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Introduction

The polymer-mediated depletion interaction between col-

loidal particles has been the subject of many theoretical and

experimental studies, especially over the last decade (for a

recent review see[1]). In most studies the polymers are

treated as monodisperse, although in practice they are poly-

disperse in size, even in experimental model studies.[2–5]

Incorporation of the size polydispersity of polymers has

gained very limited attention in (polymer-induced) deple-

tion theories. So far, polydisperse polymers were simplified

as polydisperse spheres.[6–9] However, an extension to-

wards more realistic polymer models involving poly-

dispersity is required in order to take packing effects of

long polymers around small spheres into account and

properly predict polydispersity effects on the interaction

potential.

Two powerful tools to calculate the interaction between

colloidal particles, attributable to non-adsorbing polymers,

smaller colloidal particles, or rods, are the force method

(see for instance Mao et al.[10]) and the adsorption

method.[11] The force method focuses on the interaction

between two plates immersed in a solvent containing the

other component by calculating the osmotic pressure be-

tween the plates and outside the plates. Integration then

yields the interaction potential between the plates. More

relevant for practical systems is the interaction between two

spheres immersed in a solution containing polymer chains.

Here, the force method can be used only in the Derjaguin

limit of infinitely large spheres. The adsorption method is
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another useful thermodynamic tool and is briefly explained

in the next section. Previously, the adsorption method was

used to calculate the polymer-mediated interaction between

two spheres[12] and between a sphere and a plate.[13] In

order to be able to use the adsorption method, the (negative)

adsorption of polymer segments in the space surrounding

the two colloidal particles is required. The product-function

approximation[12] was shown to predict the complex

polymer-segment density of ideal polymer chains between

the particles very accurately. It assumes that the total

polymer-segment density, normalized with the bulk poly-

mer-segment density, equals the product of the polymer

densities generated by the individual colloidal particles.

Here we extend the adsorption method with the product-

function approximation to calculate the interaction between

particles induced by polydisperse ideal polymer chains.

As a starting point, an exact result for the interaction

between two plates immersed in an ideal solution of

polydisperse polymer chains will be derived and compared

with Monte Carlo computer simulation results. Next, the

results from the computer simulations and the analytical

theory are compared on the level of the local polymer-

segment concentrations between two parallel plates and

surrounding two spheres. Finally the interaction between

two spheres is calculated and compared with Monte Carlo

simulation results.

Polydisperse Ideal Polymer between
Two Parallel Plates

Force Method

Asakura and Oosawa[14] derived an exact expression for

monodisperse ideal polymer chains confined between two

parallel plates using the force method. The force acting on

the plates is the difference of the pressure between the plates,

Pi, and outside the plates, bPo¼ nb, where nb is the bulk

polymer concentration and b¼ 1/kT. The pressure between

the plates can be calculated from the partition function Z

b�i ¼
@ ln Z

@V

� �
T

ð1Þ

where Z equals

Z ¼ Vwð ÞnbV

nbVð Þ! ð2Þ

with h the plate–plate distance. The term w reads

w ¼ 8

p2

X
p¼1;3;5;:::

1

p2
exp � p2p2N

6h2

� �
ð3Þ

where N is the number of links between the segments and

is related to the radius of gyration of ideal chains as

Rg¼H(N/6). The partition function was calculated by

Asakura and Oosawa[14] by solving the diffusion equation

for ideal polymers

@GN r; r0ð Þ
@N

¼ 1

6
DrGN r; r0ð Þ ð4Þ

with the boundary condition that the polymer-segment

concentration vanishes at the plates. The function GN (r;r 0)
describes the probability of finding the N th segment of the

polymer chain at position r 0 while its origin lies at r. The

force can now easily be calculated[12] and integration of

the force yields the interaction potential W(h)

bWpl hð Þ
nb

¼ �whþ h� 2D ð5Þ

where the proper boundary condition W(1)¼ 0 was used,

recovering the depletion layer thickness per plate, D, being

2Rg/Hp ([h�wh]! 4Rg/Hp for h!1). The result of

Equation (5) is plotted in Figure 1 as the solid curve

(‘monodisperse’).

For two plates immersed in a polydisperse polymer

solution the same analysis can be performed, also leading to

Equation (5), but with different functions w and D. The

function wpol reads

wpol ¼

Ð1
0

w Nð ÞC Nð ÞNdN

Ð1
0

C Nð ÞNdN

ð6Þ

which replaces w in Equation (5) and where C(N) is the

chain length distribution. The polydisperse depletion

Figure 1. Interaction potential between two parallel plates W(h)
as a function of the distance between the plates, h. Solid curves are
exact results (Equation (5)) for monodisperse and polydisperse
ideal polymers with Schulz z parameters as indicated. Symbols
refer to the MC simulation results. b¼ 1/kT.
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thickness, Dpol, becomes (see also appendix):

Dpol ¼

Ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N

3p
C Nð ÞNdN

r
Ð1
0

C Nð ÞNdN

ð7Þ

As the chain length distribution we choose the Schulz

distribution

C Nð Þ ¼ 1

G zþ 1ð Þ
zþ 1

N0

� �zþ1

N z exp � zþ 1

N0

� �
N

� �
ð8Þ

whereN0 is the number-averaged chain length and z reflects

the width of the distribution; the fractional polydispersity

equals: 1ffiffiffiffiffiffi
zþ1

p .

A z parameter of 1 refers to a quite polydisperse distri-

bution having a standard deviation close to 70% (z¼ 3 ca.

50%). The result for the interaction between two plates due

to polydisperse ideal polymers with a Schulz distribution

are also plotted in Figure 1 for z¼ 1 and z¼ 3 (solid curves;

‘polydisperse’; Schulz, z¼ 1, z¼ 3). In comparison with

the result for the monodisperse distribution we find that

polydispersity makes the attraction stronger. It follows that:

W
poly
pl 0ð Þ
Wpl 0ð Þ ¼ D

ffiffiffi
p

p

2Rg

Dpoly

Dmono

ð9Þ

The effect of polydispersity is quite small; for a poly-

disperse polymer solution having a standard deviation in

chain length of 70% (z¼ 1; to compare with experimental

results: Mw/Mn� 1.5) the attraction increases with a factor

of only 1.17. Further it can be noted that the range of the

attraction also increases with increasing polydispersity.

Adsorption Method

The main interest is on the depletion interaction between

two spheres in a solution with polydisperse ideal chains.

Therefore we use the adsorption method, which is first

applied to the case of two parallel flat plates, in order

to compare with exact results for polydisperse ideal

polymers derived in section Force Method. The adsorption

method[11–13] relates the adsorption G(h) to the interaction

potential W(h) which for ideal polymers leads to:

bW hð Þ ¼ G 1ð Þ � G hð Þ ð10Þ

The adsorption itself is the volume integral over the

polymer-segment concentration profile n(r)

G hð Þ ¼ nb

ð
V

dr
n rð Þ
np

� 1

� �
ð11Þ

where np is the polymer-segment concentration in the bulk

(¼Nnb). Hence the focus is now on the calculation of the

local polymer-segment concentration n(r) (further denoted

as polymer-segment density). Previously, it was shown that

the product function Ansatz[12]

n rð Þ
np

¼ f1 rð Þf2 rð Þ ð12Þ

where fj(r) is the profile generated by particle j at position r,

gives a very good description of the polymer-segment

density between two parallel plates,[12] two spheres,[12] and

between a sphere and a plate,[13] as compared with compu-

ter simulations and accurately describes the interaction

potential. For the interaction between two parallel plates

we thus need the normalized polymer-segment density,

fp(x)¼ n(x)/np, near a single plate which has been

calculated by Eisenriegler[15]

fp xð Þ ¼ 2erf
x

2Rg

� �
� erf

x

Rg

� �

þ 2ffiffiffi
p

p x

Rg

� �"
exp � x

2Rg

� �2
 !

� exp � x

Rg

� �2
 !#

þ 2
x

Rg

� �2
1

2
� erf

x

Rg

� �
þ 1

2
erf

x

2Rg

� �� �
ð13Þ

which thus only depends on the distance from the surface x

and the chain length N (¼ 6Rg
2). For polydisperse polymers,

with a chain length distribution C(N), the polymer segment

density near a single flat plate reads:

f poly
p xð Þ ¼

Ð1
0

dNC Nð ÞNfp x;Nð Þ

Ð1
0

dNC Nð ÞNp

ð14Þ

In Figure 2 the resulting polymer densities according to

Equation (14) (with (13) for fp) are plotted for a Schulz

distribution with z¼ 3 and z¼ 1 as the full curves. The

monodisperse result (Equation (13)) is plotted as well (from

top to bottom: monodisperse, z¼ 3, z¼ 1). The distance

from the surface is normalized with Rg0, which is defined

as H(N0/6). Distances and positions are normalized with

Rg0 throughout this paper. In order to later test the product-

function approximation (Equation (12)) the results will be

compared with Monte Carlo computer simulations.

The simulation of the density profile of polymer seg-

ments between two flat walls was made by mapping

the problem onto a one-dimensional lattice model with

a uniform grid of lattice points. One Monte Carlo run

consisted of performing typically 106 one-dimensional

random walks. The starting lattice point was set at random

between the two parallel flat plates and the chain length

was fixed for monodisperse polymers or was randomly

generated using the Schultz distribution for the polydis-

perse case. Typically, we took a (number-averaged) chain

length, hNi, of 400 segments. Since the walks in the two

orthogonal directions (parallel to the plates) are not

performed, the radius of gyration in one dimension, Rg
1D,

equals H{hN1Di/2}. We have verified that the chain length

Polymer Polydispersity Effect on Depletion Interaction between Colloidal Particles 977



used is long enough as to mimic the behaviour of infinitely

long ideal chains.

After generating the random walks, three density profiles

were stored: the segment-density profile for polymer chains

that were accepted between the two plates (and thus did not

cross a plate) n(x), the density of all segments that were

generated between the plates nall(x), and the density profile

nsingle(x) as if there would only be a single plate. The last

two profiles were obtained by using a ‘reflecting’ boundary

condition: once coordinate x of the random walk crosses

one of the boundaries, it is forced back to the end point of

the simulation region. This corresponds to the assumption

that in the bulk of the polymer solution the number of

polymer segments crossing a certain ‘imaginary’ plane is

(on average) the same as the number of those entering the

simulation region. In the limit of a long enough Monte

Carlo run this boundary condition is equivalent to setting to

zero the gradient @n(x)/@x of the bulk-segment concentra-

tion at both boundaries (for nall(x)) or one of the two

boundaries (for nsingle(x)). The profilesn(x) and nsingle(x) are

then normalized by nall(x) per lattice point in order to

properly normalize the segment densities. In this case the

statistical error arising from the fact that different lattice

points were visited a different number of times during the

Monte Carlo simulation is also made significantly smaller.

The profile nsingle(x), obtained at large plate separation, is

used to evaluate the profile near a single plate. The interac-

tion potential is calculated by integrating the segment

density profiles n(x) using Equation (10).

In Figure 1, the Monte Carlo (MC) computer simulation

results are plotted (symbols) and are shown to be in very

good agreement with exact results for monodisperse poly-

mer and polymer samples with a Schulz chain-length distri-

bution with z¼ 3 and z¼ 1. The simulations under-predict

the interaction potential very slightly. It is noted that there is

always a standard deviation in the simulation results. In

Figure 2, the Monte Carlo simulation results for the single

plate situation are plotted as the symbols, agreeing well

with Equation (13) and (14), and thus demonstrating the

accuracy of the MC method on the polymer-segment

density level.

For the profile between two parallel flat plates we apply

the product function Ansatz[12] and arrive at:

f
poly
p;tot xð Þ ¼

Ð1
0

dNC Nð ÞNfp x;Nð Þ
Ð1
0

dNC Nð ÞNfp h� x;Nð Þ

Ð1
0

dNC Nð ÞN
� �2

ð15Þ

In another approximation first the product for each fraction

is taken and then the sum over all fractions is taken:

f
2;poly
p;tot xð Þ ¼

Ð1
0

dNC Nð ÞNfp h� x;Nð Þfp x;Nð Þ

Ð1
0

dNC Nð ÞN
ð16Þ

In Figure 3 full curves are drawn for the profile between the

plates according to Equation (15) (z¼ 3 and z¼ 1) and for

monodisperse polymers (see ref.[12]) for h/Rg¼ 7.07 (a) and

h/Rg¼ 4.24 (b). The MC results are represented by the

symbols. The product function Ansatz of Equation (15)

(full curves) agrees well with the simulation results. In

Figure 3b we have plotted the results with Equation (16) for

h/Rg¼ 4.24 as the dashed curves. Using Equation (16)

instead of (15) hardly affects the final results. It follows that

Equation (15) gives a slightly better result for small plate

separations and the two approaches are similar for the

largest part of plate separations. Equation (15) is therefore

used in the rest of this paper. It is noted that the agreement

is as satisfying for other chain-length distributions (log-

normal; Gaussian). It is clear that less polymer can enter the

gap for a wider size distribution for the gap widths, because

for a wider distribution there are more large chains with a

smaller probability of entering the gap. For very small gap

widths it is known that the product function Ansatz over-

estimates the polymer-segment density (see Figure 2 in

ref.[12]). This is also the case for polydisperse polymers. The

effect of this deviation on the interaction potential is small;

the polymer concentration is small in both cases and the

total amount of depleted polymer segments is large in both

situations (G(h/Rg! small)! 0 in any case). An interest-

ing effect was observed for small plate separations, as

Figure 2. Polymer-segment density of mono- and polydisperse
ideal polymers in solution near a single flat plate. Monte Carlo
computer simulation results are given by the symbols (~:
monodisperse,}: polydisperse z¼ 3, þ: z¼ 1). Solid lines refer
to Equation (13) (monodisperse) and (14) (polydisperse).
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followed from the MC simulation results. For h/Rg¼ 2.12

the polymer-segment density is smaller for the more poly-

disperse polymer sample, see Figure 4. For h/Rg¼ 1.41,

however, the opposite was found; more polydisperse

polymer enters the gap. This is due to the fact that mainly

small polymers (N<N0) can still enter the gap, which are

absent in the monodisperse sample.

Subsequently, we compare the MC chain-length distribu-

tions of generated random walks, accepted random walks,

and rejected random walks, which are plotted in Figure 5

(Schulz distribution; z¼ 1, N0¼ 400) for h/Rg¼ 2.12 (a)

and h/Rg¼ 1.41 (b). Naturally, the distributions of gener-

ated walks closely follow Equation (8) (full curve) with

z¼ 1 andN0¼ 400. The slight scattering of the points arises

from the statistical noise in a particular Monte Carlo reali-

zation with a large, but finite generated number of

molecules (106). It is remarkable that the accepted walks

are also very well described by the Schulz distribution with

the same value of the parameter z¼ 1 but smaller average

length, N0¼ 197 for h/Rg0¼ 2.12, and N0¼ 120 for h/

Rg0 ¼ 1.41 (full curves are best fits following the Schulz

distribution). For the rejected walks, the Schulz distribution

does not describe the chain-length distributions properly, as

is observed in Figure 5a and 5b (best fits are also given as

full curves).

The polymer-segment density profiles that can be calcu-

lated from the product-function approximation (Equation

(15)) yield the interaction potential by inserting it into

Equation (11), and Equation (11) into Equation (10). The

results for the interaction potential are plotted for mono-

disperse polymers and for polydisperse polymers for a

Schulz distribution with z¼ 1 in Figure 6 (symbols). The

agreement with the exact results of Equation (5) (full

curves) is quite reasonable. Only for intermediate values of

h/Rg is there some deviation, which is similar for

monodisperse and polydisperse samples. The agreement

gives confidence that the product-function approximation is

accurate. Hence it is next used to describe the polymer-

segment density in the space around two spheres in an ideal

polydisperse polymer solution.

Figure 3. (a) Polymer segment density between two parallel flat
plates at h¼ 7.07Rg0 as a function of the position between the
plates for monodisperse (~) and polydisperse polymers (z¼ 1:þ,
z¼ 3: &). Full curves follow Equation (15) (polydisperse) or the
product function of Equation (13) (monodisperse). (b) As for (a)
but at h¼ 4.24Rg0.

Figure 4. Polymer-segment density between two parallel flat
plates at h¼ 2.12Rg0 and h¼ 1.41Rg0 as a function of the position
between the plates for monodisperse (þ) and polydisperse
polymers (z¼ 1: *, z¼ 3: }) from MC simulations.
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Polydisperse Ideal Polymer Interacting
with Spheres

Polymer Segment Density Profiles Surrounding
Two Spheres

Within the product-function approach for two spheres

immersed in a polydisperse ideal polymer solution we can

calculate the local profile using

f
poly
s;tot xð Þ ¼

Ð1
0

dNC Nð ÞNfs;1 r;Nð Þ
Ð1
0

dNC Nð ÞNfs;2 r � x;Nð Þ

Ð1
0

dNC Nð ÞN
� �2

ð17Þ

where 1 and 2 refer to the different spheres. The profile, fs,

around a single sphere with radius R was calculated by

Taniguchi et al.[16] (or see ref.[17]) and reads

fs xð Þ ¼ x

Rþ x

� �2

1 þ 2
R

x

� �
A xð Þ þ R

x

� �2

B xð Þ
" #

ð18Þ

with

A xð Þ ¼ erf
x

2Rg

� �
� 1

2

x

Rg

� �2

1 � erf
x

2Rg

� �� �

þ x

Rg

ffiffiffi
p

p exp � x

2Rg

� �2
 !

and

BðxÞ ¼ 2erf
x

2Rg

� �
� erf

x

Rg

� �
þ 2ffiffiffi

p
p x

Rg

� �

exp � x

2Rg

� �2
 !

� exp � x

Rg

� �2
 !" #

þ 2
x

Rg

� �2
1

2
� erf

x

Rg

� �
þ 1

2
erf

x

2Rg

� �� �

where the range of the profile now depends on the ratioR/Rg

and goes to fp(x) (Equation (13)) for R/Rg!1 (note that

B(x) is the flat wall result). By applying Equation (12) the

profiles around two spheres can be computed, which for

monodisperse polymers have been shown to be quite

accurate.[12]

Figure 5. (a) Chain-length distribution from MC simulation of
generated random walks (þ), accepted random walks (~), and
rejected random walks (*; refer to right axis) for z¼ 1 and
h¼ 2.12Rg0. The solid lines are best fits of Equation (8). (b) As for
(a) but for h¼ 1.41Rg0.

Figure 6. Interaction potential between two plates. Solid lines as
in Figure 1 for monodisperse ideal polymers and polydisperse
ideal polymers (Schulz, z¼ 1). Crosses are the predictions from
the product-function approximation.
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The simulation of random walks in the space surrounding

two spheres was performed in cylindrical symmetry, with

the symmetry axis connecting the centers of the spheres.

The problem is then mapped onto a two-dimensional lattice

with coordinates y along the symmetry axis and x repre-

senting the distance from the axis of rotation. One polymer

molecule is represented by performing a random walk with

N2D steps, which is a fixed number in the monodisperse

case, or is generated randomly using the Schultz distribu-

tion (Equation (8)) for the polydisperse case (typically,

hN2Di¼N0¼ 400). Since in this case the walks are perfor-

med in two dimensions, the radius of gyration in two

dimensions, Rg
2D equals H(hN2Di/4). These steps are move-

ments along either y, with a probability of 25% in both the

negative and positive direction, or along x, with a proba-

bility of x/(4xþ 2) to reduce x (negative x values are

impossible) by 1 or a probability of (xþ 1)/(4xþ 2) to

increase x. The difference of probabilities between the

upward and downward movements along x accounts for a

proper use of the phase space in the curved cylindrical

coordinates. The ‘reflecting’ boundary conditions, as des-

cribed above for the one-dimensional Monte Carlo scheme

for the case of two plane walls, are applied at the limiting

values of y and x at the boundary of the simulation region.

The following procedure was used to choose the starting

point (x0,y0) of the random walk. In general, in the curved

cylindrical coordinates the probability of finding the first

segment of the trial molecule at the coordinate x0 should

linearly increase with x0 because of the increase of the

volume associated with one lattice point. If one were to

plainly incorporate this into the simulation program, most

of the computer time will be spent simulating molecules at

large values of x, where the depletion effects are absent.

Only a very small fraction of the computers efforts will then

be spent simulating the segment density at small x, the area

of most interest for the depletion between two spheres with

radius R small compared to the total size xmax of the

simulation area in the x direction. The condition xmax >> R

is needed to minimize the size artifacts of the simulation

scheme. To achieve a more efficient Monte Carlo scheme,

the starting point (x0,y0) of the random walk is randomly

chosen with equal probabilities for all points on the (x,y)

plane. The introduced non-uniformity of the distribution of

the starting points is compensated by giving a weight equal

to (2x0þ 1) to the whole walk, which recovers the uniform

bulk concentration of the segments in the limit of a long

enough Monte Carlo run. The program then spends much

more time in the region of interest, and hence reduces the

statistical uncertainty considerably. A typical simulation

result of the polymer-segment density around two spheres is

given in Figure 7, where the gray scale represents the

polymer-segment density (black: no polymer; white: bulk

polymer-segment density).

The program is able to simulate the depletion interactions

between two spheres, but also, for instance, between a

sphere and a plane. In the following we focus on comparing

the MC and product-function results for two spheres (of the

same size) only. Similar agreement is found for other geo-

metries as well. In addition, we tested the product-function

results against Monte Carlo simulations for polydisperse

polymers with distribution of chain length given by log-

normal distribution with various widths (not shown here).

In Figure 8a and 8b we present some indicative polymer-

segment density profiles for monodisperse and polydis-

perse (z¼ 1) polymer from MC simulation results as

compared to Equation (17) for polydisperse polymer (z¼ 1;

dashed curves) and Equation (18) for monodisperse

polymer (full curves). The position halfway between the

two spheres defines where both x and y are 0. In Figure 8a

n(y)/np is plotted as a function of y for three values of x; x/

Rg0 ¼ 1.2, 1.8, and 2.4, for h/Rg0¼ 0.48 and R¼Rg0. The

MC simulation data are given as symbols (monodisperse:

filled, z¼ 1; open). The MC simulation densities agree well

with the product function Ansatz, although the product

function slightly underestimates the polymer densities. For

h/Rg0¼ 0 and R¼Rg0 and similar values of x/Rg0, the

results are plotted in Figure 8b. Here the agreement is also

satisfying. In addition, we found that for Rg0/R¼ 3 and 1/3

that the agreement is very satisfying.

Interaction Potential between Two Spheres

The agreement between the product-function approxima-

tion and the MC simulation results motivates the compar-

ison of results also on the level of the pair interaction. The

interaction potential can be directly computed from the

Figure 7. MC simulation snapshot of the density of polymer
segments around two identical spheres with radius R¼Rg0. The
polymer is polydisperse and the chain-length distribution is given
by the Schulz distribution with z¼ 1. The gray scale is pro-
portional to the polymer-segment density (black: n¼ 0, white:
n¼ np).
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density profiles by inserting them into Equation (11) and

(10). The results for R¼Rg0 are plotted in Figure 9. The

symbols are the MC simulation data (standard deviation

was always smaller than 0.5kTRg0
3 nb), through which the

dashed curves are drawn to guide the eye. The product-

function approximation yields the full curves. The results

are comparable with the MC simulation results with respect

to the order of magnitude but differs from it in two ways.

Firstly, the range of the potential is significantly overesti-

mated by the product function Ansatz. This was already the

case for the potential between two plates, but is more

pronounced here because the deviations are now integrated

in three dimensions. This leads to an overestimation of the

potential for most interparticle distances h. Obviously a

slight overestimation of the polymer densities as in Figure 8

lead to more significant deviations when all densities are

integrated in three dimensions. Secondly, the depth of the

sphere-contact potential is underestimated somewhat by

the product-function approximation. This effect may be

because of the small overestimation of the polymer-

segment density profiles when the colloidal surfaces are

very near one another. Still, in order to estimate the effects

of polydisperse polymer the product-function approxima-

tion provides an easy reasonable estimate of the potential

curve and a good estimate for the detailed density profiles

around the spheres. In general, a more polydisperse sample

leads to a slightly longer-ranged attraction and to a some-

what deeper potential. From the simulation results it

follows that the contact potential is about 1.5 times as

much for z¼ 1 as for the monodisperse case. The effect of

polydispersity on the range and strength of the interaction

between two spheres is therefore larger as compared to its

effect on the potential between two plates. The longer-

ranged potential may affect the observed phase behavior in

Figure 8. (a) Polymer-segment density as a function of y for
three values of x, as indicated, in the space surrounding two
colloidal spheres with radius R¼Rg0 and h¼ 0.48Rg0. Symbols
are the MC results: polydisperse polymer (*; z¼ 1) and
monodisperse polymer (*) samples. Curves are the predictions
of the product-function approximation for monodisperse polymer
(solid lines) and polydisperse polymer (z¼ 1, dashed lines). (b) As
for (a) but for h¼ 0.

Figure 9. Interaction potential between two spheres with radius
R¼Rg0 as a function of the distance between them in ideal mono-
and polydisperse polymer solutions. Full curves are the predic-
tions of the product function approximation (from top to bottom:
monodisperse, polydisperse z¼ 3, and polydisperse z¼ 1).
Symbols refer to the MC results. Dashed curves are plotted to
guide the eye.
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the sense that polydispersity of the polymer enhances gas–

liquid coexistence to dominate with respect to gas–solid

coexistence in experimental studies,[2] in comparison with

theoretical predictions.[18–20]

A simple way to obtain a reasonable estimation of the

effects of polydispersity on the depletion interaction be-

tween two spheres in a solution of ideal polymer chains is

by insertion of the polydisperse depletion thickness,Dpol, in

the classical Asakura–Oosawa[21] expression

W hð Þ ¼ � 2

3
pnbD

3
pol 1 � h

2Dpol

� �2

2 þ 3R

Dpol

þ h

2Dpol

� �
ð19Þ

for h� 2Dpol, andW(h)¼ 0 for h> 2Dpol, see also Vrij.[22] In

the derivation of Equation (19) it was assumed that the

depletion layers could be replaced by simple step-functions.

The depletion thickness of polydisperse ideal polymers

could be obtained by inserting the depletion layer thickness

for monodisperse polymers around a sphere, given by

D
R
¼ 1 þ 6qffiffiffi

p
p þ 3q2

� �1=3

�1 ð20Þ

(see Equation (A4) in ref.[20]), into Equation (21)

Dpol ¼

Ð1
0

dNDC Nð ÞN

Ð1
0

dNC Nð ÞN
ð21Þ

which turns to Equation (7) (the flat wall case) in the limit

q! 0. In Figure 10 we plot the minimum of the interaction

potential for a wide range of polymer/colloid size ratios for

monodisperse and polydisperse (Schulz distribution with

z¼ 1 and 3) as follows from the MC simulation results

(symbols) and the simple theory following Equation (19)

(full curves). The contact potential dependence on poly-

dispersity is weak for relatively long polymer chains. It

seems that for the interaction between relatively small

spheres size polydispersity of the large polymer chains

hardly matters, and that the contact potential tends towards

a universal q-dependent scaling for very small spheres.

Equation (19) describes the contact potential reasonably

well. It is noted that it underestimates the range of the

potential to some extent.

Conclusions

A theory was proposed for the interaction between colloidal

particles due to non-adsorbing ideal polydisperse polymers

by extending the product function Ansatz. Monte Carlo

computer simulations were performed to test the theory. For

two parallel flat plates immersed in an ideal polydisperse

polymer solution it followed that the product function

Ansatz gives a good description of the polymer-segment

density between the plates and of the interaction potential.

In addition, the predicted polymer densities of ideal

polydisperse polymers around two spheres agree well with

the simulation results. For the interaction between two

spheres, the product function Ansatz predicts reasonable

values for the minimum of the interaction potential induced

by the polydisperse polymers, but the range of the potential

is overestimated somewhat by the proposed analytical

theory. Polydispersity increases the range of the interaction

potential, the depth of the potential minimum, and enhances

size fractionation. The effects of polydispersity on the

interaction potential between two plates are weak but are

stronger between two (large) spheres. A simple analytical

prediction of the effects of polydispersity for the pair

interaction of two spheres is given for a first estimation of

the effects.

Appendix

The depletion layer thickness near a single plate due to

polydisperse polymer can be calculated in two ways.

Firstly, using Equation (7). Secondly, we can first calculate

the polymer-segment density profile of polydisperse

polymer chains near a single particle given for a plate as

f pol
p xð Þ ¼

Ð1
0

dNC Nð ÞNfp x;Nð Þ

Ð1
0

dNC Nð ÞN
ðA1Þ

Figure 10. Contact potential between two spheres in a non-
adsorbing ideal polymer solution as a function of the size ratio Rg/
R for monodisperse polymer (þ: MC simulation results) and
polydisperse polymer with a Schulz distribution; z¼ 1 (~) and
z¼ 3 (*). Symbols refer to the MC simulation results and full
curves to the predictions using Equation (19).
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in analogy with Equation (15) and then integrate the profile

using

Dpol ¼
ð1
0

dx 1 � f poly
p xð Þ

h i
ðA2Þ

which gives exactly the same result as Equation (5).
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