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Free planar isotropic-nematic interfaces in binary hard-rod fluids
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Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands

~Received 20 August 2003; published 18 December 2003!

Within the Onsager theory we study free planar isotropic-nematic interfaces in binary mixtures of hard rods.
For sufficiently different particle shapes the bulk phase diagrams of these mixtures exhibit a triple point, where
an isotropic~I! phase coexists with two nematic phases (N1 andN2) of different composition. For all explored
mixtures we find that upon approach of the triple point theI -N2 interface shows complete wetting by an
interveningN1 film. We compute the surface tensions of isotropic-nematic interfaces, and find a remarkable
increase with fractionation, similar to the effect in polydisperse hard-rod fluids.
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I. INTRODUCTION

Colloidal suspensions of rodlike particles are well know
to exhibit a wealthy phase behavior as a function of den
@1–3#. Early experiments on vanadiumpentoxide solutio
@4# and suspensions of tobacco mosaic virus~TMV ! particles
@5# showed a first-order transition from a disordered~isotro-
pic! fluid phase to an ordered~liquid-crystalline nematic!
fluid phase upon increasing the concentration of rods su
ciently. The nematic is homogeneous~it is a fluid!, but the
rods are on average oriented in a specific directionn̂, the
so-called nematic director. The bulk nematic ordering is
uniaxial symmetry, i.e., there is azimuthal symmetry aboun̂.
The isotropic-nematic (I -N) transition was first explained b
Onsager, who modeled the colloidal rods as hard needles
first showed that the average pairwise excluded volum
reduced in the nematic phase compared to the isotr
phase, and then argued that the resulting gain of free vol
~and hence translational entropy! compensates the loss o
orientation entropy~due to the nematic ordering! at suffi-
ciently high concentrations of rods@6#. In other words, the
ordering follows as a consequence of maximizing the to
entropy. More recently it was shown that a further increa
of the concentration of TMV can also give rise to smec
ordering @7,8#, where the translational invariance is brok
and the system forms a layered structure. In the 1980s
1990s computer simulations@9,10#, and later density func-
tional theories@11–13#, have shown that also the smect
phase can be explained by the hard-rod model for collo
rods. One concludes, therefore, that the bulk phase beha
of these systems is well understood by now.

Onsager’s theory for hard rods has been extended to
scribe bulkmixturesof colloidal rods. For the case of binar
mixtures of longer and shorter rods, it was found that theI -N
transition is accompanied by strong fractionation, such t
the coexisting nematic phase contains a relatively large f
tion of the longer rods@14,15#. Later theoretical work on
long-short mixtures also showed the possibility of nema
nematic (N1-N2) demixing~driven by a peculiar competition
between orientation entropy and ideal mixing entropy!, and
an isotropic-nematic-nematic (I -N1-N2) triple point in the
phase diagram@16–19# of mixtures with a length ratio more
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extreme than about 1:3. Later also binary mixtures of t
and thick hard rods were considered. They were shown
have phase diagrams similar to those of long-short mixtu
i.e., with strong fractionation atI -N coexistence and with
N1-N2 and I -N1-N2 coexistence for diameter ratios excee
ing 1:3.8 @18–21#, but with an additional possibility for
isotropic-isotropic (I 1-I 2) phase coexistence due to th
depletion effect@20–22# if the diameter ratio is more ex
treme than about 1:8. Interestingly, thin-thick mixtures ha
recently been realized experimentally by mixing ‘‘bare’’f d
virus particles~length 1mm) with ones that are ‘‘coated’
with polyethyleneglycol~PEG! @23#. The diameter ratio of
these systems can be tuned by varying the ionic strengt
the solvent: due to an increasing salt concentration the ef
tive diameter of the~charged! bare rods shrinks because
enhanced screening, whereas that of the PEG-coated ro
not ~or hardly! affected because of the steric nature of PE
Exploiting this effect allowed for the experimental study
diameter ratios up to about 1:4.5, andI -N1 , I -N2 , N1-N2 as
well as I -N1-N2 triple coexistence were actually observe
@23#.

The present study is devoted to the planar interfaces
exist between the coexisting bulk phases in binary mixtu
of colloidal rods. Our focus is on the calculation of bo
thermodynamic and structural properties of these interfa
The main thermodynamic quantity of interest is the surfa
tensiong, and the structural properties we will investiga
are the profiles of the density and the order parameters.
known from the study of theI -N interface of pure~one-
component! suspensions of rods thatg depends on the angl
between the interface normalẑ and the directorn̂ of the
nematic phase asymptotically far from the interface@24–26#.
The study of Refs.@24,27# showed thatg is minimal when
n̂' ẑ, and on this basis~and on the basis of some of our ow
test calculations! we assume this to be the case for mixtur
as well. It is also established by now@24,27,28# that ~i! the
density profile and the nematic order parameter profile of
I -N interface of the pure hard needle fluid change monoto
cally from their values in the isotropic bulk phase to those
the nematic phase,~ii ! the interface thickness is of the orde
of the lengthL of the rods, and~iii ! the interfacial biaxiality
is small and nonmonotonic. In this paper we will show th
the density profiles in mixtures of rods arenot always mono-
tonic, and that the interface thickness not always of ordeL
©2003 The American Physical Society03-1
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due to the formation of macroscopically thick wetting film
close to the bulk triple points. Some of these findings ha
been reported briefly elsewhere@30#. Moreover, we will
show that the tension in mixtures of rods tends to be subs
tially higher than that of the pure systems of their comp
nents.

This paper is organized as follows. In Sec. II we introdu
the Onsager functional and the basic Euler-Lagrange e
tion. In Sec. III we solve this equation for bulk geometrie
and we present a few typical bulk phase diagrams. In Sec
we present our method to solve the Euler-Lagrange equa
for interface geometries, and studyI -N1 , N1-N2 and I -N2
interfaces, the latter in particular in the vicinity of the bu
I -N1-N2 triple point. A summary and some discussion of o
results will be presented in Sec. V.

II. DENSITY FUNCTIONAL

We consider a fluid of hard cylinders of two differe
speciess51,2 of lengthLs and diameterDs in a macro-
scopic volumeV at temperatureT and chemical potentials
ms . The thermodynamic properties and the structure of
system can be determined from the grand potential fu
tional V@$rs%# of the one-particle distribution function
rs(r,v̂), wherer denotes the center-of-mass coordinate
the rod of speciess and v̂ the orientation of the long axis
The functionalV@$rs%# is such that~i! it is minimized, for
given ($ms%,V,T), by the equilibrium one-particle distribu
tionsrs(r,v̂), and~ii ! the minimal value of the functional is
the equilibrium grand potentialV @31#.

Within the second virial approximation and in the absen
of external potentials, the functionalV@$rs%# can be written
@1,6# as

bV@$rs%#5(
s

E dqrs~q!„ln@rs~q!Ls
2Ds#212bms…

2
1

2 (
ss8

E dqdq8 f ss8~q;q8!rs~q!rs8~q8!,

~1!

with b5(kT)21 the inverse temperature andf ss8(q;q8) the
Mayer function of thess8 pair of rods with coordinatesq
5$r,v̂% and q85$r8,v̂8%. For hard rods, the focus of ou
study, f ss8(q;q8) equals21 if the rods overlap and van
ishes otherwise. Onsager argued that the second virial
proximation is accurate for long rods, and becomes e
exact for isotropic and nematic bulk fluids in the limit o
vanishing diameter-to-length ratio@6#. We shall adopt this
limit throughout this paper, i.e., we considerDs /Ls8→0 for
any ss8 pair. Therefore, the relative shape of the rods
only characterized by the ratiosl 5L2 /L1 andd5D2 /D1 of
the lengths and the diameters, respectively.

The minimum conditionsdV@$rs%#/drs(q)50 on the
functional lead to the set of nonlinear integral equations

ln@rs~q!Ls
2Ds#2(

s8
E dq8 f ss8~q;q8!rs8~q8!5bms

~2!
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to be solved for the equilibrium distributionsrs(q). Once
determined, they can be inserted into the functional to ob
the equilibrium value of the grand potential

bV5
1

2 (
s

E dqrs~q!~ ln@rs~q!Ls
2Ds#222bms!.

~3!

Note thatV52pV for a bulk system in a volumeV, with
p5p($ms%,T) the pressure. In the presence of a planar s
face or interface of areaA we haveV52pV1gA with g
5g($ms%,T) the surface or interface tension.

In general, fluctuations of the interface position~capillary
waves! are important in the analysis of fluid-fluid interface
The amplitude of such fluctuations is controlled by the ‘‘we
ting parameter’’@32,33#

v[
kBT

4pgj2
, ~4!

where j is the bulk correlation length. For rods of typica
length L and diameterD we shall see thatj;L and g
;kBT/LD, and hencev;D/L, i.e., v vanishes in the On-
sager limit. As a consequence the capillary-wave fluctuati
are unimportant, i.e., the mean-field density functional~1! is
sufficient to describe interfacial phenomena in fluids of lo
hard rods.

III. BULK PHASE DIAGRAMS

The bulk thermodynamic properties of binary hard-r
fluids were studied extensively within Onsager theory. T
minimization of the functional was either performed vari
tionally @16–19,22,34# or through a fully numerical solution
@14,21,28#. We adopted the latter approach as it can be ea
generalized for inhomogeneous systems. For clarity
briefly repeat the essential points of the method and sum
rize the available results.

The bulk distribution functions of the isotropic and nem
atic phase are translationally invariant, i.e.,rs(r,v̂)
5rs(v̂), which allows us to reduce Eq.~2! to

ln@rs~v̂!Ls
2Ds#1(

s8
E dv̂8Ess8~v̂,v̂8!rs8~v̂8!5bms ,

~5!

with Ess8 the excluded volume of a pair of cylinders o
speciess ands8 given by @1#

Ess8~v̂,v̂8!52E dr8 f ss8~r,v̂;r8,v̂8!

5LsLs8~Ds1Ds8!usingu ~6!
3-2
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FREE PLANAR ISOTROPIC-NEMATIC INTERFACES IN . . . PHYSICAL REVIEW E68, 061703 ~2003!
in terms of the angleg between v̂ and v̂8, i.e., g
5arccos(v̂•v̂8). Note that additionalO(LD2) terms are be-
ing ignored in Eq. ~5!, in line with the needle limit
(Ds /Ls8→0) of interest here.

At sufficiently low $bms% the only stable solution of Eq
~5! is the isotropic distributionrs

I (v̂)5ns /(4p), with ns

5*dv̂rs(v̂) the bulk number density of speciess. As ms

are high enough, one or, possibly, two sets of stable unia
solutions rs

N(v̂)5rs(u) exist, with u5arccos(v̂•n̂) the
angle betweenv̂ and the nematic directorn̂. These distribu-
tions have ‘‘up-down’’ symmetry,rs(u)5rs(p2u), hence
rs(u) needs only to be determined foruP@0,p/2#. Using an
equidistantu-grid of Nu530 pointsu iP@0,p/2#, where 1
< i<Nu , we iteratively solve Eq.~5! for the set of 2Nu

equations in order to findrs(u i) numerically. The integral in
Eq. ~5! is calculated with the trapezoidal rule. Coexistence
different phases$I ,N1 ,N2% can be determined by imposin
conditions of mechanical and chemical equilibrium.

In order to gauge the accuracy of the chosenu-grid we
calculate the resulting densities of the coexisting isotro
and nematic phase of the one-component system. We
nIL2D(p/4)53.28160.001, nNL2D(p/4)54.17260.001;
the nematic order parameters of the two coexisting pha
are SI50.00860.001 andSN50.79160.001, and the pres
sure (p/4)bpL2D514.04560.001. These data, based o
Nu530, differ by less then a percent from the most accur
results available in the literature@1#, which we can reproduce
with Nu>80. In order to have consistency between bulk a
interfacial results we takeNu530 in most of our calcula-
tions. The exception is the case of long-short mixtures in
nematic phase, which requiresNu550 for acceptable accu
racy.

In Fig. 1 we show both pressure-composition~a! and
density-density~b! representations of bulk phase diagrams
thin-thick binary mixtures (Ls5L,D2.D1) for several di-
ameter ratiosd[D2 /D1. In Fig. 1~a! the composition vari-
ablex5n2 /(n11n2) denotes the mole fraction of thick rod
and f 5(p2pthick)/(pthin2pthick) is a dimensionless shifte
pressure which takes the valuesf 51,0 at isotropic-nematic
coexistence of the pure-thin (x50) and pure-thick (x51)
systems, respectively. Note that (p/4)bpthinL2D1
5(p/4)bpthickL

2D2514.045, i.e.,pthick5pthin /d, and that
the tie lines connecting coexisting phases are horizonta
the f -x representation of Fig. 1~a!.

At low pressures~or low densities! the phase diagram
show an isotropic~I! phase and at higher pressures~or den-
sities! one (d53.0,3.5) or two (d54.0,4.2) nematic phase
(N1 and N2). For diameter ratiosd53.0,3.5 the phase dia
gram is spindlelike, and the only feature is a strong fracti
ation at coexistence, such that the nematic phase is relat
rich in thick rods and the isotropic phase in thin ones. T
reason behind this fractionation is the relatively large
cluded volume in interactions of the thick rods, which mak
them more susceptible to orientational ordering@14,19,21#.
The fractionation of isotropic-nematic coexistence becom
stronger for increasingd. For 3.8,d,4.29 the bulk phase
diagram develops nematic-nematic (N1-N2) coexistence in a
pressure regimept,p,pc , with pt the triple-point pressure
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andpc the critical ~consolute! pressure. Ford54.0 the con-
solute point is indicated by (*) in Fig. 1. The mechanism
this demixing transition was spelled out in detail in Re
@17,21#, and involves a competition between orientation
entropy~favoring demixing! and entropy of mixing~favoring
mixing!. Interestingly, the width of fractionation gapDx
5xN1

2xN2
for the triple pointN1 andN2 phases scales lin

early with the triple-point pressurept . The critical pressure

FIG. 1. ~a! Bulk phase diagrams of binary thin-thick mixture
for different diameter ratiosd in the f -x representation, withf
5(p2pthick)/(pthin2pthick) the dimensionless shifted pressur
andx the mole fraction of the thicker rods. We distinguish the fu
symmetric isotropic phase~I! and orientationally ordered nemati
phases (N1 and N2). For the diameter ratiod54.0 the I -N1-N2

triple phase coexistence is marked by (n), and theN1-N2 critical
point by (*). ~b! The same phase diagrams in density-density r
resentation, wheren1* 5n1LD1

2(p/4) andn2* 5n2LD2
2(p/4) are the

dimensionless bulk number densities of thin and thick rods, resp
tively. The tie lines connect coexisting state points.
3-3
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of the N1-N2 transition diverges asd→4.29 @17,21#. For d
.3.8 the lower bound of theN1-N2 coexistence is an
I -N1-N2 triple point, indicated by triangles~n! in Fig. 1 for
d54.0. With increasingd the triple pointI and N1 phases
approach the pure-thin bulk coexistence~i.e., xI ,N1

→0),

whereas the composition of the triple pointN2 phase shifts to
a pure-thick phase (xN2

→1).

The f -x representation is convenient for our analys
whereas the densities~volume fractions! of thin and thick
rods are experimental control parameters@3#. For this reason
the same phase diagrams of thin-thick binary mixtures
shown in Fig. 1~b! in density-density representation, wit
n1* 5n1LD1

2(p/4) and n2* 5n1LD2
2(p/4) being the dimen-

sionless bulk number densities of thin and thick rods, resp
tively. In this representation the tie lines are no longer ho
zontal.

In Fig. 2 a set of bulk phase diagrams for long-short
nary mixtures (Ds5D,L2.L1) for several length ratiosl
[L2 /L1 is presented. Herex5n2 /(n11n2) denotes the
fraction of long rods andf 5(p2plong)/(pshort2plong) with
plong5pshort / l

2. All characteristic features of the phase di
grams are the same as in thin-thick mixtures. The fracti
ation of the coexistingI -N2 andN1-N2 phases has a stron
dependence onl, and limits the values accessible for calc
lations tol<3.1 for the chosen grids and the required ac
racy. The main reason is that the nematic ordering in
triple-point N2 phase is very pronounced, requiring a fi
grid @21#.

IV. FREE INTERFACES

We now turn to the thermodynamics and the structure
the free interfaces between the coexisting phases. We as

FIG. 2. Bulk phase diagrams of binary long-short mixtures
different length ratiol in the f -x representation~see caption to Fig.
1!. ~n! mark I -N1-N2 triple phase coexistence and~* ! marks
N1-N2 critical point for l 53.0.
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that the interfaces are planar, with surface normalẑ. The
nematic directorn̂ of the asymptotic nematic bulk phase~s!
can, in general, have a nontrivial tilt angleu t5arccos(n̂• ẑ)
with respect to the interface normal. In the present calcu
tions we restrict attention tou t5p/2, i.e., n̂' ẑ. This geom-
etry is known to be thermodynamically favorable because
its minimal surface tension@24,29#.

The equilibrium distribution functionsrs(z,v̂) depend
on the spatial coordinatez5 ẑ•r, and angular coordinatesv̂
5(u,w) defined by cosu5n̂•v̂ and sinu sinw5ẑ•v̂. These
functions are solutions of the Euler-Lagrange equations
~2! at the coexisting chemical potentialsbms5bms

coex, with
boundary conditionsrs(z→6`,v̂)5rs

(6)(u) being the two
coexisting bulk distributions@labeled by~1! and ~2! here
for brevity#.

The planar symmetry, i.e., the independence ofrs(z,v̂)
of the in-plane coordinatesx andy, allows for a reduction of
the numerics, since the ‘‘excluded slab’’Kss8(z,v̂,z8,v̂8)
52*dx8dy8 f ss8(r,v̂;r8,v̂8) can be calculated analyticall
@25,28#. This reduces the Euler-Lagrange equations to

bms
coex5 ln@rs~z,v̂!Ls

2Ds#1(
s8

E dz8E dv̂8

3Kss8~ uz2z8u,v̂,v̂8!rs8~z8,v̂8!, ~7!

where the expression forKss8(uzu,v̂,v̂8) is given in the
Appendix.

In principle one could now solve Eq.~7! on a (z,u,w)
grid. However, the numerical efforts can be further reduc
if one realizes that biaxiality, i.e., thew dependence, is wea
@27,28#. In that case the truncated expansion

rs~z,u,w!5 (
m50

M

rs,m~z,u!cos~2mw! ~8!

is expected to be accurate for smallM, and hence only a few
‘‘coefficients’’ rs,m(z,u) (m<M ) need to be determined o
a (z,u) grid. It is important to realize, however, that Eq.~8!
implicitly assumes that the nematic directorn̂ does not vary
in space. The coefficientsrs,m(z,u) follow from an insertion
of Eq. ~8! into Eq. ~7!, multiplication by cos(2mw), and in-
tegration overw ~0<w<2p!. For M50 this yields

bms
coex5 ln@rs,0~z,u!Ls

2Ds#1(
s8

E dz8du8sinu8

3Kss8
00

~z2z8,u,u8!rs8,0~z8,u8!, ~9!

where Kss8
00 (z2z8,u,u8)5(2p)21*0

2p*0
2pdwdw8Kss8(z

2z8,v̂,v̂8) is the doubly azimuthally integrated exclude
slab, which we determine numerically once on an appro
ate grid.

The lowest-order correction that takes into account bia
ality results fromM51, and yieldsrs,m(z,u), (m50,1)
from the coupled set of equations

r

3-4
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bms
coex5 ln@rs,0~z,u!Ls

2Ds#1I 0S rs,1~z,u!

rs,0~z,u! D
1(

s8
E dz8du8sinu8~Kss8

00
~z2z8,u,u8!

3rs8,0~z8,u8!1Kss8
01

~z2z8,u,u8!

3rs8,1~z8,u8!!,

05I 1S rs,1~z,u!

rs,0~z,u! D1(
s8

E dz8du8sinu8

3~Kss8
10

~z2z8,u,u8!rs8,0~z8,u8!

1Kss8
11

~z2z8,u,u8!rs8,1~z8,u8!!, ~10!

with Kss8
km (z2z8,u,u8)5(2p)21*0

2p*0
2pdwdw8cos(2kw)

3cos(2mw8)Kss8(z2z8,v̂,v̂8), k,m5$0,1%, again to be de-
termined numerically only once, with

I 0~x!5
1

2pE0

2p

dw ln@11x cos~2w!#5 ln
11A12x2

2
,

I 1~x!5
1

2pE0

2p

dw cos~2w!ln@11x cos~2w!#

5
12A12x2

x
,

for uxu,1.
Note that the boundary conditions imply thatrs,1(z,u)

→0 for uzu→`. In general, the solutionsrs,0(z,u) for M
50 are not identical tors,0(z,u) for M51, but the differ-
ence is small in most cases sinceurs,1(z,u)LsDs

2 u!1. In the
remainder of this paper we shall mainly concentrate on
lutions of Eq.~9!, although some results of Eqs.~10! will be
discussed.

By iteration of Eq.~9! @or Eqs.~10!# with the appropriate
boundary conditions we calculatedrs,0(z,u) @andrs,1(z,u)]
for a number of state pointsms

coex on the I -N1 , I -N2 and
N1-N2 binodals. We used an equidistant spatial grid ofNz
5200 pointsziP@25L,5L#, an equidistant angular grid o
Nu530 pointsu jP@0,p/2# for thin-thick mixtures or an an-
gular grid ofNu550 pointsu jP@0,p/2# for long-short mix-
tures. From the equilibrium distributionsrs,0(z,u) we calcu-
lated the local density and the nematic order param
profiles

ns~z!54pE
0

p/2

du sinurs,0~z,u!,

Ss~z!54pE
0

p/2

du sinuP2~cosu!rs,0~z,u!/ns~z!,

with P2(x)5(3x221)/2 the second Legendre polynomia
In the case of iterating Eqs.~10! the biaxiality is defined as
@27,28#
06170
-

er

Ds~z!5 K 3

2
sin2u cos 2w L

s

5
3

4ns~z!
E

0

p/2

du sin3urs,1~z,u!.

The interface thicknesst is defined ast5uz12z2u where
z6 are solutions ofn1-(z)50, where a prime denotes dif
ferentiation with respect toz. As this equation has a set o
solutions in every interfacial region, we choose (z6) be the
outermost ones, i.e., the nearest to the bulk phases. This
terion provides a single measure for the thickness of b
monotonic and nonmonotonic profiles, with and without
thick film in between the asymptotic bulk phases atz→
6`. Also thin ~or short! rods have a smaller excluded vo
ume and a nonvanishing concentration in both coexist
phases, so their density is a convenient representatio
structural changes within the interface. The interfacial wid
for the one-componentI -N interface is, with the present defi
nition, given by t/L50.697. We have checked that oth
definitions of the thickness lead to similar results.

A. I -N1 and N1-N2 interfaces

The I -N1 interfaces exist only in a small pressure regim
pthin>p>pt . They closely resemble theI -N interface of the
pure hard-rod fluid, i.e., the profiles of the order paramet
Ss(z) and the densitiesns(z) change monotonically from
the bulk values in theI phase to those in theN1 phase.

The thickness of theI -N1 interface is of orderL which is
similar to that of the pure system. With increasingd the I -N1
surface tension at triple phase coexistence (p5pt) decreases
monotonically to theI -N surface tension of the pure system
as shown in Fig. 3, where the dimensionless surface ten
g* 5bg/LD1 is plotted. This is expected from an inspectio
of the phase diagrams asxI ,N1

→0 for increasingd. For the

FIG. 3. Dimensionless surface tensiong* 5bg/LD1 of I -N1

(s) and N1-N2 (L) interfaces at triple phase coexistencep
5pt) for different diameter ratiod of thin-thick mixtures. The
dashed line corresponds to the surface tension of the o
componentI -N interface for whichg I -N* 50.15660.001@28#.
3-5
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diameter ratiod54.0 the surface tension atp5pt is given by
g I -N1

* 50.20960.001 with the same level of accuracy for a

other calculations of the surface tensions. For the long-s
mixtures the behavior of the surface tension at theI -N1 in-
terface as a function of length ratiol is very similar. Forl
53.0 the surface tension atp5pt is given byg I -N1

* 50.212

60.001.
In general, the order parameter and density profiles

shifted with respect to each other. Such a shift can be c
acterized by the distanced5uzn2zSu between the centerszn
andzS of the density and order parameter profiles, defined
@24#

n~zn!5n21
1

2
~n12n2!,

S~zS!5S21
1

2
~S12S2!,

where1/2 indicate asymptotic bulk values. A nonzero sh
d reflects the fact that the thickness of the interface is diff
ent for rods of different orientations. For monodisperse ro
it was found thatd50.50L @24#. For binary mixturesd can
be determined for each component separately. For thin-t
mixtures withd54.0 theI -N1 interface at triple phase coex
istence showsd thin50.35L and d thick50.55L. For long-
short mixtures withl 53.0 the effect is similar for the shor
rods (dshort50.37L1) and much more pronounced for th
long rods (d long51.54L1, i.e., d long.0.51L2).

The profiles ofSs(z) and ns(z) at N1-N2 interfaces are
also monotonic. For the diameter ratiod54.0 at p5pt the
interface thickness is given byt/L50.592 and the surface
tensiongN1-N2

* 50.01960.001, which is an order of magn

tude smaller thang I -N1
* . Upon the approach of the critica

point t/L→` and the surface tension vanishes. Ford.4.0
surface tensiongN1-N2

* ~at p5pt) increases approximatel

linearly with d as shown in Fig. 3.
The biaxiality is found to be small in both theI -N1 and

theN1-N2 interfaces. In Fig. 4 we present the profilesDs(z)
of the triple pointI -N1 and N1-N2 ~inset! interfaces of the
thin-thick mixture withd54.0, as well as that of theI -N2
interface to be discussed later. The marked curves repre
D2(z) ~thick rods!, the unmarked onesD1(z) ~thin rods!.
Figure 4 reveals thatuDs(z)u,0.017 in theI -N1 interface,
and uDs(z)u,4.031024 in the N1-N2 interface. Such smal
biaxialities indicate that the expansion of Eq.~8!, truncated
at M51, is accurate for calculatingDs(z), while a trunca-
tion atM50 yields accurate tensions and density profiles
fact, we checked that the difference between the tens
based on uniaxial (M50) and biaxial (M51) profiles falls
within the numerical accuracy, i.e., less than 1%. Our
merical data for theI -N1 interface is consistent with that o
Refs.@27,28#. Even though the magnitude ofDs(z) is small,
it is interesting to consider the structure of the profiles
some more detail. The first observation we make is t
Ds(z).0 (,0) at the isotropic~nematic! side of theI -N1
interface for both speciess51,2. This indicates that rods a
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the I side of the interface have a~small! preference for splay
in theXY plane, whereas those at theN1 side tend to ‘‘stick’’
through the interface~into the I side!. A similar effect exists
in the N1-N2 interface, but now both species have an opp
site tendency~see inset!: the thin rods splay in theXY plane
at theN1 side, whereas the thick ones ‘‘stick’’ through, an
vice versa at theN2 side. Recall, however, that these effec
are small.

B. The I -N2 interfaces

The I -N2 interfaces exist, ford.3.8, in a pressure regim
pthick,p,pt . The properties of theI -N2 interfaces depend
strongly on the pressure difference with the triple-po
(I -N1-N2 phase coexistence!. The surface tension of the
I -N2 interface shows a nonmonotonic dependence on
bulk pressurep. It develops a maximum, which is sever
times larger than a linear interpolation between the tensio
the two pure systems, as shown in Fig. 5. It turns out that
nonmonotonic character ofg I -N2

(p) is related to the frac-

tionation at theI -N2 coexistence, i.e., a larger compositio
change through the interface leads to a larger interfacial
sion. However, the surface tension which corresponds to
pressure of maximal bulk fractionation~indicated by the
dashed line in Fig. 5! is lower than the maximum o
g I -N2

(p). The maximal interface stiffness grows with speci
diameter ratiod as the composition difference betweenI and
N2 phases increases~see Fig. 1!. We have also compared th
maximal surface tensions for different orientations of the
rector (n̂' ẑ and n̂i ẑ) in several thin-thick mixtures and
found the geometryn̂' ẑ to be thermodynamically stable, i.e
g n̂' ẑ,g n̂i ẑ by at least a factor of two.

The relatively large surface tension of a mixture of ro
compared to that of the pure systems of its components
well be an explanation for the relatively large tensions t

FIG. 4. Biaxiality profilesDs(z) of the thin ~without symbols!
and thick~marked by3! rods in theI -N1 and I -N2 ~at undersatu-
ration e5531024) interfaces for diameter ratiod54.0. The inset
shows the same quantity for theN1-N2 interface.
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were measured in suspensions of cellulose@35#, which are
known to be very polydisperse. This remains to be inve
gated in detail, however.

The dimensionless undersaturatione512p/pt is a con-
venient measure of the pressure difference with the tr
point. For 0.01,e,0.5 the profiles of the order paramete
Ss(z) and the density of the thick componentn2(z) are
smooth and monotonic, whereasn1(z) shows an accumula
tion of thin rods at the isotropic side of the interface. Th
effect becomes more pronounced for small undersatura
i.e.,e→0, when a film of the nematic phaseN1 appears in the
I -N2 interface. Note that theN1 phase is a metastable bu
phase for anye.0, so the film thickness is finite. Ford
54.0 several profilesn1(z) andn2(z) for different values of
e are presented in Fig. 6, which clearly shows the film f
mation whene→0. The asymptotic densities atz→6` are
those of the coexistingI and N2 bulk phases~at the corre-
spondinge). Using translational invariance of the interfac
between the bulk phases, we have shifted the profiles w
respect to each other such that theirI -N1 interfaces coincide.
This shows that the local density of thin~thick! rods in the
growing film remains constant, and exactly corresponds
the thin~thick! -rod density of the bulk triple-point phaseN1
~indicated by the dashed lines in Fig. 6!. The same identifi-
cation can be made for alld ~or l for long-short mixtures! as
well as for the order parameter profilesSs(z).

The biaxiality of theI -N2 interface was found to be smal
A typical profile for thin-thick binary mixture withd54.0 at
e5531024 is presented in Fig. 4. TheI -N2 biaxiality pro-
file can be considered as a composition of the~earlier dis-
cussed! I -N1 and N1-N2 profiles which is expected as th
thickness of the wettingN1 film is larger thanL.

FIG. 5. Dimensionless surface tensiong I -N2
* 5bg I -N2

/LD1 at
I -N2 interfaces as a function of dimensionless pressurep*
5bpL2D1(p/4) for different diameter ratiod54.0 ~s!, 4.2 ~L!,
4.5 ~v!, 5.0 ~x! of thin-thick mixtures. The dashed line indicate
the pressure of maximum fractionation. The data ford53.0 ~h! are
included for comparison~from Ref. @28#!.
06170
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to For all explored mixtures the thickness of the interfa
t/L ~or the adsorption! was found to diverge logarithmically
with e→0 as shown in Fig. 7. For short-ranged interactio
one expects, on the basis of mean-field theory@33#, that

t52j ln~e!1C, ~11!

whereC is an irrelevant constant offset, andj is the corre-
lation length of the wetting film. This implies that the bu
correlation lengthjN1

of the wettingN1 phase should follow

from the slope of the logarithmic growth oft/L in Fig. 7.

FIG. 6. Density profiles of the thin rodsn1* (z) ~a! and the thick
rods n2* (z) ~b! in the I -N2 interface for diameter ratiod54.0
at triple-point undersaturationse512p/pt50.29, 0.1, 0.01,
531024, 1.331024, 2.531025. The bulk I -N2 phase is atz→
2`/`. The dashed linesn1* 53.977 andn2* 50.312 represent the
bulk density of thin~thick! rods in the triple-pointN1 phase. These
profiles indicate the formation of a wettingN1 film in the I -N2

interface.
3-7
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The asterisks (*) in Fig. 8 show the resulting values ofjN1

as a function ofd. These can be compared to the correlat
length that one can extract from the asymptotic decay of
one-particle distributionsrs(z,v̂) of the I -N1 interface into
the bulkN1 phase. This decay can best be analyzed in te

FIG. 7. Thicknesst/L as a function of the undersaturatione
512p/pt from the triple-point pressurept for diameter ratiosd
54.0 ~s!, 4.2 ~L!, 4.5 ~v!, 5.0 ~x! of thin-thick mixtures. The
inset shows the film thicknesst/L1 for long-short mixtures with
length ratiol 53.0 ~s!, 3.1 ~L!.

FIG. 8. Correlation length for rods in the triple-pointN1 phase
of thin-thick mixtures as a function of diameter ratiod, determined
from adsorption~* ! analysis@Eq. ~11!# and from density asymptot
ics ~s! @Eq. ~12!#. Inset~a! shows lnudr(z,u)u for several values ofu
at theN1 side of theI -N1 interface ford54.0. Inset~b! displays the
correlation length~in units of length of short rodsL1) for long-short
mixtures as a function of length ratiol. The dashed lines indicat
the correlation length for rods in theN phase of the monodispers
hard-rod fluid.
06170
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of the deviation from theN1 bulk density drs(z,v̂)

5rs(z,v̂)2rs
N1(v̂), which we find to decay as

drs~z,v̂!5As~v̂!exp~2z/jN1
!, z→`, ~12!

where the only species and orientation dependence is in
decay amplitudeAs(v̂), i.e., the decay~correlation! lengthj
is one and the same for all species and orientations. Su
‘‘decay law,’’ with a single correlation length, is well-know
in mixtures of simple liquids@36#. The form ~12! is illus-
trated ford54.0 atp5pt in the inset~a! of Fig. 8, where all
curves~representing differentu ’s! are parallel on a logarith-
mic scale. The correlation length follows from the~common!
slope of these curves, and is marked by (s) in the main
figure. The agreement with the values ofj I -N1

obtained from
the logarithmic growth of the interface thickness is clea
good. The inset~b! of Fig. 8 shows the similar dependence
the bulk correlation length of triple-pointN1 phase in the
case of long-short mixtures, i.e., as a function of rods len
ratio l, using the same symbols.

In order to verify the thermodynamic condition of com
plete wetting,g I -N2

5g I -N1
1gN1-N2

at the triple-point pres-

surep5pt , we determine the ratio of surface tensions

R~e!5
g I -N2

~e!

lim
p↓pt

~g I -N1
1gN1-N2

!
, ~13!

shown in Fig. 9. For all diameter ratiosd considered here
lime→0R(e)51, which implies a vanishing contact angl
This constitutes the thermodynamic proof of complete tri

FIG. 9. Surface tension ratioR @see Eq.~13!# as a function of
the triple-point undersaturatione for diameter ratiod54.0 ~s!,
4.2 ~L!, 4.5 ~v!, 5.0 ~x!. The inset shows the same quantity f
long-short mixturesl 53.0 ~s!, 3.1~L!.
3-8
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FREE PLANAR ISOTROPIC-NEMATIC INTERFACES IN . . . PHYSICAL REVIEW E68, 061703 ~2003!
point wetting in all thin-thick hard-rod mixtures withd>4.
For mixtures of long and short rods the behavior ofR(e) is
the same, as shown in the inset of Fig. 9. A mean-field an
sis of the asymptotic behavior of the surface tension~e→0!
in the case of complete wetting shows that@33#

R~e!21;e22a ~14!

with the critical exponenta51. Analysis of our results in
Fig. 9 givesa51.0060.05 which can be considered as
rough consistency test of our mean-field calculations.

V. SUMMARY AND DISCUSSION

We have studied free interfaces of binary mixtures of h
rods of either different diameters or different lengths with
Onsager’s second virial functional. On the basis of a van
ingly small wetting parameter, which implies that capilla
fluctuations are not important, we argued that this mean-fi
functional provides a realistic description of isotropi
nematic interfaces of long hard rods. We focused on diam
ratios d.3.8 ~and length ratiosl .3.0), for which the bulk
phase diagram exhibits anI -N1-N2 triple point, and re-
stricted attention to the case wheren̂' ẑ, with n̂ the bulk
nematic director andẑ the interface normal. This is the the
modynamically most favorable geometry.

We have determined the behavior of the surface tens
of I -N1 , N1-N2 andI -N2 interfaces between coexisting iso
tropic and nematic phases as a function of the bulk pres
and/or the diameter ratiod ~length ratiol, respectively!. The
tensiong I -N1

is always very close to the tension of the pu

fluid of thin ~or short! rods, andgN1-N2
varies from zero at

the consoluteN1-N2 point to values as large asg I -N1
at the

triple point for d.4 – 5. The thickness of theI -N1 and
N1-N2 interfaces are always of the order of the lengths of
rods, except close to theN1-N2 consolute point, of course
The surface tensiong I -N2

is found to change nonmonoton
cally with pressure, exhibiting a maximum close to~but not
at! that pressure where the bulk fractionation is maxim
This maximum surface tension is considerably larger th
that of the pure systems of the components, typically b
factor of order 3–5, not unlike the findings of Ref.@28#,
where the cased53 ~without any triple point! was studied.
The biaxiality was found to be very small in all cases, simi
to the findings in Refs.@27,28# for the one-component case
Perhaps our most interesting finding is the phenomeno
complete triple-point wetting of theI -N2 interface by anN1
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film. The thickness of this film is found to diverge as
2j ln(12p/pt) whenp→pt , with j the correlation length of
the bulkN1 phase,pt the triple-point pressure, andp,pt the
pressure. The triple-point wetting phenomenon is confirm
by the numerical value of the surface tensions, which sat
limp↑pt

g I -N2
(p)5g I -N1

(pt)1gN1-N2
(pt). Such a complete

wetting scenario was found for all diameter ratios 3.9,d
,5.2 and length ratios 2.9, l ,3.1 studied here. We expec
that this finding will also hold for more extreme ratiosd
.5.2 andl .3.1, which are more difficult to analyze numer
cally because of the pronounced nematic ordering of
triple-point N2 phase.

The predicted phenomenon of triple-point wetting m
well be observable in the experimental system of bare
PEG-coatedf d virus particles@23# mentioned in the Intro-
duction. We hope that this work stimulates further expe
mental activities in this direction.

Another interesting direction for future theoretical wo
would be to consider isotropic-nematic interfaces of polyd
perse mixtures, e.g., extending the theory for bulk syste
developed in Ref. @37#. For suspensions of length
polydisperse cellulose experimental measurements of
surface tension have been performed@35#, and show that the
surface tension is much larger than that of a pure system
rods. It is tentative to speculate that the fractionation eff
that is also present in binary systems may explain this
crease of the tension. We hope to address this questio
future work.
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APPENDIX

In terms of A5 1
2 max(Lsv̂• ẑ,Ls8v̂8• ẑ), B

5 1
2 min(Lsv̂• ẑ,Ls8v̂8• ẑ) and the excluded volumeEss8

5LsLs8(Ds1Ds8)usin„arccos(v̂•v8̂)…u, the results of Ref.
@25# reduce forDs /Ls→0 to the following expression for
the ‘‘excluded slab’’ used in Eq.~7!:
Kss8~ uzu,v̂,v̂8!55
0, uzu.uAu1uBu,

Ess8~v̂,v̂8!

4uABu ~ uAu1uBu2uzu!, uAu2uBu<uzu<uAu1uBu,

E~v̂,v8̂!

2uAu
, uzu<u~ uAu2uBu!u.
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