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We calculate the interfacial tension and the wetting behavior in phase separated colloid–polymer
mixtures both for ideal and excluded volume interacting polymers. Within the recently developed
extension of the free volume theory to include polymer interactions@Aarts, Tuinier, and
Lekkerkerker, J. Phys.: Condens. Matter14, 7551~2002!# the interfacial tension of the free interface
is calculated by adding a van der Waals squared gradient term. The wetting behavior at a hard wall
is calculated following a Cahn–Fisher–Nakanishi approach taking the one- and two-body
colloid-wall interactions into account. Comparing results for interacting polymers with those for
ideal polymers we find that for interacting polymers the interfacial tension does not increase as
steeply as a function of the gas–liquid colloid density difference. Furthermore, the wetting transition
shifts to higher polymer concentrations, even to above the triple line. The predictions for both the
interfacial tension and the wetting are compared to recent experiments. ©2004 American Institute
of Physics. @DOI: 10.1063/1.1635810#

I. INTRODUCTION

Mixtures of colloids and nonadsorbing polymer display
rich phase behavior and are an excellent tool for studying
equilibrium properties, phase transition kinetics, and meta-
stable gel or glass states~for a recent comprehensive review,
see Ref. 1!. Recently, the interfacial tension between the co-
existing phases received some attention, first experimentally
by measurements of the ultralow interfacial tension of the
order of at most a fewmN/m between demixed colloidal
‘‘liquid’’ ~rich in colloid, poor in polymer! and colloidal
‘‘gas’’ ~poor in colloid, rich in polymer! phases.2–4 This in
turn led to a number of theoretical efforts, starting with a
paper by Vrij.5 Within the Asakura–Oosawa–Vrij~AOV!
model,6,7 which treats the polymers as ideal mutually pen-
etrable hard spheres~PHS!, Brader and Evans8 calculated the
interfacial tension using a squared gradient approach. In the
work of Brader and Evans the degrees of freedom of the
polymer were integrated out such that an effective one-
component system was obtained, similar but not equal to the
semigrand potential derived using the free volume theory.9

The density inhomogeneities were taken into account by a
squared gradient term. The order of magnitude of the result-
ing interfacial tensions compares well to the experimental
values even though the predicted phase diagram does not
quantitatively correspond to the experimental bulk phase dia-

gram. The fact that the experimental bulk phase diagram is
not well described by theory is that in experiment polymers
behave far from ideal.

Theory preceded experiment in the prediction of the ex-
istence of a wetting transition of the mixtures in contact with
a hard planar wall.10 At this wetting transition the liquid
phase starts wetting the wall completely instead of partially.
Again polymers were described as PHS but they were now
explicitly described, hence the colloid–polymer mixture is
treated as a true binary mixture, within the formalism of
fundamental measures theory.11 For homogeneous phases
this density functional reduces exactly to the aforementioned
free volume theory.9 Moreover, it can be extended to a mix-
ture in the vicinity of a hard wall. Doing so, in addition to
layering transitions, a first-order wetting transition was
found.10 These results were recently confirmed indepen-
dently using computer simulations by Dijkstra and van
Roij,12 again describing polymers as PHS. They found tran-
sitions reasonably close to those of the predictions in Ref.
10. First experiments did confirm that the colloidal liquid
phase favors the wall and the accompanying interfacial ten-
sion was in good agreement with previous measurements.13

Whether or not the liquid phase was partially or completely
wetting could not be concluded in this work, because of the
difficulty in measuring the contact-angles with sufficient ac-
curacy. Very recently, a wetting transition was reported in a
similar colloid–polymer mixture.14,15 The authors mention
the difficulty of comparing the experimentally found location
of the wetting transition to the theoretical prediction. Again,a!Electronic mail: d.g.a.l.aarts@chem.uu.nl
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the reason for this is that in experiment polymers behave far
from ideal. Several ways to describe polymers more realisti-
cally are available in literature16–23 mainly focusing on bulk
phase behavior. Here we extend the earlier model of Ref. 17
for bulk to calculate the interfacial tension and to describe
wetting behavior now also for interacting polymers.

That the colloidal liquid phase~partially! wets the wall is
normally explained with ‘‘classical’’ AOV-like arguments,
hence in terms of overlap volumes and accompanying inter-
actions~see Fig. 1!. Since at contact the overlap-volume be-
tween a wall and a colloid@volume 1 in Fig. 1~a!# is about
twice the overlap-volume between two colloids@volume 2 in
Fig. 1~a!# the colloidal liquid phase favors the wall, although
the pair attraction is reduced if two colloids are close to the
wall and to each other@volume 3 in Fig. 1~b!#. One of the
goals of this work is to put this qualitative view in a quanti-
tative form using the Cahn theory of wetting.24

We work at a semigrand canonical level, treating the
polymers grand canonically and the colloids canonically. We
thus have an effective one component system of colloids at a
constant chemical potential of the polymer maintained by a
reservoir filled with only polymer. We focus on predictions
of the bulk phase behavior, the interfacial tension, the wet-
ting transition and the prewetting line for ideal polymers as
well as for excluded volume interacting~EVI! polymer
chains. To keep descriptions simple and straightforward we
describe the inhomogeneities with a squared gradient term as
in Ref. 8, but with the free volume expression9 for the bulk
free energy. The interaction with the wall is described up to
second order in colloid contact density, i.e., we follow a
Fisher–Nakanishi-type25 extension of the Cahn theory of
wetting.24 ~for a recent review see Ref. 26!. We present
theory for the bulk phase behavior in Sec. II, for the free
interface in Sec. III and for the mixture near a flat hard wall
in Sec. IV. We summarize our main findings in Sec. V.

II. BULK PHASE BEHAVIOR

The starting point of our analysis is the thermodynamic
potentialF(Nc ,V,T,mp

r ) of a bulk fluid of Nc colloids in a
volumeV and with temperatureT, in osmotic contact with a
polymer reservoir of chemical potentialmp

r ~and osmotic
pressureP!. Using the free volume approach of Ref. 9 yields

F~Nc ,V,T,mp
r !5F0~N,V,T!2VE

0

np
r

dnp
r8aS ]P

]np
r8D . ~1!

In Ref. 17 we derived this in detail, showed how to make the
extension from ideal to interacting polymer chains, and gave

the necessary expressions explicitly. Here, we will only
briefly repeat some of it. In~1! F0 is the free energy of the
pure hard sphere system, i.e., without added polymer,a is
the free volume fraction,P the osmotic pressure, andnp

r the
polymer number density in the reservoir. The polymer con-
centration in the system is given by:np5anp

r . For F0 we
use the Carnahan–Starling equation of state27 to describe the
fluid, gas and liquid phases and we make use of a reference
free energy obtained from computer simulations28 to describe
the crystalline phase. The osmotic compressibility (dP/dnp

r )
depends on the nature of the polymers; for ideal polymers it
equals 1/b with b51/kBT and for polymers in the full ex-
cluded volume limit we use expressions from renormaliza-
tion group theory@Eq. ~17.53! from Ref. 29#

bS dP

dnp
r D 5112.629fp

r S 113.251fp
r 14.151~fp

r !2

111.480fp
r D 0.309

,

~2!

with fp
r 5np

r vp andvp5 4
3pRg

3 (Rg is the polymer’s radius of
gyration!. The free volume fractiona is given by

a5~12f!exp@2~Ad1Bd21Cd3!#, ~3!

with f the volume fraction of colloids andd5f/(12f).
The parametersA, B, andC are functions only of the deple-
tion thickness~in this approach a step function with thick-
nessD! divided by the radius of the colloidRc

A53
D

Rc
13S D

Rc
D 2

1S D

Rc
D 3

,

B5
9

2 S D

Rc
D 2

12S D

Rc
D 3

, ~4!

C53S D

Rc
D 3

.

For ideal polymers within the PHS approachD simply equals
Rg and D/Rc becomesq, the polymer to colloid size ratio.
For EVI-polymers we take both curvature~a polymer can
wrap around a colloid! and concentration effects into ac-
count. The depletion thickness now depends on the size ratio
q and on the polymer concentration. We use results from
Hankeet al.30 to incorporate the curvature dependence

D

Rc
5S 113aS Rg

Rc
D13bS Rg

Rc
D 2

23cS Rg

Rc
D 3D 1/3

21, ~5!

with analytical expressions fora, b, and c approximately
equal to 1.071, 0.869, and 0.040, respectively. To further
incorporate polymer concentration dependence we replace
Rg with the polymer bulk correlation length@Eq. ~19.24! in
Ref. 29# which is in line with the work of Joannyet al.31

Having all ingredients for~1! we apply common-tangent
constructions~after dividing the free energy byV to switch
to free energy densities! and are thus able to find the coex-
isting densities (rL andrG for liquid and gas!. In Fig. 2 we
show the bulk gas–liquid binodals both for ideal~dashed
line! and EVI-polymers~full line! in polymer system con-
centration. We compare the theoretical predictions to the ex-
perimentally determined binodal~symbols! for a colloid–
polymer mixture with q51.08 of stearyl-coated silica

FIG. 1. Two possible configurations for two colloids near a flat hard wall.
The depletion zones are indicated by dashed lines. In~a! we have a colloid–
wall interaction~1! and a colloid–colloid interaction~2! while in ~b! we also
have a colloid–colloid–wall interaction~3!.
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colloids (Rc513 nm) with poly~dimethylsiloxane! polymer
(Rg514 nm) in cyclohexane.3 Note that we have not shown
crystal–fluid coexistence in this phase diagram. Experimen-
tally, no crystal–fluid coexistence is found for any colloid–
polymer concentrations, possibly because colloidal sphere
polydispersity supresses crystallization. The predicted bin-
odal for the mixture with ideal polymers does not agree
quantitatively to the experimental binodal. The binodal for
EVI-polymers shifts in the right direction, although it clearly
predicts too high polymer concentrations above a certain col-
loid volume fraction, the reason for which is unknown. The
overall agreement, however, has improved significantly and
such a more quantitative agreement between the predicted
phase behavior for mixtures with EVI-polymers compared to
experimental systems is a first step in making quantitative
predictions about surface tension and wetting phenomena.

III. INTERFACE

To describe the free colloidal liquid–gas interface we
start with the functional for the surface tensiong@r#

g@r#5E
2`

`

dzF f ~r!2mcr1pc1mS dr

dzD
2G . ~6!

Here,z is the distance to the interface,f (r)5F/V is the free
energy density, for which we use the semigrand canonical
potentialF defined in~1! and divide by the volumeV. To-
gether with the second and third term (mc being the chemical
potential andpc the pressure at coexistence! this gives the
excess free energy in the interfacial region. The last term in
the integral accounts for density inhomogeneities. This qua-
dratic term with coefficientm is in fact the first term of an
expansion in derivatives of the density.

The coefficientm is given by the second moment of the
direct correlation functionc(r ) with r the center-to-center
distance and reads

mb5
p

3 E
0

`

dr r 4c~r !. ~7!

Here, we use the mean spherical approximation for the direct
correlation function which only depends on the attractive

part of the pair potentialu(r ) and hencec(r )50 for r ,sc

~with sc the colloid diameter! and c(r )52bu(r ) for r
>sc . For ideal polymers the pair potential can be written as

u~r !52kbTnp
r Vo~r !, ~8!

with np
r the polymer concentration andVo(r ) the overlap

volume between the two depletion zones. For generalq and
ideal polymers modeled as PHSm becomes

mb
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5 5

p

6
fp

r F11
7q
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1
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1

7q3

10
1

q4

5
1

q5

40G . ~9!

For EVI-polymers the pair potential can be written as32

u~r !52E
0

np
r

dnp8S ]P

]np8
DVo~r ,np8!, ~10!

andm can be calculated numerically.
More sophisticated expressions forc(r ) could have been

used, for example, by rewriting the direct correlation func-
tions from the density functional in Ref. 11 to an effective
colloid–colloid direct correlation function. However, the re-
sultingm can then become negative at high colloid densities,
where the repulsive hard sphere contribution toc(r ) be-
comes more important than the attractive depletion contribu-
tion. This shows that the expansion in~6! in terms of gradi-
ents in the density does not converge.

Minimizing the interfacial tension~6! with respect tor
using functional differentiation leads to

2m
d2r

dz2 5
d f~r!

dr
2mc , ~11!

which can be used to calculate the equilibrium interfacial
tension~without actually having to know the true shape of
the interfacial profile!

g52E
rG

rL
drAm~ f ~r!2mcr1pc!. ~12!

The interfacial tension is thus equal to areaA1B in Fig. 3
~ignoring the straight line whose meaning will be explained
in Sec. IV!.

In Fig. 4 we present the surface tension obtained from
the functional in~6! for ideal polymers withq51.0 ~dashed
line! and for EVI-polymers withq51.08 ~full line!. We

FIG. 2. Comparison of experimental phase diagram with theoretical predic-
tions. The symbols denote the experimental binodal for a colloid–polymer
mixture with size ratioq51.08 ~Ref. 3!. The large open circle is the esti-
mated critical point. The dashed line is the predicted binodal describing the
polymers as penetrable hard spheres, while describing the polymers as hav-
ing excluded volume interactions results in the full line. Open circles denote
critical points.

FIG. 3. Ignoring the straight line the area A1B is proportional to the sur-
face tension following from~12!. The two minima are the gas–liquid coex-
istence points. Adding the straight line, which is given by the l.h.s. of~23!,
enables one to solve~23! graphically. At the wetting transition the areas B
and C must be equal. The arrow indicates the density of liquid phase at the
wall.
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choseq51.0 for ideal polymers in order to compare our
results with existing theories8,10 and simulations12 and we
choseq51.08 for EVI-polymers to compare with experi-
mental results.3,13 The change fromq51.0– 1.08 leads to
better agreement with experiment, while this change has no
serious consequences for the comparison with theory. Also
shown are experimental interfacial tensions determined by
De Hoog and Lekkerkerker with a spinning drop apparatus
for colloid–polymer mixtures atq51.083 ~filled circles!.
Aarts et al. measured the interfacial tension in exactly the
same system using a different~static! technique13 ~open
circles!: The gas–liquid interface was analyzed near a verti-
cal hard wall, where the interface curvature depends only on
the capillary length; from this the interfacial tension was ob-
tained. The discrepancy between the two experiments shows
the difficulty of measuring such ultra-low interfacial ten-
sions. Clearly, our prediction for the interfacial tension for
ideal polymers~PHS! rises rather fast compared to the ex-
periment, which is not surprising at all, because there is no
good agreement between the predicted phase diagram and
the experimental phase diagram as was already mentioned in
Sec. I and shown in Sec. II. The plot does illustrate, however,
clear agreement with predictions by Braderet al.,10 where
fundamental measures theory was used to describe the
colloid–polymer mixture. This agreement justifies the use of
squared gradient theory. Furthermore, we would like to stress
the importance of the bulk free-energy density on the pre-
dicted interfacial tensions, which is best illustrated by com-
paring our predictions to those from Brader and Evans.8 We
describe the density inhomogeneities in the same way as in
Ref. 8, but use a different free-energy density.9 As a result,
our predictions do not agree with those of Ref. 8, but do
agree with the more sophisticated approach of Ref. 10.

For EVI-polymers the predicted interfacial tension
slightly underestimates the experimental data points, al-
though the data taken from Ref. 13 are reasonably followed.
The smaller interfacial tensions as well as the shift in the
binodal to higher polymer concentrations as shown in Fig. 2
means that in the description with EVI-polymers instead of
ideal polymers the effect of shrinking depletion zones as a

function of polymer concentration, which leads to smaller
overlap volumes and hence smaller attractions, is more im-
portant than the steeply increasing osmotic compressibility
as a function of polymer concentration, which leads to stron-
ger attractions.

IV. COLLOID–POLYMER MIXTURE
NEAR A HARD WALL

The next step is to describe the colloid–polymer mixture
near a hard wall. We use the same expressions as above and
add the following terms to the functional in~6! ~in which the
integration now ranges from 0 tò! to incorporate the inter-
actions with the wall

g@r#5E
0

`

dzF f ~r!2mcr1pc1mS dr

dzD
2G

1E
0

`

dzr~z!U2~z!

2
1

2 E0

`

dzE drr~z!r~r !U3~z,r !1¯ . ~13!

Here, U2 is the attractive colloid-wall interaction,U2<0,
and can be found from~10!, in which the overlap volumeVo

now depends on the depletion zones of the wall and the
colloid. The next term in~13! is a wall-induced correction
~hence the minus sign! to the pair-wise colloid–colloid inter-
action, which is reduced@compared to its bulk pair interac-
tion u(r )] in the vicinity of the hard wall. This is illustrated
in Fig. 1~b!, where the volume labeled ‘‘3’’ is double counted
@it contributes tou(r ) andU2(z)] and should, therefore, be
subtracted in order to give a proper account of the free vol-
ume. In other words, the system gains free volume only
once. This is in fact the first-order correction since three and
more particle interactions with the wall are also possible and
become more important for largeq. One can easily show
that for ideal polymers there are no volumes 3 whenq be-
comes less than 1/4. Thus this second term withU3 depends
on overlap volumes of type 3@see Fig. 1~b!# to be included in
~10! as Vo . We now should do this for all positions of the
two particles with respect to each other and to the wall.

Instead of using the explicit form of~13! we make the
following approximations:

E
0

`

dzr~z!U2~z!'r1E
0

`

dzU2~z![2r1h1 , ~14!

in which we define the contact density asr1[r(0) andh1

52*0
`dzU2(z). In addition we approximate

2E
0

`

dzE drr~z!r~r !U3~z,r !

'2r1
2E

0

`

dzE drU3~z,r !

[r1
2g, ~15!

with g52*0
`dz*drU3(z,r ). Here we make the same ap-

proximation as in~14! and write the correlated density–

FIG. 4. Comparison of experimental surface tension with theoretical predic-
tions. The circles denote surface tensions measured in a colloid–polymer
mixture with size ratioq51.08 of which the phase diagram is given in Fig.
2. Closed circles represent measurents done by De Hoog and Lekkerkerker
using a spinning drop technique~Ref. 3! and open circles denote measure-
ments by Aartset al. obtained by analyzing the static profile near a vertical
hard wall ~Ref. 13! on exactly the same experimental system. The dashed
line is the prediction describing the polymers as ideal, while describing the
polymers as having excluded volume interactions results in the full line.
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density product as the density squared. With these approxi-
mations we obtain a Cahn–Fisher–Nakanishi-type
functional24,25 in which the interaction with the wall is de-
scribed up to second order in density with clear physical
parametersh1 and g. These are similar to the ‘‘surface
chemical potential’’ and the ‘‘surface enhancement param-
eter’’ as in Ref. 25. Note that the arguments of the integrals
vanish beyond a certain small distance to the wall, since the
overlap volumes with the wall needed to calculateU2 and
U3 rapidly decay to zero. Our working functional therefore
reads

g@r#5E
2`

`

dzF f ~r!2mcr1pc1mS dr

dzD
2G

2r1h11
1

2
r1

2g. ~16!

For PHSh1 can be calculated analytically and is given
by

h1b

sc
5fp

r S 11
q

2D , ~17!

while for EVI-polymers it depends not only onD, but also on
the depletion thickness near a wall,Dw . This can be found
from ~5! by taking the limitq→0. In Fig. 5 we ploth1 as a
function of polymer concentration and show that in case of
ideal polymers~dotted line1symbol) this term rises faster
than in case of EVI-polymers~full line1symbol). The next
term, g, depends on the triple overlap volume@volume 3 in
Fig. 1~b!# and is more difficult to calculate

g52E dzE drU3

5E dzE drE
0

np
r

dnp8S ]P

]np8
DVo

5E
0

np
r

dnp8S ]P

]np8
D E dzE drVo . ~18!

The resulting geometrical problem is closely related to prob-
lems described by Bellemans33 and Fischer.34 There, how-
ever, the problem concerns two hard particles at a hard wall,
while here we have soft particles at a wall which breaks
some of the symmetry and changes the limits of integration.

We follow the approach and notation of Fischer, change to
cylindrical coordinates around particle 1@shown in Fig. 6!
and write the integrals in~18!# as

E dzE drVo52pE dz1E dz21E dz31E dr2r 2F3 ,

~19!

with F3 the overlap area between two disks at heightz31.
For EVI-polymers and generalq ~19! can readily be calcu-
lated numerically, while for PHS and the symmetric case of
q51 the integrals can be rewritten to much simpler integrals
and ~19! becomes 9

280p
2sc

7 ~see the Appendix!, andg reads

gb

sc
4 5

9

280
p2sc

3np
r 5

27

140
pfp

r . ~20!

In Fig. 5 we plotg as a function of polymer concentration.
Again, in case of ideal polymers~dotted line! this term rises
faster than in case of EVI-polymers~full line!. Moreover, for
EVI-polymersg rapidly does not change anymore as a func-
tion of polymer concentration. The consequences of this for
wetting will be discussed at the end of this section.

We now have all the ingredients of~16!. Minimizing the
interfacial tension with respect tor gives rise to the Euler–
Lagrange equation

2m
d2r

dz2 5
d f~r!

dr
2mc ~21!

with boundary condition

2h11gr152m
dr

dzU
z50

. ~22!

The boundary condition appears because of the wall and one
has to solve

h12gr152Am~ f ~r1!2mcr11pc!, ~23!

which can be done graphically.24 At the wetting transition the
three interfacial tensions in play satisfygGS5gLS1gGL .
This means that the areas B and C from Fig. 3 must be equal,
since liquid at the wall~indicated by the arrow in Fig. 3 with
a density higher than the bulk liquid density! costs more
inhomogeneities~area B! which are balanced by a favorable
interaction with the wall~area C!.

For mixtures slightly off-coexistence in the gas phase the
prewetting line can be calculated in the same way as the

FIG. 5. The parametersh1 ~with symbol! in units of sc /b andg ~without
symbol! in units ofsc

4/b for q51.0 as a function of polymer concentration
for ideal ~dotted! and EVI-polymers~full !.

FIG. 6. Explanation of the notation used in~19! following Fischer~Ref. 34!.
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wetting transition.24 Now, only one true minimum appears
indicating the density of the gas phase and one local mini-
mum indicating the density of the metastable liquid phase.
Again, an equal area construction can be made to determine
the location of the prewetting line which starts at the wetting
transition and ends in a prewetting critical point.35

In Fig. 7 we show the theoretical phase diagram in poly-
mer reservoir representation forq51.0 for ~a! ideal poly-
mers and~b! EVI-polymers. For ideal polymers a first-order
wetting transition is found atfp,w

r 51.917 with a prewetting
line ending in a prewetting critical point. The wetting transi-
tion takes place rather close to the critical point; for compari-
son the triple line is atfp,t

r 56.081. The triple line is found
by the crossing of the gas–liquid and the fluid–crystal coex-
istence~calculated as described in Sec. II!. In Ref. 10 the
wetting transition is found atfp,w

r 50.85, while in Ref. 12 it
is found atfp,w

r 51.05. Clearly, we find the transition further
away from the critical point than in Refs. 10 and 12, but it is
still much closer to the critical point than to the triple line.
Furthermore, we calculate a prewetting line very close to the
binodal whereas in Refs. 10 and 12 a first-order wetting tran-
sition was found, but not the accompanying prewetting line.
We also find that increasingh1 drives the wetting transition
away from the critical point, while increasingg counteracts
this effect. Of course, higher-order terms in the contact den-
sity are present for the relatively large size ratioq51, where

mutual overlapping depletion zones of three and more par-
ticles are likely to occur, and taking these into account would
even give better agreement with the predictions in Refs. 10
and 12.

In contrast, for EVI-polymers higher order terms con-
tribute little. For example, for EVI-polymers theg-term does
not change anymore with increasing polymer concentration
from the bulk critical point on, see Fig. 5. Moreover,g is
very small compared to the result for ideal polymers~0.050
instead of 0.6063fp

r , Fig. 5!. This means that the wetting
transition for EVI-polymers is mainly driven by theh1 term.
The direct consequence of this is that the transition occurs far
away from the critical point, atfp,w

r 54.403 @indicated by
the horizontal full line in Fig. 7~b!#, which is even above the
triple line, located atfp,t

r 52.388@indicated by the horizontal
dashed line in Fig. 7~b!#. Note that in our calculations we can
ignore the crystal phase and we are thus able to determine
the location of the wetting transition even if it is above the
triple line. Furthermore, the prewetting line is more extended
than for ideal polymers and does not follow the binodal so
closely. Wijting et al.14,15 find a wetting transition in a
colloid–polymer mixture withq50.93 and transform the ex-
perimental polymer concentration back to a theoretical res-
ervoir polymer concentration thus locating the wetting tran-
sition between 4.3,fp,w

r ,4.5. For q50.93 we find the
transition atfp,w

r 53.80, which is again above the theoretical
triple line. Yet in many experimental systems the crystalline
phase seems to be supressed by colloidal sphere polydisper-
sity.

V. CONCLUSIONS

We have calculated the interfacial tension of the free
interface in phase separated colloid–polymer mixtures
within a squared gradient approach. For ideal polymers we
find reasonable agreement with a much more sophisticated
approach.10 Moreover, by using a recently developed exten-
sion of the free volume theory for ideal polymers to excluded
volume interacting polymers17 the polymer is incorporated
much more realistically into the theory and the predicted
bulk phase behavior agrees better with experiment. This first
step should be taken when one wants to compare the pre-
dicted interfacial tensions with experimental values. Making
this comparison we see that the ideal polymer description
overestimates, while the EVI-polymer description underesti-
mates the experimental data. The two different methods used
to measure the interfacial tension in exactly the same system
do not agree completely showing that measuring such ultra-
low interfacial tensions is very difficult.

Furthermore, we have put the often used qualitative in-
terpretation of wetting in colloid–polymer mixtures based on
particle wall overlap volumes and hence microscopic inter-
actions into an insightful, semiphenomenological, quantita-
tive form within the Cahn–Fisher–Nakanishi formalism.
This way we clearly see which terms drive the transition to
or away from the critical point. For ideal polymers we find
that the location of the wetting transition is somewhat further
away from the critical point than predicted by the theory of
Ref. 10 and by the computer simulations of Ref. 12, but still

FIG. 7. Wetting phase diagrams in polymer reservoir representation with
q51 both for ~a! ideal and~b! EVI-polymers. The full horizontal lines
denote the location of the wetting transition. Mixtures are partially wetting
above and completely wetting below these lines. The dashed line in~b!
depicts the location of the triple line~crystal–fluid coexistence is not shown
for the sake of clarity!. The lines at the left/gas side of the phase diagrams
represent the prewetting line starting from the wetting transition and ending
in the prewetting critical point. The inset in~a! shows a zoom in on this area.
The open circles depict critical points.
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much closer to the critical point than to the triple line. We
thus see that the two particle-wall term alone is not enough
to drive the transition back to the critical point and that
higher-order terms—although smaller—are important.
Again, we can extend this model to incorporate EVI-
polymers. In this case, the two-particle wall term is already
very small, higher-order terms are even smaller and hence
the wetting transition is driven away from the critical point
by the attractive particle-wall term even to above the triple
line. In experiment, however, a wetting transition is
found,14,15 but in a system which does not display a crystal
phase. We calculated the wetting transition for that system by
ignoring the crystal phase. We then found a wetting transi-
tion reasonably close to the experimentally found one. Fur-
thermore, in Ref. 15 it is mentioned that the pictures of the
gas–liquid interface are somewhat fuzzy and we feel that
experimentally the challenge still is in accurate measure-
ments of the contact angle. Theoretically, the challenge is to
describe polymers even more realistically in order to obtain
not only a better overall agreement with the experimental
bulk phase behavior, but also with the measured interfacial
tensions.
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APPENDIX: EQUATION „19… FOR qÄ1

For q51 we can calculate~19! analytically. First we
calculate all volumes of type 3, see Fig. 8~a!, as if particles 1
and 2 do not feel each other and next we subtract all volumes
3 where particles 1 and 2 did penetrate each other. For the
first calculation we do not perform the calculation withz1 as
the axis of symmetry, but we choose the axis of symmetry
around a ghost particle, particle 3, at the other side of the
depletion layer, see Fig. 8~b!. If particles 1 and 2 lie within
the shaded volume,Vs , in Fig. 8~b!, then their depletion

zones certainly overlap at the center of particle 3. Doing this
for all positions of particle 3, withz3 the distance of particle
3 to the depletion wall, gives the first part of the integration

E
0

sc
dz3 Vs

2~z3!5E
0

sc
dz3 S p

3
~sc2z3!2~2sc1z3! D 2

5
11

105
p2sc

7 . ~A1!

This is exactly the same calculation~in a different way! as
done by Bellemans in Ref. 33.

The second part of the integration can be understood as
follows. We let ghost particle 3 scan the volume behind the
depletion wall, see Fig. 8~c!, but therefore particle 3 should
always be within a diametersc of particles 1 and 2, just as
particle 1 should be withinsc of 2 and 3, and 2 with respect
to 1 and 3. Thus, all particles are identical. One can easily
see that if we put and keep particle 2 behind the wall as in
Fig. 8~d! and let particle 3 scan the overlap volume between
particles 1 and 2 behind the wall for all positions of 1 and
2—let us call this integrationa—that this integration is ex-
actly the same as letting particle 3 scan before the wall again
for all positions of particles 1 and 2, called integrationb.
Because of symmetry these integrations are exactly equal to
integrationc with particles 1 and 2 before and particle 3
behind the wall, depicted in Fig. 8~c!, which we want to
know. We can easily do integrationsa andb together since
the total overlap volume between 1 and 2 is straightforward
anda1b becomes:

a1b5E
0

sc
dz1E

0

sc2z1
dz2 Vo~z1 ,z2!2p~z11z2!z2

5
61

420
p2sc

7 , ~A2!

with Vo(z1 ,z2) the overlap volume between particles 1 and
2, zx the distance of particlex to the depletion wall and
2p(z11z2)z2dz2 the number of points 2 in a shell around
particle 1. Bellemans calculateda1b1c in Ref. 33 in a
different way. Now,c5 1

2(a1b) and our integration~19! be-
comes

S 11

105
2

61
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