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Phase equilibria in systems of hard disks with thickness polydispersity

H. H. Wensink and G. J. Vroege*
Van’t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute, Utrecht University,

Padualaan 8, 3584 CH Utrecht, The Netherlands
~Received 26 October 2001; published 5 March 2002!

We study isotropic-nematic (I -N) phase equilibria in the Onsager~-Parsons! model for systems of hard
colloidal disks allowing for arbitrary polydispersity in thickness. The phase behavior is investigated by ana-
lyzing the exact phase equilibrium equations for Gaussian orientational distribution functions. We observe a
strong fractionation effect, with the thicker disks found preferentially in the isotropic phase. Due to this effect,
the system may undergo anI -N density inversionindicating that the mass density of the isotropic phase
becomes higher than that of the coexisting nematic phase. This phenomenon has been observed explicitly in
experiment. We also encounter a divergence of theI -N coexistence region for Schulz-distributed parents with
polydispersities larger than 46%. An implication of this phenomenon is that the system cannot become fully
nematic at high densities but will continue to split off a small fraction of a dilute isotropic phase predominantly
containing very thick species.
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I. INTRODUCTION

Since the pioneering work of Zocher and Langmuir@1,2#
it has been known that dispersions of highly anisometr
rodlike or platelike colloidal particles exceeding a certa
concentration undergo an orientational order-disorder tra
tion from an isotropic state (I ), in which the particles are
randomly oriented to an orientationally ordered nematic s
(N). Onsager@3# first showed that the phase transition can
explained on the basis of purely repulsive interactions
tween the particles. In his classic work, he explained
phase transition as the result of a competition between
entional entropy that favors the isotropic state and the
tropy effect associated with the orientation-dependent
cluded volume of the anisometrical particles, which favo
the ordered nematic state.

One of the difficulties in quantitatively comparing expe
mental results with Onsager’s predictions is that the colloi
particles are inevitably polydisperse, i.e., they differ in s
and shape. The issue of polydispersity and its effect on
interpretation of experimental results has already been
dressed by Onsager in his original paper@3#. Later on, ex-
tensions of the Onsager treatment allowing for phase
gram calculations for bidisperse and tridisperse system
rods have led to a rich variety of behavior, such as a wid
ing of the coexistence region, a fractionation effect with t
long rods going preferentially into the nematic phase, a
entrant phenomenon, and the possibility of nematic-nem
equilibria @4–7#. However, unlike the case of rodlike pa
ticles, the effect of polydispersity on the phase behavior
platelike colloids is only just beginning to be understood.

Recently, a novel model system for polydisperse disks
been developed consisting of sterically stabilized gibb
platelets@8#. The particles are evidently polydisperse sin
the platelets strongly differ in both diameter and thickne
The polydispersity for each of the dimensions was estima
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at 25%. Quite unexpectedly, the phase behavior of th
platelike particles appeared to be more significantly affec
by their polydispersity in thickness than by their polydispe
sity in diameter. While the fractionation in diameter betwe
the isotropic and nematic phases was found to be rather w
@9,10#, strong experimental evidence was found for a p
nounced thickness fractionation in these systems@9#. The
latter effect has led to a surprising phenomenon: the dens
of the isotropic and nematic phases may invert upon conc
trating a dilute sample in a test tube, indicating that an i
tropic bottomphase coexists with a nematicupperphase@9#.
This anomalous behavior, referred to as theI -N density in-
version, can, in principle, be explained by the fractionati
in thickness between the phases with the thicker plate
accumulating in the isotropic phase. The fractionation effe
thus, reduces the difference in mass densities between
coexisting phases. Consequently, an inversion occurs w
the fractionation effect is strong enough to overrule the d
ference in thermodynamic number densities of the phase
a previous study@11#, we have verified the possibility of an
I -N inversion in simple binary mixtures of thin and thic
hard platelets with common diameter and showed that
inverted state is indeed found in a broad range of plate c
positions.

In this paper, we extend our binary model~within the
Onsager treatment! to a polydisperse one in which we allow
for a continuousdistribution in thicknesses. As in our prev
ous study, we upgrade Onsager’s original second virial
proximation quantitatively by applying a renormalization
the second virial term according to Parsons’ theory@12#. This
approach allows us to incorporate higher virial terms into
free energy, albeit approximately, while requiring only sp
cific knowledge of the two-body excluded volumes. To ke
our model analytically tractable, we use the approxim
Gaussian trial orientation distribution function~ODF! intro-
duced by Odijk@5#, which has a much simpler form than th
one originally used by Onsager. Although the Gaussian t
function does not qualify as a thermodynamic equilibriu
ODF, it does give reasonable qualitative resultsl
©2002 The American Physical Society16-1
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highly ordered nematic phases. It is shown that, with
Gaussian ansatz, we may neglect the effect of the thickn
on the equilibrium orientations of the platelets implying th
the orientations are solely determined by their diame
which is the same for all species. As a result, the distribut
of orientations in the nematic phase can be characterize
a single ODF which holds for all particles. This approac
referred to as the decoupling approximation, allows us
analytically minimize the free energy with respect to the o
entational degrees of freedom and leads to an excess
energy obeying a simple moment structure since it only
pends on the first two moments of the thickness distribut
@13#. Consequently, we are able to obtain the phase beha
exactly by solving the phase equilibrium conditions for po
disperse systems.

In the present paper, we will closely follow the analysis
Clarke et al. @14# who recently presented a similar descri
tion of the exact phase equilibria in the polydisperse Zw
zig model for hard rods with length polydispersity. An im
portant difference between their polydisperse model and o
is that we are able to retain a system withcontinuousorien-
tations, due to the decoupling approximation. In the Zwan
model, however, the orientations are discretized as the
ticle vectors are restricted to lie on one of the Cartesian a
@15#.

This paper is structured as follows. In Sec. II A we d
scribe the polydisperse model within the Onsager treatm
and derive the free energies for the isotropic and nem
phases. A formulation of the rescaling approach for polyd
perse systems is given in Sec. II B. These results are use
Sec. III to study the exact phase equilibrium conditions
this model. In Secs. IV and V we present a detailed anal
of the phase behavior and discuss its most important
tures. Finally, the conclusions that can be drawn from
present calculations are collected in Sec. VI.

II. MODEL

A. Onsager theory

We consider a system of hard disks with common dia
eterD but polydisperse thickness—such that there is a con
tinuous distribution of lengthsL—in a macroscopic volume
V. Note that, unlike the opposite case of slender rods,
aspect ratiosL/D of the platelets are consideredsmall pa-
rameters. Within Onsager’s approach, the excess free en
describing the~excluded volume! interactions between th
particles is truncated after the second virial term. A gener
zation of the Onsager model to include polydispersity le
to the following expression for the total Helmholtz free e
ergy densityf ~in units kBT[b21):

f [
bbF

V
;E c~ l !@ ln c~ l !21#dl1E c~ l !v~ l !dl

1E E c~ l !c~ l 8!r~ l ,l 8!dldl8. ~1!

Here, l 5L/L0 is the relative thickness with respect to som
reference lengthL0. For the sake of convenience, we ha
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omitted all irrelevant contributions linear inc arising from
the standard chemical potentials of the particles. These
pend only on the chemical potential of the solvent and
temperatureT. The concentrationsc are rendered dimension
less by relating them to the orientationally averaged
cluded volume per particle between two infinitely thin disk
b5p2D3/16, via c( l )5bN( l )/V whereN( l )dl is the num-
ber of particles with relative thickness betweenl and l 1dl.

The distribution in thicknessc( l ) must be normalized ac
cording to

E c~ l !dl5c0 , ~2!

wherec0 is the total dimensionless concentration of platele
The first term in Eq.~1! is exact and represents the ideal fr
energy of the polydisperse system. The second term is
orientational part involving the parameterv as a measure fo
~the negative! of the orientational entropy@3#

v~ l ![E c~ l ,u!ln@4pc~ l ,u!#dV, ~3!

which has its minimum (v[0) in the isotropic state bu
increases as the orientational entropy decreases. The fun
c(u,l ) is the ODF that describes the distribution of th
angles between the normal to the platelet with relative thi
nessl and the nematic director. The ODF must be normaliz
according to*c(V)dV[1, whereV is the solid angle of
the platelet’s normal vector. In the isotropic state, all orie
tations are equally probable which impliesc iso[1/4p, inde-
pendent ofl. In the nematic state, however, the platelets
strongly aligned and the ODF will be a sharply peaked d
tribution.

The last term in Eq.~1! is the excess free energy dete
mined by the interparticle interactions. In the second vir
approximation, the interactions between hard particles m
be expressed as an excluded-volume entropy dependin
the excluded volume between two particles. Onsager g
us the following expression for the excluded volume b
tween two circular disks with relative thicknessesl and l 8 as
a function of their mutual angleg @3#:

vexcl~g!5
p

2
D3 sing1~ l 1 l 8!L0D2H p

4
1E~sing!

1
p

4
ucosguJ 1O~L0

2D !, ~4!

where E(k) is the complete elliptic integral of the secon
kind. A measure for the average excluded-volume interac
between platelets of typel and l 8 is given by the average o
its angular dependence

r~ l ,l 8![~2b!21E E vexcl~g!c~u,l !c~u8,l 8!dVdV8.

~5!

The formation of an isotropic state~with c constant! or a
nematic state@with c~u,l! a peaked distribution# is caused by
a competition between orientational entropy~favoring the
isotropic state! and the excluded-volume entropy~favoring
the nematic state!.
6-2
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For the isotropic phase, the excluded volume~4! can be
readily calculated using the isotropic average^^E(sing)&&iso
5p2/8 @3#,

vexcl,iso~ l ,l 8!5
p2

8
D31~ l 1 l 8!L0D2H p2

8
1

3p

8 J 1O~L0
2D !.

~6!

Note that the leading order term~which is equal to 2b) does
not depend on the thickness so that the higher order t
must be included to account for the difference in thickne
Substituting Eq.~6! into Eq.~5! yields for the isotropic phase
@16#,

r iso~ l ,l 8!511
L0

D
~ l 1 l 8!S 11

3

p D1O~L0
2/D2!. ~7!

Note that the second contribution is on the order ofL0 /D
smaller than the leading order term. Using Eq.~7!, together
with the isotropic value,v[0, we get the following expres
sion for the free energy density in the isotropic phase:

f iso;E c~ l !@ ln c~ l !21#dl1c0
21S 21

6

p D L0

D
c0c1 , ~8!

wherec1[*c( l ) ldl is the first moment density of the distr
bution c( l ).

In the nematic phase, matters are more complicated s
the ODF is no longer a constant but a sharply peaked fu
tion. The excluded-volume entropy is now given by

rnem~ l ,l 8!5
4

pE E usinguc~ l ,u!c~ l 8,u8!dVdV8

1
2

p

L0

D
~ l 1 l 8!E E F32

1

2
sin2 g1ucosguG

3c~ l ,u!c~ l 8,u8!dVdV81O„~L0 /D !2
….

~9!

Here, the following asymptotic expansion of the elliptic i
tegral has been used@17#:

E~sing!5
p

2 H 12
1

4
sin2 g1O~sin4 g!J , ~10!

which is valid for very small anglesg. This approximation is
justified when the ODF is a sharply peaked function. As
Ref. @5#, we use Gaussian trial ODFs with variational para
etera( l ) to describe the angular distribution of platelets w
relative thicknessl in the nematic state,

c~ l ,u![5
a~ l !

4p
expF2

1

2
a~ l !u2G , 0<u<

p

2
,

a~ l !

4p
expF2

1

2
a~ l !~p2u!2G , p

2
<u<p.

~11!
03171
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Note thata is now a function ofl due to the polydispersity
An important advantage of using Gaussian trial ODFs is t
v andr are, in principle, analytically tractable. Substitutin
Eq. ~11! in Eq. ~3! gives us for the orientational entropy

v~ l !; ln a~ l !21. ~12!

For the excluded-volume entropy in the nematic phase
will only retain the leading order terms of its asymptot
expansion for largea

rnem~ l ,l 8!;A8

p
@a21~ l !1a21~ l 8!#1

8

p

L0

D
~ l 1 l 8!

3@11O„a21~ l !,a21~ l 8!…#. ~13!

The leading orderL0 /D contribution tornem is simply the
excluded volume between two perfectly parallel platel
(g50) in the nematic phase,pL0D2( l 1 l 8), divided by the
excluded volume 2b between two randomly orientated plat
lets with zero thickness in the isotropic phase. Note that
L0 /D contribution in Eq.~13! remains constant up to orde
O(a21).

The next step is to insert Eqs.~12! and ~13! into Eq. ~1!
and minimize the free energy density with respect to
orientational degrees of freedom via a functional different
tion that leads to the stationarity conditiond f /da( l )[0. Re-
taining theO„a21( l )… in Eq. ~13! would then give a nonlin-
ear integral equation to be solved along with the ph
equilibrium conditions~see paragraph below! which is a very
complicated task. In our approach, we choose to neglect
O(a21) term in Eq.~13!, whose contribution is on the orde
of (D/L0)a1/2 smaller than the leading term in th
asymptotic expansion ofrnem. Sincea is usually very large
for the nematic phase, this approximation can be readily
tified. An essential implication of the approach is that t
second term in Eq.~13!, which is the only part depending o
the thicknessl, vanishes upon minimizing the free energ
Since there is no contribution depending explicitly onl we
may simply substitutea( l )5a( l 8)5a in Eqs.~12! and~13!
to obtain after minimization,

a~ l !5a5
4c0

2

p
for all l , ~14!

which is the same result as for a monodisperse system@18#.
A formal derivation of this result is given in the Appendix
The physical interpretation of the approximation is that t
orientations of the platelets are solely determined by
diameter—which is identical for all particles—and not b
their thickness. Consequently, the orientational degrees
freedom aredecoupledfrom the degrees of freedom that d
termine the shape of the thickness distribution.

Using Eq.~14! and substituting the expressions forv and
r back into the free energy~1! then yields the following
simple expression for the free energy in the nematic pha
6-3
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f nem;S ln
4

p
11D c01E c~ l !@ ln c~ l !21#dl

12c0 ln c01
16

p

L0

D
c0c1 . ~15!

The results given thus far apply to the second virial appro
mation, meaning that higher order correlations between
disks are neglected. However, Onsager already pointed o
his original paper that a truncation of the free energy a
the second virial term is an approach that, although valid
sufficiently elongated needles~with aspect ratios exceedin
100!, cannot be justified quantitatively for disklike particle
The reason for this is that disks always have a nonzero p
ability of intersection and thus a finite excluded volume ev
at zero thickness (L0 /D50). The relative importance o
three-body interactions in terms of the ratioB3 /B2

2 ~with B3

the third virial coefficient! has been estimated by Onsager
O(1) @3#. More accurate predictions were obtained fro
computer simulations@21#, giving B3 /B2

2'0.51 for disks
with aspect ratioL/D50.1. These results clearly indica
that many-body interactions will undoubtedly play a role
systems of disks, even at low concentrations. Therefore
order to make credible comparisons with the experime
results, we have to somehow account for the effect of hig
virial terms. The most straightforward way to improve t
Onsager theory would be to include higher virial terms
rectly. Although this is, in principle, feasible, it turns out
be a very complicated method@19,20#. A much easier way to
upgrade the original theory is by indirect inclusion of man
body terms using the Carnahan-Starling excess free en
for hard spheres. This approach, which was originally form
lated by Parsons@12#, will be discussed next.

B. Parsons’ approach

In Parsons’ approach, the Carnahan-Starling expres
for hard spheres is applied to the system of anisometr
particles under consideration, using the orientationally av
aged second virial coefficient as a scaling factor. The jus
cation for the approach lies in a decoupling approximat
such that the orientational and translational degrees of f
dom for a system of anisometrical particles may be trea
separately@12#. An important implication of Parsons’ theor
is that it incorporates many-body effects~albeit in an average
way! while requiring only explicit knowledge of the two
particles interactions as embodied in the second virial te
of the free energy. For this reason, the approach is m
easier to use than the straightforward option of direct inc
sion of higher virial terms@19,20#.

The quantitative success of the approach has initially b
confirmed by Lee@22,23#, at least for hard rodlike particles
He calculated theI -N transition densities for a system o
hard ellipsoidal particles with aspect ratioL/D55 and found
results that were in close agreement with computer sim
tions. More extensive comparisons between the Onsa
Parsons theory and computer simulations were made
McGrother et al. @24# for short hard spherocylinders (L/D
,5) and by Campet al. @25# for hard prolate ellipsoids (5
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<L/D<20). In both cases, the transition densities as fou
from the theory agreed very well with the simulation resul
In a similar study, Camp and co-workers@26,27# showed that
Parsons’ approach also worked well for mixtures of rodli
and platelike ellipsoids, showing improved quantitati
agreement with computer simulations over the Onsa
theory and they-expansion approach. The latter metho
which is due to Barboy and Gelbart@28#, provides direct
inclusion of higher virial terms by a recasting of the fre
energy in terms of a new density variabley. However, unlike
the case of hard rods, no systematic comparative study
been reported so far on the effect of Parsons rescaling on
I -N transition in systems of hard platelike particles~i.e., ob-
late ellipsoids or cylindrical disks!.

As already mentioned, the starting point of the approa
is the semiempirical Carnahan-Starling excess free ene
for hard spheres@29#,

f CS~f!5
bFCS

ex

N
5

f~423f!

~12f!2
, ~16!

wheref is the volume fraction of hard spheres. For a on
component system of hard anisometrical particles this f
energy is multiplied by the prefactor^^vexcl&&/8v0 with v0
the particle volume and̂^vexcl&& the average excluded vol
ume. Note that̂^vexcl&&/8v051, in the case of hard sphere
For a monodisperse system of platelets the Parsons ex
free energy density~denoted by ‘‘P’’! can be written as

bbFP
ex

V
5

~423f!

4~12f!2
c0

2r ~17!

wherer is given by Eq.~5! for the monodisperse case~i.e.,
l 5 l 851). We may generalize the above expression fo
polydisperse system in the following way:

bbFP
ex

V
5

~423f!

4~12f!2E E c~ l !c~ l 8!r~ l ,l 8!dldl8

5
f CS~f!

4f

bbFO
ex

V
, ~18!

wherebbFO
ex/V is the excess free energy density in the O

sager model, given by the last term in Eq.~1!. Furthermore,
f is the total volume fraction of platelets, related to t
thickness distributionc( l ) via

f5
4

p

L0

D E c~ l !ldl 5
4

p

L0

D
c1 . ~19!

From Eq. ~18! we see that Parsons’ approach essentia
comprises a rescaling of the excess free energy using
Carnahan-Starling result for hard spheres. Replacing the
term in Eq.~1! by Eq.~18! gives us the Onsager-Parsons fr
energy for a polydisperse system of hard platelets. For
isotropic phase we thus obtain
6-4
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f iso
P ;E c~ l !@ ln c~ l !21#dl

1
f CS~f!

4f Fc0
21S 21

6

p DL0

D
c0c1G . ~20!

For the nematic phase, matters are slightly more complica
because of the minimization step. Minimizing with respect
a now yields

a;
4

p
c0

2S f CS~f!

4f D 2

~21!

and the Onsager-Parsons free energy for the nematic p
reads

f nem
P ;S ln

4

p
11D c01E c~ l !@ ln c~ l !21#dl

12c0lnFc0

f CS~f!

4f G1
f CS~f!

4f

16

p

L0

D
c0c1 . ~22!

III. COEXISTENCE CONDITIONS

To derive the conditions for phase equilibria in the po
disperse model, we must know the expressions for
chemical potentialm( l )—which, due to the polydispersity, i
a function of the relative thicknessl—and the osmotic pres
sureP. The chemical potential can be derived by function
differentiation of the free energy with respect to the thickn
distributionc( l ),

bm~ l !5
d f

dc~ l !
. ~23!

Using Eqs.~8! and ~15! we obtain for the Onsager model,

bm iso~ l !5 ln c~ l !12c01S 21
6

p DL0

D
~c0l 1c1!,

bmnem~ l !5 ln c~ l !12 lnc01
16

p

L0

D
~c0l 1c1!1S ln

4

p
13D .

~24!

The osmotic pressure can be written in terms of the chem
potential and the free energy via

bbP[2 f 1bE dlc~ l !m~ l !, ~25!

which yields

bbP iso;c01c0
21S 21

6

p D L0

D
c0c1 ,

bbPnem;3c01
16

p

L0

D
c0c1 . ~26!
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Similar expressions for the chemical potentials and osm
pressures can be derived straightforwardly from the Onsa
Parsons free energy using Eqs.~20! and ~22!. These expres-
sion are, however, more elaborate due to the presenc
f CS(f) and its derivatives.

We can now state the conditions for the coexistence
tween the isotropic and nematic daughter phases into whi
parent phase with thickness distributionc(0)( l ) is assumed to
have split. From Eq.~24!, equality of chemical potentials o
both phases is obeyed exactly if the distributions in
phases have the following form:

c(a)~ l !5W~ l !exp@j (a)~ l !#, a5I ,N, ~27!

whereW( l )[exp@bm(l)# must be a function common to bot
phases, sincem iso( l )5mnem( l )5m( l ). For the nonrescaled
Onsager free energy the functionsj( l ) are given by

j (I )~ l !52S 21
6

p DL0

D
~c0

(I )l 1c1
(I )!22c0

(I ) ,

j (N)~ l !52
16

p

L0

D
~c0

(N)l 1c1
(N)!22c0

(N) ln c0
(N)2S ln

4

p
13D .

~28!

Again, we can obtain similar expressions from the resca
Onsager-Parsons free energy. Furthermore, conservatio
matter requires

c(0)~ l !5gc(I )~ l !1~12g!c(N)~ l !, ~29!

whereg denotes the fraction of the system volume occup
by the isotropic phase. Using Eq.~29!, we can expressW( l )
in terms of the parent distributionc(0)( l ),

c(a)~ l !5c(0)~ l !
exp@j (a)~ l !#

g exp@j (I )~ l !#1~12g!exp@j (N)~ l !#
,

a5I ,N. ~30!

The moment densities (c0 andc1), which determine the os
motic pressures~26! and the functionsj (a)( l ) are obtained
by integrations over these distributions

c0
(a)5E c(a)~ l !dl and c1

(a)5E lc (a)~ l !dl, a5I ,N.

~31!

In order to solve the self-consistency equations above
must specify a parent distributionc(0)( l ). In the present
study we assume that the thicknesses are distributed alo
Schulz distribution

c(0)~ l !5c0
(0) ~11z!11z

G~11z!
l z exp@2~z11!l #, ~32!

which is normalized according to*c(0)( l )dl5c0
(0) , with c0

(0)

the overall particle concentration in the parent phase and
an average thicknessm1

(0)[c1
(0)/c0

(0)51. The latter implies
that we may identify the ratioL0 /D involving the reference
6-5
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length as the mean aspect ratio of the platelets. The poly
persity ~defined as the relative standard deviations) is re-
lated to the parameterz via

s[S @m1#22E l 2
c(0)~ l !

c0
dl21D 1/2

5~11z!21/2. ~33!

We are now ready to investigate the coexistence between
isotropic and nematic phase in our polydisperse model.
fore discussing the full coexistence problem, we will fir
attempt to derive simple expressions for the so-called cl
point and shadow curves that locate the onset of phase s
ration. At the cloud point, the parent phase coexists with
infinitesimal amount of a new phase, called the ‘‘shado
phase. Accordingly, at the isotropic cloud point only an
finitesimal amount of nematic phase~‘‘shadow phase’’! has
emerged and so the distribution of the isotropic phase is o
negligibly perturbed away from the parent. Hence, for
isotropic cloud point we setg51 in Eq. ~30! so that

c(I )~ l !5c(0)~ l !,

c(N)~ l !5c(0)~ l !exp@j (N)~ l !2j (I )~ l !#. ~34!

Substituting this into Eq.~31! gives c0
(I )5c1

(I )5c0
(0), which

implies that the isotropic phase is identified as the par
The moment densities for the associated nematic shadow
then given by

c0
(N)5c0

(0) ~11z!11z

G~11z!
exp@Dj9#

3E l z exp$@Dj82~z11!# l %dl,

c1
(N)5c0

(0) ~11z!11z

G~11z!
exp@Dj9#

3E l z11exp$@Dj82~z11!# l %dl, ~35!

where we have rewrittenj (N)( l )2j (I )( l ) by splitting it into
parts, according to

j (N)~ l !2j (I )~ l ![Dj8l 1Dj9. ~36!

Note thatDj8 andDj9 are both independent ofl. The inte-
grals can be worked out straightforwardly to obtain the f
lowing coupled set of consistency equations:

c0
(N)5c0

(0)exp@Dj9#S z11

~z11!2Dj8
D z11

,

c1
(N)5c0

(0)exp@Dj9#S z11

~z11!2Dj8
D z12

. ~37!

The same analysis can be done for the nematic cloud p
and shadow curves by settingg50 so that the nematic phas
is identified as the parent phase, thusc0

(N)5c1
(N)5c0

(0) . The
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densities of the shadow phase (c0
(I ) and c1

(I )) are given by
similar equations as Eq.~37!. To track down the cloud poin
and shadow curves we must solve the coupled set of con
tency equations under the condition of equal osmotic pr
suresP iso5Pnem.

In the coexistence region, which is bounded by the isot
pic and nematic cloud points, both phases coexist in fin
amounts, implying 0,g,1. From an experimental stand
point, the results must be restricted to lie on a physical d
tion line along which the shape of the parent distributio
c(0)( l )/c0

(0) , is kept fixed while the overall parent concentr
tion c0

(0) is subject to variation. To calculate the evolution
the densities inside the coexistence region we have to s
the four integral equations~31! along with the equation of
osmotic pressure. For a given polydispersity of the pare
there appear six variables in these equations~i.e., the five
density variablesc0

(I ) ,c1
(I ) ,c0

(N) ,c1
(N) ,c0

(0) plus g) implying
that one variable can be freely chosen. Numerically, rat
than changing the overall parent densityc0

(0) , it has proven
to be more convenient to construct a scheme in whichg is
varied between 0 and 1 and the corresponding densities
calculated self-consistently@14#.

IV. RESULTS

A. Cloud point and shadow curves

The results for the cloud point and shadow curves
shown in Figs. 1–3. These curves are calculated from
rescaled Onsager-Parsons free energy, Eqs.~20! and~22!. In
all calculations we used a mean aspect ratioL0 /D of 0.13,
which value is in close agreement with the average asp
ratio of the gibbsite platelets used in experiment@9#. From
Fig. 1 we see that the coexistence region broadens sig
cantly as the polydispersity of the parent becomes highe
particular, ats.0.4. A notable feature is the divergence
the two-phase region ats.0.46 indicating that the concen

FIG. 1. The isotropic~I! and nematic~N! cloud point curves
~solid! and the corresponding shadow curves~dotted! showing the
concentrations of the coexisting phasesc0 as a function of the par-
ent polydispersitys. At s50, the isotropic cloud point meets th
shadow of the nematic cloud point and vice versa, as it should
6-6
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tration of the nematic cloud shifts to infinity while the co
centration of the corresponding shadow rapidly moves
zero. This divergent behavior is not observed for the iso
pic cloud point and shadow. Although the concentration
the isotropic shadow increases rapidly with increasing po
dispersity, it remains finite even ats@0.5. In Fig. 2 we show
the average thickness of the platelets in the isotropic
nematic phases. A strong fractionation effect is observ
with the thicker platelets going preferentially into the isotr

FIG. 2. The average platelet thicknessm1 in the isotropic and
nematic shadow phases as a function of the parent polydispersis.
Note that both cloud point curves are identical to the parent a
therefore, havem15m1

(0)51.

FIG. 3. The isotropic~I! and nematic~N! cloud point curves
~solid! and the corresponding shadow curves~dotted! in terms of
the core volume fractionsfc of the coexisting phases as a functio
of the parent polydispersitys. Recall thatfc is linearly propor-
tional to the mass density of the phase. The horizontal lines de
the points where the cloud and shadow phases have equal
densities. For polydispersities above the ‘‘threshold’’ values
50.267 ~indicated by the lower horizontal line! an inverted state
will be found at which the isotropic phase is denser than the n
atic phase. In the small interval between the two horizontal li
(0.267,s,0.284) a density inversion takes place inside the co
istence region.
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pic phase. At high polydispersities (.0.4) the effect be-
comes very pronounced since the average thickness in
isotropic phase may rise up to twice that in the nema
phase. Again we observe a divergence in the nematic sha
at s.0.46 indicating that the average thickness of platel
in the isotropic phase rapidly shifts to infinity.

In this paper, we also investigate the possibility of anI -N
density inversion, as observed in experiment. A density
version implies that, at some point in the two-phase regi
the mass density of isotropic becomes higher than that of
nematic phase so that the coexisting phases may turn up
down in a test tube. To verify this, we have to calculate
mass density of the phases. In Ref.@11#, rather than calculat-
ing the mass density itself, we defined the core volume fr
tion fcore of the platelets as a more convenient density va
able. It is easy to show thatfcore is linearly proportional to
the mass density of the gibbsite platelets used in experim
@9#. The core volume fraction can be calculated from

fcore5
p

4

N

V
D2E c~ l !~L22d!dl ~38!

5
4

p

L0

D
c12

8

p
c0

d

D
, ~39!

whered/D is the thickness of the stabilizing polymer lay
grafted onto the gibbsite platelets relative to the average
ameter of the platelets. From the experimental results@9# we
estimated/D54/180. The resulting plot is shown in Fig. 3
We indeed observe an inverted state~i.e., the isotropic phase
being more dense than the nematic phase! at polydispersities
roughly above 30%. This implies that, at these polydispe
ties, the fractionation effect is strong enough to overcome
difference in number densities between the coexist
phases. In particular, we can identify a small interval 0.2
,s,0.284 where anI -N density inversiontakes places in-
side the two-phase region, in accordance with the experim
tal observations@30#. In these cases, the normal state will
found at the beginning of the coexistence region~close to the
isotropic cloud point! but an inverted state will be found
close to the nematic cloud point. Clearly, there must b
point 0,g,1 somewhere in the two-phase region where
density inversion takes place. To find this point, we have
resort to the full coexistence problem.

B. Inside the coexistence region

In Fig. 4 we show the evolution of the densities and a
erage thicknesses across the coexistence region for a
polydispersity of the parent phase. As expected, both
densities and the averagesm1 vary smoothly between the
isotropic and nematic cloud points that delimit the two-pha
coexistence region. We see that the average thickness i
ways higher in the isotropic phase than in the nematic ph
as we expect from Fig. 2. A more detailed picture of t
fractionation effect can be seen in Fig. 5 where we ha
depicted the thickness distributions in the coexisting pha

d,

te
ass

-
s
-
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In Fig. 6 we have plotted the variation of the core volum
fractions for a parent withs50.27 as the coexistence regio
is crossed. According to Fig. 3, this parent should underg
density inversion somewhere inside the coexistence reg
Figure 6 shows that there is indeed an inversion, albeit v
close to the nematic cloud point in this case. The invers
occurs at a parent volume fractionf50.461 which corre-
sponds tog50.073. So the inversion takes place when
volume occupied by the isotropic phase has decrease
about 7% of the total system volume. Finally, in Fig. 7, w
show the polydispersities of the daughter phases inside
coexistence region for the same parent as in Fig. 6. At co
istence, both daughter phases have a lower polydispe
than the parent phase due to the fractionation effect. H
ever, the deviations are very small (Ds,0.006) for this par-
ticular parent polydispersity. Note that the polydispersities
the daughter phases reach their minimum aroundg50.5, i.e.,
when the isotropic and nematic phases coexist in appr
mately equal amounts.

FIG. 4. ~a! The average thicknessm1 in the coexisting phases a
a function of the concentration of the parent phasec0

(0) for a poly-
dispersitys50.27. The isotropic and nematic cloud points, whi
delimit the coexistence region, are located at the points where
curves meet the dilution line (m1

(0)51, dotted line!. ~b! Evolution
of the concentrations of the coexisting phases across the two-p
region for the same polydispersity. The dotted line represents
dilution line (c05c0

(0)).
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V. DISCUSSION

We have studiedI -N phase equilibria in the Onsage
Parsons model for hard disks allowing for polydispersity
thickness. We have analyzed the onset of phase separatio
calculating the cloud point and shadow curves—which
limit the two-phase coexistence region—as a function of
polydispersity of the parent. A significant broadening of t
coexistence region is observed for moderately high polydhe

se
e

FIG. 5. The normalized thickness distributionc̃( l )[c( l )/c0
(0) in

the isotropic and nematic phases at polydispersitys50.27 for vari-
ousg. Bold dashed curve: distribution in the nematic shadow at
isotropic cloud point (g51). Bold dotted curve: distribution in the
isotropic shadow at the nematic cloud point (g50). The distribu-
tions in the isotropic and nematic phases at these points are g
by the parent~bold solid curve!. The intermediate curves represen
from top to bottom, the distributions of the coexisting isotrop
~dotted! and nematic~dashed! phases forg50.75, 0.5 andg
50.25, respectively. The inset shows the ratio of the thickness
tributions to that of the parent.

FIG. 6. The ratio of the core volume fraction of the isotropic a
nematic phases relative to the parental one fors50.27 plotted vs
the volume fraction of plateletsf in the parent phase. The dotte
line represents the dilution line (fcore/fcore

(0) 51). The intersection
point indicates that a density inversion will occur at volume fra
tions f.0.461. In these cases, the isotropic phase will be den
than the nematic phase.
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persities (s,0.3). We also see a strong fractionation effe
with the thick species preferentially occupying the isotro
phase. Although the biphasic widening and fractionation
fect are generic properties observed in many polydispe
systems@18,31#, it is rather surprising that these effects occ
so strongly in mixtures of disks which only differ in thick
ness. Recall from Eq.~6!, that the thickness only marginall
contributes to the excluded volume provided that the asp
ratios L0 /D are small parameters. Hence, one might ha
anticipated that the effect of thickness on the phase beha
of disks is unlikely to be significant.

Even more striking is the infinite broadening of the coe
istence region at polydispersitiess.0.46 due to a diver-
gence of the nematic cloud point and shadow curves~see
Figs. 1 and 2!. This phenomenon can be interpreted as f
lows. When a dilute parent phase withs.0.46 is concen-
trated it starts to phase separate at the isotropic cloud p
initially splitting off an infinitesimal amount of nemati
phase~the shadow!. The fraction of nematic phase increas
upon further concentrating the parent sample. However
we see from Fig. 1, the parent will never reach the associ
nematic cloud point. Regardless of the concentration of
parent phase, the system always splits off a tiny fraction
an ~increasingly dilute! isotropic phase which, according t
Fig. 2, will accommodate increasingly thicker platelets. T
means that the system never becomes fully nematic, irres
tive of the concentration of the parent. The question n
arises whether this is a realistic picture. It may be poss
that the anomalous behavior stems from the fact that
thickness distribution adopted here is unbounded, mea
that there is a nonzero probability of finding species w
very large~potentially infinite! thicknesses for which the as
pect ratio is no longer a small parameter. Therefore, differ
results might be obtained when considering a truncation
the distribution at a certain limit valuel lim ~say l lim53), so
that c( l )[0 for l . l lim . Adopting a truncated distribution

FIG. 7. Evolution of the polydispersitiessd of the coexisting
isotropic and nematic daughter phases across the coexistence r
for a parent withs50.27 plotted vs the fractiong of the system
volume occupied by the isotropic phase. The solid horizontal
indicates the ‘‘threshold’’ polydispersitys50.267~see also Fig. 3!.
A parent phase with a polydispersity below this value will not e
hibit a density inversion during phase separation.
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like this is probably more realistic from an experimen
point of view.

In a previous paper@11# we made a theoretical investiga
tion of the experimentally observedI -N density inversion by
considering a simple binary mixture of platelets with diffe
ing thickness. Although the density inversion could read
be accounted for within this model, we were not able
explain another peculiar observation encountered in the
perimental work@9#. As part of their experimental survey
Van der Kooij et al. performed an additional fractionatio
experiment in which a suspension was brought to a volu
fraction (f50.29) close to the nematic cloud point (f
50.30) and left to phase separate. The nematic upper p
was separated from the isotropic bottom phase and su
quently diluted. A remarkable observation was that this s
tem did not exhibit a density inversion at any point in t
isotropic-nematic coexistence region. This striking obser
tion could however not be explained, for fundamental re
sons, on the basis of the binary model for these systems
discussed in Ref.@11#.

In the present study we have extended our binary mo
to a polydisperse one, meaning that we allow for a conti
ous distribution in thickness instead of just two different sp
cies. We may now consider the polydispersities of the co
isting isotropic and nematic daughter phases for a gi
parent distribution. In Fig. 7 these results are plotted fo
parent withs50.27. As noted in the previous paragraph, t
daughter phases haves,0.27, which is a direct consequenc
of the fractionation in thickness during phase separation
this figure we also indicated the ‘‘threshold’’ polydispersi
~see Fig. 3! below which the fractionation effect is too wea
to accomplish an inversion of densities. So any daugh
phase with a polydispersity below the threshold will pro
ably not show anI -N density inversion if this phase were t
be isolated and subsequently diluted or concentrated~as the
new parent phase!. Despite the fact that the distributions i
the daughter phases no longer exactly obey the Schulz fo
the deviations will generally be very small close to the is
tropic and nematic cloud points. Since the polydispersity
the parent may be chosen arbitrarily, we can make a rea
able account for the experimental observations by pickin
parent polydispersity which is just above the ‘‘threshold’’
indicated in Fig. 7. In that case, the polydispersities of
daughter phases will cross the threshold close to the nem
cloud point~i.e., when the system is almost fully nematic!.
Subsequent isolation and dilution of the near-Schulz nem
parent would then give a phase separation into an isotro
phase that is less dense than the nematic phase and hen
density inversion has disappeared.

An issue that is not addressed in this paper is the po
bility of a demixing transition in the nematic phase. For b
nary mixtures of thin and thick platelets a stable demixi
transition of the nematic phase could readily be establis
@11#. It was shown that the transition occurs for any thickne
ratio provided that the osmotic pressure is sufficiently hig
Recently, Cuesta@32# showed that, for a polydisperse ha
sphere fluid distributed along a~single-peaked! log-normal
distribution, a fluid-fluid demixing transition might occur a
polydispersities larger than 160%. However, only the sp

ion
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odal instability was analyzed there without considering
coexistence conditions for the fluid phases. The possibility
a scenario similar to the one found by Cuesta for a polyd
perse system of platelets distributed along a single-pea
thickness distribution is an intriguing issue. Although inve
tigation is going on, there are no conclusive results so far
this matter@33#.

VI. CONCLUSIONS

We have investigated the effect of thickness polydisp
sity on the isotropic-nematic phase equilibria in the Onsag
Parsons model for hard disks. We show that it is justified
least within the Gaussian approximation, to decouple the
entational degrees of freedom from the degrees of freed
which determine the thickness distribution. This approa
which implies that the orientations of the platelets are sol
determined by the diameter of the platelets andnot by the
thickness, allows us to perform the free energy minimizat
with respect the orientations analytically and analyze the
act phase equilibrium conditions. In this way, rather th
having to discretize the orientations such as in the Zwan
model@14#, we retain a system withcontinuousorientational
degrees of freedom. Apart from more generally observed
tures such as a widening of the biphasic gap and a fract
ation effect, with the thicker species accumulating in the i
tropic phase, we observe a divergence of the coexiste
region ats.0.46 indicating that the system never becom
fully nematic at high densities but will always split off
small fraction of a dilute isotropic phase predominantly co
taining very thick species.

In addition, we observe anI -N density inversion inside
the coexistence region at 0.267,s,0.284, which is in
qualitative agreement with the experimental observations
practical implication of the inversion is that upon concentr
ing a dilute parent phase with polydispersity around 27%
a test tube an isotropic upper phase will be formed initia
~near the isotropic cloud point! whereas an isotropic bottom
phase will be found close to the nematic phase boundary~see
Fig. 3! @30#. This phenomenon has been observed exp
mentally in systems of polydisperse colloidal gibbsite pla
lets @9#. Within our polydisperse model, we also account f
a particular dilution experiment performed in Ref.@9#. These
observations could not be explained on the basis of a bin
model for these systems developed by us in a previous s
@11#.
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APPENDIX

Inserting Eqs.~12! and ~13! into the free energy~1! and
performing a functional differentiation with respect toa( l )
yields

d f

da~ l !
;

c~ l !

a~ l !
2A8

p

c~ l !

a2~ l !
E c~ l 8!S 1

a~ l !
1

1

a~ l 8!
D 21/2

dl8.

~A1!

Applying the stationarity conditiond f /da( l )50 gives after
some rearrangements

a1/2~ l !;A8

pE c~ l 8!

@11a~ l !/a~ l 8!#1/2
dl8. ~A2!

Obviously, a similar expression is obtained fora( l 8). It is
convenient to combine both expressions using the ra
Q( l ,l 8)[a( l )/a( l 8) to obtain

Q1/2~ l ,l 8!;E c̃~ l 9!

@11Q~ l ,l 9!#1/2
dl9Y E c̃~ l-!

@11Q~ l 8,l-!#1/2

3dl-, ~A3!

which is an implicit equation forQ( l ,l 8). Note thatQ only
depends on the normalized distributionsc̃( l )[c( l )/c0 and
not on the overall concentrationc0 of the nematic phase. On
readily concludes thatQ( l ,l 8)5Q(1,1)51 is a trivial solu-
tion of Eq. ~A3!. Using this in Eq.~A2! thus yields the fol-
lowing solution for the stationarity condition within the de
coupling approximation

a;SA8

pE c~ l 8!

21/2
dl8D 2

,

a;
4c0

2

p
, ~A4!

independent of the thicknessl.
s.
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