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Isotropic-nematic transition in hard-rod fluids: Relation between continuous
and restricted-orientation models
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We explore models of hard-rod fluids with a finite number of allowed orientations, and construct their bulk
phase diagrams within Onsager’s second virial theory. For a one-component fluid, we show that the discreti-
zation of the orientations leads to the existence of an artifialatlosy perfectly aligned nematic phase, which
coexists with the(physica) nematic phase if the number of orientations is sufficiently large, or with the
isotropic phase if the number of orientations is small. Its appearance correlates with the accuracy of sampling
the nematic orientation distribution within its typical opening angle. For a binary mixture this artificial phase
also exists, and a much larger number of orientations is required to shift it to such high densities that it does
not interfere with the physical part of the phase diagram.
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[. INTRODUCTION tional structure of the one-particle distribution function in
any detail, it has been successfully applied to explore wetting
Understanding the phase behavior of colloidal suspenphenomena near a single hard wall and in a[$0], or phase
sions of rodlike particles requires an accurate description ofliagrams of polydisperse systerfid,12. The main advan-
their microscopic properties. Fluids of hard rods may be contage of such discrete models in comparison with the continu-
sidered as the simplest systems on which the models incopus ones is their computational simplicity. The combination
porating particle orientational degrees of freedom can bef spatial inhomogeneity and/or polydispersity with a con-
tested[1,2]. One of the exact theoretical results dates back tdinuum of orientations is rather demanding numerically, and
Onsagei{3] who analyzed the transition from a uniform iso- the computational efforts can be reduced significantly by dis-
tropic phase to an orientationally ordered nematic phase in &f€tizing the orientationgl1,13,14. The hope has, of course,
fluid of monodisperse hard needles. He realized that the a@/Ways been that with an increase of the number of allowed
erage pairwisérod-rod excluded volume is reduced in the Orientations one would smoothly approach the continuum
nematic phase compared to that in the isotropic phase, arltinit: Here we show that this isot the case.
argued that the resulting gain of free volurtand hence The pOSSIbI'IIty of a continuous interpolation between re-
translational entropycompensates the loss of orientation en-ls.ll(”tS fc|)r _the dlscrre]te rr;\oderlls 0? th% one hand_ andd(%nsgger-
tropy (due to the nematic orderip@t sufficiently high con- ke solutions on the other has first been questioned by Stra-

centrations of rod$3]. Onsager derived a nonlinear integral ley [15] in studies of models with dodecahed(al=6) and
: po]. Unsager deriy . g icosahedralN=10) symmetries. He concluded that they do
equation for the orientation distribution function, a key quan-

tity of the theory, which is constant in the isotropic phase ancgot trend towards the continuum solution due to the single

. : . . llowed orientation within the typical opening angle
peaked about the director in the nematic phase. He circum); P P g g

red th bl ¢ licitl leulating th i ~1/9) of the nematic distribution at coexistence. Unfortu-
vented the problém ot explicitly calculating the nematc ori- nately, one cannot proceed the sequence of models Mith
entation distribution functionfODF) by adopting a varia-

i . . =3,6,10 anyfurther, since a larger fully symmetric set of
tional ansatz, which was numerically checked to be rathegientations on the unit sphere does not exist. In order to be
accurate latef1]. . _ able to study the effect of discretizing the allowed orienta-
The generalization of the Onsager model to binary miXjons we give up part of the symmetry of the set, and this
tures of rods showed the possibility of strong fractionationallows us to connect continuous and discrete models. We
[4,5] and even nematic-nematic demixing at sufficiently highapply our method not only to a one-component system of
density, driven by a competition between orientation entropyods, but also to binary mixtures, which may be considered
and ideal mixing entropy{6—8]. The functional forms of as the simplest polydisperse systems.
ODF’s in these studies were either variational Gaussian This paper is organized as follows. In Sec. Il we derive
[5,7], truncated expansions in Legendre polynom[dls or  the grand potential functional for a model with a discrete
numerically determined on an angular gi&j or on a scaled number of allowed rod orientations from the Onsager func-
angular grid[8]. In all these cases the focus was on describtional. We calculate bulk equations of state for specific ori-
ing the system with a continuum of orientations. entational sets, and determine the number of orientations re-
An alternative approach is to study models with a finitequired to resemble the continuous Onsager solution. In Sec.
numberN of allowed orientations while the positions of the Il we apply the method to construct bulk phase diagrams of
centers of mass of the rods remain continuous. The first sudbinary mixtures of thin and thick rods. We demonstrate that
model was proposed by Zwanzjg], with orientations of a their structure can be significantly modified due to orienta-
rod to be restricted tdl=3 mutually perpendicular directions tional discretization. A summary and some discussion of our
@;,i={1,... N}. Despite its inability to resolve the orienta- results will be presented in Sec. IV.
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Il. MONODISPERSE RODS N

Consider a fluid of hard rods of lengthand diameteD Inlpv] + gl Bipy = B+ In Aw, @

(L>D) in a macroscopic volum& at temperaturel and _
chemical potentiaju. The “Onsager” grand potential func- how to be solved foip;. Note that the equation of stafe

tional Q[ p] of the one-particle distribution functigsta) can ~ =p(n,T) does not pick up an additional term from the dis-
be written, within second virial approximation, £ cretization,
1 N
B p(w)] = f dop(@)(In[p(w)v] -1 -Bu) pp=n+ 521 Eijpipj» (5)
J:

+ 1 f dedé E(@,&)p(@)p(&'), (1) b_ut the_ dis_tribution$)i to be inserted into it do depend on the
2 discretization.

_ ) _ Further discussion requires a specification of the set of
where 8=(kT)™" is the inverse temperature, is the rod’s  allowed orientationsa; i=1, ... N and the associated solid
thermal volume, andE(w,@’) is the excluded volume of sectorsAé;. Unfortunately, it is impossible to completely
rods with orientationge and w’. The functionp(@) is nor-  cover a surface of the unit sphere by equal regular spherical
malized asn=[dap(w), with n the bulk number density M polygons, whereM indicates the number of polygon’s
(which depends on Bw). The minimum condition sides(only five Platonic solids existBut symmetries of the
8Q[p(w)]/ Sp(ew)=0 on the functional leads to the nonlinear function p(@) can be explicitly included into the set of vec-
integral equation tors w; in order to simplify the problem. For the present

study we fix thez axis of the coordinate system to be parallel

. . o . to the nematic directon and assume uniaxial symmetry
In[p(@)v] +f do'E(o,0")p(e’) = Bu, 2 of the functionp(@)=p(6), with #=arccosw-n) the angle
betweenw and . The azimuthal angle is denoted la,
to be solved for the equilibrium distributign(w). and hence we characterize a  vectorw

Models with a discrete numbé¥ of allowed rod orienta- =(sin 6 cos ¢, sin 6 sin ¢, cos 6) by the angle® and¢. The
tions can be systematically derived from the continuous'up-down” symmetry of the nematic phase reduces the ori-
model (1) by dividing the unit sphere into solid sectors entational space to half the upperhemisphere, if.,
Aw;,(i=1,... N) around vectorsw;, and fixing the rod den- e[0,#/2] and ¢ €[0,n]. As we do not expect any azi-
sity p(w)=p(w;) within each sector as well as the excluded muthal symmetry breaking we restrict attentionNg uni-
volume E(&, ®')=E(®;, &;) for every pair of sectors. The formly distributed values fot for every allowedd. We con-
grand potential functiona)[p;] of such an “orientationally ~sider a uniform distribution oN, polar anglesf  [0,7/2],
discretized” fluid with the density;=p(@;)A®; and the ex- i.e.,
cluded volumess;; =E(w;, @) is

mk=1) =(-1)
N N (6 ) = (2 ) ,
1 (Ng_ 1) N‘/’ - 1
BOlpl =2 pin[pv] - 1 - Bu) + > > Eijpip;
i=1 ij=1
y k=1,...Ny 1=1,... Ny, (6)
- > piln Ad, (3) as well as a uniform distribution oN, values of co¥

i=1 e[0,1], i.e.,

with normalizationn:Zi’i1 pi and Aw; being the volume of

the solid sectoA ;. The last term in Eq(3) represents the (6, ) = (arcco{l -
contribution due to the discretization procedure into the

grand potentiall, i.e., the intrinsic difference between con-

tinuous and discrete models. For a homogeneous distribution k=1,...Ny 1=1,... Ny 7

of vectorsa; on the unit sphere andw,=Aw (i.e., for the

models withN=3,6, and 10[15]), it trivially shifts the  The solid sectordé; are determined by bisecting the angles
chemical potentiaBuy=Bu+In Ad, which does not have between the vectoi; and its nearest neighbors, and the
any consequence for the solutiopsat a fixedn, and for ~ corresponding volumes are given By =/, sin 6déde,

the thermodynamics of the isotropic-nematic transition.such thatS; Aw;=4.

However, whenA; is not the same for all, it acts as an Figure 1 shows the dimensionless presqireSpL°D as
external orientational field that tends to favor the largera function of the dimensionless bulk density=nL?D for
sectors over the smaller ones. This becomes explicit if wehe grid(6) with differentN, andN,=5. The plateauxof the
consider the Euler-Lagrange equations that correspond tsolid lineg correspond to the isotropic-nematic coexistence,
the discrete functionalor equivalently the analog of obtained by equating pressure and chemical potential in the
Egs.(2)] two phases. FoN,=<9 the transition occurs between the iso-

k—1]wa—n)
Ng_l ’N¢_1 '
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lll. BINARY MIXTURES

Consider a binary mixture of thifiD;) and thick (D)
hard rods of equal length and the diameter ratial
=D,/D;=4 in a macroscopic volum¥ at temperaturd and
chemical potentialg:; and u,, respectively. The “Onsager”
grand potential functional for this system can be written as

[1]

2
pOllp a)=3 [ dip (@ inlp (@)~ 1- B

o=1
12
30 + > J dedd'E,, . (@;6")
n. o,0'=1
FIG. 1. Equation of state for models with different number of Xpo(@)py (@), (8)

allowed polar angledl,. Positions of the phase transitions are indi- o R R . .
cated by the horizontal lines. The continuous Onsager solutioNVith normalizationn, = fdwp, (). It is known from previ-
(Ons can be reproduced in the present density interval Wigh ~ 0us work[17-19 that the bulk phase diagram of this system
=50. The dotted lines correspond to equations of state for th&xhibits (i) strong fractionation at isotropic-nematic-N,)
Zwanzig(Z), dodecahedrabS) and icosahedratl0S models[15]. coexistence(ii) nematic-nemati€N;-N,) coexistence ending
The dashed horizontal lines correspond to a spurious nematign a consoluteN;-N, point at sufficiently high pressure, and
nematic(N—A) transition due to poor discretization of the allowed (iii) an I-N;-N, triple point. The discrete version of this

orientations. model follows directly from Eq(3) as

tropic phase(l) and an(almos) perfectly aligned nemati .

ropic phase(l) and an(almos) perfectly aligned nematic o _ 4

phase(A) with the pressure being close to the ideal gas pres- ALyt = le Poi(In Lpgivol =1 = Bu,)

sure. Note that such grids correspond to a sirghathin the . .

“Onsager” opening angle, i.e.,<06;<w/18<6,. As soon 1 N
as 0<6,<0,<m/18, or N,>9, the distribution function +5 2 2 EgiiPaipor — 2 2 Pailn Ay,
p(6) at isotropic-nematic coexistence starts to converge to oo'=1 1171 o=1i=1

the continuous solution. These results are in full agreement (9)

with the previous explanation of Stral¢$5]. Equations of

state for the mode(7) are very similar to Fig. 1 but start to with the densitiesp,;=p,(@;)Aw;, the excluded volumes
resemble Onsager-like distribution function fidp>80 due Eyio'j=Eqo(@;, @;) and the number densities normalization
to the poor sampling o, near the nematic director. Equa- ngz'zir\il psi- Figure 2 shows the phase diagrams for discrete
tions of state for the ZwanzigN=3), dodecahedraiN=6),  gystems in thep'-x representation with the dimensionless
and icosahedra{fN=10) models were calculated using the pressurep’ = BpL2D, and the mole fraction of thick rods
original formulationg15], and are included for compariso_n. =n,/(n,+ny), for several orientational gridés) with N,
Our results folN,<9 seem to converge well to these exist- =11 (a), 20 (b), 30 (), 50 (d), andN,=10. Note that all

ing results. f . At ;
. . . four discretizations are such that they reproduce the physi-
For N,>20 the pressure of the high-density nematic 3l Onsager-lika-N transition atx:Oyangx:l c prez-y

phase clearly demonstrates a linear dependence on the bdi g . !
density, i.e.,Bp(n) ~n. With increasingN, it gradually ap- suresp ~17.7 ?‘_”‘?' 4.4_respect|vely_. Howev«_ar, th_e EXIS-
proaches a limiting scaling behavigip(n) =3n, established tence of the artificial aligned nematic pha&gives rise to

for the continuous Onsager solution by means of a scalin puriousl-A, Ni-A, andN,-A phase equilibria, wherk N,,
argument16]. ndN, are the physical isotropic and nematic phagEsr

The discretization of the rod's allowed orientations showsthe coarsest discretization with,=11 [Fig. 2(@)] the N,

the existence of an “artificial transition” from a less-orderedPhase is stable in a very narrow region beyond the reso-
nematic phaséN) to a near-perfectly aligned phaga) for lution of the picture. Upon ref_lnlng the_dlscretl_zatlon
N,>9, as indicated by the dashed horizontal lines in Fig. 1from N,=11 theI-N,-A triple point (V) shifts to higher

It occurs due to the same competition between excluded voPRressures, and combines with thl;-A triple point(A) at
ume and orientational entropy as in thé transition, and Ny=30[Fig. 2(c)] to form the physical-N;-N, triple point
puts an additional constraint on the description of the neménow denoted byV) and an artificialN;-N,-A triple point
atic bulk state by restricted-orientation models. Below we(A) at slightly higher pressure. Further grid refinements to
argue that it has important consequences for discrete modéel=50 yield the physical phase diagram with &MN;-

of (polydispersg hard-rod mixtures, where separation into N, triple point andN;-N, consolute point as in Ref17],
nematic phases with different composition occurs at suffibut with a spuriousN-A coexistence at pressures beyond
ciently high densities. the “physical” part of the phase diagram. At these pres-
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FIG. 2. Bulk phase diagrams of a binary thin-thick mixture of hard r@dlameter ratioD,/D;=4.0, equal lengti>D,), in the
pressure-composition representation, withthe dimensionless pressure axndhe mole fraction of the thicker rods. We distinguish the
low-pressure isotropic phad¢), high-pressure nematic phas@s; and N,), aligned phaseA, upper(A) and lower (V) triple phase
coexistence and aN;—N, critical point(*). The grey regions, enclosed by the binodals, denote the two-phase regimes, and the tie lines that
connect coexisting phases, are horizontal.

sures one does not distinguidh and N, nematic phases, structure of the phase diagram and the employed numerical
but the single nematic phase denotedNbyere. grids. However, this procedure can be tedious, e.g. for inter-
facial problems or highly polydisperse fluids, since studying
these correlations involves the calculation of complete phase
IV. SUMMARY AND DISCUSSION diagrams. Nevertheless we used and checked this scheme
ourselves in studies of free planar interfaces of binary hard-
We have explored the connections between continuoug mixtures[18,19.
and restricted orientation models of monodisperse and binary Clearly, our results are strongly influenced by the adopted
hard-rod fluids(in the Onsager “needle” limit>D). Our  |imit L>D, but we would expect similar effects, although
main finding is that a discretization of the orientations leadsyeaker, for finiteL/D ratio. An additional interesting issue
to the existence of a nonphysical almost perfectly alignedyas raised by an anonymous authoritative source, who
nematic phase¢A) at high densities. If the discretization is pointed out the importance of all virial coefficients in the
coarse, i.e., the number of allowed orientations is small, thezwanzig model, even in the Onsager linlite=D. As the
the A phase can coexist with the isotropic phdbg and at  second virial theory is exact for freely rotating needi8k
sufficiently fine discretization with the nematic phdéeWe  one can try to relate an increase in the number of virial
also found that the continuum limit requires a finer orienta-coefficients necessary to recover the Onsager limit to the
tion grid for a mixture than the one-component fluid. decrease of the number of allowed orientations. This sugges-
In order to reduce the number of discrete orientations inion requires studies of models with higher virial coefficients,
binary mixtures, we have explored several models with avhich are far from trivial and beyond the scope of this work.
nonuniform discretization of the angular space. In particular, Findings of the present work could be relevant for the
the physical phase diagram of binary mixtures of thin andstudy of inhomogeneous and/or polydisperse fluids of rods,
thick rods with d=4.0 can be reproduced witN,=30 if ~ which are computationally more demanding and hence im-
2Ny/3 points are uniformly distributed in the interval pose the use of a rather coarse grid of orientations in order to
[0,7/4] and the remainindN,/3 points in[7/4,7/2]. Note  be tractable and practical. It shows that care must be taken
that this does not remove the conceptual problem, it rathewith such rather coarse grids, since they can give rise to an
shifts the problem to identifying correlations between theartificial, discretization-induced aligned nematic phase.
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