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The composition of a solid solution that is growing at conditions well away from equilibrium is not prescribed
by equilibrium thermodynamics, but is determined kinetically. It depends both on the surface kinetics and on
the transport of mass and heat to and away from the solidification front. In previous work, we have formulated
a model for the kinetic or nonequilibrium segregation taking place at the solidification front enabling the
construction of kinetic phase diagrams, which gives the growth composition of a solid solution as a function
of the liquid composition and undercooling at the surface. In the present work, we extend this model to
include both mass and heat transport, giving rise to effective kinetic phase diagrams. An overview of the
tendencies in the calculated effective kinetic phase diagrams is given by scanning a large part of the parameter
space, covering different types of materials, including metals, semiconductors, and molecular systems. We
find striking and characteric differences in the relative contribution of the various processes to the effective
segregation. For molecular mixtures, interfacial undercooling and heat transport limitation can be expected to
be much more important than for metal and semiconductor mixtures where mass transport limitation is
dominant.

1. Introduction solid liquid

Substitutional solid solutions are solid phases in which the
atomic or molecular positions belonging to a perfect periodic x;
structure are occupied by different species in a random*way. x p

|
They represent a quite important class of materials due their | Z
intrinsic possibility of tuning their properties by varying the 05 l
composition. Also, knowledge of the miscibility of different < x otk

species in the solid phase and, in particular, the role of the
kinetics during the growth process on the mixing is quite oL —L1— e

relevant for separation techniques with applications in the food D
and pharmaceutical industriés.

The equilibrium state of a mixed liquid/solid system, contain-

ing a liquid and a solid fraction, is completely fixed thermo- at the solidification front as a function of the interfacial
dynamically once the pure component properties and the excessindercooling and composition of the liquid phase. However,
Gibbs free energy, usually expressed in terms of a number ofthe segregation at the growth front will induce gradients in the
excess parameters, are kno%vh However, crystallizationis a  liquid phase, both in the concentrations of the components
kinetic process, and the growth composition, i.e., the instanta- involved and in the temperature. Components that are build
neous composition of the solid phase being formed at the surfacepreferentially in the solid phase will be depleted in the liquid
at large undercooling may deviate considerably from the phase directly at the interface, whereas rejected components will
composition according to the equilibrium phase diagram. Under accumulate. This is illustrated in Figure 1 for a binary system.
batch conditions the composition of the mother phase will The changes in the liquid concentrations at the interface will
change, and thus also the growth composition will change during induce diffusional fluxes of the components between the
the crystallization, leading to composition gradients in the solid interface and the bulk liquid phase, but it will also affect the
phase®’ These gradients may stay for very long periods due to interfacial segregation. Eventually, a steady state is reached,
the very low diffusion rate in solid phases, especially in where the incorporation rate at the interface is balanced by the
molecular solid phases. Hence, in such mixed systems, therate of transport for each component. Similarly, the heat of
equilibrium state will hardly ever be reached and the system crystallization produced at the interface, giving rise to a
will stay in a metastable state. A prediction of this nonequilib- temperature gradient between the interface and the bulk fluid
rium state requires a kinetic modeling of the crystallization phase, will be balanced by the diffusion of heat away from the
process, with first of all a description of the kinetic segregation interface. As for mass transport limitation, also heat transport

o
[ I

Figure 1. Schematic illustration of mass transport limitation.
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limitation will affect the interfacial segregation, which depends segregation and transport effects is particularly relevant for
on the temperature at the interface. (The term limitation refers molecular systems, which usually have relative laplsTr)
to the finiteness of the diffusion rates causing the gradients.) values, where is the bond energy anf, is the average melting
Thus, surface integration, mass transport and heat transport aréemperature. According to the LKS model, as well as the MC
all coupled. model, in such cases the interfacial segregation can deviate
In the past, kinetic segregation during the growth of a solid considerably from the equilibrium segregation already at moder-
solution has been studied theoretically using a lattice Monte ate undercoolings. When mass and heat transport take place
Carlo (MC) simulation modél? based on the Kossel modéit! relatively fast, eventually stimulated by stirring, such under-
or kinetic equation?13Mostly, the latter models are continuum  coolings can easily occur at the interface.
descriptions based on the MC model. These works focus on  For studying the interfacial segregation experimentally, the
the temperature dependence of the interfacial segregationcoupling with transport effects is quite important for the
without taking into account the effect of diffusion limitation. interpretation of the experimental data. Usually only the bulk
Opposite to that is the model of Burton, Prim, and Slichter properties are well-known, whereas the actual conditions at the
(BPS)“*which assumes near equilibrium at the growing surface, surface are much more difficult to access experimentally. Theory
i.e., the interfacial segregation is equal to the equilibrium provides additional, useful tools for a correct interpretation.
§egregation for the liquid compo'sit'ion.at the interface. It takes  \ya will refer to our model as the linear effective kinetic
Intoaccount mass _ transport limitation, but heat transport segregation (LEKS) model. It is described in detail in section
Ilm!tatlon Is neglected. This _has led to the_ famous BPS equation, 5 1, ‘section 3, effective kinetic phase diagrams (EKPDs),
which expresses the effective segregation as a function of thecalculated according to the LEKS model, are presented and

crystal growth velocity. Other work on ki_ne_tic_: segregatfon® . discussed. We conclude with a summary and discussion in
was focused on the low concentration limit in order to explain section 4

the observed high incorporation of dopants into silicon after
laser melting?®~22 These models, which integrate interfacial
segregation and mass transport in a semiempirical way, apply2- Theory
to regular dilute solutions and more or less successfully describe
the observed nonequilibrium segregation as a function of the
crystal growth velocit}#2325 after fitting one or a few
parameter(s). Recently, detailed studies of the interfacial kinetic
segregation, based on the Kossel model, have appé&aréd.

In these works, which apply to ideal, dilute solutions, relations

for effective segregation coefficients for different types of sites include a short recapitulation of it, which we think enhances

i.e., kink rr n Ik si r rived. - R
( T ' h - Step, te aEe, and bu stesr,]) are _del edd L for th the readability of the present work significantly and at the same
n the present work we propose a theoretical model for the .0 4ives us the opportunity to introduce the terminology.

effec_tive ki_neti_c segregation_ during grc_>vvth of a bina_ry solid Moreover, we have adopted a different, more general excess
solution which integrates the interfacial kinetic segregation, massenergy model, as described below.

transport limitation, and heat transport limitation. To our . o . L
knowledge, such a model that couples all three processes has 2.1. Linear Kinetic Segregation (LKS) Model. Considering

not been introduced previously. Furthermore, the model is not the ngWt.h (.)fa binary, mixed cr.ystal from a liquid mother phase,
restricted to dilute and ideal or regular solutions, but applies to NPneauilibrium thermodynamics tells us that t+he flux of a
a binary system of any composition and for any crystal lattice component from the liquid to the solid phase)’, and the
with known equilibrium mixing properties for the liquid and reverse flux,J;, are related by
solid phases. In our model the interfacial segregation is described
by the linear kinetic segregation (LKS) mod&Fwhich is based JF A"
on nonequilibrium thermodynamics and a linear dependence of —=eX ot
the growth rates of each of the individual components on their RT
absolute supersaturation. In this model, the fluxes from one
phase to the other are related by the principle of microscopic whereTs"fis the temperature at the surface aief"" = z*""
reversibility, which, strictly speaking, is only valid for near- — luis,gr is the difference between the chemical potential of
equilibrium. However, in MC simulations of the growth of a  componeni in the liquid phase at the Surfaqg‘l;swf, and that
binary crystal, based on.the qusgl model we find that the trends ¢ the growing solid phase,>®. Hence, the superscript gr
of the LKS model are in qualitative agreement with those of
the MC simulation. Basically, for increasing undercooling the
composition of the crystal tends toward, and eventually becomes
equal to, the composition of the liquid phase. More in detalil,
comparing the segregation as a function of the undercooling,
there are quantitative differences between the results from the
LKS model and those of the MC simulations. However, these
are relatively small as long as the various bond energies i
determining the surface kinetics in the MC model are not too R = Kia}’sur(l - eXF(RTsurf)) = Ki(a™" - a,'ﬂ&) = Kioi""
much different. In practice, this is often the case for isomorphous (2)
constituents forming solid solutions. A detailed confrontation
between the LKS model and the MC simulation model for a Whereoisurf _ a},surf _ a:g; is the absolute supersaturation for
binary system of arbitrary composition will be given elsewtre.  componenti at the surface and where we used the familiar
As we will show, a coupled description of the interfacial expression for the chemical potential difference, being

As already mentioned, the effective segregation during the
growth of mixed crystals requires a coupled description of the
interfacial segregation, mass transport, and heat transport. In
our description of this problem, the first part, i.e., the interfacial
segregation, is based on the LKS model. Although the LKS
model has been decribed elsewh&&we have decided to

1)

|, surf

refers to the growing solid phase. Takid@ equal toKig>",

in accordance with chemical reaction rate theory, vidtha
kinetic constant (in m? s~2) anda*""" the activity of compo-
nenti in the liquid phase at the surface, the net flux of

componeni, R = Ji+ — J,, is derived to be

sur
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a:,sur

Aluisurf: R-I-surfln(l_gr) (3)
ai:eq

with a}jg; the equilibrium activity of componentin the liquid
phase with respect to the growing solid phase of composition
X9 (= 1 — %), which we are looking for. According to
standard thermodynamics, the equilibrium activity of component
i in the liquid phase with respect to a growing solid phase of
compositionx; " is given by

8&=a7C (") @
whereC;(TsU") is equal to
AH AT Ac, (T‘ ) AT.SW)
C(T™ ~ ex . ' Pin|— ) — — 5
l( f) ;{ R-I—i-l-surf R \ Tsurf Tsurf ( )

whereT; andAH; o are the pure component melting temperature
and melting enthalpy &f;, respectively, and\ T = Tsurf —

Ti. Usually, the term proportional thc,j = C)p; — c;i, i.e., the
difference in heat capacity between liquid and solid phase for
the pure componerif is already quite small within the typical
temperature range not too far from the melting temperatures.
Further corrections, proportional 8a\c, /9T, are negligible in
most cases. The activity of componeirt phaseP is a function

of the composition of that phase through the relation

&=y X

(6)
wherex’ is the mole fraction ang’ the activity coefficient of
component, which is also composition dependent. The latter
quantity is related to the excess mixing Gibbs free energy in

phase PGP by
aGP,exv)
aNiP P,T,l\](jzi)

whereNiP is the amount (in moles) of compondnth phaseP.

To describe the excess mixing Gibbs free energy, we have
adopted the so-called Redlielister expansiori! which for a
binary system reads

RTING,) = @)

_ PP P
=N"X] X5

n=

GP,exc gs,exc(l _ 2X;)n (8)

whereNP = 5 NiP is the total number of moles in phaBeln
general, the expansion coefficieng§ are temperature de-
pendent and contain an enthalpy and an entropy part accordin

to g, ¢ = h2®¢ — T4** with h”**° and s, **° both tempera-

ture dependent. However, usually this temperature dependence

is weak within the temperature range of interf&@sg

From eq 2 and subsequent equations, it follows that the
increase of the total amount of solid particlesN’, is a
function of the growth composition, i.e.,

S

dN; r
& = R0 (©)

For a steady state it holds ths} = x*%" NS, whereNs = 3 N/,
After substitution of this relation into eq 9 for= 2 we obtain
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S

dt

N%(Rz ~9R) (10)

whereR = dN¥dt = }; R is the total growth rate. The stable
steady-state solution(s) of this differential equation gives us the
growth composition(s) we are looking for. They are given by
the solutions of

RS
RG)

or
=X

(11)

which in addition have to fulfill the common stability criterion
for first order differential equations, being in this case

d
—R

SRR <0
2

12)

at the solution. In most cases, for an undercooled binary system,
eq 11 has either one solution, which corresponds to a stable
steady state, or three solutions, of which only two fulfill the
stability criterion? In the latter case, two solid phases with
different compositions may grow simultaneously if nuclei are
available, in which case we speak of kinetic phase separation.
Typically, this can occur for eutectic or peritectic systems.

The solutions of eq 11 are equivalent with the solutions of
the equation

surf

ar
X _ Koy
ar
X3

l,surf l,surf __
1 X

l,surf I,surf
Ko(yz % —

17Ty (T™)
737 %ICT™)

_ Ky(y

surf
Koo,

(13)

which is the form in which the LKS model was presented
originally.2®

2.2. Mass Transport Limitation. To find the effective
segregation, we have to find a relation between the liquid
composition at the surface and that of the bulk liquid phase.
To achieve this, we will use basic results from the theory of
hydrodynamics for fluids adjacent to a moving and absorbing
interphase. For an overview of this theory with a focus on crystal
growth we refer to ref 34.

For a fluid system with convection and not too high viscosity,
a condition which is usually well met in crystal growth, a
relatively thin, so-called laminar layer is formed in front of the
surface, say of width., in which the flow velocity drops from
its bulk value at a distancé. from the surface to zero
immediately at the surface, obeying the no-slip condition.
Typically, in the case of crystal growth we may have convection
caused by stirring or, when no stirring is applied, by free
convection, due to temperature and composition gradients in
combination with gravity, the so-called buoyancy-driven con-

Yection. The laminar layer width\., depends on the geometry

and scale of the system, the kinematic viscosity #/p, with

77 the viscosity andp the mass density, and on the bulk
convective flow veIocity,yE“'k. Generally,A. is a function of
the dimensionless so-called Reynolds numligs = o2""L/v
wherelL a characteristic linear dimension of the flow sytem,
e.g., the diameter of the crystallites. Good estimateafdrave
been derived for the most common geometries occurring in
crystal growth. In particular, for a rotating disk geometry,
appropriate for Czochralski growti: has been derived to be

4(1
w

1/2

A

c

(14)
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where w is the angular velocity. For a mixture, on top of solid-phase being created in that time interval, so thawill
convection, diffusion can take place, i.e., the transport of the be larger than one in this case. The “empty” volume being
individual components with respect to the average convective created is filled up by a rigid and almost immediate displacement
flow velocity. For each component, mass conservation is (with the velocity of sound) of the liquid phase toward the solid

described by the continuity equation phase to recover equality of the pressure everywhere. The
| solution of eq 19, satisfying the mentioned boundary conditions
oc . is given by
a_tl =— VJ, = — v — vy (15)
a@) =
whered! is the concentration of componen(in moles n13) chbutk - lsurf
andJ; is the total flux of componerit containing a convective syt 1 —— IA 5 (1 — exp(= vZ/D)) (21)
partJ©" = v, and a diffusive pard®". For a binary system, exp(-vAy/D)

J% is given by Fick’s first law: surf

wherec*""" = c(0) follows by substitution of eq 21 into eq 20.

For the mole fraction¢>"" = ¢/*"/clsurf, with ¢!suf = 5, ¢

diff _ !
JiT=-DbVve (16) the total concentration at the surface, this gives
whereD is the diffusion constant. Substitution into eq 15 yields -
aby ot Trone X% (gru )P — gP x09) exp(q, 5™
I i - ~Sur
i (94 (1 — dg) XPE, "))
a—t' = — v(dv,) + DV (17) d o m (22)

where we defined the density ratigif;= cs97c' s andg} oo

neglecting the usually small composition dependencd® of b/ SUf i bulk ! bulk .
Hence, the transport of a single component is coupled to the = C"/C<"" with 2= 5; 7. The parametety in eq 22

position and time dependent convective flow velocity. is the crucial parameter for mass transport limitation. It is
Generally, it requires considerable numerical effort to solve the defined as

transport equations (Navier Stokes) satisfying the appropriate DA
boundary conditions. However, for mass transport to (from) a O = _m (23)
surface, it was found that strong gradients occur only in a Dm

relatively thin boundary layer, similar as for convection. Owing heres (in m/s) i loci . b
to the similarity of the diffusive and the convective transport WNerev (in- m/s) is an average velocity constant given by

equations, a correlation exists between the width of the mass 12
transport boundary layenn,, andA;, namely ==Y KV (24)
D\1/3 1 \13 =
A== A= A 18
m (v) ¢ (NSJ ¢ (18) with VP9 the volume per particle of componentin the

growing solid phase. The quantiff'" in eq 22 is a weighted
whereNsc = v/D is the so-called Schmidt number. In general, supersaturation defined as
for liquid phases it holds thadsc = 1, in contrast to vapor phases

for which Ns¢ < 1, implying Am < A for liquid phases. For 2 K9 2 K9

many molecular liquidsAy is even between 1 and 2 orders of &=y ——0" = 5 ——(1 " — 1% %)
magnitude smaller thafs.. This conveniently implies that within = v = v

a distanceAn, from the surface we may neglect the first term (25)

on the right-hand side of eq 17. Then, assuming a 1-dimensional
geometry with a flat surface perpendicular to thdirection,
and using the moving boundary coordinate= z — ut, with v

According to the LKS model, the crystal growth velocity is equal
to v = » U, which implies the relation

the crystal growth velocity and = 0 being the position of the A
suface in the moving frame, eq 17 simplifies to q,0°" = Tm (26)
I 21
_Uﬁ= DE (19) If we sum eq 22 fori = 1 and 2 and us&;, + x, = 1 for
dz dz? each phase = (l,bulk), (I,surf) and (s,gr), we obtain a relation

for gq, which is
The solution of this equation has to fulfill two boundary

conditions, namely the conditiod(A) = ¢ and conser- o= O+ (@ — % — 1) exp @,0™"" )
vation of mass at the interface. The latter is expressed as d ~
P 1 — exp@,o™"
|
D% + gdUC:,surf: o (20) This equation givegg = 1 if gll qlensities are equal, as it should
dz1z=o0 be. The total molar density in a phageis equal toc® =

1IN, where V" is the average volume per mole in the

mix? mix

where the second term on the left-hand side is the advectivemixed phase, which can be written as:

term due to the motion of the interface into the liquid phase.
The chtorgd is a fa_lctor that_ corrects for dlfference§ m_molar V'; L= ZX.V.P + VP,exc(Xl’ %) (28)
densities. If the solid phase is more dense than the liquid phase, ,

as is usually the case, then the volume of liquid being absorbed

within a certain small time interval is larger than the volume of WhereViP is the partial molar volume of the pure componéent
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in phaseP and VP#*the excess volume. In many casés®xc
is quite small and can be neglected. Then only the pure

Los and Matovic

phase and\p, = v/D), is the so-called Prandtl number. Similar
to the mass transport problem, we may solve eq 30 omitting

component specific volumes are required, and the density ratiothe convective term, but respecting the boundary condif{@n

between phasP andP' becomes
P

PP | PP
__Xl Vi) X% Vg
STV,

g = (29)

It can be shown that in the limit that the composition at the
surface takes the equilibrium concentraﬂon gt = X1eq1
and assuming equal densitigl; = gfoar = ga = 1, eq 22
becomes equivalent to the BPS equalﬁ‘unnentloned in the
Introduction.

An estimate of the kinetic constaiicould be obtained from
measured growth velocities. For a known (measured) growth
velocity v, the quantityg,,ds'" in eq 22 can be evaluated using
eq 26 for a known diffusion constant and an estimateAXgr
from egs 14 and 18. Then, for given liquid bulk composition

and temperature, eq 22, inserting eqs 27 and 29 for the density

factors, can be solved (numerically) simultaneously with eq 11
(or eq 13), giving the growth composition of the solid phase
and the composition of the liquid at the surface. At the same
time it provides the individual supersaturatioﬁ§’". Then,
assumingK; = K, as an often used reasonable approximation
for isomorphous components yielding solid solutigins; v/gsuf

can be determined using eqs 24 and 25.

Oncev is known, gy, can be determined using eq 23. Then,
the set of coupled equations, consisting of eq 22i fer2 (or
equivalentlyi = 1), including egs 27 and 29, eq 11 (or eq 13),
and the two stoichiometric relatiog x*%" = 1 andy 2 x*"" =

= Al) = Tibuk with the Z coordinate in the moving frame, as
already used above, aiitPU the bulk liquid temperature, which
can be taken as the applied temperature. Then, in a 1-d geom-
etry, neglecting the temperature dependendé efj 30 becomes

_dr T
UE_ szz zZ>0 (32)

The solution of this equation satisfying also the second boundary
conditionT(0) = v is given by
T(@z)=
Tl,bulk _ exp(_ql 5,surf)-|-surf _ (Tl,bulk _
T

_ exp(_ql ~surf)

T exp(— vZ/D})

(33)

forz >0 Whereq'T is the crucial parameter for heat transport
limitation defined as

(34)

implying oasuf = yAL/DL.
For heat transport in the solid phase, eq 30 directly simplifies
to eq 32, but with the superscript | replaced by s. The solution

1 can be solved for any bulk liquid composition and temperature, with boundary conditionT(— A3) = Tsbuk  with Tsbuk the
giving x*9" andx*""for i = 1, 2. This enables the construction temperature inside the solid phase at a distandrom the

of EKPDs for isothermal conditions, i.e., neglecting heat interface, is similar to eq 33, but with q'Tasurf replaced by
transport limitation. The nonisothermal extension of the LEKS  gsgsurf here

model is described in the next section.

2.3. Heat Transport Limitation. Under normal circum- DAS
stances encountered in crystal growth, energy conservation o = il (35)
within the liquid phase in good approximation reduces to a rather D}

simple transport equatiot,which is similar to eq 17 for mass

transport, namely: implying g3 = vA$/DI. The surface temperaturgsu

follows from the heat conservation boundary condition

c'c'pir —daV(v,T) — VI, = — g V(v,T) + KV°T
ot ! P dr T
(30) CIVAHY =T 0+ Fo=— K| + AT (36)
| @ dz {0 Z {210
whereJ, = — K'VT is the heat flux according to Fourier’s law

with K the thermal conductivity in the liquid phase. We note WhereJ and wa are the heat fluxes into the liquid and the
that in eq 30 we have neglected the contribution from radiation, solid phase respectively and whekeisdr = AHsSI(x;¥, Tsur)
which is usually small and can effectively be included in the is the molar, composition, and temperature-dependent melting
“normal” heat conduction, from which it is hardly distuiguish- enthalpy of the growing solid phase given by
able. In contrast to mass transport, heat can also be transported
via the solid phase. So, for the solid phase we have an equation
similar to eq 30, but without the convective term, singe= 0
within the solid phase.

Now we will discuss the heat transport in the liquid phase. where AHZ® = Hlexc is the difference in the partial
In analogy with the mass transport problem, for a system with oy agg enthalples of componénin the liquid and the solid
con\{ectlon .strong temperature gradients QCCLfr only W|.th|n a phase. To determinééyo = ks dT/dz],0, we have to assume
relatively thin, thermal boundary layer of widiky, which is values forAS and Ts®Uk. For this purpose we consider two
related toAc (and Am) by cases regarding to the situation of the crystallites. Either the

1\1/3 113 1\1/3 crystallite is floating in the fluid phase or it is attached to the
Al ~ (&) _ (i) A = (&) A wall, corresponding to homogeneous and heteregeneous nucle-
T v NP (9 D m

where D} = k‘/(c'c'p) is the thermal diffusivity in the liquid

AR = 35T (AH, o+ AHP + !/;ITSMACN dT") (37)
1

H_s,exc

31 ; . ; ; :
(31) ation, respectively. In the former case, since there is no cooling

source inside the crystallite, the temperature will be constant
throughout the crystallite and will be equal to the surface
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solid TABLE 1: Rough Bounds for the Most Important
Parameters of the LEKS Model Resulting from a Database
for Three Classes of Material$
metals semiconductors molecular systems
AHW/RTy 0.6-1.7 25-43 3.3-72.0
it R 2.3-4.7 2.6-4.6 12.0-250.0
AHw/C, (K) 50-800 800:-2200. 28-130.
Dm (10*cm/g) 4.5-55.0 4.6-8.4 0.003-1.8
D+ (cm/?) 0.18-1.55 0.6-2.1 0.00014-0.0012
Ac (cm) 0.034-0.090 0.09-0.23 0.13-3.30
L Am (cm) 0.058-0.16 0.0#0.13 0.018-0.075
At (cm) 0.371.10 0.7+-1.8 0.06-0.21
Z v (cm/s) 0.005 0.0005 0.00005
Figure 2. Schematic illustration of heat transport limitation. Temper- G0 (109 1.1-8.0 0.6-1.0 0.16-32.0
ature profiles forg = 0.1, 1.0, and 5.0 are shown in a situation where o (107%) 0.03-0.15  0.0034-0.0076 0.0551.20
a crystallite is sticking to the wall at a distandd = 4A7 from the 2The data for molecular systems refer to medium size molecules
solification front. We assumed th& = Dy, implying g3 = 4q;- ranging from benzene to fat molecules. The width of the convective

_ _ - ) boundary is based on eq 14, taking a stirring speed equal$015
temperature, |mplylngaO = 0. Then, substitution of eq 33into  rpm. The values ofjo* and qITUSU"f are based on the given crystal
eq 36 leads to growth velocitiesy, representing the order of magnitude of typical

experimentally observed velocities.

cAH

T =T 4 (1 — expC df Ns“”)) (38) presented here, Table 1 was used as a rough guide in the

p parameter space. We present effective kinetic phase diagrams

(EKPDs) for systems belonging to each of the three classes of
In the other case, if the crystallite is sticking to the waH systems. In all cases we assumed ideal miscibility in the liquid
should be taken equal to the wall temperatufé?', and phase, i.e.G'®x= 0. We note that what matters here mostly is

correspondinglyAs should be equal to the distance between the difference in free energy between liquid and solid phase,
the wall and the solidification front which increases during the so that a possible not-zero excess energy for the liquid phase
growth. Assuming that we may still use the steady-state solutioncan be put into the excess energy for the solid phase.

but with A3 slowly varying in time, and takingsbuk = Twall = Furthermore, we have neglected small contributions, ignoring
T'buk as the applied temperature, eq 36 leads to the temperature dependencies of the diffusivities and viscosities,
assuming equal liquid and solid heat capacities, Aep; = 0,
urf — phbulk 4 and equal molar densities, i@, = grom = 1. We also
CAH (exp@o™") — 1)(1 exp(—q;5°") assumed thaiK, = Ky, implying & = o.
——— s (39) With the given typical crystal growth velocities in Table 1,
c'c, exp@a™ — 1) + c’c(1 — exp(- ar5™") the quantitygno can be estimated, and from thig, can be

determined as explained at the end of section 2. It is important

Typical temperature profiles according to eq 39 for different {5 note that, due to the correlation between the boundary layers
values of the parametef, with ot = 4c andA7 = 4Ar are  for mass and heat transport, the ratio betwggrandd, is a
shown in Figure 2. As shown, the motion of the interface material property. So even with the lack of an accurate value
introduces an asymmetry in the profiles which is convex at the g, Om, due to the uncertainty ifr and/or Ay, once we have
liquid side and concave at the solid side, implying a larger assumed a value for it, within a reasonable range, the value of
gradient, i.e., larger heat flux, at the quuid side. This difference qIT is fixed due to eq 31 by quantities that are usually well-
in the fluxes further increases whesj > Ar. Eventually, after  nown or easily accessible. This allows for a sensible, compara-
some time during the growtiA; > Ay and J5, becomes tive study of the relative contributions of mass and heat transport
negligible compared toJ' o Thus, also in thls case the limitation to the effective segregation for different materials.
dominant heat flux will be that into the liquid phase, implying More specifically, from our database we find that the ratio
that eq 38 should be a good approximation Tt for both dr/qm lies within the interval [0.0080.04] for most metals,
cases regarding the situation of the crystallites. Therefore, for within [0.005-0.01] for semiconductors and within [0.68.7]
the calculations presented in the next section we used eq 38for molecular systems. Thus, for molecular systems this ratio

Summarizing, including heat transport limitation, the LEKS s about an order of magnitude larger than for both other
model is completed with one more equation, eq 38 including systems. In the figures presented in this section we use the
eq 37, and one extra unknowr!", to be solved together with  dimensionless bulk liquid temperatuée= T/T, and, accord-

the equations mentioned at the end of section 2.2. ingly, the relative bulk undercoolingd, being defined as:
3. Results AT Teq— T"bulk
To explore the parameter space of the LEKS model, we have AG = Tz - T, (40)

made a limited database covering different classes of materials,

including a selection of metals, semiconductors, and medium- whereT; is the melting temperature of the component with the
sized organic molecular systems. The latter group was restrictedhighest melting temperature, which is component 2 in all cases,
to n-alkanesif < 20), simple aromatic systems, and fat systems. and wheréTeqis the equilibrium temperature for the given bulk
Many mixtures of such systems show good miscibility in the liquid mixture.

solid phasé?36-38 Table 1 gives a list of lower and upper Figure 3 shows the EKPDs according to the LEKS model
bounds for the values of the relevant parameters for each groupfor a typical medium size molecular system, with thermody-
of materials resulting from our database. For the calculations namic properties given in the figure caption, for three relative
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q,=5,9,=0.5 Ge-Si
T T T

X, X, X, Figure 4. Calculated EKPDs (full lines) for binary mixtures of Au/Ni
(left column of graphs) and Ge/Si (right column of graph) for two
relative undercoolings oA = 0.05 andA# = 0.2, with and without
including mass and heat transport limitation, as indicated by the shown
values ofgm and q'T. The dotted lines give the equilibrium phase
diagrams.

Figure 3. Effective kinetic phase diagrams (full lines) for a binary
model system of medium sized molecules with ideal miscibility, i.e.,
Gs®¢ = 0. The used pure component data Até; /RT, = 18, AHz o

RT, = 20,¢, /R = q, /R = 20.0, andT/T, = 0.9. The vertical axis is

in units of the relative temperatu® = T/T.. Results are shown for

different relative undercoolinga@ for the case without transport TABLE 2: Pure Component Thermodynamic Properties

limitation (graphs a, b, and c), the case with only mass transport ; ; exc
limitation (graphs d, e, and f), and the case including both mass and in((j_l_llD|_+r]1(_arr;)sllzo)ncl)(?st?]eE)((:%erﬁzoEnré%rgyolfD?:rigrlPr%th; aﬁgl—{“’ (Tav
heat transport limitation (graphs g, h, and i), as also indicated by the -

values ofgn and ¢ at the top of each column of graphs. The surface Au Ni Ge Si EEE SSS
kinetic liquidus (dashed line) gives the composition of the liquid phase T, 1337 1728 1211 1687 315.35 345.65

at the surface. The dashed-dotted line is a help line giving the AH/RT, 1.12 1.20 3.16 3.58 56.45 67.57
temperature at the surface. The dotted lines represent the equilibrium C'p/R 3.06 3.14 3.82 3.27 216.5 216.5
phase diagram. IR Ty 0.887 0.0 0.0

bulk undercoolingsAd. To illustrate the magnitude of the To investigate the tendencies for different classes of materials,

various contributions to the effective segregation, results are we have calculated EKPDs for three binary mixtures from each
shown of calculations (i) without including transport limitations ~ class included in Table 1, using realistic values of the
(i.e., gm = q'T = 0), (i) including only mass transport Parameters. _The_mixtures we ha_tve chosen are the meta_ll_lic gold/
limitation (i.e.,q'T = 0), and (iii) including both mass and heat nickel (Au/Nl) mixture, the semlcondugtor mixture of SI|ICOh/.
transport limitation. In all cases the kinetic liquidus is simply 9€rmanium (G}E/SI) and a molecular mixture of the two fats tri-
constructed by a downward shift of the equilibrium liquidus elaldln_e and tri-stearine, denoted as EEE and SSS respectively
over a distancé\. To demonstrate how to read these graphs, acco[rdlng toa conventlonal nomenclature,_v_vhere_ the three letters
we have indicated the effective segregation for one particular SPecify the three fatty acids that are esterified with the glycerol
point on the kinetic liquidus at a mole fraction equal to 0.5, forming a tnglycer!de. E stands for elaidic and S for stearic,
shown as a closed dot. A measure for the effective segregationP0th having a chain length of 18 C atoms. The relevant pure
is given by the horizontal distance between this dot on the kinetic €Omponent thermodynamic properties for all components in the
liquidus and the arrowhead ending at the growth composition three mixtures are given in Table 2. The Au/Ni system exhibits
on the kinetic solidus. The corresponding steady-state liquid Nonideal mixing in the solid phase, yielding an azeotropic
composition at the surface in the case of mass transportequ'“br'um phase diagraft,which could be approximated well
limitation (i.e., gm = 0) is indicated by the open dot on the by assuming a single nonzero excess parangf€#’RT., for
surface kinetic liquidus (dashed lines). For the case with both the solid phase. The mixing behavior of both other systems is
mass and heat transport limitation (i.g,= 0), an additional ~ t@ken to be ideal, in accordance with refs 13 and 38.

help line is required giving the temperature at the interface  The calculated EKPDs for two different bulk undercoolings,
(dashee-dotted line). In this case, for a given point on the with and without taking into account mass and heat transport
kinetic liquidus, the growth compostion is found by starting from limitation, are shown in Figure 4 for the Au/Ni and Ge/Si
this point, first moving vertically upward until this help line is  mixture and in Figure 5 for the fat mixture. For the metallic
crossed and then moving horizontally toward the kinetic solidus. mixture the effect of the interfacial undercooling, which for the
The corresponding surface liquid composition is found by the case without heat transport limitation (i.q'T,= 0) is just equal
intersection of that horizontal line with the surface kinetic to the bulk undercooling, on the effective segregation is
liquidus (dashed line). relatively small. Even at a bulk undercooling af) = 0.15,

The results in Figure 3 can be summarized as follows. The the EKPD looks almost the same as the equilibrium phase
segregation decreases with increasing bulk undercooling. Massdiagram (see Figure 4a), but shifted to lower temperatures. This
transport limitation reduces the effective segregation further. is typical for systems with small melting entropi&§, = AHq/
Heat transport limitation reduces the effective undercooling at Tn,. Furthermore, the effect of mass transport limitation on the
the interface and therefore it tempers the effects of interfacial segregation is much stronger than that of heat transport
undercooling and mass transport, thus enhancing the effectivelimitation, as can be concluded by comparing Figure 4b and
segregation (getting closer to the equilibrium segregation).  4c. Due to the relatively fast heat transport for metals the
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EEE-SSS

Figure 6. Effective segregration coefficierityer = XS9%™* as a
) ) ) ] function of the relative undercoolingyf for (a) the Au/Ni mixture with
0 0.5 10 0.5 1 XUk = bk = 0.4 and b) the EEE-SSS mixture witP"™ = xk =

2 2 0.8, without transport limitations (dotted lines), with only mass transport
Figure 5. Calculated EKPDs (full lines) and equilibrium phase limitation (dashed lines) for three values @f, as indicated in the
diagrams (dotted lines) for the fat mixture EEE-SSS for relative graphs, and with both mass and heat transport limitation (full lines)
undercoolingg\6 = 0.04 (left column of graphs) anlé = 0.08 (right for the same values af, and withq'T = gw/100 for the Au/Ni system
column of graph). In graphs f we have indicated the kinetic liquidus andq'T = /10 for the EEE-SSS system.
and solidus as kl and ks respectively.

1

temperature at the surface remains almost equal to that of the
bulk liquid phase during growth. This holds also for the
semiconductor mixture. However, for the Ge/Si mixture the
effect of the interfacial undercooling on the effective segregation
is stronger than for the Au/Ni system, as can be seen by
comparing Figure 4a and 4d. For the Ge/Si system, the
segregation is reduced significantly fap = 0.15. It is further
reduced when mass transport limitation is included (Figure 4e).
Taking into account also heat transport limitation hardly changes
the effective segregation further anymore (Figure 4f). For the
fat system, the situation is again different. The effect of the
interfacial undercooling on the effective segregation is quite
strong (Figure 5a and 5d). Actually, one could say that it
overrules the effect of mass transport limitation, as becomes
clear by comparing Figure 5b and 5e with Figure 5a and 5d,
respectively. However, adding also heat transport limitation
leads again to stronger effective segregation, as can be verified
by applying the procedure as explained in the discussion of
Figure 3. Starting at some point somewhere on the kinetic
liguidus will end up in a point on the kinetic solidus corre- Figure 7. Effective kinetic phase diagrams for the eutectic system
sponding to a significantly higher concentration of component para—dichlprobenzene 1) an_d para-bromoiodobenzene (2_) for relative
2 then that of the starting point. undercoolings of 0.05 (full lines) and 0.01 (dashed line in graph a)

. . . with and without including mass and heat transport limitation, as
These differences between the different types of materials, jqgicated in the graphs. The dotted lines give the equilibrium phase

as shown in Figures 4 and 5 are striking and characteristic. It diagram. The dashedtotted line in graphs (c) give the temperature at
shows that for solid solution growth in molecular mixtures heat the surface as a function of the liquid bulk composition. The used

transport limitation is much stronger than for atomic mixtures thermodynamic data, mostly taken from ref 36, Atéy /RT, = 6.6497,
where mass transport limitation is dominant. This is further AHzdRT; = 6.2396,83%IRT,, = 1.75,0;*7RT,, = 0.65, andc, /R
illustrated in Figure 6, where we show the effective segregation = ¢, /R = 20. HereTa, = (T, + T,)/2. The kinetic liquidus and
coefficientker = x397%, as a function of the bulk undercool- ~ Selidus are indicated as ki and kespectively.

ing for the Au/Ni system (Figure 6a) and the EEE/SSS system

(Figure 6b). The compositions of the two systems in mole Finally, we have considered the eutectic system para-dichlo-
fractions were chosen to be 0.4/0.6 and 0.8/0.2, respectively.robenzene/para-bromoiodobenzene, using the thermodynamic
These compositions yield a strong equilibrium segregation, i.e., data from ref 36. EKPDs for this system are shown in Figure 7
the segregation foA® — 0, in both cases. For the fat system for a bulk undercooling oAf = 0.05. In addition, in Figure 7a
(Figure 6b), the dotted line, which gives the result without we have drawn the EKPD for the relatively small undercooling
transport limitations, lies between those with only mass transport of A6 = 0.01 without including transport limitations (dashed
limitation (dashed lines) and those including both mass and heatlines). For this small undercooling = 0.01 the kinetic phase
heat transport limitation (full line), confirming the above diagram still shows two disconnected solid phase branches,
statement that for molecular mixtures heat transport limitation giving rise to a kinetic miscibility gap. For liquid compositions
can significantly enlarge the effective segregation, tempering well left of the eutectic composition only a para-dichlorobenzene
the effects of the interfacial undercooling and mass transport rich solid phase is growing with a composition according to
limitation, in contrast to the semiconductor and metallic systems. the left solidus branch, whereas for liquid compositions well
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right of the eutectic composition only a para-bromoiodobenzene- growth rate may be dominated by 2-dimensional (2-d) nucleation
rich solid phase is growing according to the right branch. For or by spiral dislocation(s) obeying different, nonlinear growth
bulk liquid compositions close to the eutectic composition (i.e., laws. Nonlinear growth laws can patrticularly occur for molecular
close to the kink in kinetic liquidus), there are three steady- systems, which usually grow below their roughening temper-
state solutions according to the stability criterion (eq 12), of atures, implying a (large) barrier for 2-d nucleation. From lattice
which only two are stable, one belonging to the left and one to MC simulations of pure systems it was found that the growth
the right branch. ForA@ = 0.05, the miscibilty gap has rate is roughly proportional to the average number of kink sites
disappeared, implying that all solid phase compositions are per unit of surface ared, at the growth surface. Extending
kinetically accessible. Taking into account mass transport this to mixed systems one could write

limitation further reduces the segregation as shown in Figure

7b. Including also heat transport limitation (Figure 7c) again = 5 N, (55urfy zsurf

leads to stronger segregation, as the surface temperature in this v=0oN(o #)0 (“41)
case is considerable higher, i.e., closer to equilibrium, than the
liquid bulk temperature. We note that in Figures 7b and 7c, to
avoid too many lines we have not drawn the surface liquid
composition line, which is between the kinetic liquidus and the
equilibrium liquidus. In fact, this line is not required to read
the effective segregation. In Figure 7c the growth composition
for the given bulk liquid undercoolind® = 0.05 and a given
bulk liquid composition is simply read as the intersection of
the horizontal line crossing the dashetbtted line at that liquid
composition and the kinetic solidus.

where Ng(G%) accounts for the possible nonlinearity. The

dependence dflx on 55U varies with the growth mechanism.

In this approach the interfacial segregation, as given by eq 13,

does not change since the prefactd¢ appearing in the

numerator and the denominator cancels, but the coupling with

transport processes as a function of the undercooling changes.

Nevertheless, it will not change the trend in the EKPDs, and

the relative contributions from mass and heat transport limita-

tions to the effective segregation. In practice one may construct

Ni(osU™ as a function of the experimentally applied bulk

undercooling such that the calculated velocities match with the

experimental velocities. Once this has been done, the EKPD
We have formulated a concise description of the effective values can be calculated.

segregation taking place during the crystallization of solid ~ On a microscopic levelN«(o*'") depends of the surface

solutions from a binary liquid mixture which incorporates the kinetics, which depend on the crystallographic orientation of

interfacial segregation and both mass and heat transport limita-the crystal face. Currently, we have started studying this by

tions in a coupled way. The model, denoted as the linear means of lattice MC simulations of crystal growth for an

effective kinetic segregation (LEKS) model, is based on arbitrary crystal structure, as implemented in the software

nonequilibrium thermodynamics, yielding a linear growth rate program MONTY3? but generalized to deal with solid solution

for each component, and the theory of hydrodyamics with growth.

moving boundaries, assuming fixed boundary layers for both
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