. In the third variant a full
optimization of the MO’s is performed and the orbitals of
each monomer can mix with all other orbitals of both mono-
mers. In all of the VB functions the �x and �y orbitals on
both monomers remain singly occupied, so there are four
unpaired electrons. Coupling of the SA=1 and SB=1 spin
functions of the monomers gives the spin functions for these
electrons: ���� in the quintet �S=2� state of the dimer with

TABLE I. Equivalent points for a diatom���-diatom��� potential.

PI operation R �A �B �

E R �A �B �

E* R �A �B −�

PAB R �−�B �−�A �

E*PAB R �−�B �−�A −�
MS=2, ����−���� for the simplest VB function of the
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triplet �S=1� state with MS=0, and ����+����− 1
2����

− 1
2����− 1

2����− 1
2���� for the �S=MS=0� singlet VB

function, where � and � are the one-electron spin-up and
spin-down functions. Each of the spin product functions
yields a Slater determinant in the many-electron VB wave
function, hence it is clear that only the quintet function can
be written as a single determinant.

In the early papers21,35 on the O2�3�−�−O2�3�−� poten-
tials only the first variant of the VB method was used. The
singlet, triplet, and quintet PES’s were described by

VS�R,�A,�B,�� = V̄�R,�A,�B,�� + J�R,�A,�B,��

��S,MS�ŜA · ŜB�S,MS� . �2�

The weighted average potential V̄ is defined as

V̄�R,�A,�B,�� = 5
9VS=2�R,�A,�B,�� + 3

9VS=1�R,�A,�B,��

+ 1
9VS=0�R,�A,�B,�� , �3�

and the second term that represents the splitting between the
three surfaces contains the so-called Heisenberg Hamiltonian

JŜA · ŜB.19 The operators ŜA and ŜB are the spin operators on
monomers A and B and the Heisenberg exchange parameter
J depends on the intermolecular coordinates. Here we com-
puted the weighted average and the splittings for the NH–NH
dimer for two different geometries, a linear one with all the
three angles �A, �B, and � equal to zero and a nonlinear one
with �A=40°, �B=60°, and �=90°.

All of the three VB variants were applied, as well as the
CASSCF method with a minimum active space: four elec-
trons in the four half-occupied MO’s, denoted as
CASSCF�4,4�. In Fig. 2 we can see that the more the orbitals
can relax the lower is the average energy, as required by the
variation principle. The CASSCF�4,4� calculation and the
fully relaxed VB result are not distinguishable in this graph.

ˆ ˆ ˆ2 ˆ2 ˆ2

FIG. 2. Weighted average potential �5Vquintet+3Vtriplet+Vsinglet� /9 for
�A=�B=�=0°. The valence bond self-consistent-field method was used
without optimization, with optimization on monomers only, and with full
optimization. The CASSCF calculation corresponds to an active space gen-
erated by four electrons in four orbitals. Ab initio points were determined for
R=5.7, 5.9, 6.3, 6.7, 7.1, 7.5, 8.0, 9.0, 10.0, and 12.0a0.
It is easily derived by writing SA ·SB= �S −SA−SB� /2 and
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using the fact that the monomer spin functions are eigenfunc-

tions of ŜA
2 and ŜB

2 with SA=SB=1 that according to Eq. �2�
the splitting between the triplet and singlet dimer energies
equals J�R ,�A ,�B ,��, while the splitting between the quintet
and triplet energies equals 2J�R ,�A ,�B ,��. Hence, if the
splittings between the three spin states were given by the
Heisenberg Hamiltonian the ratio r defined by

r�R,�A,�B,�� =
VS=2�R,�A,�B,�� − VS=1�R,�A,�B,��
VS=1�R,�A,�B,�� − VS=0�R,�A,�B,��

�4�

would be exactly equal to 2 for all geometries. In Fig. 3 we
see that this is the case in the first variant with no optimiza-
tion of the MO’s, except for very short distances R. How-
ever, for the two VB variants with optimized MO’s and for
the CASSCF calculation the ratio r deviates substantially
from 2 and depends more strongly on the dimer geometry.
Hence, we should conclude that the differences in the inter-
action energies of the different spin states cannot be accu-
rately reproduced by the Heisenberg form of Eq. �2�. The
figures show only the results for the linear geometry with
�A=�B=�=0; the results for the other, nonlinear, dimer ge-
ometry for which we obtained VB results are qualitatively
similar and support the above conclusion.

In the early studies on the O2�3�−�−O2�3�−� dimer it
seemed possible to represent the splittings between the three
spin states by a Heisenberg Hamiltonian,19 but we have evi-
dence now that this is no longer accurate when the VB
method is improved or when the interaction energies are ob-
tained from another method that allows relaxation of the
monomer MO’s.

IV. FOUR-DIMENSIONAL POTENTIAL-ENERGY
SURFACES

A. Active space, basis sets, and grid of geometries

The four-dimensional PES’s of the singlet, triplet, and
quintet spin states were computed by accurate MO-based

FIG. 3. Ratio �Vtriplet−Vquintet� / �Vsinglet−Vtriplet� for �A=�B=�=0°. For de-
tails, see Fig. 2. Ab initio points were determined for R=4.0, 4.5, 5.0, 5.3,
5.7, 5.9, 6.3, 6.7, 7.1, 7.5, 8.0, and 9.0a0.
methods. The quintet state is a high-spin open-shell state and
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can be treated by the RCCSD�T� method. The singlet and
triplet state must be described by multireference wave func-
tions. We computed the singlet, triplet, and also the quintet
state with the CASSCF�4,4� method. The active space is
composed of the four orbitals which are half occupied in the
quintet state. The dynamic correlation is recovered using the
CASPTn method,33 with n set to 2 or 3. This method is in
general nearly but not exactly size extensive.36 With our ac-
tive space, the wave functions are linear combinations of the
antisymmetrized products of the open-shell Slater determi-
nants describing the two NH molecules in their triplet ground
states. The use of the g4 method37 gives size-consistent re-
sults. We faced convergence problems in the perturbation
treatment, but this problem disappeared with the use of a
shift level equal to 0.4. In either case �coupled cluster or
perturbation theory�, the frozen-core approximation is used.
Usually, a larger fraction of the dispersion energy is recov-
ered from coupled cluster RCCSD�T� calculations than from
the perturbation-theory-based CASPTn methods. The ex-
change terms that are responsible for the splittings between
the different spin states are expected to be well reproduced at
the CASPTn level. Therefore, we do not use directly the
CASPTn energies for the singlet and triplet surfaces, but we
obtain these surfaces by adding the splittings between the
singlet and triplet states and the quintet state calculated at the
CASPTn level to the quintet surface obtained from
RCCSD�T�,

Vn
S = VCASPTn

S − VCASPTn
S=2 + VRCCSD�T�

S=2 , �5�

with n=2 or 3.
The electronic calculations were performed using an

aug-cc-pVTZ basis on the N and H atoms,34 augmented with
bond functions located at the midpoint of the intermolecular
vector R �exponents s , p: 0.9, 0.3, and 0.1; d , f: 0.6 and 0.2;
and g: 0.3�.

The interaction energies were computed for R=4.0, 4.5,
5.0, 5.3, 5.7, 5.9, 6.3, 6.7, 7.1, 7.5, 8.0, 9.0, 10.0, 12.0, 14.0,
16.0, 17.5, 20.0, 25.0, and 30.0a0. The angles �A and �B

range from 0° to 180° in steps of 20°, and additionally adopt
the value of 90°. The � angle ranges from 0° to 180° in steps
of 22.5°.

B. Analytic representation of potential surfaces

The PES for each spin S is represented by the following
expansion in internal �or body-fixed� dimer coordinates:

V�R,�A,�B,�� = �
LA,LB,L

	LA,LB,L�R�ALA,LB,L��A,�B,�� , �6�

with coefficients vLA,LB,L�R� depending on R. The angular

functions are defined as
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ALA,LB,L��A,�B,�� = �
M=−min�LA,LB�

min�LA,LB� 	LA LB L

M − M 0

CLA,M��A,�A�CLB,−M��B,�B�

= �
M=0

min�LA,LB�

�− 1�M	LA LB L

M − M 0

ALA,LB,M��A,�B,�� , �7�
where CL,M�� ,�� are the Racah-normalized spherical har-
monics, and the difference between the azimuthal angles of
the two monomers is the dihedral angle �=�A−�B. The
“primitive” angular functions are

ALA,LB,M��A,�B,�� = PLA,M�cos �A�PLB,M�cos �B�cos M� ,

�8�

where PL,M�cos �� are the Schmidt seminormalized associ-
ated Legendre functions defined for M 
0 as

PL,M�cos �� = ��2 − �M,0�
�L − M�!
�L + M�!�1/2

�1 − cos2 ��M/2

�
dM

d�cos ��M PL�cos �� , �9�

and PL�x� are the usual Legendre polynomials defined in
Ref. 38. Spherical harmonics are related to these associated
Legendre functions as

CL,M��,0� = 
�− 1�MPL,M�cos ��/�2, for M � 0

PL,M�cos �� , for M = 0

PL,−M�cos ��/�2, for M 
 0.
�

�10�

It is also possible, of course, to expand the potentials directly
in terms of the primitive functions,

V�R,�A,�B,�� = �
LA,LB,M

	LA,LB,M�R�ALA,LB,M��A,�B,�� .

�11�

We will briefly call this the LLM expansion, while Eq. �6�
will be called the LLL expansion. The LLL expansion has the
advantage that the coefficients vLA,LB,L�R� are invariant under
rotation of the coordinate frame. Hence, this expansion can
easily be transformed to space-fixed coordinates.

Both expansions are in terms of orthogonal angular func-
tions, and therefore each expansion �or Fourier� coefficient
vLA,LB,M�R� or vLA,LB,L�R� can be looked upon as an overlap
integral between the expansion function ALA,LB,M��A ,�B ,��
or ALA,LB,L��A ,�B ,�� and the function to be expanded. This
implies that the expansion coefficients can be obtained by
numerical integration on a Gauss-Legendre quadrature grid
for the angles �A and �B, and an evenly spaced grid for �.
For the LLL expansion the number of � grid points must at
least be equal to the number of �A and �B grid points, which
number must at least be equal to max�LA ,LB�+1. For the
coefficients of the LLM expansion of Eq. �11� the integrals

over �A, �B, and � can be carried out independently. The
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required number of � grid points, max�M�+1, is smaller
than the number of �A and �B points when the range of M is
restricted to be smaller than min�LA ,LB�. Moreover, the LLM
expansion is computationally less expensive due to the ab-
sence of the summation over M and of the 3j symbol in the
primitive functions of Eq. �8�.

Since for the smallest values of R the potential becomes
extremely repulsive for certain orientations of the NH mono-
mers one would need terms with very high values of LA and
LB in the expansion. To avoid this, the potential was damped
in these strongly repulsive regions by means of a tanh func-
tion up to a value Vmax, as in Ref. 39,

Ṽ = �V , for V � V0

V0 + �−1 tanh���V − V0�� , for V � V0,
� , �12�

where ���Vmax−V0�−1. With this scheme, the damped po-

tential Ṽ is continuous around V0 up to the second derivative.
Care was taken to use sufficiently high values of V0 and
Vmax, so that the potential was affected only in regions that
are not of any practical importance in bound state and scat-
tering calculations. The actual values used were V0=0.1
Eh=21 947.4 cm−1, and Vmax=2V0.

After some experimentation with direct least-squares fit-
ting of the expansion to the ab initio points, which produced
less accurate results, we developed the following procedure.
For each value of R on the ab initio grid we evaluated the
coefficients vLA,LB,M�R� in the LLM expansion by numerical
quadrature of the “overlap integral” of the expansion func-
tion ALA,LB,M��A ,�B ,�� and the potential V�R ,�A ,�B ,��. For
each of the nine equally spaced ab initio grid points �, the
potential was first obtained on a 17�17 Gauss-Legendre in-
tegration grid in �A and �B by means of a two-dimensional
cubic spline interpolation of the 11�11 evenly spaced
ab initio points ��A ,�B�. This interpolation method is en-
coded in the interp2 function of the MATLAB program
package.40 The coefficients vLA,LB,M�R� were thus computed
for all values of LA and LB up to 10 inclusive, and maximum
M value equal to 6.

Once the coefficients vLA,LB,M�R� in the LLM expansion
were obtained, the coefficients vLA,LB,L�R� in the LLL expan-
sion were computed from the equation,

	LA,LB,L�R� = �2L + 1� �
M=0

min�LA,LB�

�− 1�M�2 − �M0�

�	LA LB L

M − M 0

	LA,LB,M�R� . �13�
This equation follows from the “inversion” of Eq. �7�, with
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the use of the known properties of 3j symbols.38 The expan-
sion coefficients vLA,LB,L�R� vanish unless LA+LB+L is even.
It should be noted that for given LA and LB, the number of L
values with even LA+LB+L allowed by the triangular rela-
tion is equal to the number of non-negative M values.

Finally, the angular expansion coefficients vLA,LB,L�R�
were fitted as functions of R by means of the reproducing

FIG. 4. Minimum of the quintet, triplet, and singlet surfaces VS=2, V2
S=1, and

V2
S=0 as a function of R, obtained by scanning over the angles �A, �B, and �

for each value of R.
Downloaded 25 Nov 2005 to 131.211.155.87. Redistribution subject to
kernel Hilbert space �RKHS� method41,42 with the reproduc-
ing kernel for distancelike variables. The dominant ��R−3�
contribution to each of the potentials VS in the long range is
given by the dipole-dipole interaction with LA=LB=1 and
L=2. All contributions with L=LA+LB and L
5, which de-
cay slower than the leading induction and dispersion terms
�R−6, were fitted with RKHS parameter m=LA+LB, so that
they decay as R−LA−LB−1 �Refs. 41 and 42� beyond the outer-
most grid point. All expansion coefficients with L�LA+LB

or LA+LB+1
6 were fitted with RKHS parameter m=5 and
decay as R−6 for very large R. The smoothness parameter n
was always 2.

In order to test the accuracy of the analytic representa-
tion we computed 300 additional arbitrarily chosen ab initio
points. The difference between the representation and the
ab initio values is about 0.7% on average, relative to the
mean absolute value of the potential in a given distance
range �with ranges of 1a0�. Only for the shortest distance
range from 4 to 5a0, where the potential becomes extremely
anisotropic, the error in the angular expansion becomes
larger: 4%–5%.

As shown by Eq. �5� the potential of the quintet state
was directly derived from RCCSD�T� calculations, while for
the singlet and triplet states the potentials were obtained
from the quintet potential by adding the exchange splittings
obtained from both CASPT2 and CASPT3 calculations. All
of these five potentials were represented analytically. The

FIG. 5. Cuts of the quintet potential-
energy surface VS=2 �in cm−1� for
�=0° and different values of R.
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FORTRAN codes of the fitted potentials are available from the
authors upon request.

C. Results

A first impression of the potential-energy surfaces of all
spin states is obtained by plotting the lowest energy obtained

TABLE II. Characteristics of van der Waals minima and transition states.

R
�a0�

�A

�°�
�B

�°�
�
�°�

Energy
�cm−1�

van der Waals minimum
Quintet

VS=2 6.60 0 0 0 −675
Triplet
V2

S=1 6.53 0 0 0 −702
V3

S=1 6.53 0 0 0 −700
Singlet

V2
S=0 6.49 0 0 0 −718

V3
S=0 6.50 0 0 0 −714

Transition state
Triplet
V2

S=1 6.09 48 39 180 −609
V3

S=1 6.04 52 43 180 −586
Singlet

V2
S=0 6.17 39 31 180 −660

V3
S=0 6.13 43 35 180 −635
Downloaded 25 Nov 2005 to 131.211.155.87. Redistribution subject to
by scanning over the angles �A, �B, and � for each value of
R. The result is shown in Fig. 4. The quintet state has the
typical shape of the intermolecular potential of a hydrogen
bonded complex, with a well depth De=675 cm−1 at Re

=6.60a0. The minimum corresponds to a linear geometry
with the two NH electric dipoles aligned. Looking also at the
potential we can conclude that the behavior of the quintet
state is dominated in the long range by dipole-dipole inter-
action and in the short range by repulsive exchange forces.

FIG. 6. Orientational dependence of the interaction energies VS=2, V2
S=1, and

V2
S=0 �in cm−1� of the quintet, triplet, and singlet states for R=6.7a0,

FIG. 7. Cuts of the triplet potential-
energy surface V2

S=1 �in cm−1� for �
=0° and different values of R.
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Cuts of the quintet PES at �=0° and four intermolecular
distances R are given in Fig. 5. For distances larger than R
�6.0a0, the minimum is found at linear geometries. At short
distances, the anisotropy of the higher multipole electrostatic
interactions and of the exchange repulsion become predomi-
nant and the minimum corresponds to a nonlinear geometry.

Figure 4 shows that the three spin states nearly coincide
for large R, but that the exchange interactions cause a split-
ting between the three surfaces. The characteristics of the
van der Waals minima are given in Table II. The binding
energies are 675, 700, and 714 cm−1 at Re=6.60, 6.53, and
6.49a0 for the quintet, triplet, and singlet, respectively. The
strongest van der Waals binding always occurs for the linear
NH–NH dipole-aligned geometry. For most orientations of
the NH monomers the singlet is the most stable and the
quintet is the least stable, see Fig. 6, but for specific geom-
etries this energy order is reversed. The latter happens for
T-shaped dimers, for example.

The potentials of the singlet and triplet states obtained
from the CASPT2 and CASPT3 methods are not very differ-
ent. This is illustrated by the De values: for the singlet they
are 718 and 714 cm−1 for CASPT2 and CASPT3, respec-
tively, while the corresponding values for the triplet state are
702 and 700 cm−1.

Also the triplet and singlet PES’s first become repulsive
when R is decreased below 6.5a0. At still shorter distances,

for R smaller than 5.5a0, the singlet and triplet potentials

Downloaded 25 Nov 2005 to 131.211.155.87. Redistribution subject to
become strongly attractive, however, for specific orientations
of the molecules. This is in contrast to the O2�3�−�
−O2�3�−� van der Waals complex, where all of the PES’s
stay repulsive at short distance.21 Figures 7 and 8 reveal that
the strongest binding is obtained for �A=�B�90°. For large
values of R the singlet and triplet potentials are similar to
that of the quintet: the equilibrium structure corresponds to
aligned NH dipoles. At short distances the minimum hops to
a configuration with both diatoms nearly perpendicular to the
intermolecular axis.

The preferred configurations of the singlet and triplet
dimers at short distance can be related to the chemically
bound HNNH molecule, either called diimide or
1,2-diazene.43,44 The ground state of this molecule is a trans
form, whereas the cis form is about 0.33 eV higher.44 The
triplet state is nonplanar and is 1.98 eV higher than the trans
form.44,45 We optimized the geometries of these isomers at
the CASSCF�4,4� level and at the MRCI level �including the
Davidson correction�, with an aug-cc-pVTZ basis set, but
without bond functions. Table III displays the geometries of
these isomers. In the short range part of the singlet and triplet
intermolecular PES’s the two molecules are “on their way”
to form a chemically bound N2H2 molecule. This is con-
firmed by Fig. 9, where the �=180° global minimum corre-
sponds to the trans structure of the singlet, whereas the �
=0° local minimum corresponds to the cis form of the sin-

FIG. 8. Cuts of the singlet potential-
energy surface V2

S=0 �in cm−1� for �
=0° and different values of R.
glet. The triplet curve has a minimum at ��110°, which is
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similar to the nonplanar lowest triplet state of the N2H2 mol-
ecule. Note that the N–N distance of the chemically bound
N2H2 species, see Table III, is still considerably shorter,
however, than the smallest R value of 4a0 for which we show
the intermolecular potentials in our figures.

Table II gives also the transition states for the conversion
of the singlet and triplet van der Waals dimers into the
chemically bound HNNH molecule. They occur for R
�6.1a0 for both spin states and they have planar trans ge-
ometries with smaller angles �A and �B in the singlet state
than in the triplet state. Also the energy barrier is lower for
the singlet state than for the triplet state. The differences in
the transition state energies between the CASPT3 and
CASPT2 potential surfaces are somewhat larger than the cor-
responding differences in the van der Waals well depths.

V. CONCLUSION

The three potential-energy surfaces of the NH–NH com-
plex that correlate with two separate NH molecules in their

TABLE III. Structure of the lowest singlet and triple
theoretical and experimental results.

Coordinates CASSCF�4,4� MR

Singlet trans-diazene
rNN �Å� 1.257 1.2
rNH �Å� 1.011 1.0

�HNN �°� 106.9 106

Singlet cis-diazene
rNN �Å� 1.258 1.2
rNH �Å� 1.014 1.0

�HNN �°� 111.7 111

Triplet diazene
rNN �Å� 1.351 1.2
rNH �Å� 1.011 1.0

�HNN �°� 108.3 115
�HNNH �°�c 94.5 100

aEquilibrium structure found at a CASSCF level with
and a 6-31+G�d , p� atomic basis set.
bReference 47.
cDihedral angle.

FIG. 9. Minimum of the triplet and singlet surfaces V2
S=1 and V2

S=0 as a
function of � for R=4.0a0, obtained by scanning over the angles �A and �B
for each value of �.

Downloaded 25 Nov 2005 to 131.211.155.87. Redistribution subject to
3�− electronic ground state were determined ab initio and
represented in the form of an expansion in coupled spherical
harmonics. The quintet state has a typical hydrogen bonding
intermolecular potential with a long-range part dominated by
dipole-dipole interactions, and strongly anisotropic exchange
repulsion at short range. For the triplet and singlet dimer
states the situation is similar in the long- and intermediate-
range region; the relatively small differences between the
potentials of different spin states are due to exchange inter-
actions. A very strong attraction sets in for the singlet and
triplet at short distances, explained by the existence of the
diimide molecule. The application of these analytic potential-
energy surfaces in calculations of the bound states of the
NH–NH dimer is in progress. Calculations of the elastic and
inelastic NH–NH scattering cross sections relevant for the
feasibility of evaporative cooling of magnetically trapped
NH will be performed in the near future.
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