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The composition of a solid solution that is growing at conditions well away from equilibrium is not prescribed
by equilibrium thermodynamics, but is determined kinetically. It depends both on the surface kinetics and on
the transport of mass and heat to and away from the solidification front. In previous work, we have formulated
a model for the kinetic or nonequilibrium segregation taking place at the solidification front enabling the
construction of kinetic phase diagrams, which gives the growth composition of a solid solution as a function
of the liquid composition and undercooling at the surface. In the present work, we extend this model to
include both mass and heat transport, giving rise to effective kinetic phase diagrams. An overview of the
tendencies in the calculated effective kinetic phase diagrams is given by scanning a large part of the parameter
space, covering different types of materials, including metals, semiconductors, and molecular systems. We
find striking and characteric differences in the relative contribution of the various processes to the effective
segregation. For molecular mixtures, interfacial undercooling and heat transport limitation can be expected to
be much more important than for metal and semiconductor mixtures where mass transport limitation is
dominant.

1. Introduction

Substitutional solid solutions are solid phases in which the
atomic or molecular positions belonging to a perfect periodic
structure are occupied by different species in a random way.1

They represent a quite important class of materials due their
intrinsic possibility of tuning their properties by varying the
composition. Also, knowledge of the miscibility of different
species in the solid phase and, in particular, the role of the
kinetics during the growth process on the mixing is quite
relevant for separation techniques with applications in the food
and pharmaceutical industries.2

The equilibrium state of a mixed liquid/solid system, contain-
ing a liquid and a solid fraction, is completely fixed thermo-
dynamically once the pure component properties and the excess
Gibbs free energy, usually expressed in terms of a number of
excess parameters, are known.3-5 However, crystallization is a
kinetic process, and the growth composition, i.e., the instanta-
neous composition of the solid phase being formed at the surface
at large undercooling may deviate considerably from the
composition according to the equilibrium phase diagram. Under
batch conditions the composition of the mother phase will
change, and thus also the growth composition will change during
the crystallization, leading to composition gradients in the solid
phase.6,7 These gradients may stay for very long periods due to
the very low diffusion rate in solid phases, especially in
molecular solid phases. Hence, in such mixed systems, the
equilibrium state will hardly ever be reached and the system
will stay in a metastable state. A prediction of this nonequilib-
rium state requires a kinetic modeling of the crystallization
process, with first of all a description of the kinetic segregation

at the solidification front as a function of the interfacial
undercooling and composition of the liquid phase. However,
the segregation at the growth front will induce gradients in the
liquid phase, both in the concentrations of the components
involved and in the temperature. Components that are build
preferentially in the solid phase will be depleted in the liquid
phase directly at the interface, whereas rejected components will
accumulate. This is illustrated in Figure 1 for a binary system.
The changes in the liquid concentrations at the interface will
induce diffusional fluxes of the components between the
interface and the bulk liquid phase, but it will also affect the
interfacial segregation. Eventually, a steady state is reached,
where the incorporation rate at the interface is balanced by the
rate of transport for each component. Similarly, the heat of
crystallization produced at the interface, giving rise to a
temperature gradient between the interface and the bulk fluid
phase, will be balanced by the diffusion of heat away from the
interface. As for mass transport limitation, also heat transport

Figure 1. Schematic illustration of mass transport limitation.
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limitation will affect the interfacial segregation, which depends
on the temperature at the interface. (The term limitation refers
to the finiteness of the diffusion rates causing the gradients.)
Thus, surface integration, mass transport and heat transport are
all coupled.

In the past, kinetic segregation during the growth of a solid
solution has been studied theoretically using a lattice Monte
Carlo (MC) simulation model,8,9 based on the Kossel model,10,11

or kinetic equations.12,13Mostly, the latter models are continuum
descriptions based on the MC model. These works focus on
the temperature dependence of the interfacial segregation
without taking into account the effect of diffusion limitation.
Opposite to that is the model of Burton, Prim, and Slichter
(BPS)14 which assumes near equilibrium at the growing surface,
i.e., the interfacial segregation is equal to the equilibrium
segregation for the liquid composition at the interface. It takes
into account mass transport limitation, but heat transport
limitation is neglected. This has led to the famous BPS equation,
which expresses the effective segregation as a function of the
crystal growth velocity. Other work on kinetic segregation15-19

was focused on the low concentration limit in order to explain
the observed high incorporation of dopants into silicon after
laser melting.20-22 These models, which integrate interfacial
segregation and mass transport in a semiempirical way, apply
to regular dilute solutions and more or less successfully describe
the observed nonequilibrium segregation as a function of the
crystal growth velocity18,23-25 after fitting one or a few
parameter(s). Recently, detailed studies of the interfacial kinetic
segregation, based on the Kossel model, have appeared.26-28

In these works, which apply to ideal, dilute solutions, relations
for effective segregation coefficients for different types of sites
(i.e., kink, step, terrace, and bulk sites) are derived.

In the present work we propose a theoretical model for the
effective kinetic segregation during growth of a binary solid
solution which integrates the interfacial kinetic segregation, mass
transport limitation, and heat transport limitation. To our
knowledge, such a model that couples all three processes has
not been introduced previously. Furthermore, the model is not
restricted to dilute and ideal or regular solutions, but applies to
a binary system of any composition and for any crystal lattice
with known equilibrium mixing properties for the liquid and
solid phases. In our model the interfacial segregation is described
by the linear kinetic segregation (LKS) model,29,6which is based
on nonequilibrium thermodynamics and a linear dependence of
the growth rates of each of the individual components on their
absolute supersaturation. In this model, the fluxes from one
phase to the other are related by the principle of microscopic
reversibility, which, strictly speaking, is only valid for near-
equilibrium. However, in MC simulations of the growth of a
binary crystal, based on the Kossel model we find that the trends
of the LKS model are in qualitative agreement with those of
the MC simulation. Basically, for increasing undercooling the
composition of the crystal tends toward, and eventually becomes
equal to, the composition of the liquid phase. More in detail,
comparing the segregation as a function of the undercooling,
there are quantitative differences between the results from the
LKS model and those of the MC simulations. However, these
are relatively small as long as the various bond energies
determining the surface kinetics in the MC model are not too
much different. In practice, this is often the case for isomorphous
constituents forming solid solutions. A detailed confrontation
between the LKS model and the MC simulation model for a
binary system of arbitrary composition will be given elsewhere.30

As we will show, a coupled description of the interfacial

segregation and transport effects is particularly relevant for
molecular systems, which usually have relative largeφ/(kBT̃m)
values, whereφ is the bond energy andT̃m is the average melting
temperature. According to the LKS model, as well as the MC
model, in such cases the interfacial segregation can deviate
considerably from the equilibrium segregation already at moder-
ate undercoolings. When mass and heat transport take place
relatively fast, eventually stimulated by stirring, such under-
coolings can easily occur at the interface.

For studying the interfacial segregation experimentally, the
coupling with transport effects is quite important for the
interpretation of the experimental data. Usually only the bulk
properties are well-known, whereas the actual conditions at the
surface are much more difficult to access experimentally. Theory
provides additional, useful tools for a correct interpretation.

We will refer to our model as the linear effective kinetic
segregation (LEKS) model. It is described in detail in section
2. In section 3, effective kinetic phase diagrams (EKPDs),
calculated according to the LEKS model, are presented and
discussed. We conclude with a summary and discussion in
section 4.

2. Theory

As already mentioned, the effective segregation during the
growth of mixed crystals requires a coupled description of the
interfacial segregation, mass transport, and heat transport. In
our description of this problem, the first part, i.e., the interfacial
segregation, is based on the LKS model. Although the LKS
model has been decribed elsewhere,29,6 we have decided to
include a short recapitulation of it, which we think enhances
the readability of the present work significantly and at the same
time gives us the opportunity to introduce the terminology.
Moreover, we have adopted a different, more general excess
energy model, as described below.

2.1. Linear Kinetic Segregation (LKS) Model.Considering
the growth of a binary, mixed crystal from a liquid mother phase,
nonequilibrium thermodynamics tells us that the flux of a
componenti from the liquid to the solid phase,Ji

+, and the
reverse flux,Ji

-, are related by

whereTsurf is the temperature at the surface and∆µi
surf ) µi

l,surf

- µi
s,gr is the difference between the chemical potential of

componenti in the liquid phase at the surface,µi
l,surf, and that

of the growing solid phase,µi
s,gr. Hence, the superscript gr

refers to the growing solid phase. TakingJi
+ equal toKiai

l,surf,
in accordance with chemical reaction rate theory, withKi a
kinetic constant (in m-2 s-1) andai

l,surf the activity of compo-
nent i in the liquid phase at the surface, the net flux of
componenti, Ri ) Ji

+ - Ji
-, is derived to be

whereσi
surf ) ai

l,surf - ai,eq
l,gr is the absolute supersaturation for

componenti at the surface and where we used the familiar
expression for the chemical potential difference, being

Ji
+

Ji
- ) exp(∆µi

surf

RTsurf) (1)

Ri ) Kiai
l,surf(1 - exp(∆µi

surf

RTsurf)) ) Ki(ai
l,surf - ai,eq

l,gr) ) Kiσi
surf

(2)
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with ai,eq
l,gr the equilibrium activity of componenti in the liquid

phase with respect to the growing solid phase of composition
x2

s,gr () 1 - x1
s,gr), which we are looking for. According to

standard thermodynamics, the equilibrium activity of component
i in the liquid phase with respect to a growing solid phase of
compositionx2

s,gr is given by

whereCi(Tsurf) is equal to

whereTi and∆Hi,0 are the pure component melting temperature
and melting enthalpy atTi, respectively, and∆Ti

surf ) Tsurf -
Ti. Usually, the term proportional to∆cp,i ) cl

p,i - cp,i
s , i.e., the

difference in heat capacity between liquid and solid phase for
the pure componenti, is already quite small within the typical
temperature range not too far from the melting temperatures.
Further corrections, proportional to∂∆cp,i/∂T, are negligible in
most cases. The activity of componenti in phaseP is a function
of the composition of that phase through the relation

wherexi
P is the mole fraction andγi

P the activity coefficient of
componenti, which is also composition dependent. The latter
quantity is related to the excess mixing Gibbs free energy in
phase P,GP,exc, by

whereNi
P is the amount (in moles) of componenti in phaseP.

To describe the excess mixing Gibbs free energy, we have
adopted the so-called Redlich-Kister expansion,31 which for a
binary system reads

whereNP ) ∑i Ni
P is the total number of moles in phaseP. In

general, the expansion coefficientsgn
exc are temperature de-

pendent and contain an enthalpy and an entropy part according
to gn

P,exc ) hn
P,exc - Tsn

P,exc, with hn
P,exc andsn

P,exc both tempera-
ture dependent. However, usually this temperature dependence
is weak within the temperature range of interest.32,33

From eq 2 and subsequent equations, it follows that the
increase of the total amount of solid particlesi, Ni

s, is a
function of the growth composition, i.e.,

For a steady state it holds thatNi
s ) xi

s,gr Ns, whereNs ) ∑i Ni
s.

After substitution of this relation into eq 9 fori ) 2 we obtain

whereR ) dNs/dt ) ∑i Ri is the total growth rate. The stable
steady-state solution(s) of this differential equation gives us the
growth composition(s) we are looking for. They are given by
the solutions of

which in addition have to fulfill the common stability criterion
for first order differential equations, being in this case

at the solution. In most cases, for an undercooled binary system,
eq 11 has either one solution, which corresponds to a stable
steady state, or three solutions, of which only two fulfill the
stability criterion.7 In the latter case, two solid phases with
different compositions may grow simultaneously if nuclei are
available, in which case we speak of kinetic phase separation.
Typically, this can occur for eutectic or peritectic systems.

The solutions of eq 11 are equivalent with the solutions of
the equation

which is the form in which the LKS model was presented
originally.29

2.2. Mass Transport Limitation. To find the effective
segregation, we have to find a relation between the liquid
composition at the surface and that of the bulk liquid phase.
To achieve this, we will use basic results from the theory of
hydrodynamics for fluids adjacent to a moving and absorbing
interphase. For an overview of this theory with a focus on crystal
growth we refer to ref 34.

For a fluid system with convection and not too high viscosity,
a condition which is usually well met in crystal growth, a
relatively thin, so-called laminar layer is formed in front of the
surface, say of width∆c, in which the flow velocity drops from
its bulk value at a distance∆c from the surface to zero
immediately at the surface, obeying the no-slip condition.
Typically, in the case of crystal growth we may have convection
caused by stirring or, when no stirring is applied, by free
convection, due to temperature and composition gradients in
combination with gravity, the so-called buoyancy-driven con-
vection. The laminar layer width,∆c, depends on the geometry
and scale of the system, the kinematic viscosityν ) η/F, with
η the viscosity andF the mass density, and on the bulk
convective flow velocity,Vc

bulk. Generally,∆c is a function of
the dimensionless so-called Reynolds numberNRe ) Vc

bulkL/ν
whereL a characteristic linear dimension of the flow sytem,
e.g., the diameter of the crystallites. Good estimates for∆c have
been derived for the most common geometries occurring in
crystal growth. In particular, for a rotating disk geometry,
appropriate for Czochralski growth,∆c has been derived to be

∆µi
surf ) RTsurfln(ai

l,surf

ai,eq
l,gr ) (3)

ai,eq
l,gr ) ai

s,grCi(T
surf) (4)

Ci(T
surf) = exp[∆Hi,0∆Tsurf

i

RTiT
surf

+
∆cp,i

R (ln( Ti

Tsurf) -
∆Ti

surf

Tsurf )] (5)

ai
P ) γi

P xi
P (6)

RTln(γi
P) ) (∂GP,exc

∂Ni
P )

P,T,Nj(j*i)

(7)

GP,exc ) NPx1
P x2

P ∑
n)0

gn
P,exc(1 - 2x2

P)n (8)

dNi
s

dt
) Ri(x2

s,gr) (9)

dx2
s,gr

dt
) 1

Ns
(R2 - x2

s,grR) (10)

dx2
s,gr

dt
) 0 w x2

s,gr )
R2(x2

s,gr)

R(x2
s,gr)

(11)

d

dx2
s,gr

(R2 - x2
s,grR) < 0 (12)

x1
s,gr

x2
s,gr

)
K1σ1

surf

K2σ2
surf

)
K1(γ1

l,surf x1
l,surf - γ1

s,gr x1
s,grC1(T

surf))

K2(γ2
l,surf x2

l,surf - γ2
s,gr x2

s,grC2(T
surf))

(13)

∆c ) 4(ν
ω)1/2

(14)
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where ω is the angular velocity. For a mixture, on top of
convection, diffusion can take place, i.e., the transport of the
individual components with respect to the average convective
flow velocity. For each component, mass conservation is
described by the continuity equation

whereci
l is the concentration of componenti (in moles m-3)

andJi is the total flux of componenti, containing a convective
partJi

conv ) cl
ivc and a diffusive partJi

diff . For a binary system,
Ji

diff is given by Fick’s first law:

whereD is the diffusion constant. Substitution into eq 15 yields

neglecting the usually small composition dependence ofD.
Hence, the transport of a single component is coupled to the
position and time dependent convective flow velocityvc.
Generally, it requires considerable numerical effort to solve the
transport equations (Navier Stokes) satisfying the appropriate
boundary conditions. However, for mass transport to (from) a
surface, it was found that strong gradients occur only in a
relatively thin boundary layer, similar as for convection. Owing
to the similarity of the diffusive and the convective transport
equations, a correlation exists between the width of the mass
transport boundary layer,∆m, and∆c, namely

whereNSc ) ν/D is the so-called Schmidt number. In general,
for liquid phases it holds thatNScg 1, in contrast to vapor phases
for which NSc < 1, implying ∆m e ∆c for liquid phases. For
many molecular liquids,∆m is even between 1 and 2 orders of
magnitude smaller than∆c. This conveniently implies that within
a distance∆m from the surface we may neglect the first term
on the right-hand side of eq 17. Then, assuming a 1-dimensional
geometry with a flat surface perpendicular to thez-direction,
and using the moving boundary coordinatez′ ) z - Vt, with V
the crystal growth velocity andz′ ) 0 being the position of the
suface in the moving frame, eq 17 simplifies to

The solution of this equation has to fulfill two boundary
conditions, namely the conditionci

l(∆m) ) ci
l,bulk and conser-

vation of mass at the interface. The latter is expressed as

where the second term on the left-hand side is the advective
term due to the motion of the interface into the liquid phase.
The factorgd is a factor that corrects for differences in molar
densities. If the solid phase is more dense than the liquid phase,
as is usually the case, then the volume of liquid being absorbed
within a certain small time interval is larger than the volume of

solid-phase being created in that time interval, so thatgd will
be larger than one in this case. The “empty” volume being
created is filled up by a rigid and almost immediate displacement
(with the velocity of sound) of the liquid phase toward the solid
phase to recover equality of the pressure everywhere. The
solution of eq 19, satisfying the mentioned boundary conditions
is given by

whereci
l,surf ) ci

l(0) follows by substitution of eq 21 into eq 20.
For the mole fractionxi

l,surf ) ci
l,surf/cl,surf, with cl,surf ) ∑i ci

l,surf

the total concentration at the surface, this gives

where we defined the density ratiosgl,surf
s,gr ≡ cs,gr/cl,surf andgl,surf

l,bulk

≡ cl,bulk/cl,surf with cl,bulk ) ∑i ci
l,bulk. The parameterqm in eq 22

is the crucial parameter for mass transport limitation. It is
defined as

whereV̂ (in m/s) is an average velocity constant given by

with Vi
s,gr the volume per particle of componenti in the

growing solid phase. The quantityσ̃surf in eq 22 is a weighted
supersaturation defined as

According to the LKS model, the crystal growth velocity is equal
to V ) V̂ σ̃surf, which implies the relation

If we sum eq 22 fori ) 1 and 2 and usex1
P + x2

P ) 1 for
each phaseP ) (l,bulk), (l,surf) and (s,gr), we obtain a relation
for gd, which is

This equation givesgd ) 1 if all densities are equal, as it should
be. The total molar density in a phaseP is equal tocP )
1/Vmix

P , where Vmix
P is the average volume per mole in the

mixed phase, which can be written as:

whereVi
P is the partial molar volume of the pure componenti

∂ci
l

∂t
) - ∇Ji ) - ∇Ji

conv - ∇Ji
diff (15)

Ji
diff ) - D∇ci

l (16)

∂ci
l

∂t
) - ∇(ci

lWc) + D∇2ci
l (17)

∆m = (Dν)1/3
∆c ) ( 1

NSc
)1/3

∆c (18)

-V
dci

l

dz′ ) D
d2ci

l

dz′2
(19)

D
dci

l

dz′|z′)0
+ gdVci

l,surf ) Vci
s,gr (20)

ci
l(z′) )

ci
l,surf + ( ci

l,bulk - ci
l,surf

1 - exp(-V∆m/D))(1 - exp(- Vz′/D)) (21)

xi
l,surf )

gl,surf
s,gr xi

s,gr + (gl,surf
l,bulk xi

l,bulk - gl,surf
s,gr xi

s,gr) exp(qmσ̃surf)

(gd + (1 - gd) exp(qmσ̃surf))
(22)

qm )
V̂∆m

Dm
(23)

V̂ )
1

2
∑
i)1

2

KiV
s,gr

i (24)

σ̃surf ) ∑
i)1

2 KiVi
s,gr

V̂
σi

surf ) ∑
i)1

2 KiVi
s,gr

V̂
(γi

l,surf xi
l,surf - γi,eq

l,gr xi,eq
l,gr)

(25)

qmσ̃surf )
V∆m

D
(26)

gd )
gl,surf

s,gr + (gl,surf
l,bulk - gl,surf

s,gr - 1) exp (qmσ̃surf)

1 - exp(qmσ̃surf)
(27)

Vmix
P ) ∑

i

xiVi
P + VP,exc(x1, x2) (28)
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in phaseP andVP,exc the excess volume. In many casesVP,exc

is quite small and can be neglected. Then only the pure
component specific volumes are required, and the density ratio
between phaseP andP′ becomes

It can be shown that in the limit that the composition at the
surface takes the equilibrium concentration, i.e.,xi

l,surf ) xi,eq
l ,

and assuming equal densitiesgl,surf
s,gr ) gl,surf

s,bulk ) gd ) 1, eq 22
becomes equivalent to the BPS equation14 mentioned in the
Introduction.

An estimate of the kinetic constantV̂ could be obtained from
measured growth velocities. For a known (measured) growth
velocity V, the quantityqmσ̃surf in eq 22 can be evaluated using
eq 26 for a known diffusion constant and an estimate for∆m

from eqs 14 and 18. Then, for given liquid bulk composition
and temperature, eq 22, inserting eqs 27 and 29 for the density
factors, can be solved (numerically) simultaneously with eq 11
(or eq 13), giving the growth composition of the solid phase
and the composition of the liquid at the surface. At the same
time it provides the individual supersaturationsσ̃i

surf. Then,
assumingK1 = K2, as an often used reasonable approximation
for isomorphous components yielding solid solutions,V̂ ) V/σ̃surf

can be determined using eqs 24 and 25.
OnceV̂ is known,qm can be determined using eq 23. Then,

the set of coupled equations, consisting of eq 22 fori ) 2 (or
equivalentlyi ) 1), including eqs 27 and 29, eq 11 (or eq 13),
and the two stoichiometric relations∑1

2 xi
s,gr ) 1 and∑1

2 xi
l,surf )

1 can be solved for any bulk liquid composition and temperature,
giving xi

s,gr andxi
l,surf for i ) 1, 2. This enables the construction

of EKPDs for isothermal conditions, i.e., neglecting heat
transport limitation. The nonisothermal extension of the LEKS
model is described in the next section.

2.3. Heat Transport Limitation. Under normal circum-
stances encountered in crystal growth, energy conservation
within the liquid phase in good approximation reduces to a rather
simple transport equation,34 which is similar to eq 17 for mass
transport, namely:

whereJq
l ) - kl∇T is the heat flux according to Fourier’s law

with kl the thermal conductivity in the liquid phase. We note
that in eq 30 we have neglected the contribution from radiation,
which is usually small and can effectively be included in the
“normal” heat conduction, from which it is hardly distuiguish-
able. In contrast to mass transport, heat can also be transported
via the solid phase. So, for the solid phase we have an equation
similar to eq 30, but without the convective term, sinceVc ) 0
within the solid phase.

Now we will discuss the heat transport in the liquid phase.
In analogy with the mass transport problem, for a system with
convection, strong temperature gradients occur only within a
relatively thin, thermal boundary layer of width∆T

l , which is
related to∆c (and∆m) by

where DT
l ) kl/(clcp

l ) is the thermal diffusivity in the liquid

phase andNPr ) ν/DT
l is the so-called Prandtl number. Similar

to the mass transport problem, we may solve eq 30 omitting
the convective term, but respecting the boundary conditionT(z′
) ∆T

l ) ) Tl,bulk with the z′ coordinate in the moving frame, as
already used above, andTl,bulk the bulk liquid temperature, which
can be taken as the applied temperature. Then, in a 1-d geom-
etry, neglecting the temperature dependence ofkl, eq 30 becomes

The solution of this equation satisfying also the second boundary
conditionT(0) ) Tsurf is given by

for z′ > 0 whereqT
l is the crucial parameter for heat transport

limitation defined as

implying qT
l σ̃surf ) V∆T

l /DT
l .

For heat transport in the solid phase, eq 30 directly simplifies
to eq 32, but with the superscript l replaced by s. The solution
with boundary conditionT(- ∆T

s) ) Ts,bulk, with Ts,bulk the
temperature inside the solid phase at a distance∆T

s from the
interface, is similar to eq 33, but with- qT

l σ̃surf replaced by
qT

sσ̃surf where

implying qT
sσ̃surf ) V∆T

s/DT
s. The surface temperatureTsurf

follows from the heat conservation boundary condition

whereJq,0
l and Jq,0

s are the heat fluxes into the liquid and the
solid phase respectively and where∆Hs,gr ) ∆Hs,gr(x2

s,gr, Tsurf)
is the molar, composition, and temperature-dependent melting
enthalpy of the growing solid phase given by

where∆Hi
exc ) Hi

l,exc - Hi
s,exc is the difference in the partial

excess enthalpies of componenti in the liquid and the solid
phase. To determineJq,0

s ) ks dT/dz|z′v0, we have to assume
values for∆T

s and Ts,bulk. For this purpose we consider two
cases regarding to the situation of the crystallites. Either the
crystallite is floating in the fluid phase or it is attached to the
wall, corresponding to homogeneous and heteregeneous nucle-
ation, respectively. In the former case, since there is no cooling
source inside the crystallite, the temperature will be constant
throughout the crystallite and will be equal to the surface

gP′
P ) cP

cP′ )
x1

P′ V1
P′ + x2

P′ V2
P′

x1
P V1

P + x2
P V2

P
(29)

clcp
l ∂T
∂t

) - clcp
l ∇(vcT) - ∇Jq

l ) - clcp
l ∇(vcT) + kl∇2T

(30)

∆T
l = (DT

l

ν )1/3

) ( 1
NPr

)1/3

∆c ) (DT
l

D )1/3

∆m (31)

-VdTl

dz′ ) DT
l d2Tl

dz′2
z′ > 0 (32)

T(z′) )
Tl,bulk - exp(-qT

l σ̃surf)Tsurf - (Tl,bulk - Tsurf) exp(- Vz′/DT
l )

1 - exp(-qT
l σ̃surf)

(33)

qT
l )

V̂∆T
l

DT
l

(34)

qT
s )

V̂∆T
s

DT
s

(35)

cs,grV∆Hs,gr ) Jq,0
l + Jq,0

s ) - kldT
dz

|||z′V0
+ ksdT

dz
|||z′v0

(36)

∆Hs,gr ) ∑
i

xi
s,gr(∆Hi,0 + ∆Hi

exc + ∫Ti

Tsurf

∆cp,i dT′) (37)
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temperature, implyingJq,0
s ) 0. Then, substitution of eq 33 into

eq 36 leads to

In the other case, if the crystallite is sticking to the wall,Ts,bulk

should be taken equal to the wall temperature,Twall, and
correspondingly∆T

s should be equal to the distance between
the wall and the solidification front which increases during the
growth. Assuming that we may still use the steady-state solution
but with ∆T

s slowly varying in time, and takingTs,bulk ) Twall )
Tl,bulk as the applied temperature, eq 36 leads to

Typical temperature profiles according to eq 39 for different
values of the parameterqT

l with qT
s ) 4qT

l and ∆T
s ) 4∆T

l are
shown in Figure 2. As shown, the motion of the interface
introduces an asymmetry in the profiles which is convex at the
liquid side and concave at the solid side, implying a larger
gradient, i.e., larger heat flux, at the liquid side. This difference
in the fluxes further increases when∆T

s > ∆T
l . Eventually, after

some time during the growth∆T
s . ∆T

l and Jq,0
s becomes

negligible compared toJq,0
l . Thus, also in this case the

dominant heat flux will be that into the liquid phase, implying
that eq 38 should be a good approximation forTsurf for both
cases regarding the situation of the crystallites. Therefore, for
the calculations presented in the next section we used eq 38.

Summarizing, including heat transport limitation, the LEKS
model is completed with one more equation, eq 38 including
eq 37, and one extra unknown,Tsurf, to be solved together with
the equations mentioned at the end of section 2.2.

3. Results

To explore the parameter space of the LEKS model, we have
made a limited database covering different classes of materials,
including a selection of metals, semiconductors, and medium-
sized organic molecular systems. The latter group was restricted
to n-alkanes (n e 20), simple aromatic systems, and fat systems.
Many mixtures of such systems show good miscibility in the
solid phase.32,36-38 Table 1 gives a list of lower and upper
bounds for the values of the relevant parameters for each group
of materials resulting from our database. For the calculations

presented here, Table 1 was used as a rough guide in the
parameter space. We present effective kinetic phase diagrams
(EKPDs) for systems belonging to each of the three classes of
systems. In all cases we assumed ideal miscibility in the liquid
phase, i.e.,Gl,exc ) 0. We note that what matters here mostly is
the difference in free energy between liquid and solid phase,
so that a possible not-zero excess energy for the liquid phase
can be put into the excess energy for the solid phase.
Furthermore, we have neglected small contributions, ignoring
the temperature dependencies of the diffusivities and viscosities,
assuming equal liquid and solid heat capacities, i.e.,∆cp,i ) 0,
and equal molar densities, i.e.,gl,surf

s,gr ) gl,surf
s,bulk ) 1. We also

assumed thatK1 ) K2, implying σ̃ ) σ.
With the given typical crystal growth velocities in Table 1,

the quantityqmσ can be estimated, and from thisqm can be
determined as explained at the end of section 2. It is important
to note that, due to the correlation between the boundary layers
for mass and heat transport, the ratio betweenqm andqT

l is a
material property. So even with the lack of an accurate value
for qm, due to the uncertainty inV̂ and/or∆m, once we have
assumed a value for it, within a reasonable range, the value of
qT

l is fixed due to eq 31 by quantities that are usually well-
known or easily accessible. This allows for a sensible, compara-
tive study of the relative contributions of mass and heat transport
limitation to the effective segregation for different materials.
More specifically, from our database we find that the ratio
qT

l /qm lies within the interval [0.008-0.04] for most metals,
within [0.005-0.01] for semiconductors and within [0.05-0.7]
for molecular systems. Thus, for molecular systems this ratio
is about an order of magnitude larger than for both other
systems. In the figures presented in this section we use the
dimensionless bulk liquid temperatureθ ) T/T2 and, accord-
ingly, the relative bulk undercooling∆θ, being defined as:

whereT2 is the melting temperature of the component with the
highest melting temperature, which is component 2 in all cases,
and whereTeq is the equilibrium temperature for the given bulk
liquid mixture.

Figure 3 shows the EKPDs according to the LEKS model
for a typical medium size molecular system, with thermody-
namic properties given in the figure caption, for three relative

Figure 2. Schematic illustration of heat transport limitation. Temper-
ature profiles forqT

l ) 0.1, 1.0, and 5.0 are shown in a situation where
a crystallite is sticking to the wall at a distance∆T

s ) 4∆T
l from the

solification front. We assumed thatDT
s ) DT

l , implying qT
s ) 4qT

l .

Tsurf ) Tl,bulk + (1 - exp(- qT
l σ̃surf))

cs∆Hs,gr

clcp
l

(38)

Tsurf ) Tl,bulk +
cs∆Hs,gr(exp(qT

sσ̃surf) - 1)(1 - exp(-qT
l σ̃surf))

clcp
l exp(qT

sσ̃surf - 1) + cscp
s(1 - exp(- qT

l σ̃surf))
(39)

TABLE 1: Rough Bounds for the Most Important
Parameters of the LEKS Model Resulting from a Database
for Three Classes of Materialsa

metals semiconductors molecular systems

∆Hm/RTm 0.6-1.7 2.5-4.3 3.3-72.0
cP

l /R 2.3-4.7 2.6-4.6 12.0-250.0
∆Hm/cp

l (K) 50-800 800.-2200. 28.-130.
Dm (10-4 cm/s2) 4.5-55.0 4.6-8.4 0.003-1.8
DT (cm/s2) 0.18-1.55 0.6-2.1 0.00014-0.0012
∆c (cm) 0.034-0.090 0.09-0.23 0.13-3.30
∆m (cm) 0.058-0.16 0.07-0.13 0.018-0.075
∆T (cm) 0.37-1.10 0.77-1.8 0.06-0.21
V (cm/s) 0.005 0.0005 0.00005
qmσ (10-1) 1.1-8.0 0.6-1.0 0.16-32.0
qT

l σ (10-1) 0.03-0.15 0.0034-0.0076 0.055-1.20

a The data for molecular systems refer to medium size molecules
ranging from benzene to fat molecules. The width of the convective
boundary is based on eq 14, taking a stirring speed equal toω ) 15
rpm. The values ofqmσsurf and qT

l σsurf are based on the given crystal
growth velocitiesV, representing the order of magnitude of typical
experimentally observed velocities.

∆θ ) ∆T
T2

)
Teq - Tl,bulk

T2
(40)
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bulk undercoolings∆θ. To illustrate the magnitude of the
various contributions to the effective segregation, results are
shown of calculations (i) without including transport limitations
(i.e., qm ) qT

l ) 0), (ii) including only mass transport
limitation (i.e.,qT

l ) 0), and (iii) including both mass and heat
transport limitation. In all cases the kinetic liquidus is simply
constructed by a downward shift of the equilibrium liquidus
over a distance∆θ. To demonstrate how to read these graphs,
we have indicated the effective segregation for one particular
point on the kinetic liquidus at a mole fraction equal to 0.5,
shown as a closed dot. A measure for the effective segregation
is given by the horizontal distance between this dot on the kinetic
liquidus and the arrowhead ending at the growth composition
on the kinetic solidus. The corresponding steady-state liquid
composition at the surface in the case of mass transport
limitation (i.e., qm * 0) is indicated by the open dot on the
surface kinetic liquidus (dashed lines). For the case with both
mass and heat transport limitation (i.e.,qT

l * 0), an additional
help line is required giving the temperature at the interface
(dashed-dotted line). In this case, for a given point on the
kinetic liquidus, the growth compostion is found by starting from
this point, first moving vertically upward until this help line is
crossed and then moving horizontally toward the kinetic solidus.
The corresponding surface liquid composition is found by the
intersection of that horizontal line with the surface kinetic
liquidus (dashed line).

The results in Figure 3 can be summarized as follows. The
segregation decreases with increasing bulk undercooling. Mass
transport limitation reduces the effective segregation further.
Heat transport limitation reduces the effective undercooling at
the interface and therefore it tempers the effects of interfacial
undercooling and mass transport, thus enhancing the effective
segregation (getting closer to the equilibrium segregation).

To investigate the tendencies for different classes of materials,
we have calculated EKPDs for three binary mixtures from each
class included in Table 1, using realistic values of the
parameters. The mixtures we have chosen are the metallic gold/
nickel (Au/Ni) mixture, the semiconductor mixture of silicon/
germanium (Ge/Si) and a molecular mixture of the two fats tri-
elaidine and tri-stearine, denoted as EEE and SSS respectively
according to a conventional nomenclature, where the three letters
specify the three fatty acids that are esterified with the glycerol
forming a triglyceride. E stands for elaidic and S for stearic,
both having a chain length of 18 C atoms. The relevant pure
component thermodynamic properties for all components in the
three mixtures are given in Table 2. The Au/Ni system exhibits
nonideal mixing in the solid phase, yielding an azeotropic
equilibrium phase diagram,35 which could be approximated well
by assuming a single nonzero excess parameterg0

s,exc/RTav for
the solid phase. The mixing behavior of both other systems is
taken to be ideal, in accordance with refs 13 and 38.

The calculated EKPDs for two different bulk undercoolings,
with and without taking into account mass and heat transport
limitation, are shown in Figure 4 for the Au/Ni and Ge/Si
mixture and in Figure 5 for the fat mixture. For the metallic
mixture the effect of the interfacial undercooling, which for the
case without heat transport limitation (i.e.,qT

l ) 0) is just equal
to the bulk undercooling, on the effective segregation is
relatively small. Even at a bulk undercooling of∆θ ) 0.15,
the EKPD looks almost the same as the equilibrium phase
diagram (see Figure 4a), but shifted to lower temperatures. This
is typical for systems with small melting entropies∆Sm ) ∆Hm/
Tm. Furthermore, the effect of mass transport limitation on the
segregation is much stronger than that of heat transport
limitation, as can be concluded by comparing Figure 4b and
4c. Due to the relatively fast heat transport for metals the

Figure 3. Effective kinetic phase diagrams (full lines) for a binary
model system of medium sized molecules with ideal miscibility, i.e.,
Gs,exc ) 0. The used pure component data are∆H1,0/RT2 ) 18, ∆H2,0/
RT2 ) 20, cp,1

l /R ) cp,2
l /R ) 20.0, andT1/T2 ) 0.9. The vertical axis is

in units of the relative temperatureθ ) T/T2. Results are shown for
different relative undercoolings∆θ for the case without transport
limitation (graphs a, b, and c), the case with only mass transport
limitation (graphs d, e, and f), and the case including both mass and
heat transport limitation (graphs g, h, and i), as also indicated by the
values ofqm and qT

l at the top of each column of graphs. The surface
kinetic liquidus (dashed line) gives the composition of the liquid phase
at the surface. The dashed-dotted line is a help line giving the
temperature at the surface. The dotted lines represent the equilibrium
phase diagram.

Figure 4. Calculated EKPDs (full lines) for binary mixtures of Au/Ni
(left column of graphs) and Ge/Si (right column of graph) for two
relative undercoolings of∆θ ) 0.05 and∆θ ) 0.2, with and without
including mass and heat transport limitation, as indicated by the shown
values of qm and qT

l . The dotted lines give the equilibrium phase
diagrams.

TABLE 2: Pure Component Thermodynamic Properties
and Dimensionless Excess Energy Parametergs,exc

0/RTav (Tav
) (T1 + T2)/2) of the Components of Figures 3 and 4

Au Ni Ge Si EEE SSS

Tm 1337 1728 1211 1687 315.35 345.65
∆Hm/RTm 1.12 1.20 3.16 3.58 56.45 67.57
cP

l /R 3.06 3.14 3.82 3.27 216.5 216.5
g0

s,exc/RTav 0.887 0.0 0.0
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temperature at the surface remains almost equal to that of the
bulk liquid phase during growth. This holds also for the
semiconductor mixture. However, for the Ge/Si mixture the
effect of the interfacial undercooling on the effective segregation
is stronger than for the Au/Ni system, as can be seen by
comparing Figure 4a and 4d. For the Ge/Si system, the
segregation is reduced significantly for∆θ ) 0.15. It is further
reduced when mass transport limitation is included (Figure 4e).
Taking into account also heat transport limitation hardly changes
the effective segregation further anymore (Figure 4f). For the
fat system, the situation is again different. The effect of the
interfacial undercooling on the effective segregation is quite
strong (Figure 5a and 5d). Actually, one could say that it
overrules the effect of mass transport limitation, as becomes
clear by comparing Figure 5b and 5e with Figure 5a and 5d,
respectively. However, adding also heat transport limitation
leads again to stronger effective segregation, as can be verified
by applying the procedure as explained in the discussion of
Figure 3. Starting at some point somewhere on the kinetic
liquidus will end up in a point on the kinetic solidus corre-
sponding to a significantly higher concentration of component
2 then that of the starting point.

These differences between the different types of materials,
as shown in Figures 4 and 5 are striking and characteristic. It
shows that for solid solution growth in molecular mixtures heat
transport limitation is much stronger than for atomic mixtures
where mass transport limitation is dominant. This is further
illustrated in Figure 6, where we show the effective segregation
coefficientkeff,1 ) x1

s,gr/x1
l as a function of the bulk undercool-

ing for the Au/Ni system (Figure 6a) and the EEE/SSS system
(Figure 6b). The compositions of the two systems in mole
fractions were chosen to be 0.4/0.6 and 0.8/0.2, respectively.
These compositions yield a strong equilibrium segregation, i.e.,
the segregation for∆θ f 0, in both cases. For the fat system
(Figure 6b), the dotted line, which gives the result without
transport limitations, lies between those with only mass transport
limitation (dashed lines) and those including both mass and heat
heat transport limitation (full line), confirming the above
statement that for molecular mixtures heat transport limitation
can significantly enlarge the effective segregation, tempering
the effects of the interfacial undercooling and mass transport
limitation, in contrast to the semiconductor and metallic systems.

Finally, we have considered the eutectic system para-dichlo-
robenzene/para-bromoiodobenzene, using the thermodynamic
data from ref 36. EKPDs for this system are shown in Figure 7
for a bulk undercooling of∆θ ) 0.05. In addition, in Figure 7a
we have drawn the EKPD for the relatively small undercooling
of ∆θ ) 0.01 without including transport limitations (dashed
lines). For this small undercooling∆θ ) 0.01 the kinetic phase
diagram still shows two disconnected solid phase branches,
giving rise to a kinetic miscibility gap. For liquid compositions
well left of the eutectic composition only a para-dichlorobenzene
rich solid phase is growing with a composition according to
the left solidus branch, whereas for liquid compositions well

Figure 5. Calculated EKPDs (full lines) and equilibrium phase
diagrams (dotted lines) for the fat mixture EEE-SSS for relative
undercoolings∆θ ) 0.04 (left column of graphs) and∆θ ) 0.08 (right
column of graph). In graphs f we have indicated the kinetic liquidus
and solidus as kl and ks respectively.

Figure 6. Effective segregration coefficientk1,eff ) x1
s,gr/x1

l,bulk as a
function of the relative undercooling∆θ for (a) the Au/Ni mixture with
x1

l,bulk ) xAu
l,bulk ) 0.4 and b) the EEE-SSS mixture withx1

l,bulk ) xEEE
l,bulk )

0.8, without transport limitations (dotted lines), with only mass transport
limitation (dashed lines) for three values ofqm, as indicated in the
graphs, and with both mass and heat transport limitation (full lines)
for the same values ofqm and withqT

l ) qm/100 for the Au/Ni system
andqT

l ) qm/10 for the EEE-SSS system.

Figure 7. Effective kinetic phase diagrams for the eutectic system
para-dichlorobenzene (1) and para-bromoiodobenzene (2) for relative
undercoolings of 0.05 (full lines) and 0.01 (dashed line in graph a)
with and without including mass and heat transport limitation, as
indicated in the graphs. The dotted lines give the equilibrium phase
diagram. The dashed-dotted line in graphs (c) give the temperature at
the surface as a function of the liquid bulk composition. The used
thermodynamic data, mostly taken from ref 36, are∆H1,0/RT2 ) 6.6497,
∆H2,0/RT2 ) 6.2396,g0

s,exc/RTaV ) 1.75,g1
s,exc/RTaV ) 0.65, andcp,1

l /R
) cp,2

l /R ) 20. HereTaV ) (T1 + T2)/2. The kinetic liquidus and
solidus are indicated as kl and ks respectively.
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right of the eutectic composition only a para-bromoiodobenzene-
rich solid phase is growing according to the right branch. For
bulk liquid compositions close to the eutectic composition (i.e.,
close to the kink in kinetic liquidus), there are three steady-
state solutions according to the stability criterion (eq 12), of
which only two are stable, one belonging to the left and one to
the right branch. For∆θ ) 0.05, the miscibilty gap has
disappeared, implying that all solid phase compositions are
kinetically accessible. Taking into account mass transport
limitation further reduces the segregation as shown in Figure
7b. Including also heat transport limitation (Figure 7c) again
leads to stronger segregation, as the surface temperature in this
case is considerable higher, i.e., closer to equilibrium, than the
liquid bulk temperature. We note that in Figures 7b and 7c, to
avoid too many lines we have not drawn the surface liquid
composition line, which is between the kinetic liquidus and the
equilibrium liquidus. In fact, this line is not required to read
the effective segregation. In Figure 7c the growth composition
for the given bulk liquid undercooling∆θ ) 0.05 and a given
bulk liquid composition is simply read as the intersection of
the horizontal line crossing the dashed-dotted line at that liquid
composition and the kinetic solidus.

4. Summary and Discussion

We have formulated a concise description of the effective
segregation taking place during the crystallization of solid
solutions from a binary liquid mixture which incorporates the
interfacial segregation and both mass and heat transport limita-
tions in a coupled way. The model, denoted as the linear
effective kinetic segregation (LEKS) model, is based on
nonequilibrium thermodynamics, yielding a linear growth rate
for each component, and the theory of hydrodyamics with
moving boundaries, assuming fixed boundary layers for both
mass and heat transport. It allows for the construction of
effective kinetic phase diagrams (EKPDs). In these diagrams,
the composition of the solid phase that is growing at nonequi-
librium conditions for a given undercooling∆T of the bulk liquid
phase is given as a function of the bulk liquid composition.
Also the temperature and composition of the liquid phase at
the interface can be read from these diagrams. By construction,
for ∆T f 0, the EKPD according to the LEKS model becomes
equal to the equilibrium phase diagram, as it should be.

We have calculated EKPDs for different types of systems,
based on realistic values of the model parameters, including
thermodynamic and transport properties and typical values for
the growth rates and boundary layer widths. According to the
LEKS model, the relative magnitude of the various processes
affecting the kinetic segregation is quite different for different
materials. For atomic systems with a small dissolution entropy
∆Sm ) ∆Hm/Tm, such as metal alloys, mass transport limitation
is the most important factor reducing the segregration. For
molecular systems with a relatively large∆Sm the interfacial
undercooling plays an important role, giving rize to a significant
reduction in the segregation already at modest undercoolings
occurring at normal conditions in experiments. Whereas the
effect of mass transport limitation on the segregation is weaker
than for metal systems, heat transport is relatively slow for
molecular systems, giving rize to a significant contribution to
the effective segregation. For semiconductor systems, the effects
of interfacial undercooling and mass transport are competing,
whereas the effect of heat transport limitation on the effective
segregation is almost negligible as for metal systems.

The LEKS model is based on a linear growth rate for each
component. For growth at nonroughened faces however, the

growth rate may be dominated by 2-dimensional (2-d) nucleation
or by spiral dislocation(s) obeying different, nonlinear growth
laws. Nonlinear growth laws can particularly occur for molecular
systems, which usually grow below their roughening temper-
atures, implying a (large) barrier for 2-d nucleation. From lattice
MC simulations of pure systems it was found that the growth
rate is roughly proportional to the average number of kink sites
per unit of surface area,Nk, at the growth surface. Extending
this to mixed systems one could write

where Nk(σ̃surf) accounts for the possible nonlinearity. The
dependence ofNk on σ̃surf varies with the growth mechanism.
In this approach the interfacial segregation, as given by eq 13,
does not change since the prefactorNk appearing in the
numerator and the denominator cancels, but the coupling with
transport processes as a function of the undercooling changes.
Nevertheless, it will not change the trend in the EKPDs, and
the relative contributions from mass and heat transport limita-
tions to the effective segregation. In practice one may construct
Nk(σsurf) as a function of the experimentally applied bulk
undercooling such that the calculated velocities match with the
experimental velocities. Once this has been done, the EKPD
values can be calculated.

On a microscopic level,Nk(σsurf) depends of the surface
kinetics, which depend on the crystallographic orientation of
the crystal face. Currently, we have started studying this by
means of lattice MC simulations of crystal growth for an
arbitrary crystal structure, as implemented in the software
program MONTY,39 but generalized to deal with solid solution
growth.
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