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Biaxial versus uniaxial nematic stability in asymmetric rod-plate mixtures

H. H. Wensink, G. J. Vroege,* and H. N. W. Lekkerkerker
Van’t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute, Utrecht University, Padualaan 8,

3584 CH Utrecht, The Netherlands
~Received 30 May 2002; published 30 October 2002!

The isotropic-nematic phase behavior of a binary mixture of rodlike and platelike particles is studied within
Onsager’s second virial theory. The phase behavior is obtained from the numerically exact equilibrium orien-
tational distribution functions for both uniaxial and biaxial nematic phases. Inspired by recent experimental
work on these systems we concentrated onasymmetricmixtures in which the excluded volume between the
plates vex

pp is larger than that between the rodsvex
rr . Starting from the symmetric case (vex

pp/vex
rr 51) and

increasing the rod-plate excluded volume ratio we scrutinized the phase behavior, in particular focusing on the
stability of the biaxial nematic phase. We observe that, at a certain asymmetry, the characteristic bicritical point
is replaced by a two-phase region marking first order isotropic-biaxial transitions. Increasing the asymmetry
even further leads to several demixing scenarios. First, there is a uniaxial-biaxial (N1-B) demixing scenario
with an associated isotropic-uniaxial-biaxial (I -N1-B) triple equilibrium. Second, a uniaxial-uniaxial
(N1-N2) demixing occurs in case of strongly asymmetric mixtures indicating that the biaxial nematic phase
may become fully metastable. Since all predicted demixing scenarios lie in the experimentally accessible
regime, there is a possibility of finding biaxial nematic structures in lyotropic colloidal rod-plate mixtures.

DOI: 10.1103/PhysRevE.66.041704 PACS number~s!: 64.70.Md, 64.60.Cn, 61.30.Cz
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I. INTRODUCTION

Since the pioneering work of Zocher and Langmuir@1,2#,
it has been known that dispersions of highly anisometr
rodlike or platelike colloidal particles exceeding a certa
concentration undergo an orientational order-disorder tra
tion from an isotropic state (I ), in which the particles are
randomly oriented to an orientationally ordered nematic s
(N). Onsager@3# first showed that the phase transition c
be explained on the basis of purely repulsive interacti
between the particles. In his seminal work, he explained
phase transition as the result of a competition between
entational entropy which favors the isotropic state and
entropy effect associated with the orientation-dependent
cluded volume of the anisometrical particles which favo
the ordered nematic state. Onsager’s theoretical appro
which was originally inspired by experimental observatio
of phase separating systems of pure colloidal rods~tobacco
mosaic virus! @4# and platelets@2#, can be extended to allow
phase diagram calculations for binary mixtures of anisom
ric particles, e.g., rods with different lengths@5# or mixtures
of rodlike and platelike particles@6#. The phase behavior o
the latter systems is particularly interesting due to the po
bility of having nematic phases with different symmetrie
i.e., two uniaxial ones~a rod-rich N1 phase and a plate
dominatedN2 phase! and a biaxialB phase, in which rods
and platelets are oriented along mutually perpendicular
rectors. An important parameter that governs the overall
pology of the isotropic-nematic phase diagram is the ratio
the excluded volumes between two platelets and that
tween two rods,vex

pp/vex
rr , defining theasymmetryof the mix-

ture. Setting this ratio equal to unity will produce phase d
grams that are symmetric about mole fractionx51/2 ~i.e.,
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equal portions of rods and plates!, at least within a second
virial approach. Henceforth, we will refer to these systems
symmetricmixtures. In general, asymmetric phase diagra
will be obtained when the excluded volume ratio is chosen
be larger or smaller than unity~asymmetric mixtures! or
when higher virial terms are incorporated explicitly~e.g., in
a computer simulation!.

Previous theoretical studies on rod-plate mixtures, wh
have mainly focused on symmetric mixtures~for which
vex

pp/vex
rr 51), can be subdivided into two groups. On the o

hand, Onsager-type theories@6–10# were adopted allowing
for a continuous treatment of both the positional and ori
tational degrees of freedom. On the other hand, mean-fi
lattice models@11,12# were used in which the positiona
and/or orientational coordinates are discretized, such as
Zwanzig model@13# where the particle orientations are r
stricted to lie on one of the Cartesian axes. All theories p
dict the same qualitative behavior for the symmetric case
stable biaxial nematic phase exists in between the rod-
plate-dominated uniaxial phases, and meets the isotr
phase in a bicritical point. However, van Roij and Muld
@12# showed that the biaxial nematic phase in a mixture
rectangular rodlike and platelike blocks, treated within
Zwanzig second virial theory, may become unstable with
spect to demixing into the uniaxial nematic phases at so
critical rod-plate excluded volume ratio. Computer simu
tions by Campet al. @14# on symmetric mixtures of hard
prolate and oblate ellipsoids confirmed that demixing c
occur. Their phase diagrams, which were not symmetric
to the effect of higher-order particle interactions, essentia
revealed a two-step demixing scenario where the bia
nematic phase demixes into the uniaxial phases upon c
pression via a transitional plate-uniaxial-biaxial demixi
region.

Experiments @15# on strongly asymmetric mixtures
(vex

pp/vex
rr @1) using rod- and plate-shaped colloids~both withl
©2002 The American Physical Society04-1
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an aspect ratio of about 15! also showed a demixing into
fractionated rod- and plate-dominated nematic phases,
probably having a uniaxial symmetry. In a previous pap
@16#, we were able to reproduce most features of the lo
concentration part of the experimental phase diagram in
context of the Onsager theory incorporating higher-order p
ticle correlations with the Parsons rescaling approach. H
ever, as we focused on the uniaxial nematic phases, u
Gaussian trial functions to describe the equilibrium parti
orientations in these phases, we did not explore the poss
ity of biaxial solutions in that study.

In this paper, we use the same model in the contex
Onsager’s second virial theory but we now explicitly inclu
the possibility of biaxial symmetry by performing the exa
free energy minimization with respect to the orientation
degrees of freedom and solving the resulting integral eq
tions exactly, using numerical schemes. In this way we
tain the numerically exact orientational distribution functio
~ODFs! for the aligned phases without having to rely o
approximations such as using trial ODFs with a predescri
form @16#, discretized orientation models@11,12#, or the so-
called L2 model@6,9,10#. In the latter case, the exclude
volumes are represented as a series expansion in term
spherical harmonics truncated after the first term, which
only reliable for very weakly aligned nematic phases. Sin
the phase behavior of anisometric particles, in general,
pends crucially on the approximations used in the descrip
of the excluded volume interactions~see, e.g., Refs.@10,17#!,
the most credible results will be obtained when the exclu
volume integrals are solved exactly, i.e., without approxim
tions.

In this paper we examine the effect of the asymme
induced by increasing the rod-plate excluded volume ra
from unity, on the phase behavior of rod-plate mixtures. O
main interest is to establish possible phase diagram scen
for such mixtures. In particular, we focus on the stability
the biaxial nematic phase.

This paper is structured as follows. In Sec. II A we give
short description of the Onsager theory in the specific cas
binary mixtures of rods and plates. The numerical techniq
used to solve the minimization equations and to calculate
entropy integrals are outlined in Sec. II B. In Sec. II C w
introduce order parameters to distinguish between the liq
crystals phases. A bifurcation analysis is presented in S
II D, which we use to locate the onset of a new nema
symmetry out of a given reference phase. In Sec. II E
discuss the criteria used to discriminate between stable
metastable phases. The phase diagrams will be present
Sec. III and several scenarios are discussed in detail. Fin
some conclusions are made in Sec. IV.

II. THEORY

A. Onsager theory

We consider a binary mixture of hard cylindric rods a
platelets in a macroscopic volumeV. The particles involved
are characterized by four parameters: the lengthLr and the
diameterDr of the rods~with Lr.Dr) and the diameterDp
and length~thickness! Lp of the platelets~with Dp.Lp).
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The details of the exact shape of the particles are found to
irrelevant for the general argument, provided that the p
ticles are sufficiently anisometrical, i.e.,Lr /Dr@1 and
Dp /Lp@1. The Helmholtz free energy of the mixture in th
Onsager@3# treatment is given by

bF

N
5const1 ln c211 (

j 51,2
xj@ ln xj1s j #1cB2 , ~1!

whereb5(kBT)21 with kB Boltzmann’s constant andT the
temperature. The irrelevant constant includes terms indep
dent of the particle densities. Henceforth, we definex25x as
the mole fraction of the platelets. Furthermore,c is the total
dimensionless concentration,c5bN/V, with b5pLr

2Dr /4
the average excluded volume between two randomly
ented thin rods. The free energy~1! consists of several en
tropic contributions. Apart from an ideal and mixing contr
bution there is an orientational entropy involving th
quantitys j , defined as

s j[E f j~V!ln@4p f j~V!#dV, j 51,2. ~2!

Here, f j (V) represents the ODF describing the distributi
of the solid angleV of the j th-particle’s orientation vector
The ODF must be normalized according to* f j (V)dV[1.
In the isotropic state, all orientations are equally probab
which implies f iso[1/4p ands iso[0. In the nematic state
however, s will be larger than zero becausef j (V) is a
peaked function.

The last term in Eq.~1! is the excluded volume entrop
due to the repulsive interactions treated at the level of O
sager’s second virial approximation. The second virial co
ficient B2 for a binary mixture of anisometric particles
defined as

B25~12x!2r1112x~12x!q12r121x2q22r22, ~3!

where the parametersr jk represent the angular average of t
excluded volume between particles of typej andk relative to
their excluded volume in the isotropic phase,

r jk[E E vexcl
jk ~g!

vexcl,iso
jk

f j~V! f k~V8!dVdV8, ~4!

in which g is the angle between the particle orientation ve
tors. From this definition we immediately see thatr jk[1 in
the isotropic phase, whereas 0,r jk,1 in the nematic state
For sufficiently anisometric particles the leading terms of
excluded volumes are given by@3#

vexcl
pp ~g!;

p

2
Dp

3usingu,

vexcl
rp ~g!;

p

4
LrDp

2ucosgu,

vexcl
rr ~g!;2Lr

2Dr usingu. ~5!
4-2
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Using the isotropic averages^̂ usingu&&iso5p/4 and
^^ucosgu&&iso51/2 we obtain the following expressions fo
r jk :

r j j 5
4

pE E using~V,V8!u f j~V! f j~V8!dVdV8, j 51,2,

r1252E E ucosg~V,V8!u f 1~V! f 2~V8!dVdV8. ~6!

The parametersq12 andq22 in Eq. ~3! quantify the excluded
volume between tworandomly orientedparticles~a rod and
a platelet and two platelets, respectively! relative to that be-
tween two rods

q125
1

4 S Dp

Dr
D 2Y S Lr

Dr
D and q225

p

4 S Dp

Dr
D 3Y S Lr

Dr
D 2

.

~7!

These parameters are very important since they determ
the asymmetryof the rod-plate mixture. Settingq22 equal to
unity will render the free energy symmetric aboutx50.5
~within the second virial approach! as we see from Eq.~3!.
Consequently, all phase diagrams must possess the
symmetric topology@6,8,12#. In our case,q22 will generally
be larger than unity~i.e., the isotropic excluded volume o
the plates is larger than that of the rods!, which implies that
the symmetry is lost and all phase diagrams are asymme

In order to calculate the parametersr jk and s j we must
determine the shape of the thermodynamic equilibrium O
This can be done by minimizing the free energy with resp
to f j by performing a functional differentiation under th
constraint of the normalization condition,

d

d f j~V! H bF

N
1l j F12E f j~V!dV G J 50, j 51,2, ~8!

wherel j are the Lagrange undetermined multipliers whi
follow from the normalization conditions. This results in th
following coupled set of Euler-Lagrange equations:

l15 ln@4p f 1~V!#

1
8c

p
~12x!E using~V,V8!u f 1~V8!dV8

14cxq12E ucosg~V,V8!u f 2~V8!dV8,

l25 ln@4p f 2~V!#

14c~12x!q12E ucosg~V,V8!u f 1~V8!dV8

1
8c

p
xq22E using~V,V8!u f 2~V8!dV8. ~9!

These two nonlinear integral equations constitute the star
formulas for the phase equilibria calculations in our wo
Since there is no exact solution to the equations above
must adopt numerical techniques to obtain the equilibri
04170
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ODF of the nematic phase at a givenx andc. This issue will
be discussed in detail in the following paragraph.

Once the minimization problem has been solved, the co
positions and concentrations of the coexisting phases ca
found by imposing the standard conditions of equal osmo
pressureP and chemical potentialsm j ,

bbP[2bS ]bF/N

]V D
N1 ,N2 ,T

.c1c2B2 ,

bm1[S ]bF/N

]N1
D

N2 ,V,T

. ln c1 ln~12x!1s112c@~12x!r111xq12r12#,

bm2[S ]bF/N

]N2
D

N1 ,V,T

. ln c1 ln x1s212c@~12x!q12r121xq22r22#.

~10!

Recall thats j[0 and r jk[1 for the isotropic phase. The
coexistence equations were solved using standard New
Raphson iteration. The accuracy in the mole fractions a
concentrations were chosen to be at least five significant
its.

B. Minimization of the free energy

1. Series expansion solution

A systematic way to tackle the integral equations~9! is to
expand the kernelsusingu and ucosgu in terms of Legendre
polynomialsPn . Following Kayser and Raveche´ @18# and
Stroobants and Lekkerkerker@6# we write

usingu5
p

4
1 (

n51

`

d2nP2n~cosg!,

ucosgu5
1

2
1 (

n51

`

c2nP2n~cosg!, ~11!

with coefficients@19#

d2n52
p~4n11!~2n23!!! ~2n21!!!

22n12n! ~n11!!
,

c2n5
~21!n11~4n11!~2n23!!!

2n11~n11!!
. ~12!

For symmetry reasons only even Legendre polynomials n
be retained@8#. To include the possibility of biaxial symme
try we use the addition theorem of spherical harmonics@20#
to rewrite P2n(cosg) in terms of a bilinear expansion in
P2n(cosu) and its associated Legendre polynomia
P2n

m (cosu),
4-3
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P2n~cosg!5P2n~cosu!P2n~cosu8!12 (
m51

2n
~2n2m!!

~2n1m!!

3P2n
m ~cosu!P2n

m ~cosu8!cosm~f2f8!.

~13!

Here, u is the polar angle between the particle orientat
vector and the nematic director andf is the azimuthal angle
describing the orientation in the plane perpendicular to t
director. Substituting Eqs.~11! and ~13! into the integral
equations~9! and some rearranging leads to

f j~V!5Zj
21expF (

n51

` H a2n
( j )P2n~cosu!

1 (
m51

n

knmb2n
2m( j )P2n

2m~cosu!cos 2mfJ G , j 51,2,

~14!

whereknm52(2n22m)!/(2n12m)! and Zj is the normal-
ization factor. For symmetry reasons, only even2m associ-
ated Legendre functions need be included and all sinmf
arising from the addition theorem vanish@8#. The coeffi-
cientsa2n

( j ) andb2n
2m( j ) are given by

a2n
(1)522cF ~12x!

4

p
d2n^P2n& f 1

12xq12c2n^P2n& f 2G ,
a2n

(2)522cF2~12x!q12c2n^P2n& f 1
1x

4

p
q22d2n^P2n& f 2G ,

~15!

and

b2n
2m (1)522cF ~12x!

4

p
d2n^P2n

2mcos 2mf& f 1

12xq12c2n^P2n
2mcos 2mf& f 2G ,
04170
t

b2n
2m (2)522cF2~12x!q12c2n^P2n

2mcos 2mf& f 1

1x
4

p
q22d2n^P2n

2mcos 2mf& f 2G . ~16!

The values of these coefficients are found by numerica
solving the following coupled consistency equations:

^P2n& f j
5E f j~V!P2n~cosu!dV, n51,2, . . . ,N,

~17!

^P2n
2mcos 2mf& f j

5E f j~V!P2n
2m~cosu!cos 2mfdV,

n,m51,2, . . . ,N ~m<n!. ~18!

Note thatdV5d(cosu)df. Assuming the expansion in Eq
~14! to converge after a finite number of terms, we trunc
the series after theNth term. In case of uniaxial symmetry
the biaxial coefficientsb2n

2m( j ) are zero, which means that w
only have to solve the set of 2N consistency equations~17!
using Eqs.~14! and ~15!. In case of biaxial symmetry, how
ever, both sets, Eqs.~17! and ~18!, must be solved simulta
neously, which implies solvingN(N11) equations itera-
tively. Obviously, the number ofN depends on the degree o
alignment of the nematic phase via the mole fraction a
concentration. Following Ref.@6# we choseN57 as a mini-
mum for weakly ordered nematic phases and we increase
value up to a maximumN512 for higher concentrations
The numerical integrations were performed using Gauss
quadrature. The initial trial ODFs were those in the perfec
aligned uniaxial~or biaxial! nematic phase. The solution
were iterated until the normalization factorsZj had con-
verged to within 1026.

Once the consistency equations have been solved, the
tropic contributionss j andr jk can be calculated from
s strongly
e

s j52 ln 4pZj1 (
n51

N H a2n
( j )^P2n& f j

1 (
m51

n

knmb2n
2m ( j )^P2n

2mcos 2mf& f jJ , j 51,2,

r j j 511
4

p (
n51

N

d2nH ^P2n& f j

2 1 (
m51

n

knm^P2n
2mcos 2mf& f j

2 J , j 51,2,

r125112(
n51

N

c2nH ^P2n& f 1
^P2n& f 2

1 (
m51

n

knm^P2n
2mcos 2mf& f 1

^P2n
2mcos 2mf& f 2J . ~19!

2. Direct numerical solution

The main drawback of the series solution is that the convergence becomes very sluggish when the nematic phase i
aligned. To obtain reasonable quantitative results,N should be taken very large (N@10) in that regime which makes th
numerical procedure computationally awkward.
4-4
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To make headway, we may consider an alternative method, proposed by Herzfeldet al. @21#, in which the coupled set o
integral equations~9! is solved directly by assuming a grid of anglesV andV8. Taking the exponentiated form of Eq.~9! and
eliminating the Lagrange multipliers using the normalization conditions of the ODFs we may rewrite Eq.~9! in an iterative
form,

f 1
(n11)~V!5

expF2
8c

p
~12x!E using~V,V8!u f 1

(n)~V8!dV824cxq12E ucosg~V,V8!u f 2
(n)~V8!dV8G

E dV expF2
8c

p
~12x!E using~V,V8!u f 1

(n)~V8!dV824cxq12E ucosg~V,V8!u f 2
(n)~V8!dV8G ,

f 2
(n11)~V!5

expF24c~12x!q12E ucosg~V,V8!u f 1
(n)~V8!dV82

8c

p
xq22E using~V,V8!u f 2

(n)~V8!dV8G
E dV expF24c~12x!q12E ucosg~V,V8!u f 1

(n)~V8!dV82
8c

p
xq22E using~V,V8!u f 2

(n)~V8!dV8G . ~20!
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The integrations over the solid anglesV8 were carried out by
Simpson’s quadrature. We considered intervals of@0,p/2#
for the polar angleu and@0,2p# for the azimuthal anglef.
The intervals were discretized intoJu andJf equal parts. For
the uniaxial nematic phases, the integrations over the
muthal angle vanish so that we need only perform numer
integrations over the polar angle. Accurate results for hig
ordered uniaxial nematic phases were obtained usingJf
51000 andJu5400. Refining the grid size even further d
not lead to significant changes in ther jk and s j reported
here. Initial guesses forf 1(V) and f 2(V) were used to solve
the coupled set~20! iteratively. The solutions were iterate
until the convergence criterion maxuf j

(n11)(V)2f j
(n)(V)u

,1028 ( j 51,2) was satisfied. Once the equilibrium OD
were obtained, the entropic contributionss j andr jk could be
calculated straightforwardly from Eqs.~2! and~6! using Sim-
pson’s quadrature.

C. Order parameters

In order to identify the isotropic and nematic phases,
introduce uniaxial (Sj ) and biaxial (D j ) order parameters fo
each componentj. Following Ref.@6# we define

Sj5^P2~cosu!& f j
5

1

2
^3az

221& f j
,

D j5
1

3
^P2

2~cosu!cos 2f& f j
5^ax

2& f j
2^ay

2& f j
, ~21!

whereas is the projection of the particle orientation vect
onto thes axis of the reference frame. ThusSj describes the
ordering of the axes of the rods and plates with respect to
z axis whereasD j describes the ordering of the species in t
x-y plane. For random orientations~isotropic phase! ^as

2&
51/3 ~with s5x,y,z), so that all order parameters are ze
In case of uniaxial order, the biaxial order parametersD j are
zero because there is no preferred direction in thex-y plane
04170
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(^ax
2&5^ay

2&50). In case of biaxial symmetry all order pa
rameters will generally be nonzero.

When 0,Sj<1, the particle orientation vectors of com
ponent j are preferentially oriented along thez axis ~polar
alignment! whereas a negative value (20.5<Sj,0) indi-
cates that the particles lie preferentially in thex-y plane~pla-
nar alignment!. In the actual calculations we used two typ
of reference frames; a rod (N1) reference frame in which the
rods point along thez axis and the platelets’ normal vecto
lie in the x-y plane and, second, a plate (N2) reference
frame in which thez axis is oriented along the preferre
direction of the plates’ normal vector in a discotic phas
while the rods are oriented in thex-y plane. Since theN1

phase is characterized by polar alignment of the rods
planar alignment of the platelets we haveSR.0 andSP,0
~within the rod reference frame!. In theN2 phase, the situa-
tion is reversed so thatSP.0 andSR,0 ~within the plate
reference frame!.

D. Bifurcation analysis

1. Isotropic-uniaxial nematic bifurcation

The isotropic ODFf j[1/4p is a trivial solution to Eqs.
~9! for any concentration and mole fraction. At higher co
centrations, however, the forms of the equilibrium ODFs w
contain orientation dependent contributions indicating ani
tropic phase solutions. These solutions will continuou
split off from the isotropic branch at theI -N bifurcation
point. To find this point, we may assume that close to theI -N
bifurcation the nematic order is vanishingly small. Retaini
only the first Legendre polynomial in Eqs.~11! and~14! and
linearizing with respect to the coefficienta2

( j ) gives

f j~u!5
1

4p
@11a2

( j )P2~cosu!#, j 51,2. ~22!

Substituting this into the consistency equations~17! yields
^P2& f j

[Sj5a2
( j )/5. Consequently, the coefficients~15! for

the uniaxial nematic phases read
4-5
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a2
(1)5

c

4
@~12x!a2

(1)22xq12a2
(2)#,

a2
(2)5

c

4
@22~12x!q12a2

(1)1xq22a2
(2)#. ~23!

These equations yield~for a given mole fractionx) the bi-
furcation concentration as the root of the characteristic eq
tion detM50, where

M5S 12
c

4
~12x!

c

2
xq12

c

2
~12x!q12 12

c

4
xq22

D . ~24!

The characteristic equation thus reads

12
c

4
@~12x!1xq22#1S c

4D 2

@x~12x!~q2224q12
2 !#50.

~25!

The concentration at which a bifurcation from the isotrop
to a uniaxial nematic phase can be expected is given by
lowest positive solution of Eq.~25!.

2. Uniaxial-biaxial nematic bifurcation

The same analysis described above can be adopted t
cate the onset of biaxial order from a uniaxial referen
phase. Assuming the lowest order of biaxiality (m51) in Eq.
~14! and linearizing with respect tob2

2( j ) , we may write the
biaxial solution close to theN-B bifurcation point as follows:

f j~V!5Zj
21expF (

n51

`

a2n
( j )P2n~cosu!G

3F11 (
n51

`

kn1b2n
2 ( j )P2n

2 ~cosu!cos 2fG
5 f j

N~u!F11(
n51

`

kn1b2n
2 ( j )P2n

2 ~cosu!cos 2fG , j 51,2,

~26!

where f j
N(u) is the ODF of the uniaxial reference phas

Inserting Eq.~26! into Eq. ~18! yields

^P2n
2 cos 2f& f j

5 (
k51

`

b2k
2 Wnk

( j ) , ~27!

with

Wnk
( j )5

~2k22!!

~2k12!!
^P2n

2 ~cosu!P2k
2 ~cosu!& f

j
N(u)

5
~2k22!!

~2k12!! E0

1

P2n
2 ~cosu!P2k

2 ~cosu! f j
N~u!d~cosu!.

~28!
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Inserting Eq.~27! into the biaxial coefficients~16! we obtain
the following linear set:

b2n
2(1)5c(

k51

N H F2
8

p
~12x!d2nWnk

(1)Gb2k
2(1)

2@4xq12c2nWnk
(2)#b2k

2(2)J ,

b2n
2(2)5c(

k51

N H @24~12x!q12c2nWnk
(1)#b2k

2(1)

2F 8

p
xq22d2nWnk

(2)Gb2k
2 (2)J . ~29!

When we truncate the series after theNth term, the charac-
teristic determinantM for this set is a 2N32N matrix. It is
convenient to rewrite the matrixM in the formI2cA, where
I is the unit matrix andA is a numerical matrix. The char
acteristic equation is then given by

detM5det@ I2cA#5det@A2c21I #50. ~30!

The bifurcation concentration is found by numerically det
mining the eigenvalues of the matrixA. The concentration a
which a bifurcation from a uniaxial to a biaxial symmet
can be expected is given by the inverse of the highest r
positive eigenvalue ofA. Since the parametersWnk

( j ) in A are
dependent on the concentration through the ODFs of
uniaxial nematic reference phase, the bifurcation points m
be calculated self-consistently. The technique is to comp
Wnk

( j ) @Eq. ~27!# for a given initial concentration~using either
the series expansion method or a numerical grid, see
II B ! and then put it into the bifurcation equation~30! and
find the desired root. For that concentration, new parame
Wnk

( j ) were calculated and inserted into Eq.~30! to find the
new root. This procedure was repeated until the concen
tion had converged to within 1026.

E. Biaxiality and demixing

As already mentioned in the Introduction, the central
sue in our paper is to assess the stability of the biaxial n
atic phase in relation to the mixture’s asymmetry. It is im
portant to realize that the biaxial nematic phase may
metastable with respect to some demixing transition, e.g
phase separation into two uniaxial nematic phases (N1 and
N2). In this respect, it is instructive to consider the Gib
free energy, defined as

bG

N
5

bF

N
1c21~bbP!. ~31!

By calculating the Gibbs free energy as a function of t
mole fraction at a constant osmotic pressure, all stable
metastable phase equilibria can be inferred graphically fr
the Gibbs free energy by performing common tangent c
structions. In our approach, however, we merely focus on
location of the binodal and bifurcation points rather th
4-6
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explicitly calculating the free energy. In Fig. 1, we show th
all information concerning the~meta!stability of the nematic
phases can be obtained from the relative location of th
points. In Fig. 1, we have sketched three scenarios. A c
inspection reveals that the biaxial phase can only be st

FIG. 1. Schematic illustration of the common tangent constr
tion to determine phase coexistence in a binary rod-plate mixt
~a! Stable biaxial nematic phase, theN1-N2 equilibrium is meta-
stable ~dotted lines!. ~b! Uniaxial-biaxial (N1-B) demixing. ~c!
Uniaxial-uniaxial (N1-N2) demixing. The biaxial nematic phase
metastable. The uniaxial-biaxial bifurcation points are indicated
x* , all others denote binodal points. Stable phase points are
cated by solid lines, metastable ones by dotted lines.
04170
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when both uniaxial binodal points are locatedin betweenthe
uniaxial-biaxial bifurcation points@Fig. 1~a!#. In the opposite
case@Fig. 1~c!#, the biaxial nematic phase is metastable w
respect to demixing into the uniaxial nematic phases. In F
1~b!, we have depicted a possible transitional scenario
which one bifurcation point~from theN2 phase! is located
‘‘outside’’ the uniaxial binodal points@as in Fig. 1~a!# while
the other one lies in between. Clearly, this scenario must g
rise to a stable first order uniaxial-biaxial transition (N1-B).
Note that theN1-N2 equilibria and the~second order! N1-B
transition are both metastable in this case. We will meet
scenario in our actual calculations, but it should be m
tioned that other transitional scenarios are also conceiva
depending on the exact curvature of the biaxial branch
particular, one can think of a biaxial-biaxial demixing sc
nario which may occur when theB branch in Fig. 1~a! dis-
plays a local maximum. However, since we choose not
calculate the Gibbs free energy of the biaxial nematic ph
explicitly, the exact shape of the biaxial branch rema
largely unknown. This means that we cannot completely
clude other scenarios than the ones depicted in Fig. 1
occur in our systems.

III. PHASE DIAGRAMS

As mentioned in Sec. II A, the input for our phase di
gram calculations are the rod-plate isotropic excluded v
ume ratios,q12 andq22, given by Eq.~7!. To facilitate com-
parisons with the systems studied in our previous paper,
assume that the rods and plates have equal thickness, so
Lp5Dr . It is now convenient to rewrite Eq.~7! in terms of
the particles’ aspect ratios for rods (L/D)R and plates
(D/L)P ,

q125
1

4 S D

L D
P

2 Y S L

D D
R

and q225
p

4 S D

L D
P

3 Y S L

D D
R

2

.

~32!

Henceforth, we fix the aspect ratio of the rods at (L/D)R
515, which matches the average aspect ratio of the collo
rods used in experiment@15#. This means that we use th
aspect ratio of the plates to tune the asymmetry of the m
ture. Consequently, from Eq.~32! we see that the mixture is
symmetric (q2251) if (D/L)P5(900/p)1/3'6.59. Increas-
ing the platelets’ aspect ratio from this value will make t
mixture more and more asymmetric. When (D/L)P515 we
reach the case of the strongly asymmetric mixture stud
experimentally in Ref.@15# and theoretically in Ref.@16#.

A. Scenario I: Stable biaxial nematic phase; bicritical point

In Fig. 2 we show the phase diagram for the ca
(D/L)P57 which is slightly above the symmetric value. W
have also constructed a volume fraction representation@Fig.
2~b!# which may be more convenient from an experimen
point of view. The tie lines, which connect coexisting phas
are given by horizontal lines in the osmotic pressure rep
sentation@Fig. 2~a!# and by tilted straight lines in the volum
fraction representation@Fig. 2~b!#. In the latter case, we ma
also draw dilution lines along which the mole fraction is ke

-
e.

y
i-
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fixed, given by straight lines running from the origin. Obv
ously, in the pressure representation, these dilution lines
vertically.

The topology of this diagram is very similar to the sym
metric case@10#: upon compressing the system from the is
tropic phase, a first order transition takes place into
uniaxial phase with the symmetry of the majority compon
~the rod-richN1 phase or the plate-richN2 phase!. At higher
pressures, continuous~second order! transitions from the
uniaxial to the biaxial phase occur. Note that the uniax
demixing binodals, also indicated in Fig. 2, are metasta
because they lie ‘‘inside’’ the area marked out by the bif
cation lines. There is a special point, called a bicritical~or
Landau! point where a second order transition occurs fro
the isotropic to the biaxial phase. In addition, the uniax
phase boundaries come together in a sharp cusp at this p
implying that all uniaxial order parameters must go to ze
there ~Fig. 3!. Due to the asymmetry, the bicritical point

FIG. 2. ~a! Scenario I: Phase diagram in the pressu
composition plane for a slightly asymmetric mixture@(D/L)P

57#. Thick solid lines indicate stable phase transitions. The do
lines represent metastableN1-N2 binodals. An azeotropic point is
present atxaz50.66. ~b! Same diagram in the volume fraction re
resentation. Coexisting phases are connected by tilted tie lines.
dashed line represents theI -N bifurcation line. The dilution line
drawn corresponds to the azeotropic mole fraction.
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now located at lower mole fractions (x50.41) compared to
the symmetric case (x50.5) whereas the minimum in th
osmotic pressure has shifted to higher mole fractionsx
50.66). This minimum now constitutes an azeotropic po
marking equal mole fractions of the coexisting phases.

B. Scenario II: Stable biaxial nematic phase; isotropic-biaxial
equilibria

Increasing the asymmetry of the mixture will eventua
lead to a qualitatively different topology, as we see in Fig.
In this scenario, the bicritical point has disappeared wh
means that all transitions from the isotropic to the nema
phases have become first order. In particular, we can iden
an intermediate two-phase region in which the isotro
phase coexists with the biaxial phase. The isotropic-bia
nematic equilibria were calculated using the direct numer
solution approach, outlined in Sec. II B 2. In order to obta
reasonable quantitative results for the biaxial nematic ph
while minimizing the computational burden we used a lim
ited grid-sizeJu5Jf540. To illustrate the evolution of the
nematic structures along the isotropic-nematic equilibria,
have plotted the order parameters in Fig. 5. The biaxial or
parameters rise from zero without a jump indicating that
structure of the coexisting nematic phase changes cont
ously from ~rod-rich! uniaxial to biaxial back to~plate-rich!
uniaxial as the mole fraction of plates is increased. The d
continuous jump aroundxplate

I 50.075 is artificial due to the
fact that we used different reference frames in the ac
calculations. The phase lines were calculated starting fr
either a pure system of rods (x50) using the rod reference
frame or a pure system of platelets adopting the plate re
ence frame. Note that the artificial switching from one ref
ence frame to the other only affects the order parameters
course, it does not influence the thermodynamic propertie
the nematic phases, as we see from the biaxial binodal in
4, which does not show a discontinuity.

In Fig. 6, we present a detailed impression of all pha
lines involved for the case (D/L)P59.5. From this graph we

-

d

he

FIG. 3. Evolution of the uniaxial order parametersS at I -N
coexistence as a function ofxplate in the nematic phase for the cas
(D/L)P57. A critical point is located atxplate50.41.
4-8
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clearly see that the uniaxial demixing is still metastable w
respect to the biaxial nematic phase~the N1-N2 binodals
run in between the bifurcation lines!. The absence of a bi
critical point can also be inferred from this graph; t
uniaxial binodals no longer meet the bifurcation lines in
single ~bicritical! point, located on theI -N bifurcation line,
but merge into an azeotropic end point instead. Note that
mole fractions of the uniaxial nematic phases are the sam
the azeotropic point but the concentrations are not. Furt
more, the uniaxial order parameters are also nonzero at
point. Clearly, there must be a critical value for (D/L)P at
which the bicritical point disappears by splitting into a cri
cal point ~where theN-B bifurcation lines meet! and a cor-
responding azeotropic end point~where the uniaxial binodals
meet!. In Fig. 7, we have plotted the location of these poin
as a function of the mixture’s asymmetry. The location of t
biaxial critical point can easily be determined algebraica
by combining theI -N bifurcation equation with theN-B bi-
furcation equation assuming the lowest degree of nem
order of the uniaxial reference phase~see the Appendix!. We

FIG. 4. ~a! Scenario II: Phase diagram in the pressu
composition plane for the case (D/L)P59.5. The dotted lines mark
the osmotic pressures where the isotropic-nematic equilibria cha
continuously from uniaxial to biaxial.~b! Same diagram in the vol
ume fraction representation. Coexisting phases are connecte
tilted tie lines.
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observe that the concentrations corresponding to the aze
pic end point collapse onto the curve describing the biax
critical point at some critical value (D/L)P'8 which means
that the biaxial critical point and the azeotropic end po
have merged into a bicritical point. Hence we may expec
change of scenario from I to II when the aspect ratio of
platelets exceeds 8.

C. Scenario III: Uniaxial-biaxial demixing

When the asymmetry is enhanced even further, the ph
behavior of the rod-plate mixture changes dramatically.
Fig. 8, we have depicted the scenario for (D/L)P514, which
is close to the experimentally accessible case@(D/L)P

-

ge

by

FIG. 5. Evolution of the uniaxial~S! and biaxial (D) order pa-
rameters at isotropic-nematic coexistence as a function ofxplate in
the isotropic phase for the case (D/L)P59.5.

FIG. 6. Detailed picture of the phase lines for the case (D/L)P

59.5. Dotted lines represent metastableN1-N2 binodals, the
dashed curve is theI -N bifurcation line. Note that theN-B bifurca-
tion lines coincide in a critical point~on the I -N bifurcation line!
whereas theN1-N2 binodals meet in an azeotropic end point ind
cated by the black dot.
4-9
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5(L/D)R515# considered in Ref.@16#. An essential differ-
ence with the previous scenario is that a demixing occ
aroundbbP514 at which a rod-dominated uniaxial nema
N1 phase coexists with a biaxial phase roughly contain
equal portions of each species. Furthermore, there is an
sociated triple point at which bothN1 andB coexist with an
isotropic phaseI. Upon compressing the system at high
mole fractions (x.0.5) a continuous transition occurs fro
the plate-dominatedN2 phase to the biaxial phase whic
subsequently demixes by splitting off a fraction of theN1

phase. Furthermore, a reentrant phenomenon is pre
aroundx50.4 where the mixture displays a rich sequence
phases upon compression. To reduce computational cost
have not explicitly calculated the isotropic-biaxial equilibr
for this case but merely sketched the qualitative topology
the phase diagram at higher pressures. The justification
the demixing scenario lies in the location of the uniax
binodals relative to theN-B bifurcation lines. In Fig. 8~b! we
have displayed the Gibbs free energy at a particular osm
pressure, in which the binodal and bifurcation points are
picted explicitly. For the sake of clarity, we have rescaled
Gibbs free energy by substracting the linear common tang
to the uniaxial branches. We see that theN1-B bifurcation
point now has shifted to the right of theN1 binodal point
whereas theN2-B bifurcation is still located ‘‘outside’’ the
N2 binodal point. As already alluded to in Sec. II E, the on
plausible scenario for this case is a demixing intoN1 andB,
as indicated by the sketched biaxial branch in Fig. 8~b!. Note
that the shape of this branch also suggests that the stabB
binodal point is located at slightly lower mole fractions th
the metastableN2 binodal point.

To limit computational effort, we have not attempted
find the specific aspect ratio at which theN1-B demixing
first occurs and a change of scenario from type II to III w
take place. Obviously, from the results presented thus far
know that the transition must be somewhere in the ra

FIG. 7. Location of the biaxial critical point~dotted line! and the
concentrations of the coexisting uniaxial phases of the azeotr
end point ~solid lines!, connected by vertical tie lines, versu
(D/L)P . At (D/L)P&8 all lines collapse onto a single curve, d
scribing the location of the bicritical point.
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10,(D/L)P,14, which is an experimentally accessib
range.

D. Scenario IV: Uniaxial-uniaxial demixing

Scenario III is not consistent with our previous calcu
tions based upon the Gaussian trial function approach
particular, the surmised demixing transition into uniax
nematic phases, as observed experimentally and reprod
theoretically in Ref.@16# for strongly asymmetric rod-plate
mixtures is not found in our numerical analysis of the Eul
Lagrange equations. Instead, we observe a demixing in
rod-rich uniaxial nematic phase and a biaxial nematic ph
~containing approximately 50% platelets! for a mixture of
rods and plates with aspect ratios around 15. The ques
now arises whether or not a demixing into the uniaxial ne

ic

FIG. 8. ~a! Scenario III: Phase diagram in the pressu
composition plane for (D/L)P514. Thick solid lines indicate stable
phase boundaries. TheN2-B bifurcation line is indicated by the
thick dotted line. The thin dotted lines are sketched phase lines~not
calculated! outlining the qualitative phase behavior at high den
ties. ~b! Rescaled Gibbs free energy versusxplate for the same mix-
ture at constant pressurebbP514.5. Binodal and bifurcation
points are indicated by black and white points, respectively. T
curvature of the biaxial branch is given qualitatively by th
sketched line~thin solid line!. A uniaxial-biaxial (N1-B) demixing
is evident.
4-10
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BIAXIAL VERSUS UNIAXIAL NEMATIC STABILITY . . . PHYSICAL REVIEW E 66, 041704 ~2002!
atic phases~scenario IV! is recovered when the aspect rat
of the platelets is increased beyond 15. Considering
8~b!, one can imagine that, upon increasing (D/L)P , the
asymmetry may force theN2-B bifurcation point to shift in
between the uniaxial binodal points such that the biax
nematic phase becomes fully metastable with respect
N12N2 demixing, according to Fig. 1~b!. To verify this
possibility we have calculated the location of these points
a fixed osmotic pressure, namely, theI -N coexistence pres
sure for the pure system (bbP514.12) which is slightly
above the triple pressure. In Fig. 9~a! we have depicted the
evolution of theN2 binodal ~corresponding to theI -N2

equilibria! and theN2-B bifurcation point as a function o
(D/L)P . The intersection point around (D/L)P517 reveals
that there must be a scenario IV such that the uniaxial
mixing is indeed recovered, albeit at a higher plate asp
ratio than expected from Ref.@16#. For the sake of complete
ness, we have depicted the phase diagram for the

FIG. 9. ~a! Position of theN2 binodal point~in terms ofxplate)
relative to theN2-B bifurcation point at constant pressurebbP
514.12 for various (D/L)P . Beyond the intersection@around
(D/L)p517] the biaxial nematic phase becomes fully metasta
~b! Scenario IV: Phase diagram in the pressure-composition p
for (D/L)P518 calculated within the Gaussian approximation. T
I -N1-N2 triple line is indicated by the horizontal dotted line. Th
dotted curves represent the numerically exactI -N2 binodals.
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(D/L)P518 in Fig. 9~b!, in which calculations were base
upon the Gaussian trial function approach, as discusse
detail in Ref.@16#. Note that this diagram is qualitatively th
same as the one presented in Ref.@16# although theN1 and
I -N1 coexistence regions are hardly visible in Fig. 9~b! due
to the extremely low mole fractions of the coexistingI and
N1 phases. Comparison with the numerical exactI -N2 bin-
odals shows that the Gaussian approximation provides
creasingly better quantitative results at high compressi
where the alignment of the particles~in both polar and planar
direction! is particularly strong. Deviations occur at lowe
osmotic pressure, in particular aroundbbP52, showing that
the reentrant phenomenon is underestimated somewha
the Gaussian approximation.

IV. SUMMARY AND CONCLUSIONS

We have investigated the role of the rod-plate exclud
volume ratio (vex

pp/vex
rr ) in the phase behavior of asymmetr

mixtures of cylindric rods and platelets~for which vex
pp

.vex
rr ) using a simple Onsager type density functional theo

The phase diagrams were calculated from an exact nume
analysis of the Euler-Lagrange equations, obtained from
mally minimizing the free energy, such that no simplific
tions were madea priori with respect to the ODF. Our par
ticular interest was focussed on the stability of the biax
nematic phase in relation to the mixture’s asymmetry. St
ing from the symmetric case we enhanced the asymmetr
the mixture by varying the platelet aspect ratio in the ran
7,(D/L)P,18 while keeping the rod aspect ratio fixed
15. Considering the role of the biaxial nematic phase in
overall topology of the phase diagram, we were able to d
tinguish four scenarios.

Upon increasing the plate aspect ratio from its symme
value ~6.59!, we observe that the characteristic bicritic
point is retained initially~scenario I! but disappears aroun
(D/L)P58 and is replaced by a two-phase region mark
first order transitions from the isotropic to the biaxial nem
atic phase~scenario II!. At higher asymmetries@around
(D/L)P515] we found a uniaxial-biaxial (N1-B) demixing
transition with an associatedI -N1-B triple equilibrium~sce-
nario III!. Increasing the aspect ratio beyond 17 will give
uniaxial-uniaxial (N1-N2) demixing with an associated
I -N1-N2 triple point ~scenario IV!. This indicates that the
biaxial nematic phase may become fully metastable in hig
asymmetric mixtures. To limit the computational burden,
have not explicitly calculated the isotropic-biaxial (I -B) and
uniaxial-biaxial (N1-B) equilibria for scenario III. There-
fore, it should be noted that, due to the uncertainty in
thermodynamic properties of the biaxial phase, other s
narios than the ones presented in this paper cannot be c
pletely ruled out. Nevertheless, we believe that our scena
are sufficiently plausible.

There is experimental evidence of the uniaxial-uniax
demixing transition~scenario IV! to occur in mixtures of
colloidal rods and platelets, albeit at a slightly lower pla
aspect ratio~of roughly 15!. However, no detailed structur
investigation on the nematic phases has been performe
Ref. @15#, so that there are no conclusive results available

.
ne
4-11
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to whether the demixed nematic phases are really uniaxia
possibly have some degree of biaxiality. Therefore, con
ering our present theoretical predictions, it would be intrig
ing to verify the possibility of a uniaxial-biaxial demixin
scenario to occur in these experimental systems. Of cou
this would require a thorough reexamination of the expe
mental systems focusing on the optical properties of
nematic textures~particularly, the plate-dominated nemat
phase!. Furthermore, our results also suggest that the for
tion of a biaxial nematic phase can be promoted experim
tally by decreasing the diameter of the colloidal plateli
colloids, thereby reducing the mixture’s asymmetry. Ho
ever, it should be noted that the effect of polydispersity a
the influence of higher-order particle correlations~both are
not incorporated here! may give rise to qualitatively differen
scenarios from the ones predicted by our calculations.

APPENDIX

Calculation of the biaxial critical point

Figure 6 shows that theN-B bifurcation lines emanate
from the I -N bifurcation line at a critical point where th
order parameters are necessarily zero. To calculate this p
for a given asymmetry, we may perform aN-B bifurcation
analysis starting from a weakly ordered uniaxial phase.
suming the lowest degree of nematic order in the unia
reference phase, we may approximate the uniaxial ODFs
Eq. ~22!. Substitution into Eq.~28! yields for the coefficients
W11

( j ) ,

W11
( j )5

1

4!E0

1

@P2
2~ t !#2@11a2

( j )P2~ t !#dt ~ t5cosu!

5
1

5
2

2

7
Sj , ~A1!

in terms of the uniaxial order parametersSj5a2
( j )/5. Using

this together withd2525p/32 andc255/8 @from Eq. ~12!#
we obtain, from Eq.~29!, the following linear set:

b2
2 (1)5

c

4 F ~12x!S 12
10

7
S1Db2

2 (1)

22xq12S 12
10

7
S2Db2

2 (2)G ,
nd
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e

a-
n-

-
d

int

-
l

by

b2
2 (2)5

c

4 F22~12x!q12S 12
10

7
S1Db2

2 (1)

1xq22S 12
10

7
S2Db2

2 (2)G . ~A2!

SettingSj50 in Eq.~A2! leads to the characteristic equatio
for the I -N bifurcations Eq.~25! implying that the isotropic-
biaxial bifurcation concentrations arethe same as the
isotropic-uniaxial bifurcation densities, foranymole fraction
@9#.

Since the bicritical point must be a solution of Eq.~25!,
we may subtract Eq.~25! from the characteristic equatio
corresponding to~A2! to get the following equation:

~12x!S11xq22S21
c

4
x~12x!~4q12

2 2q22!

3FS11S22
10

7
S1S2G50. ~A3!

Ignoring theO(S2) term and eliminatingSj using the rela-
tion

S25S1

F c

2
~12x!22G

cxq12
, ~A4!

from Eq. ~23!, we obtain

q22x1
c

4
x~12x!H @4q12

2 22~q121q22!#

2
c

4
@4q12

2 2q22#@2xq121~12x!#J 50. ~A5!

Solving this equation together with theI -N bifurcation equa-
tion ~25! will uniquely determine the biaxial critical point~in
terms ofx andc) for any given set of parametersqjk . The
solutions for the symmetric case, discussed in Ref.@6#, can
be recovered by substitutingx51/2 andq2251 in Eq. ~A5!
to obtainc58/(2q1211) andS152S2.
.

m.
@1# H. Zocher, Z. Anorg. Allg. Chem.147, 91 ~1925!.
@2# I. Langmuir, J. Chem. Phys.6, 873 ~1938!.
@3# L. Onsager, Ann. N.Y. Acad. Sci.51, 627 ~1949!.
@4# J.D. Bernal and I. Fankuchen, J. Gen. Physiol.25, 111 ~1941!.
@5# H.N.W. Lekkerkerker, P. Coulon, R. van der Hagen, a

R. Deblieck, J. Chem. Phys.80, 3427 ~1984!; R. Deblieck
and H.N.W. Lekkerkerker, J. Phys.~France! Lett. 41, L-351
~1980!.

@6# A. Stroobants and H.N.W. Lekkerkerker, J. Phys. Chem.88,
3669 ~1984!.
@7# Y. Rabin, W.E.M. Mullen, and W.M. Gelbart, Mol. Cryst. Liq
Cryst.89, 67 ~1982!.

@8# P.J. Camp and M.P. Allen, Physica A229, 410 ~1996!.
@9# A. Chrzanowska, Phys. Rev. E58, 3229~1998!.

@10# S. Varga, A. Galindo, and G. Jackson, Phys. Rev. E66, 011707
~2002!.

@11# R. Alben, J. Chem. Phys.59, 4299~1973!.
@12# R. van Roij and B. Mulder, J. Phys. II4, 1763~1994!.
@13# R. Zwanzig, J. Chem. Phys.39, 1714~1963!.
@14# P.J. Camp, M.P. Allen, P.G. Bolhuis, and D. Frenkel, J. Che
4-12



tt.

J
les

BIAXIAL VERSUS UNIAXIAL NEMATIC STABILITY . . . PHYSICAL REVIEW E 66, 041704 ~2002!
Phys.106, 9270~1997!.
@15# F.M. van der Kooij and H.N.W. Lekkerkerker, Phys. Rev. Le

84, 781 ~2000!; Langmuir44, 10 144~2000!.
@16# H.H. Wensink, G.J. Vroege, and H.N.W. Lekkerkerker,

Chem. Phys.115, 7319~2001!.
@17# A. Speranza and P. Sollich, J. Chem. Phys.117, 5421~2002!.
04170
.

@18# R.F. Kayser and H.J. Raveche, Phys. Rev. A17, 2067~1978!.
@19# K. Lakatos, J. Stat. Phys.2, 121 ~1970!.
@20# I.S. Gradshteyn and I.M. Ryzhik,Table of Integrals, Series and

Products~Academic Press, San Diego, 1994!.
@21# J. Herzfeld, A.E. Berger, and J.W. Wingate, Macromolecu

17, 1718~1984!.
4-13


