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We propose a kinetic Ising model to study phase separation driven by surface diffusion. This model is
referred to as Model S, and consists of the usual Kawasaki spin-exchange kinetics �Model B� in conjunction
with a kinetic constraint. We use multispin coding techniques to develop fast algorithms for Monte Carlo
simulations of Models B and S. We use these algorithms to study the late stages of pattern dynamics in these
systems, and compare properties of the evolution morphologies, e.g., growth laws, domain distribution func-
tions, and spatial and temporal correlation functions.
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I. INTRODUCTION

Consider a homogeneous binary �AB� mixture, which is
rendered thermodynamically unstable by a rapid temperature
quench below the miscibility gap. The system prefers to be
in a phase-separated state at the lower temperature. The far-
from-equilibrium evolution of the system from the unstable
homogeneous state to the segregated state has received con-
siderable attention �1–4�. This evolution is characterized by
the emergence and growth of domains enriched in the com-
ponents A and B. The terms used to describe this nonequi-
librium process are phase ordering dynamics, domain growth
or coarsening. A quantitative characterization of phase order-
ing systems focuses on �a� the domain growth law; �b� the
statistical properties of the evolution morphology; and �c� the
temporal correlation of pattern dynamics.

The equilibrium phase-separated state is uniquely deter-
mined by its thermodynamic properties. However, there is a
diverse range of kinetic pathways which enable segregation.
For example, phase separation in alloys is usually driven by
vacancy mediated diffusion �5�. On the other hand, for fluid
mixtures, hydrodynamic velocity fields enable convective
transport of material along domain boundaries and give rise
to asymptotic behaviors �6�. Furthermore, phase separation
in mixtures can be frozen �or near-frozen� into mesoscopic
states by the presence of quenched disorder �7�, viscoelastic
effects �8,3�, etc.

In this paper, we present results from a comparative
Monte Carlo �MC� study of two kinetic Ising models for
phase separation in binary mixtures. The first of these is the
usual Kawasaki spin-exchange model �9,4�, which mimics
segregation via diffusion. The second model mimics the case
where only surface diffusion is permitted. An important goal
of this paper is methodological, viz., the formulation of a
kinetic Ising model where bulk diffusion is suppressed. An-
other important goal is to compare pattern dynamics for
phase separation with and without bulk diffusion.

This paper is organized as follows. In Sec. II, we describe
the kinetic Ising models studied here and our MC simulation
techniques. Our MC approach uses multispin coding tech-
niques, which enable large-scale and long-time simulations
of these models. In Sec. III, we discuss the domain growth

laws which arise from bulk and surface diffusion, and also
present detailed numerical results. Finally, Sec. IV concludes
this paper with a summary and discussion of our results.

II. NUMERICAL METHODOLOGY

A. Kinetic Ising models

The standard model for binary mixtures is the Ising
model,

H = − J�
�ij�

�i� j, �i = ± 1, �1�

where the spins ��i	 �i=1→N� are located on a discrete lat-
tice. The states �i= +1 or −1 denote the presence of an A
atom or B atom at site i, respectively. We consider the case
with ferromagnetic �J�0� nearest-neighbor interactions, de-
noted by the subscript �ij� in Eq. �1�. The phase diagram for
the binary mixture is obtained in an ensemble with fixed
temperature T and magnetization M =�i�i.

The Ising system does not have an intrinsic dynamics as
the Poisson brackets �or commutators� of spin variables are
identically zero. Therefore, one introduces stochastic kinetics
by placing the system in contact with a heat-bath which in-
duces fluctuations. The Ising model, in conjunction with a
physically appropriate spin kinetics, is referred to as a kinetic
Ising model �4,10�. An important example is the Kawasaki
spin-exchange model �9�, which has nearest neighbor spin
exchanges with Metropolis acceptance probabilities. In an
MC simulation of this model, a pair of nearest-neighbor sites
i and j is randomly selected, and the spins �i and � j are
exchanged. The probability that this exchange is accepted is
given by

P = min�1,exp�− ��H�� ,

�H = J��i − � j�
 �
Li�j

�Li
− �

Lj�i

�Lj� . �2�

Here, �H is the energy change due to the proposed spin
exchange, and �= �kBT�−1 is the inverse temperature, with kB

denoting the Boltzmann constant. In Eq. �2�, Li denotes the
nearest neighbors of i on the lattice. A single Monte Carlo
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step �MCS� corresponds to N such attempted exchanges. A
large number of MC simulations of the Kawasaki model
have been reported in the literature �11,12�.

The phase-separation kinetics in this microscopic model
is analogous to that for the coarse-grained Cahn-Hilliard
�CH� equation, which is obtained as follows:

�

�t
��r�,t� = − �� · J��r�,t� = �� · �D�� ��r�,t�� = ���D�� 
�F

��
�
 .

�3�

Here, ��r� , t� is the order parameter at space point r� and time
t. Typically, ��r� , t�=	A�r� , t�−	B�r� , t�, where 	A and 	B de-
note the local densities of species A and B. In Eq. �3�, the

quantities J�, D, and � denote the current, diffusion coeffi-
cient, and chemical-potential difference between A and B,
respectively. The chemical potential is obtained as a func-
tional derivative of the Helmholtz free energy, which is often
taken to have the �4 form,

F��� = H − TS

�� dr�
−
1

2
kB�Tc − T��2 +

kBTc

12
�4 +

J

2
��� ��2� ,

�4�

where we have identified ��i�=��r�i� in Eq. �1� and Taylor-
expanded various terms. Here, Tc denotes the critical tem-
perature. The CH equation is also known as Model B in the
Hohenberg-Halperin classification scheme for critical dy-
namics �13�. Further, using a master-equation approach, the
CH equation can be motivated from the spin-exchange
model �14�. Therefore, we will subsequently refer to the Ka-
wasaki model as “Model B.”

Before proceeding, we stress that the general form of the
CH equation contains an order-parameter-dependent mobility
�15–17�:

D��� = D0
1 −
�2

�0
2� , �5�

where �0 is the saturation value of the order parameter at
T=0. This is not consequential for quenches to moderate
temperatures, but plays an important role for deep quenches
where �� ±�0 in bulk domains. In that case, bulk diffusion
is effectively eliminated and domain growth proceeds by sur-
face diffusion �18–20�. In the context of the Kawasaki
model, this can be understood by focusing on an interfacial
pair with the minimum barrier for interchange, �i= +1 at
the periphery of an up-rich domain and having only one
neighbor with the same spin value, and � j =−1 in a down-
rich domain. At low temperatures, the bulk domains are very
pure and the energy barrier to the interchange �i↔� j
is �H=4J. Thus, the time scale for this interchange

K�exp���H�→� as T→0, effectively blocking bulk dif-
fusion. Of course, once an impurity spin is placed inside a
bulk domain, there is no further barrier to its diffusion.

Apart from this natural blocking of bulk diffusion at
T=0, there are systems where the bulk mobility diminishes
drastically due to physical processes, e.g., one or both of the

components may undergo a glass �21� or gelation �22,23�
transition. At the phenomenological level, this has been mod-
eled by setting the mobility to zero in regions rich in the
glass-phase or gel-phase. At the microscopic level, we pro-
pose a kinetic Ising model where bulk diffusion is sup-
pressed by introducing a kinetic constraint. We disallow ex-
changes �i↔� j if the neighboring spins of the pair are all
parallel, even though such an exchange would not raise the
energy. Clearly, the reverse of such an exchange is also dis-
allowed, so there are no irreversible moves which violate the
detailed-balance condition. Hence, the introduction of this
kinetic constraint does not affect equilibrium properties. In
this case, segregation is driven primarily by diffusion along
domain boundaries, though some bulk transport occurs via
impurity n-spin clusters. �This bulk diffusion is negligible for
moderate to deep quenches.� We will subsequently refer to
this model as “Model S” �18�. Clearly, Model S can be gen-
eralized to the case of reduced �though nonzero� mobility in
the bulk domains. This is done by allowing spin exchanges
with different time scales depending on the number and type
of parallel neighbors for a spin pair.

B. Numerical details

All our MC simulations were performed on an L�L
square lattice with periodic boundary conditions. At time
t=0, the temperature was quenched from T=� to T
Tc,
where Tc�2.269 is the critical temperature of the d=2 Ising
model. �All energy scales are measured in units of J, and we
set the Boltzmann constant kB=1.� The disordered initial
state consisted of a uniform mixture of NA A atoms and NB B
atoms with N=NA+NB. The case with NA=NB corresponds to
a critical quench.

Our MC simulations exploit the technique of multispin
coding. For a general introduction to this technique, see Ref.
�24�. The basic idea is that one can exploit the 64-bit com-
puter architecture to undertake a parallel simulation of 64
systems. This is done by storing the spin �i at site i in the kth
system in the kth bit of a 64-bit word S�i�. Recall that, in one
elementary move for Model B, we propose to exchange the
spins located on nearest-neighbor sites i and j. For Model S,
we impose the kinetic constraint that a pair of spins sur-
rounded by aligned neighbors is not exchanged.

For the d=2 square lattice considered here, each site has
four nearest neighbors. Let n0, n1, and n2 be the three nearest
neighbors �other than j� of site i. Similarly, let m0, m1, and
m2 be the three nearest neighbors �other than i� of site j. To
determine the change in energy resulting from the proposed
spin exchanges in all 64 simulations, we first identify which
of the six neighbors �n0 ,n1 ,n2 ,m0 ,m1 ,m2� are antiparallel.
This can be done in six operations with the exclusive or
operation � ,

Ak = S�i� � S�nk�, k = 0 → 2,

Bk = S�j� � S�mk�, k = 0 → 2. �6�

The energy change associated with the spin exchange and
�thereby� the acceptance probability is governed by the num-
ber of antiparallel spins. In an ordinary program, this would
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involve a summation over the surrounding spins. With logi-
cal operations, it is more convenient to determine the logical
variables Pk which tell whether �i is antiparallel to at least k
of its neighbors �other than � j�. Note that the Metropolis
algorithm only requires P1, P2, and P3. These can be ob-
tained with six operations,

P2 = A0 ∧ A1,

P1 = A0 ∨ A1,

P3 = A2 ∧ P2,

P2 = P2 ∨ �A2 ∧ P1� ,

P1 = P1 ∨ A2. �7�

Similarly, the variables Qk that tell whether � j is antiparallel
to at least k of its neighbors �other than �i� can be obtained
with six operations.

Finally, the acceptance probability for the proposed spin
exchanges is obtained by using random bit patterns R0, R1,
and R2. These are designed so that the probability for each
bit to be 1 is Pb=exp�−4�J�. Thus, the following statements
comprise the core of our Model S algorithm:

Flip = �S�i� � S�j�� ∧ �P1 ∨ Q3 ∨ R0� ∧ �P2 ∨ Q2 ∨ R1�

∧ �P3 ∨ Q1 ∨ R2� ,

Flip = Flip ∧ �P1 ∨ ¬ Q3� ∧ �Q1 ∨ ¬ P3� ,

S�i� = S�i� � Flip,

S�j� = S�j� � Flip. �8�

The implementation of Model B dynamics is simply ob-
tained by omitting the second of the above statements.

These 36 operations for Model S �or 30 for Model B� act
on all 64 bits and thus perform 64 elementary moves. In
conjunction with the required load and store operations, and
generation of the random bit patterns, our implementation of
Model B for a 5122 system with multispin coding requires
4.6 ns CPU time per elementary move on an AMD-64 com-
puter with 3 GHz clock frequency. This should be contrasted
with a direct implementation of this model, which requires
approximately 100 ns CPU time per elementary move on the
same machine.

The procedure outlined above, which simulates 64 sepa-
rate systems, is known as a synchronous multispin algorithm
�24�. The boundaries of these 64 systems can be glued to-
gether to yield an asynchronous multispin algorithm �24�,
simulating one system which is 64 times larger. This comes
at the cost of �a� more complicated programming; and �b� a
small reduction in the program efficiency. The statistical re-
sults for domain morphologies presented in Secs. III A, III B,
and III C were obtained by averaging over 150 asynchronous
simulations with system sizes L=512. The results for the
autocorrelation function in Sec. III D were obtained by aver-
aging over 64 synchronously simulated systems with
L=1024.

III. DETAILED RESULTS

As stated earlier, the initial condition for our MC simula-
tions consists of a random configuration. The temperature is
quenched to T
Tc at t=0, and the system evolves via either
Model B or Model S dynamics towards its equilibrium state.
Figure 1 shows the typical time evolution for a critical com-
position �50% A and 50% B� after a quench to T=0.63Tc for
Model B �left� and Model S �right�. Notice that the evolution
morphology has a characteristic domain size, which we de-
note as R�t�. The growth process is substantially slower for S
dynamics, as expected. We will demonstrate shortly that the
growth law due to bulk diffusion is R�t�� t1/3, which is re-
ferred to as the Lifshitz-Slyozov �LS� growth law. The cor-
responding law for segregation via surface diffusion is
R�t�� t1/4. However, we reiterate that bulk diffusion is not
eliminated entirely in Model S because of the presence of
impurity spin clusters in bulk domains. At high temperatures,
there is a reasonable fraction of impurity spins and we expect
the S dynamics to cross over to t1/3 growth at late times. The
crossover time increases rapidly at lower temperatures where
there are very few impurity spins in the bulk. The probability
of occurrence of �say� an up spin in a down-rich domain is

Pimp �
exp�− 4�J�

exp�− 4�J� + exp�4�J�
= �1 + exp�8�J��−1 �9�

in d=2.

FIG. 1. Evolution pictures for phase separation in a binary �AB�
mixture with a critical composition. The component A ��= +1� is
marked in black, and the component B ��=−1� is unmarked. The
system was quenched at time t=0 from T=� to T=0.63Tc. The top
and bottom panels show snapshots at times t=104 and 106 MCS,
using either Model B dynamics �left�, or Model S dynamics �right�.
The MC simulations were done on square lattices of size 5122 with
periodic boundary conditions. The details of the simulations are
described in the text.
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We will study the evolution depicted in Fig. 1 using quan-
tities like the correlation function and autocorrelation func-
tion.

A. Growth laws

The first relevant property is the growth law governing
the segregation process. We computed the typical domain
size R�t� as the first zero crossing of the two-point correla-
tion function,

C�r�,t� =
1

N
�
i=1

N

���i�t��i+r��t�� − ��i�t����i+r��t��� �10�

�g
 r

R
� . �11�

Here, r� denotes the displacement vector, and we consider
systems which are translationally invariant and isotropic. The
angular brackets in Eq. �10� denote an averaging over inde-
pendent initial conditions and noise realizations. Equation
�11� is the dynamical-scaling property of the correlation
function �25� and applies for quenches below the critical
temperature. It reflects the fact that the morphology is self-
similar in time, up to a scale factor �see Fig. 1�. One can use
other definitions of the length scale also, but these are all
equivalent in the scaling regime.

At this stage, it is useful to clarify the domain growth
laws which arise due to bulk and surface diffusion. A conve-
nient starting point is the CH equation �3� with an order-
parameter-dependent mobility D���. We consider a general
situation where the diffusion coefficient at the interface
��=0� is Ds, and that in the bulk ��=�s�T�� is Db with
Db�Ds. This difference in surface and bulk mobilities may
be the consequence of low-temperature dynamics or due to
physical processes like glass formation or gelation. Then, the
simplest functional form which models the mobility is

D��� = Ds
1 − �
�2

�s
2�, � = 1 −

Db

Ds
, �12�

which is equivalent to Eq. �5� with D0=Ds and �0
2=�s

2 /�. We
focus on the deterministic case of Eq. �3�,

�

�t
��r�,t� = Ds���
1 − �

�2

�s
2��� 
− �Tc − T��

+
Tc

3
�3 − J�2��
 , �13�

where we have used the �4 form of the free energy from Eq.
�4�. The saturation value of the order parameter in Eq. �13� is
�s�T�=�3�1−T /Tc�. Using the natural scales for the order
parameter, length and time, we can rewrite Eq. �13� in the
dimensionless form,

�

�t
��r�,t� = �� ��1 − ��2��� �− � + �3 − �2��� ,

� � �0,1� for Db � Ds. �14�

The right-hand side �RHS� of Eq. �14� can be decomposed
as �20�

�

�t
��r�,t� = �1 − ���2�− � + �3 − �2��

+ ��� ��1 − �2��� �− � + �3 − �2��� , �15�

where the first term on the RHS corresponds to bulk diffu-
sion. This term disappears for �=1 or Db=0. The second
term on the RHS corresponds to surface diffusion and is only
operational at interfaces where ��0. Following Ohta �26�,
we can obtain an equation which describes the interfacial
dynamics. The location of the interfaces r�i�t� is defined by
the zeros of the order-parameter field,

��r�i�t�,t� = 0. �16�

Focus on a particular interface, and designate the normal
coordinate as n �with dimensionality 1� and the interfacial
coordinates as a� �with dimensionality �d−1��. Then, the nor-
mal velocity vn�a� , t� obeys the integro-differential equation
�26,20�,

4� da�
→

G�r�i�a��,r�i�a�
→

��vn�a�
→

,t�

� �1 − ���K�a� ,t� + 4�� da�
→

G�r�i�a��,r�i�a�
→

���2K�a�
→

,t� ,

�17�

where K�a� , t� is the local curvature at point a� on the inter-
face, and � is the surface tension. The Green’s function

G�x� ,x�
→

� obeys

− �2G�x�,x�
→

� = ��x� − a�
→

� . �18�

A dimensional analysis of Eq. �17� in the scaling regime
yields the growth laws due to surface and bulk diffusion. We
identify the scales of various quantities in Eq. �17� as

�da�� � Rd−1, �G� � R2−d,

�vn� �
dR

dt
, �K� � R−1. �19�

This yields the crossover behavior of the length scale as

R�t� � ��t�1/4, t � tc � ��1 − ���t�1/3, t � tc, �20�

where the crossover time is

tc �
�3

�1 − ��4�4 . �21�

The above scenario applies for both Models B and S, as
Db
Ds in either case. At moderate temperatures, this cross-
over occurs rapidly for Model B in our simulations. How-
ever, in Model S, there is a drastic suppression of bulk dif-
fusion with Db�Ds and ��1. Therefore, the crossover to
t1/3 growth is strongly delayed and not observed over simu-
lation time scales. This is seen in Fig. 2, which plots R vs t at
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temperatures T=0.63Tc and 0.88Tc for Models B and S. The
data for Model S is consistent with the growth law R� t1/4.
The early time data for Model B is also consistent with this
growth law, as surface diffusion is dominant at early times.
At late times, one sees crossover behavior between the t1/4

regime and the asymptotic t1/3 regime. Note that the cross-
over for Model B is delayed at the higher temperature
T=0.88Tc because the decrease in � is more than compen-
sated by the reduction in � due to softening of the interfaces
as T→Tc

− �see Eq. �21��. More generally, we stress that it has
been notoriously difficult to observe the asymptotic t1/3

growth in MC simulations of the Kawasaki model �11,12�.
Similar results have been obtained from Langevin studies of
coarse-grained models �18–20�.

Before proceeding, we remark that we have also studied
models where bulk diffusion is more strictly suppressed by
imposing additional kinetic constraints which eliminate
2-spin diffusion, 3-spin diffusion, etc. The corresponding re-
sults for the growth law are numerically indistinguishable
from the Model S results in Fig. 2 over the time scales of our
simulation. This underlines the utility of the proposed Model
S in the context of phase separation via surface diffusion.

It is also relevant to discuss off-critical quenches, where
one of the components is present in a larger fraction. In Fig.
3, we show evolution pictures for Models B and S for the
case with 25% A and 75% B. If the evolution morphology is
not bicontinuous, e.g., there are droplets of the minority
phase in a matrix of the majority phase, the surface-diffusion
mechanism is unable to drive growth directly. This is be-
cause the interfaces are disconnected, and the transport of
material along interfaces does not result in diffusion over
extended length scales. Nevertheless, at high temperatures,
growth may still proceed indirectly by the Brownian motion
and coalescence of droplets �27�. The corresponding growth
law depends explicitly on the dimensionality

R�t� � �Tt�1/�d+2�. �22�

Thus, domain growth through droplet motion obeys the law
R�t���Tt�1/4 in d=2, which is analogous to the surface-
diffusion growth law. The growth kinetics of Models B and S
for off-critical mixtures at T=0.63Tc is shown in Fig. 4. We
see that the S dynamics shows the expected t1/4 growth over
extended time regimes. As before, the B dynamics shows a
crossover behavior between the t1/4 regime and the
asymptotic t1/3 regime. At low temperatures, the Brownian
mechanism is ineffective and the evolution of Model S
freezes into a mesostructure.

B. Correlation functions

Next, let us study the morphological features of the evo-
lution in Figs. 1 and 3. These are usually characterized by �a�

FIG. 2. Typical domain size �R� as a function of time �t� after a
quench at t=0 from T=� to T=0.63Tc �left� and 0.88Tc �right�. The
circles and squares indicate data obtained with Model B and Model
S dynamics, respectively. Lines with slope 1/4 and 1/3 are also
provided on the plots as guides to the eye.

FIG. 3. Analogous to Fig. 1, but for an off-critical quench with
25% A and 75% B. The temperature is T=0.63Tc.

FIG. 4. Analogous to Fig. 2, but for an off-critical quench with
25% A and 75% B. We show results for T=0.63Tc.
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the correlation function defined in Eq. �10�, or �b� its Fourier
transform, the structure factor. We have confirmed that these
quantities exhibit dynamical scaling for both Models B and
S. For the sake of brevity, we do not show these results here.

An important theme in this context is a comparison of the
morphologies arising from both dynamics. Earlier studies
with coarse-grained models �18–20� have found that the cor-
relation functions and structure factors are numerically indis-
tinguishable for growth driven by bulk diffusion or surface
diffusion. At the visual level, this also seems to be suggested
by the snapshots in Figs. 1 and 3. In Fig. 5, we compare the
scaling functions for Models B and S for a critical quench
with T=0.63Tc. To eliminate finite-size effects, we consider
cases with the same typical domain size, t=106 MCS in
Model S and t=3.4�105 MCS in Model B. In Fig. 5�a�, we
plot C�r , t� vs r /R. The scaling functions superpose on the
scale of the plot, in accordance with earlier studies of phe-
nomenological models. In Fig. 5�b�, we plot C�r , t��r /R� vs
r /R so that the large-distance behavior is magnified. Some
subtle differences between the two functions are seen at large
distances r /R�2. We make some observations in this re-
gard.

�a� The statistical error in the difference between the
curves at the second peak is about four times smaller than the

difference, so it cannot be attributed to statistical fluctua-
tions.

�b� We have also replotted the correlation functions
for Models B and S from different times on the scale
C�r , t��r /R� vs r /R. In that case, the secondary peaks show a
much better collapse, suggesting that the discrepancy in Fig.
5�b� is not the result of corrections to scaling.

Though it is difficult to attribute physical significance to
these differences, it is conceptually important to stress the
observable differences between the morphologies for Models
B and S. Similar scaling plots for the off critical quench
shown in Fig. 3 are shown in Fig. 6. It is known that the
scaling functions for phase-separating systems depend on the
degree of off-criticality �28�. Notice that the oscillations in
the plot of C�r , t� vs r /R diminish with increase in the off
criticality. Further, the discrepancy between the scaling func-
tions for Models B and S is larger for the off-critical case.

C. Island distribution and excess energy

Our subsequent results will focus on the case of a critical
quench. An alternative method of describing the domain
morphology is the island-size distribution. We define an is-
land as a set of aligned spins, all of whose neighbors are
either part of the island, or have an antiparallel spin. Tafa et
al. �29� have shown that the domain-size distribution in a

FIG. 5. Superposition of scaling functions for Models B �solid
line� and S �dashed line� for the evolution depicted in Fig. 1. For
Model S, the data set corresponds to t=106 MCS; for Model B, the
data set corresponds to t=3.4�105 MCS. Both domain sizes coin-
cide at these times. �a� Plot of C�r , t� vs r /R. �b� Plot of
C�r , t��r /R� vs r /R, so as to magnify the tail behavior.

FIG. 6. Analogous to Fig. 5, but for an off-critical quench with
25% A and 75% B at T=0.63Tc. In this case, the times for
the different data sets are t=9.8�105 MCS �Model S� and
t=2.7�105 MCS �Model B�.
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phase-separating system P̃�l , t� exhibits scaling, and has an
exponential decay,

P̃�l,t� = R−1f
 l

R
�, f�x� � e−ax for x → � , �23�

where l is the domain size and a is a constant. The corre-
sponding scaling form for the island-size distribution P�s , t�
in d=2 is obtained as

P�s,t� = �
0

�

dl��s − bl2�P̃�l,t� = �s�−1g
 s

�s�
� , �24�

g�x� =
1

2�x
f��x� , �24�

where b is a geometric factor, and �s� is the average island
size.

In Fig. 7, we plot �s�s�P�s , t� vs �s / �s� for both Models
B and S. We make two observations in this context. First, the
data for the two models is numerically indistinguishable on
the scale of this plot. The subtle differences in the
correlation-function data are not seen in the island-size dis-
tribution function. Second, the plot in Fig. 7 exhibits an ex-
ponential decay, as expected from Eqs. �23� and �24�.

A macroscopic quantity which depends on the density of
small islands is the total energy E�t�. The interfacial energy
for a domain is �Rd−1, and the number of domains in the
system �N /Rd. Thus, the overall interfacial energy depends
on the length scale as E�t�−E����N� /R. In Fig. 8, we plot
E�t� /N vs R−1 for both Models B and S at T=0.63Tc and
0.88Tc. We observe a power-law convergence of the excess

energy with the slope being proportional to the surface ten-
sion ��T�. Again, the data sets at the same temperature can-
not be distinguished on the scale of the plot.

D. Aging of the autocorrelation function

The data presented so far has focused on the morphologi-
cal features of the phase-separating system. Let us next study
the temporal correlation of the pattern dynamics in Fig. 1.
This is measured by the autocorrelation function

A�tw,
� =
1

N
�
i=1

N

���i�tw��i�tw + 
�� − ��i�tw����i�tw + 
��� ,

�25�

where the times tw and �tw+
� are measured after the quench
at t=0. Here, tw is the reference time for measurement of the
autocorrelation function, and is referred to as the waiting
time. The most general correlation function corresponds to
unequal space and time, and combines the definitions in Eqs.
�10� and �25�. Equilibrium systems are stationary and the
corresponding A�tw ,
� only depends upon the time difference

. On the other hand, for nonequilibrium systems, A�tw ,
�
depends on both tw and 
.

There have been some earlier studies of A�tw ,
� for do-
main growth in kinetic Ising models. There are two mecha-
nisms which drive the decorrelation process.

�a� First, there are fluctuations in bulk domains, which
give a stationary contribution. Small bulk fluctuations can be
discussed in a linear approximation, resulting in an exponen-
tial decay of the autocorrelation function, Ast�t��exp�−t /
�,
where 
 is the time scale. However, Huse and Fisher �30�
have argued that droplet fluctuations play an important role
at moderately high temperatures, and give rise to a stretched-
exponential relaxation. The probability that a droplet of �say�
down-spins appears in an up-domain via fluctuations is
Pd�exp�−��Rd−1�, where R is the droplet size. The lifetime

FIG. 7. Scaled probability distributions for island-sizes in Mod-
els B �solid line� and S �dashed line� at T=0.88Tc. The data is
shown on a linear-log plot as �s�s�P�s , t� vs �s / �s�, suggested by
Eqs. �23� and �24�. For Model S, the data set corresponds to
t=106 MCS; for Model B, the data set corresponds to t=3.4�105

MCS. Both domain sizes coincide at these times.

FIG. 8. Plot of the energy per site E�t� /N vs R−1 for Model B at
temperatures T=0.63Tc �squares� and T=0.88Tc �circles�, and
Model S at the same two temperatures �diamonds and crosses�.
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of this droplet is 
�R1/�, where � is the growth exponent.
Thus, the corresponding autocorrelation function shows a
stretched-exponential behavior,

Aeq�
� � exp�− ��
�� ,

� = �d − 1�� for d 
 dc and 1 for d � dc. �26�

Here, the critical dimensionality is defined by �dc−1��=1.
Subsequently, Tang et al. �31� undertook a detailed study of
the Langevin equation for droplet fluctuations. They exam-
ined the relaxation spectrum of the corresponding Fokker-
Planck equation for noninteracting spherical droplets, and
found results consistent with the heuristic arguments of Huse
and Fisher �30�.

�b� Second, there is decorrelation due to domain-wall mo-
tion. This can be either stochastic �due to thermal fluctua-
tions� or systematic �due to the curvature-reduction mecha-
nism�. Consider the T=0 case, where there are no
fluctuations in the bulk or the surface. The characteristic
domain-wall velocity decreases with time, so this mechanism
gives a nonstationary or aging �tw-dependent� contribution
�32�. Fisher and Huse �33� used scaling ideas to argue that
the aging contribution to A�tw ,
� has a power-law depen-
dence on the length scale,

Aage�tw,
� = 
 R�tw�
R�tw + 
��

�

, R�tw + 
� � R�tw� . �27�

There have been various studies of the aging exponent � in
cases with both spin-flip and spin-exchange kinetics �1�. For
power-law domain growth, Eq. �27� obeys the scaling form
Aage�tw ,
�=h�
 / tw�, which has been observed in some stud-
ies of spin glasses �32�.

In Fig. 9, we plot A�tw ,
� vs 
 for Models B and S for a
critical quench to T=0.63Tc. The solid lines denote data for
Model B with waiting times tw=102 ,103 ,104 ,105 �from left
to right�. The dashed lines denote the corresponding data for

Model S. As expected, the autocorrelation function decays
more rapidly for Model B. We make the following observa-
tions in this regard.

�a� The quantity A�tw ,
� exhibits aging, with an explicit
dependence on tw for both Models B and S. In general, the
decay is slower for larger tw, i.e., when the domain size of
the reference state is larger. Further, the decay is faster for
higher temperatures, where larger fluctuations are present in
the system.

�b� The data in Fig. 9 is plotted on a log-log scale, and
exhibits a continuous curvature for both Models B and S.
This is not consistent with the simple power-law decay in
Eq. �27�. As a matter of fact, the autocorrelation data does
not even exhibit 
 / tw scaling, as we have confirmed. In the
case of Model B, a possible reason for this is because the
decorrelation process is driven by both bulk fluctuations
�with a stationary contribution� and domain-wall motion
�with a nonstationary contribution�. In the case of Model S,
bulk fluctuations have been effectively eliminated and one
may naively expect to recover power-law decay. However,
this is not the case because interfacial fluctuations also con-
tribute to decorrelation. We believe that the scaling behavior
in Eq. �27� is only realized in kinetic Ising models or their
coarse-grained analogs at T=0. In this limit, coarsening oc-
curs only through the systematic motion of interfaces and the
system always reduces its energy. However, the T=0 limit is
not interesting in the context of kinetic Ising models because
the evolving system invariably gets trapped in local free-
energy minima.

�c� In recent work, Puri and Kumar �34� have studied the
decorrelation process in a spin-1 model using a stochastic
model based on the continuous-time random walk formal-
ism. We are currently trying to adapt their modeling to un-
derstand the behavior in Fig. 9.

IV. SUMMARY AND DISCUSSION

Let us conclude this paper with a summary and discussion
of the results presented here. We have studied phase separa-
tion in a kinetic Ising model for phase separation mediated
by surface diffusion. This model �referred to as Model S� is
obtained by imposing a kinetic constraint on the usual Ka-
wasaki kinetic Ising model �referred to as Model B�. In gen-
eral, the surface diffusion mechanism can drive segregation
only when the morphology consists of percolated clusters,
i.e., for near-critical quenches. We have undertaken Monte
Carlo �MC� simulations of Models B and S using multispin
coding techniques. These provide accelerated algorithms
which enable the simulation of large systems for extended
times. Our results show that the major difference between the
morphologies of Models B and S lies in the growth dynam-
ics. In this regard, it is relevant to emphasize the following.

�a� The early-time dynamics �t� tc
B� of Model B is also

dominated by surface diffusion with the growth law
R�t�� t1/4. For late times �t� tc

B�, there is a crossover to the
t1/3-growth regime. The crossover time tc

B→� as T→0.
However, the low-temperature dynamics of Model B usually
freezes into metastable states. Therefore, it is hard to see an
extended regime of t1/4 growth in Model B.

FIG. 9. Time-dependence of the autocorrelation function for
Models B �solid line� and S �dashed line� at T=0.63Tc. The waiting
times are tw=102 ,103 ,104 ,105 MCS �from left to right�.
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�b� Our kinetic constraint eliminates single-particle bulk
diffusion, and we see extended regimes of growth driven by
surface diffusion. However, n-particle diffusion �with n�2�
is still possible and is governed by the probability for exis-
tence of impurities in bulk domains. Thus, at sufficiently
large times �t� tc

S�, we again expect a crossover to t1/3

growth. However, this crossover is extremely delayed, even
at moderate temperatures.

�c� We have also studied kinetic models with constraints
which eliminate the diffusion of n-spin clusters. The domain
growth data obtained from these models is numerically in-
distinguishable from that for Model S.

�d� For highly off-critical quenches, the morphology con-
sists of droplets of the minority phase in a matrix of the
majority phase. In this case, the surface diffusion mechanism
cannot drive phase separation. However, Brownian motion

and coalescence of droplets also gives rise to t1/4 growth in
d=2.

Apart from growth laws, we have also studied quantita-
tive properties of the evolution morphology like correlation
functions and island-size distribution functions. There are
subtle differences in the scaled correlation functions for
Models B and S, but it is difficult to attribute physical sig-
nificance to these. Further, these differences are not reflected
in the island-size distribution function.

Finally, we have studied the aging of the autocorrelation
function A�tw ,
� in Models B and S. In both cases, we find
that the decorrelation process is driven by both fluctuations
and domain-wall motion. Thus, A�tw ,
� does not exhibit a
simple power-law decay or scaling behavior. We are pres-
ently adapting the continuous-time random walk approach
developed by Puri and Kumar �34� to study the aging of the
autocorrelation functions in Models B and S.
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