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We explore models of hard-rod fluids with a finite number of allowed orientations, and construct their bulk
phase diagrams within Onsager’s second virial theory. For a one-component fluid, we show that the discreti-
zation of the orientations leads to the existence of an artificial(almost) perfectly aligned nematic phase, which
coexists with the(physical) nematic phase if the number of orientations is sufficiently large, or with the
isotropic phase if the number of orientations is small. Its appearance correlates with the accuracy of sampling
the nematic orientation distribution within its typical opening angle. For a binary mixture this artificial phase
also exists, and a much larger number of orientations is required to shift it to such high densities that it does
not interfere with the physical part of the phase diagram.
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I. INTRODUCTION

Understanding the phase behavior of colloidal suspen-
sions of rodlike particles requires an accurate description of
their microscopic properties. Fluids of hard rods may be con-
sidered as the simplest systems on which the models incor-
porating particle orientational degrees of freedom can be
tested[1,2]. One of the exact theoretical results dates back to
Onsager[3] who analyzed the transition from a uniform iso-
tropic phase to an orientationally ordered nematic phase in a
fluid of monodisperse hard needles. He realized that the av-
erage pairwise(rod-rod) excluded volume is reduced in the
nematic phase compared to that in the isotropic phase, and
argued that the resulting gain of free volume(and hence
translational entropy) compensates the loss of orientation en-
tropy (due to the nematic ordering) at sufficiently high con-
centrations of rods[3]. Onsager derived a nonlinear integral
equation for the orientation distribution function, a key quan-
tity of the theory, which is constant in the isotropic phase and
peaked about the director in the nematic phase. He circum-
vented the problem of explicitly calculating the nematic ori-
entation distribution function(ODF) by adopting a varia-
tional ansatz, which was numerically checked to be rather
accurate later[1].

The generalization of the Onsager model to binary mix-
tures of rods showed the possibility of strong fractionation
[4,5] and even nematic-nematic demixing at sufficiently high
density, driven by a competition between orientation entropy
and ideal mixing entropy[6–8]. The functional forms of
ODF’s in these studies were either variational Gaussian
[5,7], truncated expansions in Legendre polynomials[4], or
numerically determined on an angular grid[6] or on a scaled
angular grid[8]. In all these cases the focus was on describ-
ing the system with a continuum of orientations.

An alternative approach is to study models with a finite
numberN of allowed orientations while the positions of the
centers of mass of the rods remain continuous. The first such
model was proposed by Zwanzig[9], with orientations of a
rod to be restricted toN=3 mutually perpendicular directions
v̂i , i =h1, . . . ,Nj. Despite its inability to resolve the orienta-

tional structure of the one-particle distribution function in
any detail, it has been successfully applied to explore wetting
phenomena near a single hard wall and in a slit[10], or phase
diagrams of polydisperse systems[11,12]. The main advan-
tage of such discrete models in comparison with the continu-
ous ones is their computational simplicity. The combination
of spatial inhomogeneity and/or polydispersity with a con-
tinuum of orientations is rather demanding numerically, and
the computational efforts can be reduced significantly by dis-
cretizing the orientations[11,13,14]. The hope has, of course,
always been that with an increase of the number of allowed
orientations one would smoothly approach the continuum
limit. Here we show that this isnot the case.

The possibility of a continuous interpolation between re-
sults for the discrete models on the one hand and Onsager-
like solutions on the other has first been questioned by Stra-
ley [15] in studies of models with dodecahedralsN=6d and
icosahedralsN=10d symmetries. He concluded that they do
not trend towards the continuum solution due to the single
allowed orientation within the typical opening angle
s<p /9d of the nematic distribution at coexistence. Unfortu-
nately, one cannot proceed the sequence of models withN
=3,6,10 anyfurther, since a larger fully symmetric set of
orientations on the unit sphere does not exist. In order to be
able to study the effect of discretizing the allowed orienta-
tions we give up part of the symmetry of the set, and this
allows us to connect continuous and discrete models. We
apply our method not only to a one-component system of
rods, but also to binary mixtures, which may be considered
as the simplest polydisperse systems.

This paper is organized as follows. In Sec. II we derive
the grand potential functional for a model with a discrete
number of allowed rod orientations from the Onsager func-
tional. We calculate bulk equations of state for specific ori-
entational sets, and determine the number of orientations re-
quired to resemble the continuous Onsager solution. In Sec.
III we apply the method to construct bulk phase diagrams of
binary mixtures of thin and thick rods. We demonstrate that
their structure can be significantly modified due to orienta-
tional discretization. A summary and some discussion of our
results will be presented in Sec. IV.
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II. MONODISPERSE RODS

Consider a fluid of hard rods of lengthL and diameterD
sL@Dd in a macroscopic volumeV at temperatureT and
chemical potentialm. The “Onsager” grand potential func-
tional Vfrg of the one-particle distribution functionrsv̂d can
be written, within second virial approximation, as[3]

bVfrsv̂dg =E dv̂rsv̂dslnfrsv̂dng − 1 −bmd

+
1

2
E dv̂dv̂8Esv̂,v̂8drsv̂drsv̂8d, s1d

where b=skTd−1 is the inverse temperature,n is the rod’s
thermal volume, andEsv̂ ,v̂8d is the excluded volume of
rods with orientationsv̂ and v̂8. The functionrsv̂d is nor-
malized asn=edv̂rsv̂d, with n the bulk number density
swhich depends on bmd. The minimum condition
dVfrsv̂dg /drsv̂d=0 on the functional leads to the nonlinear
integral equation

lnfrsv̂dng +E dv̂8Esv̂,v̂8drsv̂8d = bm, s2d

to be solved for the equilibrium distributionrsv̂d.
Models with a discrete numberN of allowed rod orienta-

tions can be systematically derived from the continuous
model (1) by dividing the unit sphere into solid sectors
Dv̂i ,si =1, . . . ,Nd around vectorsv̂i, and fixing the rod den-
sity rsv̂d=rsv̂id within each sector as well as the excluded
volume Esv̂ ,v̂8d=Esv̂i ,v̂ jd for every pair of sectors. The
grand potential functionalVfrig of such an “orientationally
discretized” fluid with the densityri =rsv̂idDv̂i and the ex-
cluded volumesEij =Esv̂i ,v̂ jd is

bVfrig = o
i=1

N

rislnfring − 1 −bmd +
1

2 o
i,j=1

N

Eijrir j

− o
i=1

N

riln Dv̂i , s3d

with normalizationn=oi=1
N ri and Dv̂i being the volume of

the solid sectorDv̂i. The last term in Eq.s3d represents the
contribution due to the discretization procedure into the
grand potentialV, i.e., the intrinsic difference between con-
tinuous and discrete models. For a homogeneous distribution
of vectorsv̂i on the unit sphere andDv̂i =Dv̂ si.e., for the
models with N=3,6, and 10f15gd, it trivially shifts the
chemical potentialbmd=bm+ln Dv̂, which does not have
any consequence for the solutionsri at a fixedn, and for
the thermodynamics of the isotropic-nematic transition.
However, whenDv̂i is not the same for alli, it acts as an
external orientational field that tends to favor the larger
sectors over the smaller ones. This becomes explicit if we
consider the Euler-Lagrange equations that correspond to
the discrete functionalfor equivalently the analog of
Eqs. s2dg

lnfring + o
j=1

N

Eijr j = bm + ln Dv̂i , s4d

now to be solved forri. Note that the equation of statep
=psn,Td does not pick up an additional term from the dis-
cretization,

bp = n +
1

2o
j=1

N

Eijrir j , s5d

but the distributionsri to be inserted into it do depend on the
discretization.

Further discussion requires a specification of the set of
allowed orientationsv̂i , i =1, . . . ,N and the associated solid
sectorsDv̂i. Unfortunately, it is impossible to completely
cover a surface of the unit sphere by equal regular spherical
M polygons, whereM indicates the number of polygon’s
sides(only five Platonic solids exist). But symmetries of the
function rsv̂d can be explicitly included into the set of vec-
tors v̂i in order to simplify the problem. For the present
study we fix theẑ axis of the coordinate system to be parallel
to the nematic directorn̂ and assume uniaxial symmetry
of the functionrsv̂d=rsud, with u=arccossv̂ ·n̂d the angle
betweenv̂ and n̂. The azimuthal angle is denoted byf,
and hence we characterize a vector v̂
=ssin u cosf ,sin u sin f ,cosud by the anglesu andf. The
“up-down” symmetry of the nematic phase reduces the ori-
entational space to half the upperhemisphere, i.e.,u
P f0,p /2g and fP f0,pg. As we do not expect any azi-
muthal symmetry breaking we restrict attention toNf uni-
formly distributed values forf for every allowedu. We con-
sider a uniform distribution ofNu polar anglesuP f0,p /2g,
i.e.,

suk,fld = S psk − 1d
2sNu − 1d

,
psl − 1d
Nf − 1

D ,

k = 1, . . . ,Nu, l = 1, . . . ,Nf, s6d

as well as a uniform distribution ofNu values of cosu
P f0,1g, i.e.,

suk,fld = SarccosF1 −
k − 1

Nu − 1
G,

psl − 1d
Nf − 1

D .

k = 1, . . . ,Nu, l = 1, . . . ,Nf. s7d

The solid sectorsDv̂i are determined by bisecting the angles
between the vectorv̂i and its nearest neighbors, and the
corresponding volumes are given byDv̂i =eDv̂i

sin ududf,
such thatoi Dv̂i =4p.

Figure 1 shows the dimensionless pressurep* =bpL2D as
a function of the dimensionless bulk densityn* =nL2D for
the grid(6) with differentNu andNf=5. The plateaux(of the
solid lines) correspond to the isotropic-nematic coexistence,
obtained by equating pressure and chemical potential in the
two phases. ForNuø9 the transition occurs between the iso-
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tropic phasesId and an(almost) perfectly aligned nematic
phasesAd with the pressure being close to the ideal gas pres-
sure. Note that such grids correspond to a singleu within the
“Onsager” opening angle, i.e., 0øu1øp /18,u2. As soon
as 0øu1,u2øp /18, or Nu.9, the distribution function
rsud at isotropic-nematic coexistence starts to converge to
the continuous solution. These results are in full agreement
with the previous explanation of Straley[15]. Equations of
state for the model(7) are very similar to Fig. 1 but start to
resemble Onsager-like distribution function forNu.80 due
to the poor sampling ofv̂i near the nematic director. Equa-
tions of state for the ZwanzigsN=3d, dodecahedralsN=6d,
and icosahedralsN=10d models were calculated using the
original formulations[15], and are included for comparison.
Our results forNuø9 seem to converge well to these exist-
ing results.

For Nu.20 the pressure of the high-density nematic
phase clearly demonstrates a linear dependence on the bulk
density, i.e.,bpsnd,n. With increasingNu it gradually ap-
proaches a limiting scaling behaviorbpsnd=3n, established
for the continuous Onsager solution by means of a scaling
argument[16].

The discretization of the rod’s allowed orientations shows
the existence of an “artificial transition” from a less-ordered
nematic phase(N) to a near-perfectly aligned phasesAd for
Nu.9, as indicated by the dashed horizontal lines in Fig. 1.
It occurs due to the same competition between excluded vol-
ume and orientational entropy as in theIN transition, and
puts an additional constraint on the description of the nem-
atic bulk state by restricted-orientation models. Below we
argue that it has important consequences for discrete models
of (polydisperse) hard-rod mixtures, where separation into
nematic phases with different composition occurs at suffi-
ciently high densities.

III. BINARY MIXTURES

Consider a binary mixture of thinsD1d and thick sD2d
hard rods of equal lengthL and the diameter ratiod
=D2/D1=4 in a macroscopic volumeV at temperatureT and
chemical potentialsm1 and m2, respectively. The “Onsager”
grand potential functional for this system can be written as
[1]

bVfhrssv̂djg = o
s=1

2 E dv̂rssv̂dhlnfrssv̂dng − 1 −bmsj

+
1

2 o
s,s8=1

2 E dv̂dv̂8Es,s8sv̂;v̂8d

3rssv̂drs8sv̂8d, s8d

with normalizationns=edv̂rssv̂d. It is known from previ-
ous workf17–19g that the bulk phase diagram of this system
exhibits sid strong fractionation at isotropic-nematicsI −N2d
coexistence,sii d nematic-nematicsN1-N2d coexistence ending
in a consoluteN1-N2 point at sufficiently high pressure, and
siii d an I-N1-N2 triple point. The discrete version of this
model follows directly from Eq.s3d as

bVfhrsijg = o
s=1

2

o
i=1

N

rsisln frsinsg − 1 −bmsd

+
1

2 o
ss8=1

2

o
i,j=1

N

Esi;s8 jrsirs8 j − o
s=1

2

o
i=1

N

rsiln Dv̂i ,

s9d

with the densitiesrsi =rssv̂idDv̂i, the excluded volumes
Esi;s8 j =Ess8sv̂i ,v̂ jd and the number densities normalization
ns=oi=1

N rsi. Figure 2 shows the phase diagrams for discrete
systems in thep* -x representation with the dimensionless
pressurep* =bpL2D1 and the mole fraction of thick rodsx
=n2/ sn1+n2d, for several orientational gridss6d with Nu

=11 sad, 20 sbd, 30 scd, 50 sdd, and Nf=10. Note that all
four discretizations are such that they reproduce the physi-
cal Onsager-likeI-N transition atx=0 andx=1, at pres-
suresp* <17.7 and 4.4,respectively. However, the exis-
tence of the artificial aligned nematic phaseA gives rise to
spuriousI-A, N1-A, andN2-A phase equilibria, whereI, N1,
andN2 are the physical isotropic and nematic phases.sFor
the coarsest discretization withNu=11 fFig. 2sadg the N1
phase is stable in a very narrow region beyond the reso-
lution of the picture.d Upon refining the discretization
from Nu=11 the I-N2-A triple point s=d shifts to higher
pressures, and combines with theI-N1-A triple point sDd at
Nu=30 fFig. 2scdg to form the physicalI-N1-N2 triple point
snow denoted by=d and an artificialN1-N2-A triple point
sDd at slightly higher pressure. Further grid refinements to
Nu=50 yield the physical phase diagram with anI-N1-
N2 triple point andN1-N2 consolute point as in Ref.f17g,
but with a spuriousN-A coexistence at pressures beyond
the “physical” part of the phase diagram. At these pres-

FIG. 1. Equation of state for models with different number of
allowed polar anglesNu. Positions of the phase transitions are indi-
cated by the horizontal lines. The continuous Onsager solution
(Ons) can be reproduced in the present density interval withNu

ù50. The dotted lines correspond to equations of state for the
Zwanzig(Z), dodecahedral(6S) and icosahedral(10S) models[15].
The dashed horizontal lines correspond to a spurious nematic-
nematicsN−Ad transition due to poor discretization of the allowed
orientations.
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sures one does not distinguishN1 and N2 nematic phases,
but the single nematic phase denoted byN here.

IV. SUMMARY AND DISCUSSION

We have explored the connections between continuous
and restricted orientation models of monodisperse and binary
hard-rod fluids(in the Onsager “needle” limitL@D). Our
main finding is that a discretization of the orientations leads
to the existence of a nonphysical almost perfectly aligned
nematic phasesAd at high densities. If the discretization is
coarse, i.e., the number of allowed orientations is small, then
the A phase can coexist with the isotropic phasesId, and at
sufficiently fine discretization with the nematic phaseN. We
also found that the continuum limit requires a finer orienta-
tion grid for a mixture than the one-component fluid.

In order to reduce the number of discrete orientations in
binary mixtures, we have explored several models with a
nonuniform discretization of the angular space. In particular,
the physical phase diagram of binary mixtures of thin and
thick rods with d=4.0 can be reproduced withNu=30 if
2Nu /3 points are uniformly distributed in the interval
f0,p /4g and the remainingNu /3 points infp /4 ,p /2g. Note
that this does not remove the conceptual problem, it rather
shifts the problem to identifying correlations between the

structure of the phase diagram and the employed numerical
grids. However, this procedure can be tedious, e.g. for inter-
facial problems or highly polydisperse fluids, since studying
these correlations involves the calculation of complete phase
diagrams. Nevertheless we used and checked this scheme
ourselves in studies of free planar interfaces of binary hard-
rod mixtures[18,19].

Clearly, our results are strongly influenced by the adopted
limit L@D, but we would expect similar effects, although
weaker, for finiteL /D ratio. An additional interesting issue
was raised by an anonymous authoritative source, who
pointed out the importance of all virial coefficients in the
Zwanzig model, even in the Onsager limitL@D. As the
second virial theory is exact for freely rotating needles[3],
one can try to relate an increase in the number of virial
coefficients necessary to recover the Onsager limit to the
decrease of the number of allowed orientations. This sugges-
tion requires studies of models with higher virial coefficients,
which are far from trivial and beyond the scope of this work.

Findings of the present work could be relevant for the
study of inhomogeneous and/or polydisperse fluids of rods,
which are computationally more demanding and hence im-
pose the use of a rather coarse grid of orientations in order to
be tractable and practical. It shows that care must be taken
with such rather coarse grids, since they can give rise to an
artificial, discretization-induced aligned nematic phase.

FIG. 2. Bulk phase diagrams of a binary thin-thick mixture of hard rods(diameter ratioD2/D1=4.0, equal lengthL@D2), in the
pressure-composition representation, withp* the dimensionless pressure andx the mole fraction of the thicker rods. We distinguish the
low-pressure isotropic phasesId, high-pressure nematic phases(N1 and N2), aligned phaseA, upper (D) and lower (¹) triple phase
coexistence and anN1–N2 critical point s* d. The grey regions, enclosed by the binodals, denote the two-phase regimes, and the tie lines that
connect coexisting phases, are horizontal.
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