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Phase equilibria in systems of hard disks with thickness polydispersity
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We study isotropic-nematicl {N) phase equilibria in the OnsagéiParsons model for systems of hard
colloidal disks allowing for arbitrary polydispersity in thickness. The phase behavior is investigated by ana-
lyzing the exact phase equilibrium equations for Gaussian orientational distribution functions. We observe a
strong fractionation effect, with the thicker disks found preferentially in the isotropic phase. Due to this effect,
the system may undergo dnN density inversiorindicating that the mass density of the isotropic phase
becomes higher than that of the coexisting nematic phase. This phenomenon has been observed explicitly in
experiment. We also encounter a divergence ofl thecoexistence region for Schulz-distributed parents with
polydispersities larger than 46%. An implication of this phenomenon is that the system cannot become fully
nematic at high densities but will continue to split off a small fraction of a dilute isotropic phase predominantly
containing very thick species.
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[. INTRODUCTION at 25%. Quite unexpectedly, the phase behavior of these
platelike particles appeared to be more significantly affected
Since the pioneering work of Zocher and Langn{uij2] by their polydispersity in thickness than by their polydisper-

it has been known that dispersions of highly anisometricakity in diameter. While the fractionation in diameter between

rodlike or platelike colloidal particles exceeding a certainthe isotropic and nematic phases was found to be rather weak

concentration undergo an orientational order-disorder trans|9,10], strong experimental evidence was found for a pro-
tion from an isotropic statel}, in which the particles are nounced thickness fractionation in these systéfis The
randomly oriented to an orientationally ordered nematic statéatter effect has led to a surprising phenomenon: the densities

(N). Onsagef3] first showed that the phase transition can beof the isotropic and nematic phases may invert upon concen-

explained on the basis of purely repulsive interactions betrating a dilute sample in a test tube, indicating that an iso-

tween the particles. In his classic work, he explained theropic bottomphase coexists with a nematipperphasg9].
phase transition as the result of a competition between orithis anomalous behavior, referred to as thHd density in-
entional entropy that favors the isotropic state and the enversion, can, in principle, be explained by the fractionation
tropy effect associated with the orientation-dependent exin thickness between the phases with the thicker platelets
cluded volume of the anisometrical particles, which favorsaccumulating in the isotropic phase. The fractionation effect,
the ordered nematic state. thus, reduces the difference in mass densities between the

One of the difficulties in quantitatively comparing experi- coexisting phases. Consequently, an inversion occurs when
mental results with Onsager’s predictions is that the colloidathe fractionation effect is strong enough to overrule the dif-
particles are inevitably polydisperse, i.e., they differ in sizeference in thermodynamic number densities of the phases. In
and shape. The issue of polydispersity and its effect on tha previous study11], we have verified the possibility of an
interpretation of experimental results has already been ad-N inversion in simple binary mixtures of thin and thick
dressed by Onsager in his original papaf. Later on, ex- hard platelets with common diameter and showed that the
tensions of the Onsager treatment allowing for phase diainverted state is indeed found in a broad range of plate com-
gram calculations for bidisperse and tridisperse systems gfositions.

rods have led to a rich variety of behavior, such as a widen- In this paper, we extend our binary modg@Vithin the

ing of the coexistence region, a fractionation effect with theOnsager treatmento a polydisperse one in which we allow

long rods going preferentially into the nematic phase, a refor a continuousdistribution in thicknesses. As in our previ-

entrant phenomenon, and the possibility of nematic-nematious study, we upgrade Onsager’s original second virial ap-
equilibria [4—7]. However, unlike the case of rodlike par- proximation quantitatively by applying a renormalization of
ticles, the effect of polydispersity on the phase behavior othe second virial term according to Parsons’ thEb2y. This
platelike colloids is only just beginning to be understood. approach allows us to incorporate higher virial terms into the

Recently, a novel model system for polydisperse disks haffee energy, albeit approximately, while requiring only spe-
been developed consisting of sterically stabilized gibbsiterific knowledge of the two-body excluded volumes. To keep
platelets[8]. The particles are evidently polydisperse sinceour model analytically tractable, we use the approximate
the platelets strongly differ in both diameter and thicknessGaussian trial orientation distribution functig®DF) intro-

The polydispersity for each of the dimensions was estimateduced by Odij{ 5], which has a much simpler form than the
one originally used by Onsager. Although the Gaussian trial
function does not qualify as a thermodynamic equilibrium

*FAX: +31-302533870. Email address: G.J.Vroege@chem.uu.nODF, it does give reasonable qualitative results for
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highly ordered nematic phases. It is shown that, with theomitted all irrelevant contributions linear io arising from
Gaussian ansatz, we may neglect the effect of the thicknegbe standard chemical potentials of the particles. These de-
on the equilibrium orientations of the platelets implying thatpend only on the chemical potential of the solvent and the
the orientations are solely determined by their diameterfemperaturél. The concentrations are rendered dimension-
which is the same for all species. As a result, the distributioless by relating them to the orientationally averaged ex-
of orientations in the nematic phase can be characterized tjjuded \éolume_ per particle between two infinitely thin disks,
a single ODF which holds for all particles. This approach,P=m"D*/16, viac(l)=bN(l)/V whereN(l)dl is the num-
referred to as the decoupling approximation, allows us td*€r of particles with relative thickness betweeand| +dl.
analytically minimize the free energy with respect to the ori-  1he distribution in thickness(l) must be normalized ac-
entational degrees of freedom and leads to an excess fr&Qrding to
energy obeying a simple moment structure since it only de-
pends on the first two moments of the thickness distribution J c(h)dl=cy, (2
[13]. Consequently, we are able to obtain the phase behavior
exactly by solving the phase equilibrium conditions for poly- wherecy is the total dimensionless concentration of platelets.
disperse systems. The first term in Eq(1) is exact and represents the ideal free
In the present paper, we will closely follow the analysis ofenergy of the polydisperse system. The second term is the
Clarke et al. [14] who recently presented a similar descrip- orientational part involving the parameteras a measure for
tion of the exact phase equilibria in the polydisperse Zwan{the negativg of the orientational entrop}g]
zig model for hard rods with length polydispersity. An im-
portant difference between their polydisperse model and ours w(l)EJ H(1,0)In[4my(l,0)]dQ, 3)
is that we are able to retain a system withntinuousorien-
tations, due to the decoupling approximation. In the Zwanzigyhich has its minimum =0) in the isotropic state but
model, however, the orientations are discretized as the paincreases as the orientational entropy decreases. The function
ticle vectors are restricted to lie on one of the Cartesian axeg(4,l) is the ODF that describes the distribution of the
[15]. angles between the normal to the platelet with relative thick-
This paper is structured as follows. In Sec. Il A we de-nesd and the nematic director. The ODF must be normalized
scribe the polydisperse model within the Onsager treatmergccording tof ¢(Q)dQ=1, whereQ is the solid angle of
and derive the free energies for the isotropic and nematithe platelet's normal vector. In the isotropic state, all orien-
phases. A formulation of the rescaling approach for polydistations are equally probable which impligg,= 1/4, inde-
perse systems is given in Sec. I B. These results are used pendent ofl. In the nematic state, however, the platelets are
Sec. Il to study the exact phase equilibrium conditions forstrongly aligned and the ODF will be a sharply peaked dis-
this model. In Secs. IV and V we present a detailed analysi§ibution. . )
of the phase behavior and discuss its most important fea-  The last term in Eq(1) is the excess free energy deter-

tures. Finally, the conclusions that can be drawn from thénined by the interparticle interactions. In the second virial
present calculations are collected in Sec. VI. approximation, the interactions between hard particles may

be expressed as an excluded-volume entropy depending on
the excluded volume between two particles. Onsager gives

Il. MODEL us the following expression for the excluded volume be-
A. Onsager theory tween two circular disks with relative thicknesdeand|’ as

. . _ _a function of their mutual angle [3]:
We consider a system of hard disks with common diam-

eter D but polydisperse thicknesssuch that there is a con- T , o T )

tinuous distribution of lengtht—in a macroscopic volume Vexel ¥) = 5 D7 siny+(1+1")LoD% - +E(siny)

V. Note that, unlike the opposite case of slender rods, the

aspect ratiod. /D of the platelets are considereathall pa- m 2

rameters. Within Onsager’s approach, the excess free energy + 4 |cosy| +O(LgD), )

describing the(excluded volumg interactions between the . o

particles is truncated after the second virial term. A generaliwhere E(k) is the complete elliptic integral of the second
zation of the Onsager model to include polydispersity leadkind. A measure for the average exgluded-volume interaction
to the following expression for the total Helmholtz free en- between platelets of typeand|’ is given by the average of

ergy densityf (in unitskgT=8"1): its angular dependence
bBF 11")=(2b)"1 0,)y(6',1")dQdQ’
fET~fc(|)[|nc(|)—1]d|+fc(|)w(|)d| p(l,1")=(2b) Vexc( V) ¢(0,1)p(6",1") :
)
+f JC(|)C(|')p(| 1")dldl’. (1) The formation of an isotropic stat@vith ¢ constant or a
’ nematic statéwith ¢{(6,) a peaked distributions caused by

a competition between orientational entroffgvoring the
Here,|=L/L, is the relative thickness with respect to someisotropic statg and the excluded-volume entrogfavoring
reference length.y. For the sake of convenience, we havethe nematic staje
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For the isotropic phase, the excluded volufdg can be  Note thate is now a function ofl due to the polydispersity.
readily calculated using the isotropic averdg&(siny)))s, An important advantage of using Gaussian trial ODFs is that
=218 [3], w andp are, in principle, analytically tractable. Substituting

, Eqg. (11) in Eq. (3) gives us for the orientational entropy

’ ™ 3 , 2 2 3’77'
UEXC|,iSC(I=I ):gD +(1+1")LyD —

T 2T oL
(6)

Note that the leading order terwhich is equal to B) does  For the excluded-volume entropy in the nematic phase we
not depend on the thickness so that the higher order terwill only retain the leading order terms of its asymptotic
must be included to account for the difference in thicknessexpansion for larger

Substituting Eq(6) into Eq.(5) yields for the isotropic phase
[16],

o)~ a(l)—1. (12)

Prent ,17)~ \/%[a_l(l)Jra‘l(l’)]Jr%%(IH’)

Lo 3 ,
pisd 1) =1+ 5 (1+1")| 1+ — +0(L§/D?. (1)

X[1+0(a™1(1),a"1(1")]. (13

Note that the second contribution is on the orderLgfD ) o o
smaller than the leading order term. Using Efj, together ~ 1he leading ordet /D contribution t0ppen is simply the
with the isotropic valuep=0, we get the following expres- excluded volume between two perfectly parallel platelets

_ . . 2 7 . .
sion for the free energy density in the isotropic phase: ~ (¥=0) in the nematic phasesL,D(I+1"), divided by the
excluded volume B between two randomly orientated plate-

0 lets with zero thickness in the isotropic phase. Note that the
D CoC1 (8)  Lo/D contribution in Eq.(13) remains constant up to order
O(a™?).

The next step is to insert Eg&l2) and (13) into Eq. (1)
bution c(1) and minimize the free energy density with respect to the
: C%rientational degrees of freedom via a functional differentia-

In the nematic phase, matters are more complicated sint that leads 10 the stati it ditiof/ Sa()=0. R
the ODF is no longer a constant but a sharply peaked funcion that leads 1o the stationarity condit a(1)=0. Re-

tion. The excluded-volume entropy is now given by taining theO(a*(1)) in Eq. (13 would then give a nonlin-
ear integral equation to be solved along with the phase

4 equilibrium conditiongsee paragraph belowhich is a very
Prendl,1") = —f f [siny|w(1,0)(1",6")dQdQ’ complicated task. In our approach, we choose to neglect the
™ O(a™ 1) term in Eq.(13), whose contribution is on the order

6
2+ —
a

fi30~f c(D[Inc(l)—1]dI+c3+

wherec,= [c(l)Idl is the first moment density of the distri-

2 L, 1 of (D/Lg)a'? smaller than the leading term in the
+ p B(I +1 ’)f f [3— Esin2 v+ |cosy| asymptotic expansion qf,.m. Sincec is usually very large
for the nematic phase, this approximation can be readily jus-
X (1,0)(1",0")dQdQ’ +0((Ly/D)?). tified. An essential implication of the approach is that the

second term in Eq13), which is the only part depending on
©  the thicknesd, vanishes upon minimizing the free energy.
Since there is no contribution depending explicitly lowe
may simply substituter(l) = a(l’) =« in Egs.(12) and(13)
to obtain after minimization,

Here, the following asymptotic expansion of the elliptic in-
tegral has been usg¢d7]:

T 1
E(siny)= 711 Zsin2 y+O(sinty) ¢, (10 4c?
a(|)=a=7 forall I, (14

which is valid for very small angleg. This approximation is
justified when the ODF is a sharply peaked function. As in
Ref.[5], we use Gaussian trial ODFs with variational param-
etera(l) to describe the angular distribution of platelets with
relative thickness in the nematic state,

which is the same result as for a monodisperse sy$idh

A formal derivation of this result is given in the Appendix.
The physical interpretation of the approximation is that the
orientations of the platelets are solely determined by the
diameter—which is identical for all particles—and not by

ﬂexp{—la(l)az , 0<6< E, their thickness. Consequently, the orientational degrees of
4 2 2 freedom aredecoupledrom the degrees of freedom that de-
(l,0)= y L termine the shape of the thickness distribution.

o - . o .

(—ex L am-02|,  T<p=m Using Eq.(14) and substituting the expressions forand

A 2 2 p back into the free energyl) then yields the following

(11 simple expression for the free energy in the nematic phase:
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<L/D=<20). In both cases, the transition densities as found
Cot j c(HInc()—1]dI from the theory agreed very well with the simulation results.
In a similar study, Camp and co-workd6,27] showed that
16 Ly Parsons’ approach also worked well for mixtures of rodlike
+2CoInCo+ — 5 CoCy. (19  and platelike ellipsoids, showing improved quantitative
agreement with computer simulations over the Onsager
The results given thus far apply to the second virial approxi{h€0ry and they-expansion approach. The latter method,
mation, meaning that higher order correlations between thwhich is due to Barboy and Gelba28], provides direct
disks are neglected. However, Onsager already pointed out jRclusion of higher virial terms by a recasting of the free
his original paper that a truncation of the free energy afte€Nergy in terms of a new density varialyleHowever, unlike
the second virial term is an approach that, although valid fofh€ case of hard rods, no systematic comparative study has
sufficiently elongated needldwith aspect ratios exceeding P€en reported so far on the effect of Parsons rescaling on the
100), cannot be justified quantitatively for disklike particles. ! -N transition in systems of hard platelike particles., ob-
The reason for this is that disks always have a nonzero pro@te ellipsoids or cylindrical disks _
ability of intersection and thus a finite excluded volume even AS already mentioned, the starting point of the approach
at zero thicknessL(,/D=0). The relative importance of IS the semiempirical Carnahan-Starling excess free energy
three-body interactions in terms of the raBg/B2 (with B,  for hard spheref29],
the third virial coefficient has been estimated by Onsager at BFEL h(4—3)
O(1) [3]. More accurate predictions were obtained from fod B)= cs_ , (16)
computer simulationg21], giving B3/B3~0.51 for disks N (1—¢)?
with aspect ratioL/D=0.1. These results clearly indicate
that many-body interactions will undoubtedly play a role inwhere ¢ is the volume fraction of hard spheres. For a one-
systems of disks, even at low concentrations. Therefore, igomponent system of hard anisometrical particles this free
order to make credible comparisons with the experimentagnergy is multiplied by the prefactdv ey )/8vo With vg
results, we have to somehow account for the effect of highethe particle volume and(ve,)) the average excluded vol-
virial terms. The most straightforward way to improve the ume. Note that(vexe))/8vo=1, in the case of hard spheres.
Onsager theory would be to include higher virial terms di-For a monodisperse system of platelets the Parsons excess

rectly. Although this is, in principle, feasible, it turns out to free energy densitydenoted by “P”) can be written as
be a very complicated meth¢d9,20. A much easier way to

4
fnemN In; +1

upgrade the original theory is by indirect inclusion of many- bBFE  (4—3¢)
body terms using the Carnahan-Starling excess free energy P = 20(2),0 a7
for hard spheres. This approach, which was originally formu- v 4(1-¢)

lated by Parsongl2], will be discussed next.
wherep is given by Eq.(5) for the monodisperse caskee.,
B. Parsons’ approach [=1"=1). We may generalize the above expression for a

) . polydisperse system in the following way:
In Parsons’ approach, the Carnahan-Starling expression

for hard spheres is applied to the system of anisometrical

ex
particles under consideration, using the orientationally aver- bBFp _ (4-39) f f c(he(1)p(l,1)dIdl’
aged second virial coefficient as a scaling factor. The justifi- \Y 4(1— ¢)? ’
cation for the approach lies in a decoupling approximation
such that the orientational and translational degrees of free-  fed( ) bBFE 18
dom for a system of anisometrical particles may be treated 49 AR (18)

separately12]. An important implication of Parsons’ theory
is that it incorporates many-body effec¢tbeit in an average wherebBFEYV is the excess free energy density in the On-

way) while requiring only explicit knowledge of the two- sager model, given by the last term in Eg). Furthermore,

p?rtrl]clefs |nteract|onsFas ehmbod|ed In t:]]e second x'r_'al temﬁ is the total volume fraction of platelets, related to the
of the free energy. For this reason, the approach is mucf). . ness distributiorz(l) via

easier to use than the straightforward option of direct inclu-
sion of higher virial term$19,2Q.

The quantitative success of the approach has initially been b= i ﬂ c(hHidl= i Ecl. (19
confirmed by Led 22,23, at least for hard rodlike particles. m D m D
He calculated thd-N transition densities for a system of
hard ellipsoidal particles with aspect ratiédD =5 and found From Eq. (18) we see that Parsons’ approach essentially
results that were in close agreement with computer simulacomprises a rescaling of the excess free energy using the
tions. More extensive comparisons between the OnsageGarnahan-Starling result for hard spheres. Replacing the last
Parsons theory and computer simulations were made byerm in Eq.(1) by Eq.(18) gives us the Onsager-Parsons free
McGrother et al. [24] for short hard spherocylinders. (D energy for a polydisperse system of hard platelets. For the
<5) and by Campet al. [25] for hard prolate ellipsoids (5 isotropic phase we thus obtain
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b Similar expressions for the chemical potentials and osmotic
fiso™ f c(DInc(l)—1]dl pressures can be derived straightforwardly from the Onsager-
Parsons free energy using EGR0) and(22). These expres-
n fes() sion are, however, more elaborate due to the presence of
4

fes(#) and its derivatives.

We can now state the conditions for the coexistence be-
For the nematic phase, matters are slightly more complicatefiveen the isotropic and nematic daughter phases into which a
because of the minimization step. Minimizing with respect toparent phase with thickness distributicf?(1) is assumed to

L
—Ococl . (20

D

6
2+ —
o

ca+

a now yields have split. From Eq(24), equality of chemical potentials of
both phases is obeyed exactly if the distributions in the
4 ,[fcd)\? phases have the following form:
a~ —CO( 7 (21
T 4 c@)=Whexgé(1)], a=I.N, (27

and the Onsager-Parsons free energy for the nematic phaggerew(l)=exdBu(l)] must be a function common to both
reads phases, sincguie(l) = mnen(!)=u(l). For the nonrescaled
Onsager free energy the functio&d) are given by

4

o In—+1 co+fc(l)[lnc(l)—1]dl 6\Lo | |

() =—{ 2+ —| 5 (cf+cf)—2¢f,

fed@)| fed(@p) 1610
+2¢yln| ¢ — —CoCy- (22
4 46 m D N 16Lo N4 My e 1 o™ [ 1

& >(|)=—?5(co i) —2¢5” Incg” —| In—+3).
I1l. COEXISTENCE CONDITIONS (28)

To derive the conditions for phase equilibria in the poly-
disperse model, we must know the expressions for th
chemical potential(I)—which, due to the polydispersity, is
a function of the relative thickneg$s—and the osmotic pres-

Again, we can obtain similar expressions from the rescaled
%nsager-Parsons free energy. Furthermore, conservation of
matter requires

surell. The chemical potential can be derived by functional Oy =3O +(1—5)cMN(1), (29)
differentiation of the free energy with respect to the thickness
distributionc(l), where+y denotes the fraction of the system volume occupied

by the isotropic phase. Using E@®9), we can expresg/(l)

Bull)= 55(1‘” . 23 in terms of the parent distributiozf®)(1),
@(])= )| ex ¢0()]
Using Egs.(8) and(15) we obtain for the Onsager model, = h=c) yexd E0() ]+ (1— y)exd ENH ]’
a=I,N. (30)

L
Buisd ) =Inc(l)+2cy+ 3°<c0|+c1),

6
2+ —
a

The moment densitiexf andc,), which determine the os-
motic pressure$26) and the functions®(l) are obtained
. by integrations over these distributions

16 L, 4
Bitnend)=Inc(l)+2Incy+ ;B(Cd +cq)+ In;+3

(24) cga)zfc(a)(l)dl and c(la)zflc(a)(l)dl, a=I,N.

The osmotic pressure can be written in terms of the chemical (32)

potential and the free energy via In order to solve the self-consistency equations above we

must specify a parent distribution®(1). In the present
bplIl= —f+,8f dlc(l)u(l), (25)  study we assume that the thicknesses are distributed along a
Schulz distribution

which yields (1+2)+2
O y=c@—_ 7 2z _
6\ L c™(h)=cy F(1+2) 1Zexd —(z+21)17], (32
bBI o~ Co+ C2+| 2+ —| —coCy,
o oo m/ D 0t which is normalized according tec(@(1)dI=c{, with c{*’

the overall particle concentration in the parent phase and has
an average thicknesa{”=c{”/c{”’=1. The latter implies
that we may identify the ratih /D involving the reference

16 Lg
bBI en~3Co+ — D CoC1- (26)
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length as the mean aspect ratio of the platelets. The polydis- 0.5
persity (defined as the relative standard deviatighis re- Jrree,

lated to the parametervia 0.4-

(0) 1/2
oz([ml]zf |ZCC§ )dl—l) =(1+2)"Y2 (33

0.3
We are now ready to investigate the coexistence between the
isotropic and nematic phase in our polydisperse model. Be-  0-21
fore discussing the full coexistence problem, we will first
attempt to derive simple expressions for the so-called cloud ]
point and shadow curves that locate the onset of phase sepe
ration. At the cloud point, the parent phase coexists with an
infinitesimal amount of a new phase, called the “shadow” 0.0 T T r
phase. Accordingly, at the isotropic cloud point only an in-
finitesimal amount of nematic phags&shadow phase) has
emerged and so the distribution of the isotropic phase is only

. FIG. 1. The isotropic(l) and nematic(N) cloud point curves
negligibly perturbed away from the parent. Hence, for the, . : )
isogt]r(?picyclr())ud point we syey= 1in Eq? (30) s0 that (solid) and the corresponding shadow curydstted showing the

concentrations of the coexisting phasgsas a function of the par-
ent polydispersityo. At =0, the isotropic cloud point meets the
shadow of the nematic cloud point and vice versa, as it should.

cO()=cO1),

(N) (1) = ~(0) (N) (1) — &)

c™(hH=c™(l)ex | 7. 34

M (Dex &) =] (34 densities of the shadow phase{{ and c{") are given by
Substituting this into Eq(31) gives Cg)zc(ll)zcgmy which  similar equations as E@37). To track down the cloud point
implies that the isotropic phase is identified as the paren@nd shadow curves we must solve the coupled set of consis-
The moment densities for the associated nematic shadow af@ncy equations under the condition of equal osmotic pres-

then given by sureslliso= I nem.
In the coexistence region, which is bounded by the isotro-

pic and nematic cloud points, both phases coexist in finite
amounts, implying &<y<1. From an experimental stand-
point, the results must be restricted to lie on a physical dilu-
tion line along which the shape of the parent distribution,
c(o)(l)/cgo), is kept fixed while the overall parent concentra-
tion ¢! is subject to variation. To calculate the evolution of
the densities inside the coexistence region we have to solve
the four integral equation&31) along with the equation of
osmotic pressure. For a given polydispersity of the parent,

(1+2)1%2 ,
CSN)=CSO)WGXFIA§ ]

xf 1Zexp{[A£' — (z+1)]1}dI,

(1+2)1%2 .,
CSN)ZCSO)WGXF[M ]

xf 12 lexp{[A & — (z+1)]1}dlI, (35)

where we have rewritted™ (1) — £(1) by splitting it into
parts, according to

VM —eD)=A¢'1+A¢". (36)

Note thatA¢” andA¢” are both independent &f The inte-
grals can be worked out straightforwardly to obtain the fol-

lowing coupled set of consistency equations:

74+ 1 z+1

ar-spemser| 22 )"
(z+1)—A¢

741 z+2

(z+1)—A¢’ 37

c&“>=c5°’exrm§"](

there appear six variables in these equatifres, the five
density variablesc)’,c{"”,c{V,c{N c{?) plus y) implying

that one variable can be freely chosen. Numerically, rather
than changing the overall parent densié?), it has proven

to be more convenient to construct a scheme in whjids
varied between 0 and 1 and the corresponding densities are
calculated self-consistent[y14].

IV. RESULTS

A. Cloud point and shadow curves

The results for the cloud point and shadow curves are
shown in Figs. 1-3. These curves are calculated from the
rescaled Onsager-Parsons free energy, f5.and(22). In
all calculations we used a mean aspect raijéD of 0.13,
which value is in close agreement with the average aspect-
ratio of the gibbsite platelets used in experimgt From
Fig. 1 we see that the coexistence region broadens signifi-

The same analysis can be done for the nematic cloud poinfantly as the polydispersity of the parent becomes higher, in
and shadow curves by setting=0 so that the nematic phase particular, atc>>0.4. A notable feature is the divergence of

is identified as the parent phase, i =c{V=c{?). The

the two-phase region at>0.46 indicating that the concen-
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0.5 pic phase. At high polydispersities>0.4) the effect be-
FA comes very pronounced since the average thickness in the
i isotropic phase may rise up to twice that in the nematic
phase. Again we observe a divergence in the nematic shadow
L at 0>0.46 indicating that the average thickness of platelets
0.3 in the isotropic phase rapidly shifts to infinity.
] F ) In this paper, we also investigate the possibility oflaN
° density inversion, as observed in experiment. A density in-
024 version implies that, at some point in the two-phase region,
HH the mass density of isotropic becomes higher than that of the
nematic phase so that the coexisting phases may turn upside
down in a test tube. To verify this, we have to calculate the
mass density of the phases. In RdfL], rather than calculat-

r r r r r r r r r ing the mass density itself, we defined the core volume frac-
04 06 08 10 12 14 16 18 20 22 tion ¢, Of the platelets as a more convenient density vari-
m, able. It is easy to show tha. is linearly proportional to

the mass density of the gibbsite platelets used in experiment

FIG. 2. The average platelet thicknesg in the isotropic and  [9]. The core volume fraction can be calculated from
nematic shadow phases as a function of the parent polydispetsity

Note that both cloud point curves are identical to the parent and, 7 N 5
therefore, haven,=m{¥=1. beore=7 7 D j c(h)(L—20)dI (39

0.4+ N . ,'"--'-'..I

0.1

0.0

tration of the nematic cloud shifts to infinity while the con-

centration of the corresponding shadow rapidly moves to 4L, 8 S
zero. This divergent behavior is not observed for the isotro- =— Bcl_ —COB,
pic cloud point and shadow. Although the concentration of . .

the isotropic shadow increases rapidly with increasing poly-

dispersity, it remains finite even at>0.5. In Fig. 2 we show  \yhere 5/D is the thickness of the stabilizing polymer layer
the average thickness of the p!atele_ts in the I_SOUODIC ar:grafted onto the gibbsite platelets relative to the average di-
nematic phases. A strong fractionation effect is observed,meter of the platelets. From the experimental reg@ltsve
with the thicker platelets going preferentially into the isotro- ogtimates/D = 4/180. The resulting plot is shown in Fig. 3.
We indeed observe an inverted stéte., the isotropic phase
being more dense than the nematic phasgolydispersities
roughly above 30%. This implies that, at these polydispersi-
ties, the fractionation effect is strong enough to overcome the
difference in number densities between the coexisting
phases. In particular, we can identify a small interval 0.267
.. - <0<0.284 where an-N density inversiortakes places in-
o 021 side the two-phase region, in accordance with the experimen-
B tal observation$30]. In these cases, the normal state will be
. 3 found at the beginning of the coexistence redidose to the
0.1 isotropic cloud point but an inverted state will be found

’ : close to the nematic cloud point. Clearly, there must be a
point 0<y<1 somewhere in the two-phase region where a

(39

0.4+

0.34

0.0 : : : , density inversion takes place. To find this point, we have to
0.250 0.275 0.300 0.325 0.350 resort to the full coexistence problem.
bc
FIG. 3. The isotropic(l) and nematic(N) cloud point curves B. Inside the coexistence region

(solid) and the corresponding shadow curvéstted in terms of

the core volume fractiong, of the coexisting phases as a function thick th ist ion f fixed
of the parent polydispersity. Recall that¢, is linearly propor- erage thicknesses across ne coexistence region for a fixe

tional to the mass density of the phase. The horizontal lines denot@oIydiSperSity of the parent phase. As expected, both the

the points where the cloud and shadow phases have equal mad€nsities and the averages, vary smoothly between the
densities. For polydispersities above the “threshold” value 1SOLropic and nematic cloud points that delimit the two-phase

=0.267 (indicated by the lower horizontal lipean inverted state CO€Xistence region. We see that the average thickness is al-
will be found at which the isotropic phase is denser than the nemWays higher in the isotropic phase than in the nematic phase,
atic phase. In the small interval between the two horizontal linef2s we expect from Fig. 2. A more detailed picture of the
(0.267<0<0.284) a density inversion takes place inside the coex{ractionation effect can be seen in Fig. 5 where we have
istence region. depicted the thickness distributions in the coexisting phases.

In Fig. 4 we show the evolution of the densities and av-
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0.95 -
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0.90- s
] "y
& SN
0.85 T T T T T T T 0.0 ! ! ! ! ! T . - !
245 9250 255 260 265 270 275 2.80 04 06 08 10 12 14 16 18 20 22 24
: : . : : — FIG. 5. The normalized thickness distributiot)=c(1)/c{") in
294 the isotropic and nematic phases at polydispeksity0.27 for vari-
; i ousvy. Bold dashed curve: distribution in the nematic shadow at the
28 N —~ isotropic cloud point ¢=1). Bold dotted curve: distribution in the
i isotropic shadow at the nematic cloud point=0). The distribu-
974 tions in the isotropic and nematic phases at these points are given
’ by the parentbold solid curve. The intermediate curves represent,
S i from top to bottom, the distributions of the coexisting isotropic
267 (dotted and nematic(dashedl phases fory=0.75, 0.5 andy
] i =0.25, respectively. The inset shows the ratio of the thickness dis-
254 I tributions to that of the parent.
24 25 26 © 27 28 29 We have studied-N phase equilibria in the Onsager-
(o) S Parsons model for hard disks allowing for polydispersity in

thickness. We have analyzed the onset of phase separation by
FIG. 4. (a) The average thickness, in the coexisting phases as c3|culating the cloud point and shadow curves—which de-
a function of the concentration of the parent phe§e for a poly-  |imit the two-phase coexistence region—as a function of the
dispersityo=0.27. The isotropic and nematic cloud points, which polydispersity of the parent. A significant broadening of the

delimit the coexistence region, are located at the points where thg ; P : :
R ) ) oexistence region is observed for moderately high polydis-
curves meet the dilution linen{®’=1, dotted ling. (b) Evolution 9 y high poly

of the concentrations of the coexisting phases across the two-phase
region for the same polydispersity. The dotted line represents the 1.0104
dilution line (co=c{).

In Fig. 6 we have plotted the variation of the core volume
fractions for a parent witler=0.27 as the coexistence region
is crossed. According to Fig. 3, this parent should undergo a
density inversion somewhere inside the coexistence region.¢ /60
Figure 6 shows that there is indeed an inversion, albeit very ™ "™
close to the nematic cloud point in this case. The inversion 1.000
occurs at a parent volume fractiagh=0.461 which corre-
sponds toy=0.073. So the inversion takes place when the
volume occupied by the isotropic phase has decreased tc
about 7% of the total system volume. Finally, in Fig. 7, we S R e e S TR Y R YRy
show the polydispersities of the daughter phases inside the
coexistence region for the same parent as in Fig. 6. At coex-
istence, both daughter phases have a lower polydispersity gig, 6. The ratio of the core volume fraction of the isotropic and
than the parent phase due to the fractionation effect. HoWnematic phases relative to the parental oneder0.27 plotted vs
ever, the deviations are very small §<0.006) for this par-  the volume fraction of platelets in the parent phase. The dotted
ticular parent polydispersity. Note that the polydispersities Ofiine represents the dilution lineg(ye/ '2=1). The intersection
the daughter phases reach their minimum aroynd.5, i.e.,  point indicates that a density inversion will occur at volume frac-
when the isotropic and nematic phases coexist in approxitions ¢>0.461. In these cases, the isotropic phase will be denser
mately equal amounts. than the nematic phase.

1.005 +
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0.2711 —— T T T like this is probably more realistic from an experimental
02704 I point of view.
} In a previous pap€grll] we made a theoretical investiga-
0.269 - tion of the experimentally observedeN density inversion by
0.268 considering a simple binary mixture of platelets with differ-
; ing thickness. Although the density inversion could readily
5. 02674 inversion be accounted for within this model, we were not able to
d 0_266_' \ no inversion [ explain another peculiar observation encountered in the ex-
] N perimental work[9]. As part of their experimental survey,
0.265 - - Van der Kooij et al. performed an additional fractionation
0.264 I [ experiment in which a suspension was brought to a volume
J I fraction ($=0.29) close to the nematic cloud point (
0.263 r T T r =0.30) and left to phase separate. The nematic upper phase
0.0 0.2 0.4 0.6 0.8 10 was separated from the isotropic bottom phase and subse-
Y quently diluted. A remarkable observation was that this sys-

tem did not exhibit a density inversion at any point in the
isotropic and nematic daughter phases across the coexistence re Iisotropic-nematic coexistence region. This striking observa-
P 9 P 988n could however not be explained, for fundamental rea-

for a parent W.'thazo'ﬂ _plotted_ vs the fractiory O.f the system sons, on the basis of the binary model for these systems, as
volume occupied by the isotropic phase. The solid horizontal line

indicates the “threshold” polydispersity =0.267(see also Fig. 3 dlscusr?ed in Re[.ll].d h ded bi del
A parent phase with a polydispersity below this value will not ex- I the present study we have extended our binary mode

hibit a density inversion during phase separation. to a p.oly.dispers.e one, meaning that we allow fc?f a continu-
ous distribution in thickness instead of just two different spe-
persities <<0.3). We also see a strong fractionation effectcies. We may now consider the polydispersities of the coex-
with the thick species preferentially occupying the isotropicisting isotropic and nematic daughter phases for a given
phase. Although the biphasic widening and fractionation efparent distribution. In Fig. 7 these results are plotted for a
fect are generic properties observed in many polydispersparent witho=0.27. As noted in the previous paragraph, the
systemg18,31], it is rather surprising that these effects occurdaughter phases hawe<0.27, which is a direct consequence
so strongly in mixtures of disks which only differ in thick- of the fractionation in thickness during phase separation. In
ness. Recall from Ed6), that the thickness only marginally this figure we also indicated the “threshold” polydispersity
contributes to the excluded volume provided that the aspecsee Fig. 3 below which the fractionation effect is too weak
ratios Lo/D are small parameters. Hence, one might haveo accomplish an inversion of densities. So any daughter
anticipated that the effect of thickness on the phase behavighase with a polydispersity below the threshold will prob-
of disks is unlikely to be significant. ably not show an-N density inversion if this phase were to
Even more striking is the infinite broadening of the coex-be isolated and subsequently diluted or concentrédsedhe
istence region at polydispersities>0.46 due to a diver- new parent phageDespite the fact that the distributions in
gence of the nematic cloud point and shadow curige®e the daughter phases no longer exactly obey the Schulz form,
Figs. 1 and 2 This phenomenon can be interpreted as fol-the deviations will generally be very small close to the iso-
lows. When a dilute parent phase with>0.46 is concen- tropic and nematic cloud points. Since the polydispersity of
trated it starts to phase separate at the isotropic cloud poirtf e parent may be chosen arbitrarily, we can make a reason-
initially splitting off an infinitesimal amount of nematic able account for the experimental observations by picking a
phase(the shadow The fraction of nematic phase increasesparent polydispersity which is just above the “threshold” as
upon further concentrating the parent sample. However, asdicated in Fig. 7. In that case, the polydispersities of the
we see from Fig. 1, the parent will never reach the associatedaughter phases will cross the threshold close to the nematic
nematic cloud point. Regardless of the concentration of theloud point(i.e., when the system is almost fully nematic
parent phase, the system always splits off a tiny fraction oBSubsequent isolation and dilution of the near-Schulz nematic
an (increasingly dilutg isotropic phase which, according to parent would then give a phase separation into an isotropic
Fig. 2, will accommodate increasingly thicker platelets. Thisphase that is less dense than the nematic phase and hence the
means that the system never becomes fully nematic, irrespedensity inversion has disappeared.
tive of the concentration of the parent. The question now An issue that is not addressed in this paper is the possi-
arises whether this is a realistic picture. It may be possibléility of a demixing transition in the nematic phase. For bi-
that the anomalous behavior stems from the fact that theary mixtures of thin and thick platelets a stable demixing
thickness distribution adopted here is unbounded, meaningansition of the nematic phase could readily be established
that there is a nonzero probability of finding species with[11]. It was shown that the transition occurs for any thickness
very large(potentially infinite thicknesses for which the as- ratio provided that the osmotic pressure is sufficiently high.
pect ratio is no longer a small parameter. Therefore, differenRecently, Cuest&32] showed that, for a polydisperse hard
results might be obtained when considering a truncation o$phere fluid distributed along @ingle-peakedlog-normal
the distribution at a certain limit valueg,, (sayl;,=3), so distribution, a fluid-fluid demixing transition might occur at
that ¢c(1)=0 for 1>1;,,. Adopting a truncated distribution polydispersities larger than 160%. However, only the spin-

FIG. 7. Evolution of the polydispersitiesy of the coexisting
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odal instability was analyzed there without considering the ACKNOWLEDGMENT

coexistence conditions for the fluid phases. The possibility of .
a scenario similar to the one found by Cuesta for a polydis; We gratefully acknowledge Henk Lekkerkerker for stimu-

perse system of platelets distributed along a single—peakelatlng discussions.

thickness distribution is an intriguing issue. Although inves-

tigation is going on, there are no conclusive results so far on APPENDIX
this matter{33]. Inserting Eqs(12) and (13) into the free energyl) and
performing a functional differentiation with respect adl)

VI. CONCLUSIONS yields

We have investigated the effect of thickness polydisper- Sf c() 8 c(l) 1 1 1/2
sity on the isotropic-nematic phase equilibria in the Onsager- - _ \ﬁ j (| =+ —— dr’
Parsons model for hard disks. We show that it is justified, atoa(l) — «(l) T a(1) a(l)  a(l")
least within the Gaussian approximation, to decouple the ori- (A1)
entational degrees of freedom from the degrees of freedom . . . . )
which determine the thickness distribution. This approachAPPIYing the stationarity conditiodf/Sa(1)=0 gives after
which implies that the orientations of the platelets are solelyS0Me€ rearrangements
determined by the diameter of the platelets anad by the ,
thickness, allows us to perform the free energy minimization a1~ \ﬁj c(l”) dl’ (A2)
with respect the orientations analytically and analyze the ex- m) [1+a()/a(l")]Y?
act phase equilibrium conditions. In this way, rather than
having to discretize the orientations such as in the Zwanzi@bviously, a similar expression is obtained f@fl'). It is
model[14], we retain a system witbontinuousorientational  convenient to combine both expressions using the ratio
degrees of freedom. Apart from more generally observed fea@(l,l1")=a(l)/a(l’) to obtain
tures such as a widening of the biphasic gap and a fraction-
ation effect, with the thicker species accumulating in the iso- B f i) d|"/ f Ty

[1+ Q(I r,lm)]llz

. . . 1/2, |
tropic phase, we observe a divergence of the coexistenceQ (I, 1+0(1,1M ]2
region ato>0.46 indicating that the system never becomes [1+Q(LIM)]

fully nematic at high densities but will always split off a xdl"”, (A3)
small fraction of a dilute isotropic phase predominantly con-
taining very thick species. which is an implicit equation foQ(Il,I"). Note thatQ only

the coexistence region at 0.26%<0.284, which is in  not on the overall concentratian of the nematic phase. One
gualitative agreement with the experimental observations. "Peadily concludes tha®(l,I")=Q(1,1)=1 is a trivial solu-
practical implication of the inversion is that upon concentrat-jo, of Eq. (A3). Using this in Eq.(A2) thus yields the fol-

ing a dilute parent phase with polydispersity around 27% ingwing solution for the stationarity condition within the de-
a test tube an isotropic upper phase will be formed initiallycoypling approximation

(near the isotropic cloud pointvhereas an isotropic bottom
phase will be found close to the nematic phase boungay ( 8 (cl) 2
Fig. 3 [30]. This phenomenon has been observed experi- a~ \ﬁf I’) ,
mentally in systems of polydisperse colloidal gibbsite plate- ™

lets[9]. Within our polydisperse model, we also account for

21/2

a particular dilution experiment performed in REJ]. These 40(2)
observations could not be explained on the basis of a binary «~ (Ad4)
model for these systems developed by us in a previous study
[11]. independent of the thickness
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