metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Martin Lutz

Bijvoet Center for Biomolecular Research, Department of Crystal and Structural Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

Correspondence e-mail: m.lutz@chem.uu.nl

Key indicators

Single-crystal X-ray study T = 150 KMean σ (C–C) = 0.003 Å R factor = 0.027 wR factor = 0.080 Data-to-parameter ratio = 16.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[*N*,*N*'-Ethylenebis(salicylideneiminato)]nickel(II) dimethylformamide solvate

The title compound, $[Ni(C_{16}H_{14}N_2O_2)]\cdot C_3H_7NO$, crystallizes with one Ni(salen) molecule [salen is N,N'-ethylenebis(salicylideneiminate)] and one dimethylformamide molecule in the asymmetric unit. The molecular structure is similar to that of the solvent-free compound, known from the literature. In the crystal structure, the nearly planar molecules are stacked to form polymeric chains in the crystallographic *b* direction. The crystal structure has pseudo-translational symmetry (superstructure).

Comment

The dimethylformamide (DMF) solvate of [N,N'-ethylenebis(salicylideneiminato)]nickel(II), (I), was obtained by recrystallization of solvent-free Ni(salen) from DMF.

The molecular structure of (I) (Fig. 1) has an approximate non-crystallographic twofold symmetry. The Ni atom is in a square-planar environment with an angle sum of 360° . The N–Ni–O angles in the six-membered chelate rings are both

Figure 1

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Received 15 September 2003 Accepted 16 September 2003 Online 24 September 2003

Stacking of the Ni(salen) molecules in the crystallographic *b* direction [symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii): 1 - x, 2 - y, 1 - z].

DMF solvate, (I), of the present communication, the Ni(salen) molecules are stacked into polymers with intermolecular Ni···Ni distances of 3.3901 (3) and 3.5513 (3) Å (Fig. 3). The solvent molecules are arranged between these polymeric chains.

Experimental

The solvent-free Ni(salen) complex was heated in dimethylformamide until a saturated solution was obtained. After filtration, the solution was allowed to cool. The title complex, (I), crystallized as red needles, which are elongated along the b axis.

Crystal data

$[Ni(C_{16}H_{14}N_2O_2)] \cdot C_3H_7NO$	$D_x = 1.476 \text{ Mg m}^{-3}$
$M_r = 398.10$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 57 238
a = 13.3866 (2) Å	reflections
b = 6.6690(1) Å	$\theta = 1.0-27.5^{\circ}$
c = 22.7332 (4) Å	$\mu = 1.11 \text{ mm}^{-1}$
$\beta = 118.0383 \ (7)^{\circ}$	T = 150 (2) K
$\beta = 118.0383 (7)^{\circ}$ V = 1791.31 (5) Å ³	Needle, red
Z = 4	$0.58 \times 0.08 \times 0.06 \text{ mm}$

Data collection

Nonius KappaCCD area-detector	
diffractometer	
φ and ω scans	
Absorption correction: multi-scan	
(SORTAV; Blessing, 1997)	
$T_{\min} = 0.83, T_{\max} = 0.94$	
36 002 measured reflections	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.080$ S = 1.074132 reflections 249 parameters H atoms treated by a mixture of independent and constrained refinement

4132 independent reflections 3209 reflections with $I > 2\sigma(I)$ $R_{int} = 0.057$ $\theta_{max} = 27.5^{\circ}$ $h = -17 \rightarrow 17$ $k = -8 \rightarrow 8$ $l = -29 \rightarrow 29$

$w = 1/[\sigma^2(F_o^2) + (0.0409P)^2]$
+ 0.3546P]
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.002$
$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.39 \text{ e} \text{ Å}^{-3}$

Figure 2

The packing of compound (I) in the crystal structure, viewed along the crystallographic *b* axis. Only the molecules with approximately the same *y* value are shown. The pseudo-translational symmetry is broken by the orientation of the C15–C16 bridge and by the arrangement of the DMF solvent molecules. (Green denotes Ni atoms, red O atoms, blue N atoms and black C atoms.)

94.94 (5)°, and thereby larger than the five-membered chelate N1–Ni1–N2 angle of 86.50 (6)° and the O1–Ni1–O2 angle of 83.69 (5)°. The average Ni–N and Ni–O distances of 1.8467 and 1.8474 Å, respectively, are equal within standard uncertainties. The molecule is slightly bent, with a dihedral angle of 7.13 (8)° between the benzene rings. No disorder of the C15–C16 ethylene bridge is observed. The overall molecular structure is comparable with that of the solvent-free structure, known from the literature (Montgomery & Morosin, 1961; Shkol'nikova *et al.*, 1970; Gaetani Manfredotti & Guastini, 1983; DiMauro & Kozlowski, 2002).

The structure of (I) has pseudo-translational symmetry in the crystallographic *c* direction. This symmetry is only broken by the orientation of the C15–C16 bridge and by the arrangement of the DMF solvent molecules (Fig. 2). This pseudo-symmetry is also observed in reciprocal space: reflections *hkl* with l = 2n have an average intensity of 1336.4, and for those with l = 2n + 1 the average intensity is 139.6, based on calculated structure factors. The average of the normalized structure factors for the sublattice with l = 2n is $\langle E^2 \rangle = 1.706$, while for the superlattice, $\langle E^2 \rangle = 0.232$. As expected (Cascarano *et al.*, 1985), the cumulative N(z) probability distribution shows hypercentric behaviour.

In the solvent-free crystal structure, the Ni(salen) molecules form centrosymmetric dimers by stacking of the nearly planar molecules, with a short intermolecular Ni···Ni distance of 3.1802 (6) Å (DiMauro & Kozlowski, 2002). From a quantumchemical point of view, this can be explained by an interaction of the d_{z^2} orbitals of the Ni²⁺ ions (Aullón *et al.*, 1998). In the

T	ab	le	1	

Selected geometric param	eters (A, °).	
--------------------------	---------------	--

Ni1-O1	1.8445 (11)	C3-C4	1.368 (3)
Ni1-N2	1.8451 (13)	C4-C5	1.398 (3)
Ni1-N1	1.8483 (13)	C5-C6	1.379 (3)
Ni1-O2	1.8503 (11)	C8-C13	1.414 (2)
Ni1-Ni1 ⁱ	3.3901 (3)	C8-C9	1.418 (2)
Ni1-Ni1 ⁱⁱ	3.5513 (3)	C9-C10	1.416 (2)
O1-C1	1.317 (2)	C9-C14	1.425 (2)
O2-C8	1.3143 (18)	C10-C11	1.369 (3)
N1-C7	1.295 (2)	C11-C12	1.393 (3)
N1-C16	1.4762 (19)	C12-C13	1.378 (2)
N2-C14	1.296 (2)	C15-C16	1.514 (2)
N2-C15	1.478 (2)	O3-C17	1.218 (2)
C1-C2	1.413 (2)	N3-C17	1.330 (2)
C1-C6	1.416 (2)	N3-C19	1.441 (2)
C2-C3	1.418 (2)	N3-C18	1.447 (2)
C2-C7	1.432 (2)		~ /
O1-Ni1-N2	177.53 (5)	C3-C4-C5	119.23 (17)
O1-Ni1-N1	94.94 (5)	C6-C5-C4	121.33 (18)
N2-Ni1-N1	86.50 (6)	C5-C6-C1	120.47 (18)
O1-Ni1-O2	83.69 (5)	N1-C7-C2	125.30 (15)
N2-Ni1-O2	94.94 (5)	O2-C8-C13	118.57 (15)
N1-Ni1-O2	177.62 (5)	O2-C8-C9	123.62 (14)
C1-O1-Ni1	127.37 (11)	C13-C8-C9	117.80 (15)
C8-O2-Ni1	127.35 (10)	C10-C9-C8	119.46 (16)
C7-N1-C16	118.36 (14)	C10-C9-C14	118.78 (16)
C7-N1-Ni1	126.54 (12)	C8-C9-C14	121.61 (14)
C16-N1-Ni1	115.07 (10)	C11-C10-C9	121.55 (17)
C14-N2-C15	118.32 (14)	C10-C11-C12	118.82 (16)
C14-N2-Ni1	126.56 (12)	C13-C12-C11	121.55 (17)
C15-N2-Ni1	115.04 (10)	C12-C13-C8	120.78 (17)
O1-C1-C2	123.80 (14)	N2-C14-C9	125.24 (15)
O1-C1-C6	117.99 (15)	N2-C15-C16	108.12 (12)
C2-C1-C6	118.22 (15)	N1-C16-C15	108.52 (12)
C1-C2-C3	119.63 (16)	C17-N3-C19	121.29 (16)
C1-C2-C7	121.45 (15)	C17-N3-C18	121.56 (17)
C3-C2-C7	118.92 (16)	C19-N3-C18	117.12 (15)
C4-C3-C2	121.12 (18)	O3-C17-N3	125.35 (19)
C16-N1-C7-C2	174.74 (14)	N2-C15-C16-N1	27.36 (16)
C15-N2-C14-C9	170.98 (14)		

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, 2 - y, 1 - z.

Atoms H7, H14 and H17 were refined freely with isotropic displacement parameters. All remaining H atoms were placed in geometrically idealized positions (C-H = 0.99-1.00 Å) and constrained to ride on their parent atoms, with $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm C})$ for methyl H atoms and $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$ for all other H atoms.

Data collection: *COLLECT* (Nonius, 1999); cell refinement: *HKL*2000 (Otwinowski & Minor, 1997); data reduction: *HKL*2000 and *SORTAV* (Blessing, 1997); program(s) used to solve structure: *DIRDIF*99 (Beurskens *et al.*, 1999); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL*97.

This work was supported by the Council for Chemical Sciences of the Netherlands Organization for Scientific Research (CW-NWO).

References

- Aullón, G., Ujaque, G., Lledós, A., Alvarez, S. & Alemany, P. (1998). Inorg. Chem. 37, 804–813.
- Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Israel, R., Gould, R. O. & Smits, J. M. M. (1999). *The DIRDIF99 Program System*. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Cascarano, G., Giacovazzo, G. & Luic, M. (1985). Structure and Statistics in Crystallography, edited by A. J. C. Wilson, pp. 67–77. Guilderland, NY: Adenine Press.
- DiMauro, E. F. & Kozlowski, M. C. (2002). Organometallics, 21, 1454-1461.
- Gaetani Manfredotti, A. & Guastini C. (1983). Acta Cryst. C39, 863-865.
- Montgomery, H. & Morosin, B. (1961). Acta Cryst. 14, 551.
- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Shkol'nikova, L. M., Yumal', E. M., Shugam, E. A. & Voblikova, V. A. (1970). *Zh. Strukt. Khim.* 11, 886–890.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.