Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Martin Lutz

Bijvoet Center for Biomolecular Research, Department of Crystal and Structural Chemistry, Utrecht University, Padualaan 8, 3584 CH
Utrecht, The Netherlands
Correspondence e-mail: m.lutz@chem.uu.nl

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.027$
$w R$ factor $=0.080$
Data-to-parameter ratio $=16.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

[N, N^{\prime}-Ethylenebis(salicylideneiminato)]nickel(II) dimethylformamide solvate

The title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right] \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, crystallizes with one Ni (salen) molecule [salen is N, N^{\prime}-ethylenebis(salicylideneiminate)] and one dimethylformamide molecule in the asymmetric unit. The molecular structure is similar to that of the solvent-free compound, known from the literature. In the crystal structure, the nearly planar molecules are stacked to form polymeric chains in the crystallographic b direction. The crystal structure has pseudo-translational symmetry (superstructure).

Comment

The dimethylformamide (DMF) solvate of [N, N^{\prime}-ethylenebis(salicylideneiminato)]nickel(II), (I), was obtained by recrystallization of solvent-free $\mathrm{Ni}($ salen) from DMF.

(I)

The molecular structure of (I) (Fig. 1) has an approximate non-crystallographic twofold symmetry. The Ni atom is in a square-planar environment with an angle sum of 360°. The $\mathrm{N}-\mathrm{Ni}-\mathrm{O}$ angles in the six-membered chelate rings are both

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Received 15 September 2003 Accepted 16 September 2003 Online 24 September 2003

Figure 2
The packing of compound (I) in the crystal structure, viewed along the crystallographic b axis. Only the molecules with approximately the same y value are shown. The pseudo-translational symmetry is broken by the orientation of the $\mathrm{C} 15-\mathrm{C} 16$ bridge and by the arrangement of the DMF solvent molecules. (Green denotes Ni atoms, red O atoms, blue N atoms and black C atoms.)
$94.94(5)^{\circ}$, and thereby larger than the five-membered chelate $\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 2$ angle of $86.50(6)^{\circ}$ and the $\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 2$ angle of $83.69(5)^{\circ}$. The average $\mathrm{Ni}-\mathrm{N}$ and $\mathrm{Ni}-\mathrm{O}$ distances of 1.8467 and $1.8474 \AA$, respectively, are equal within standard uncertainties. The molecule is slightly bent, with a dihedral angle of $7.13(8)^{\circ}$ between the benzene rings. No disorder of the C15-C16 ethylene bridge is observed. The overall molecular structure is comparable with that of the solvent-free structure, known from the literature (Montgomery \& Morosin, 1961; Shkol'nikova et al., 1970; Gaetani Manfredotti \& Guastini, 1983; DiMauro \& Kozlowski, 2002).

The structure of (I) has pseudo-translational symmetry in the crystallographic c direction. This symmetry is only broken by the orientation of the $\mathrm{C} 15-\mathrm{C} 16$ bridge and by the arrangement of the DMF solvent molecules (Fig. 2). This pseudo-symmetry is also observed in reciprocal space: reflections $h k l$ with $l=2 n$ have an average intensity of 1336.4 , and for those with $l=2 n+1$ the average intensity is 139.6 , based on calculated structure factors. The average of the normalized structure factors for the sublattice with $l=2 n$ is $\left\langle E^{2}\right\rangle=1.706$, while for the superlattice, $\left\langle E^{2}\right\rangle=0.232$. As expected (Cascarano et al., 1985), the cumulative $N(z)$ probability distribution shows hypercentric behaviour.

In the solvent-free crystal structure, the Ni (salen) molecules form centrosymmetric dimers by stacking of the nearly planar molecules, with a short intermolecular $\mathrm{Ni} \cdots \mathrm{Ni}$ distance of 3.1802 (6) \AA (DiMauro \& Kozlowski, 2002). From a quantumchemical point of view, this can be explained by an interaction of the $d_{z^{2}}$ orbitals of the Ni^{2+} ions (Aullón et al., 1998). In the

Figure 3
Stacking of the Ni (salen) molecules in the crystallographic b direction [symmetry codes: (i) $1-x, 1-y, 1-z$; (ii): $1-x, 2-y, 1-z$].

DMF solvate, (I), of the present communication, the Ni (salen) molecules are stacked into polymers with intermolecular $\mathrm{Ni} \cdots \mathrm{Ni}$ distances of 3.3901 (3) and 3.5513 (3) \AA (Fig. 3). The solvent molecules are arranged between these polymeric chains.

Experimental

The solvent-free $\mathrm{Ni}($ salen) complex was heated in dimethylformamide until a saturated solution was obtained. After filtration, the solution was allowed to cool. The title complex, (I), crystallized as red needles, which are elongated along the b axis.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right] \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$
$M_{r}=398.10$
Monoclinic, $P 2_{1} / c$
$a=13.3866$ (2) A
$b=6.6690$ (1) \AA
$c=22.7332(4) \AA$
$\beta=118.0383(7)^{\circ}$
$V=1791.31(5) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
$T_{\text {min }}=0.83, T_{\text {max }}=0.94$
36002 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.080$
$S=1.07$
4132 reflections
249 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& D_{x}=1.476 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 57238 \\
& \quad \text { reflections } \\
& \theta=1.0-27.5^{\circ} \\
& \mu=1.11 \mathrm{~mm}^{-1} \\
& T=150(2) \mathrm{K} \\
& \text { Needle, red } \\
& 0.58 \times 0.08 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& 4132 \text { independent reflections } \\
& 3209 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.057 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-17 \rightarrow 17 \\
& k=-8 \rightarrow 8 \\
& l=-29 \rightarrow 29 \\
& \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0409 P)^{2}\right. \\
& \quad+0.3546 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.39 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Ni1-O1	1.8445 (11)	C3-C4	1.368 (3)
Ni1-N2	1.8451 (13)	C4-C5	1.398 (3)
Ni1-N1	1.8483 (13)	C5-C6	1.379 (3)
Ni1-O2	1.8503 (11)	C8-C13	1.414 (2)
Ni1-Ni1 ${ }^{\text {i }}$	3.3901 (3)	C8-C9	1.418 (2)
$\mathrm{Ni} 1-\mathrm{Ni} 1{ }^{\text {ii }}$	3.5513 (3)	C9-C10	1.416 (2)
O1-C1	1.317 (2)	C9-C14	1.425 (2)
O2-C8	1.3143 (18)	C10-C11	1.369 (3)
N1-C7	1.295 (2)	C11-C12	1.393 (3)
N1-C16	1.4762 (19)	C12-C13	1.378 (2)
N2-C14	1.296 (2)	C15-C16	1.514 (2)
N2-C15	1.478 (2)	O3-C17	1.218 (2)
C1-C2	1.413 (2)	N3-C17	1.330 (2)
C1-C6	1.416 (2)	N3-C19	1.441 (2)
C2-C3	1.418 (2)	N3-C18	1.447 (2)
C2-C7	1.432 (2)		
O1-Ni1-N2	177.53 (5)	C3-C4-C5	119.23 (17)
O1-Ni1-N1	94.94 (5)	C6-C5-C4	121.33 (18)
N2-Ni1-N1	86.50 (6)	C5-C6-C1	120.47 (18)
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 2$	83.69 (5)	N1-C7-C2	125.30 (15)
$\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{O} 2$	94.94 (5)	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 13$	118.57 (15)
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{O} 2$	177.62 (5)	O2-C8-C9	123.62 (14)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Ni} 1$	127.37 (11)	C13-C8-C9	117.80 (15)
$\mathrm{C} 8-\mathrm{O} 2-\mathrm{Ni} 1$	127.35 (10)	C10-C9-C8	119.46 (16)
C7-N1-C16	118.36 (14)	C10-C9-C14	118.78 (16)
C7-N1-Ni1	126.54 (12)	C8-C9-C14	121.61 (14)
C16-N1-Ni1	115.07 (10)	C11-C10-C9	121.55 (17)
C14-N2-C15	118.32 (14)	C10-C11-C12	118.82 (16)
C14-N2-Ni1	126.56 (12)	C13-C12-C11	121.55 (17)
C15-N2-Ni1	115.04 (10)	C12-C13-C8	120.78 (17)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	123.80 (14)	N2-C14-C9	125.24 (15)
O1-C1-C6	117.99 (15)	N2-C15-C16	108.12 (12)
C2-C1-C6	118.22 (15)	N1-C16-C15	108.52 (12)
C1-C2-C3	119.63 (16)	C17-N3-C19	121.29 (16)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	121.45 (15)	C17-N3-C18	121.56 (17)
C3-C2-C7	118.92 (16)	C19-N3-C18	117.12 (15)
C4-C3-C2	121.12 (18)	$\mathrm{O} 3-\mathrm{C} 17-\mathrm{N} 3$	125.35 (19)
C16-N1-C7-C2	174.74 (14)	$\mathrm{N} 2-\mathrm{C} 15-\mathrm{C} 16-\mathrm{N} 1$	27.36 (16)
C15-N2-C14-C9	170.98 (14)		

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1-x, 2-y, 1-z$.

Atoms H7, H14 and H17 were refined freely with isotropic displacement parameters. All remaining H atoms were placed in geometrically idealized positions $(\mathrm{C}-\mathrm{H}=0.99-1.00 \AA)$ and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for all other H atoms.

Data collection: COLLECT (Nonius, 1999); cell refinement: HKL2000 (Otwinowski \& Minor, 1997); data reduction: HKL2000 and SORTAV (Blessing, 1997); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

This work was supported by the Council for Chemical Sciences of the Netherlands Organization for Scientific Research (CW-NWO).

References

Aullón, G., Ujaque, G., Lledós, A., Alvarez, S. \& Alemany, P. (1998). Inorg. Chem. 37, 804-813.
Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Israel, R., Gould, R. O. \& Smits, J. M. M. (1999). The DIRDIF 99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
Cascarano, G., Giacovazzo, G. \& Luic, M. (1985). Structure and Statistics in Crystallography, edited by A. J. C. Wilson, pp. 67-77. Guilderland, NY: Adenine Press.
DiMauro, E. F. \& Kozlowski, M. C. (2002). Organometallics, 21, 1454-1461.
Gaetani Manfredotti, A. \& Guastini C. (1983). Acta Cryst. C39, 863-865.
Montgomery, H. \& Morosin, B. (1961). Acta Cryst. 14, 551.
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Shkol'nikova, L. M., Yumal', E. M., Shugam, E. A. \& Voblikova, V. A. (1970). Zh. Strukt. Khim. 11, 886-890.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

