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Free planar isotropic-nematic interfaces in binary hard-rod fluids
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Within the Onsager theory we study free planar isotropic-nematic interfaces in binary mixtures of hard rods.
For sufficiently different particle shapes the bulk phase diagrams of these mixtures exhibit a triple point, where
an isotropic(l) phase coexists with two nematic phasils GndN,) of different composition. For all explored
mixtures we find that upon approach of the triple point thH, interface shows complete wetting by an
interveningN; film. We compute the surface tensions of isotropic-nematic interfaces, and find a remarkable
increase with fractionation, similar to the effect in polydisperse hard-rod fluids.
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[. INTRODUCTION extreme than about 1:3. Later also binary mixtures of thin
and thick hard rods were considered. They were shown to
Colloidal suspensions of rodlike particles are well knownhave phase diagrams similar to those of long-short mixtures,
to exhibit a wealthy phase behavior as a function of density-€-» With strong fractionation at-N coexistence and with
[1-3]. Early experiments on vanadiumpentoxide solutiondV1-Nz andI-Ni-N; coexistence for diameter ratios exceed-
[4] and suspensions of tobacco mosaic ViflHV ) particles ing 1:3.8[18-21], but with an additional possibility for

— " . . _ isotropic-isotropic [;-1,) phase coexistence due to the
[5.] SHOY;Edha first-order trznsnpn f_r(;)m a d'ﬁ.o rdefibtro depletion effec{20-23 if the diameter ratio is more ex-
pic) fluid phase to an orderediquid-crystalline nematic  .ome than about 1:8. Interestingly, thin-thick mixtures have

fluid phase upon increasing the concentration of rods SUfﬁfecentIy been realized experimentally by mixing “barkd
ciently. The nematic is homogeneo(sis a fluid), but the  yjrus particles(length 1,m) with ones that are “coated”
rods are on average oriented in a specific direcfiorthe  with polyethyleneglycol(PEG [23]. The diameter ratio of
so-called nematic director. The bulk nematic ordering is ofthese systems can be tuned by varying the ionic strength of
uniaxial symmetry, i.e., there is azimuthal symmetry alfout the solvent: due to an increasing salt concentration the effec-
The isotropic-nematicl¢N) transition was first explained by tive diameter of thecharged bare rods shrinks because of
Onsager, who modeled the colloidal rods as hard needles. Hhanced screening, whereas that of the PEG-coated rods is

first showed that the average pairwise excluded volume g0t (or hardly affected because of the steric nature of PEG.
reduced in the nematic phase compared to the isotropi xploiting this effect allowed for the experimental study of

. : giameter ratios up to about 1:4.5, andN,, I-N,, N;-N, as
phase, and then argued that the resulting gain of free vqumWeII as I-N,-N, triple coexistence were actually observed

(and hence translational entrogpgompensates the loss of [23].

orientation entropy(due to the nematic orderingat suffi- The present study is devoted to the planar interfaces that
ciently high concentrations of rod$]. In other words, the  oyist hetween the coexisting bulk phases in binary mixtures
ordering follows as a consequence of maximizing the totahf cojloidal rods. Our focus is on the calculation of both
entropy. More recently it was shown that a further increasghermodynamic and structural properties of these interfaces.
of the concentration of TMV can also give rise to smecticThe main thermodynamic quantity of interest is the surface
ordering[7,8], where the translational invariance is brokentensiony, and the structural properties we will investigate
and the system forms a layered structure. In the 1980s angte the profiles of the density and the order parameters. It is
1990s computer simulatior®,10], and later density func- known from the study of thé-N interface of pure(one-
tional theories[11-13, have shown that also the smectic componentsuspensions of rods thatdepends on the angle
phase can be explained by the hard-rod model for colloidabetween the interface normal and the directo of the
rods. One concludes, therefore, that the bulk phase behaviaematic phase asymptotically far from the interff24—24.
of these systems is well understood by now. The study of Refs[24,27] showed thaty is minimal when
Onsager’s theory for hard rods has been extended to deL z, and on this basiéand on the basis of some of our own
scribe bulkmixturesof colloidal rods. For the case of binary test calculationswe assume this to be the case for mixtures
mixtures of longer and shorter rods, it was found thatithé  as well. It is also established by nd®&4,27,2§ that (i) the
transition is accompanied by strong fractionation, such thatlensity profile and the nematic order parameter profile of the
the coexisting nematic phase contains a relatively large frad-N interface of the pure hard needle fluid change monotoni-
tion of the longer rod414,15. Later theoretical work on cally from their values in the isotropic bulk phase to those in
long-short mixtures also showed the possibility of nematicthe nematic phaséii) the interface thickness is of the order
nematic (N1-N,) demixing(driven by a peculiar competition of the lengthL of the rods, andiii) the interfacial biaxiality
between orientation entropy and ideal mixing entio@nd  is small and nonmonotonic. In this paper we will show that
an isotropic-nematic-nematid N1-N,) triple point in the the density profiles in mixtures of rods amet always mono-
phase diagramil6—19 of mixtures with a length ratio more tonic, and that the interface thickness not always of otder
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due to the formation of macroscopically thick wetting films to be solved for the equilibrium distributions,(g). Once
close to the bulk triple points. Some of these findings haveletermined, they can be inserted into the functional to obtain
been reported briefly elsewhef&80]. Moreover, we will the equilibrium value of the grand potential

show that the tension in mixtures of rods tends to be substan-

tially higher than that of the pure systems of their compo-

nents. IS f dap,(a)(IN[p,(a)L2D,] -2 B,)
This paper is organized as follows. In Sec. Il we introduce 2 < Pa Pri oo tal:
the Onsager functional and the basic Euler-Lagrange equa- (©)]

tion. In Sec. Ill we solve this equation for bulk geometries,
and we present a few typical bulk phase diagrams. In Sec. IV i )
we present our method to solve the Euler-Lagrange equationOte thatQ2=—pV for a bulk system in a volum¥, with

for interface geometries, and stutyN;, N;-N, and1-N, p=p({u.},T) the pressure. In the presence of a planar sur-

interfaces, the latter in particular in the vicinity of the bulk face or interface of areA we have()=—pV+yA with y
=vy({us},T) the surface or interface tension.

[-N;-Ns, triple point. A summary and some discussion of our — X : . i

results will be presented in Sec. V. In general, fluctuat.lons of the |nterface_pOS|F(mp|llary
waves are important in the analysis of fluid-fluid interfaces.

. DENSITY FUNCTIONAL 'I_'he amplitude ,Of such fluctuations is controlled by the “wet-

ting parameter{32,33

We consider a fluid of hard cylinders of two different

specieso=1,2 of lengthL , and diameteD, in a macro-

scopic volumeV at temperaturél and chemical potentials - kgT (4)

M. The thermodynamic properties and the structure of the AmyE?’

system can be determined from the grand potential func-

tional Q[{p,}] of the one-particle distribution functions

p.(r,®), wherer denotes the center-of-mass coordinate ofwhere ¢ is the bulk correlation length. For rods of typical

the rod of speciesr and @ the orientation of the long axis. length L and diameterD we shall see thag~L and y

The functionalQ[{p,}] is such that(i) it is minimized, for ~~kgT/LD, and hence»n~DI/L, i.e., » vanishes in the On-

given (u,},V,T), by the equilibrium one-particle distribu- Ssager limit. As a consequence the capillary-wave fluctuations

tions p,(r, &), and(ii) the minimal value of the functional is are unimportant, i.e., the mean-field density functiaialis

the equilibrium grand potentidl [31]. sufficient to describe interfacial phenomena in fluids of long

Within the second virial approximation and in the absencehard rods.
of external potentials, the functionf[{p,}] can be written
[1,6] as

lll. BULK PHASE DIAGRAMS

ﬂQ[{po}]=E dqp(r(q)(ln[pa(q)l_frDU]—1—,3MU) _The bulk thermodynami_c prop_ert_ies of binary hard-rod
o fluids were studied extensively within Onsager theory. The

1 minimization of the functional was either performed varia-
-=> f dadd f,o(a;:9") po(A)psr(qQ'), tionally [16—-19,22,34 or through a fully numerical solution
255 [14,21,28. We adopted the latter approach as it can be easily
(1) generalized for inhomogeneous systems. For clarity we
briefly repeat the essential points of the method and summa-
with 8= (kT) ! the inverse temperature afgl,-(q;q’) the  rize the available results.
Mayer function of theso’ pair of rods with coordinateg The bulk distribution functions of the isotropic and nem-
={r,&} andq’'={r’,®"}. For hard rods, the focus of our atic phase are translationally invariant, i.ep,(r,®)
study, f,,/(0;q’) equals—1 if the rods overlap and van- =p,(&®), which allows us to reduce E@R) to
ishes otherwise. Onsager argued that the second virial ap-
proximation is accurate for long rods, and becomes even
exact for isotropic and nematic bulk fluids in the limit of In[p,(®)L2D,]+ > Jd&"Eaa/(&’,&")Pw(&")=/3,U«a,
vanishing diameter-to-length rati®]. We shall adopt this o
limit throughout this paper, i.e., we considgy, /L, —0 for )
any oo’ pair. Therefore, the relative shape of the rods is
only characterized by the ratiés-L,/L, andd=D,/D; of
the lengths and the diameters, respectively.
The minimum conditionséQ[{p,}1/8p,(q)=0 on the
functional lead to the set of nonlinear integral equations

with E, ., the excluded volume of a pair of cylinders of
speciess ando’ given by[1]

o@D, -3 [ Aoty (050700, (a) = ity e s
Y @ ~L,L,/(D,+D,)[siny| )
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in terms of the angley between® and @', ie., v f

=arccos@- @'). Note that additionaD(LD?) terms are be-

ing ignored in Eqg.(5), in line with the needle limit

(D, /L, —0) of interest here. 1
At sufficiently low {Bu,} the only stable solution of Eq.

(5) is the isotropic distributiorp{,(&:)=ng/(477), with n,

= [dap (&) the bulk number density of species As u,,

are high enough, one or, possibly, two sets of stable uniaxial

solutions p('j(&))ZpU(H) exist, with 6=arccos-fA) the

angle betweer and the nematic directdr. These distribu- ~ 0-5

tions have “up-down” symmetryp.(0)=p,(7— 6), hence

p.(6) needs only to be determined fée& [ 0,7/2]. Using an

equidistant#-grid of N,=30 points #; €[0,7/2], where 1

<i<N,, we iteratively solve Eq(5) for the set of A,

equations in order to find,(6;) numerically. The integral in

Eq.(5) is calculated with the trapezoidal rule. Coexistence of 0

different phasegl,N;,N,} can be determined by imposing

conditions of mechanical and chemical equilibrium. X

In order to gauge the accuracy of the chogegrid we '
calculate the resulting densities of the coexisting isotropic R
and nematic phase of the one-component system. We find .
n'L?D(w/4)=3.281+0.001, nNL2D(w/4)=4.172+0.001;
the nematic order parameters of the two coexisting phases
are S'=0.008+0.001 andSV=0.791+0.001, and the pres-
sure (/4)BpL?D=14.045-0.001. These data, based on
N,= 30, differ by less then a percent from the most accurate
results available in the literatufé], which we can reproduce
with N,=80. In order to have consistency between bulk and
interfacial results we tak&l,=30 in most of our calcula-
tions. The exception is the case of long-short mixtures in the
nematic phase, which requirés,=50 for acceptable accu-
racy.

In Fig. 1 we show both pressure-compositi@® and
density-densitytb) representations of bulk phase diagrams of
thin-thick binary mixtures I( ,=L,D,>D,) for several di-
ameter ratiogl=D,/D;. In Fig. 1(a) the composition vari-
ablex=n,/(ny+n,) denotes the mole fraction of thick rods
andf=(p—Pinick)! (Pthin— Pthick) 1S @ dimensionless shifted
pressur((fer?itgﬁkt)aliggl?hep\t/glclﬁ)és 1,0 at isotropic-nematic FIG. 1. (8 Bulk phase diagrams of binary thin-thick mixtures
coexistence of the pure-thin&0) and pure-thick X=1) for different diameter ratiog in the f-x. represent.atlon, withf
systems, respectively. Note that 7/@)BpyL?D; (P~ Piic)/(Ptnin—Piic) the dimensionless shifted pressure,
= (718) BpyyL 2D = 14.045, .. pipici=Pinin/d, and that andx the mole fraction of the thicker rods. We distinguish the fully

the tie lines connecting coexisting phases are horizontal .symmetric isotropic phasél) and orientationally ordered nematic
1€ 1l . ing . xisting p 12 Ir[3hases N, and N,). For the diameter ratiol=4.0 thel-N;-N,
the f-x representation of Fig.(&).

.. ) triple phase coexistence is marked ki), and theN,-N, critical
At IOW_ preSSl_Jres(or low densme_}s the phase diagrams point by (*). (b) The same phase diagrams in density-density rep-
show an isotropidl) phase and at higher pressutes den-  esentation, whera* =n,LD2(w/4) andn% =n,LDZ(/4) are the

sities one (d=3.0,3.5) or two (1=4.0,4.2) nematic phases gimensionless bulk number densities of thin and thick rods, respec-
(N1 andNy). For diameter ratiosl=3.0,3.5 the phase dia- tjvely. The tie lines connect coexisting state points.

gram is spindlelike, and the only feature is a strong fraction-

ation at coexistence, such that the nematic phase is relativel db. the critical | d— h
rich in thick rods and the isotropic phase in thin ones. Th ndp, the critical (consolutg pressure. Fod=4.0 the con-

reason behind this fractionation is the relatively large ex-SCluté pointis indicated by (*) in Fig. 1. The mechanism of
cluded volume in interactions of the thick rods, which makegthis demixing transition was spelled out in detail in Refs.
them more susceptible to orientational order[ig,19,2]. [17,21], and involves a competition between orientational
The fractionation of isotropic-nematic coexistence becomegntropy(favoring demixing and entropy of mixingfavoring
stronger for increasingl. For 3.8<d<4.29 the bulk phase Mixing). Interestingly, the width of fractionation gapx
diagram develops nematic-nemathd;¢N,) coexistence ina =Xn,~ X, for the triple pointN; andN, phases scales lin-
pressure regimp,<p<<p., with p; the triple-point pressure early with the triple-point pressung,. The critical pressure
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f . , , . that the interfaces are planar, with surface noriallhe
nematic directoi of the asymptotic nematic bulk phdse
can, in general, have a nontrivial tilt anghe=arccos(-2)
with respect to the interface normal. In the present calcula-
tions we restrict attention t6,= /2, i.e.,ALZ This geom-
etry is known to be thermodynamically favorable because of
its minimal surface tensiof24,29.

The equilibrium distribution functiong,(z,&) depend
on the spatial coordinate=2-r, and angular coordinatas
=(0,¢) defined by cog=n- & and sindsinp=2- &. These
functions are solutions of the Euler-Lagrange equations Eq.
(2) at the coexisting chemical potentigg.,= Bu %%, with
boundary conditionp,,(z— *+ o, @) = p{)(6) being the two
coexisting bulk distributionglabeled by(+) and (=) here
for brevity].

The planar symmetry, i.e., the independence gz, @)
of the in-plane coordinatesandy, allows for a reduction of
the numerics, since the “excluded slal’,, (z,&®,z2",®")
=—[dx'dy'f,, (r,®;r',®") can be calculated analytically
[25,28. This reduces the Euler-Lagrange equations to

FIG. 2. Bulk phase diagrams of binary long-short mixtures for
different length ratid in the f-x representatioiisee caption to Fig.

1). (A) mark I-N;-N, triple phase coexistence and) marks
N1-N, critical point forl=3.0. COEX_'”[PU z w)L(,Do]JrE fdz f do
of the N;-N, transition diverges ad—4.29[17,21]. Ford XKoo |.@,0")p, (2" @), ()

>3.8 the lower bound of theN;-N, coexistence is an _ o .
1-N;-N, triple point, indicated by triangleg\) in Fig. 1 for ~ Where the expression folC,,(|z],&,&") is given in the
d=4.0. With increasingl the triple pointl and N; phases Appendix.

o . . In principle one could now solve Ed7) on a (z,6,¢)
approach the pure-thin bulk coexistentee., x; n,—0), grid. However, the numerical efforts can be further reduced

whereas the composition of the triple poht phase shifts to it gne realizes that biaxiality, i.e., the dependence, is weak

a pure-thick phasex,—1). [27,28. In that case the truncated expansion
The f-x representation is convenient for our analysis,
whereas the densitiewolume fraction$ of thin and thick M
rods are experimental control parameték For this reason po(2,0,0)= > pym(z,0)cog2me) (8

the same phase diagrams of thin-thick binary mixtures are
shown in Fig. 1b) in density-density representation, with
=n,LD{(w/4) andnj=n,LD5(w/4) being the dimen- s expected to be accurate for smidlj and hence only a few

S|onless bulk number densities of thin and thick rods, respeccoefficients” Po.m(z,0) (M<M) need to be determined on
tively. In this representation the tie lines are no longer hori-a (z,6) grid. It is important to realize, however, that E§)
zontal. implicitly assumes that the nematic direcfodoes not vary

In Fig. 2 a set of bulk phase diagrams for long-short bi-jn space. The coefficienis,. (z, §) follow from an insertion
nary mixtures D,=D,L,>L,) for several length ratios  of Eq. (8) into Eq. (7), multiplication by cos(gng), and in-

=L,/L, is presented. Her&=n,/(n;+n;) denotes the tegration overp (0<¢<27). For M =0 this yields
fraction of Iong rods andi=(p— Piong)/ (Pshort— Piong) With

Piong= Pshort/12. All characteristic features of the phase dia-
grams are the same as in thin-thick mixtures. The fraction- BrE<=In[p,(z,0)L U]+z f dz'dé’sine’
ation of the coexisting-N, andN;-N, phases has a strong
dependence oh and limits the values accessible for calcu-
lations tol<3.1 for the chosen grids and the required accu-
racy. The main reason is that the nematic ordering in the
triple-point N, phase is very pronounced, requiring a finewhere Icg?r,(z—z’,0,0’)=(27T)‘1f§”f§”d<pd<p’ler(z
grid [21]. —-7',&,&') is the doubly azimuthally integrated excluded
slab, which we determine numerically once on an appropri-
IV. FREE INTERFACES ate grid. . . o
The lowest-order correction that takes into account biaxi-
We now turn to the thermodynamics and the structure oflity results fromM=1, and yieldsp, n(z,6), (m=0,1)
the free interfaces between the coexisting phases. We assurintem the coupled set of equations

XK2 (2—2',0,0")p, 2, 0"), 9)
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ﬁlu‘coex_ln[pa',o(zu 6)L§'DU]+|O pa"l(z’e)) ’Y

p(r,O( Z, 0)

+2 fdzda sing' (K2 ,(z—2',6,0") 02 | IN, ]

Xpgr o2 0)+KE (z=2',0,0") b & TTTOTHS )
’ oo ’YlN [

Xpgra(2',6")),

B Poa(Z, 0)) , 0.1
0=I (pa'O(Z 5 2 fdz dé’sing N,N,

X(KX ,(z=2',0,0")py o(2',6")

oo’

+K(2=2',0,0')pyr 1(2',6")), (10)

) B - " , 0 1 N 1 N 1 N 1 N 1 .
with K" (z—2',0,0")=(2m) L[ 2" [3"ded ¢’ cos(Xg) 4 4.2 4.4 4.6 4.8 5

X cos(@e' K, (z— 7' @ o'), kK,m={0,1}, again to be de- d
termined numerically only once, with

FIG. 3. Dimensionless surface tensigii =By/LD; of I-N;

1 (2= 1+m (O) and N;-N, (¢©) interfaces at triple phase coexistenge (
lo(X)= _f deolIn[1+xcog2¢)]=IN—F7——, =p,) for different diameter ratiod of thin-thick mixtures. The
2mJo 2 dashed line corresponds to the surface tension of the one-

component -N interface for whichy;*\=0.156+=0.001[28].
1 (2w
[1(X)= EJO decog2¢)In[1+xcog2¢)]

1-1-x2

X 1

A (2)= < Sln200052cp> j dosirtlp, 1(z,6).

4n(,(z

The interface thicknessis defined as=|z, —z_| where
Z.. are solutions oh,”(z)=0, where a prime denotes dif-
ferentiation with respect ta. As this equation has a set of
solutions in every interfacial region, we choose.] be the
outermost ones, i.e., the nearest to the bulk phases. This cri-

ence is small in most cases siripe 1(z, 6)L,, D2 2|<1. Inthe terion provides a single measure for the thickness of both

remainder of this paper we shall mainly concentrate on Somonotonlc and nonmonotonic profiles, with and without a

thick film in between the asymptotic bulk phaseszat
Eggﬂ:szfdlzq -(9), although some resuits of E¢.0) will be +o, Also thin (or shor} rods have a smaller excluded vol-

By iteration of Eq.(9) [or Egs.(10)] with the appropriate ume and a nonvanishing concentration in both coexisting

o phases, so their density is a convenient representation of
boundary conditions we C?'C“li‘itgyo(z' 0) [andp,,.(2,0)] structural changes within the interface. The interfacial width
for a number of state pointa -~ on thel-N;, I-N, and

. - . . for the one-componertN interface is, with the present defi-
N;-N, binodals. We used an equidistant spatial gridNgf s . _
—200 pointsz e [~ 5L 5], an equidistant angular grid of nition, given byt/L=0.697. We have checked that other

N,=30 pointsg,  [0,7/2] for thin-thick mixtures or an an- definitions of the thickness lead to similar results.
gular grid ofN,=50 pointsé; € [0,7/2] for long-short mix-

for |x|<1.

Note that the boundary conditions imply tha 1(z, 6)
—0 for [zZ]—. In general, the solutionp,, o(z,6) for M
=0 are not identical tp, o(z,6) for M=1, but the differ-

tures. From the equilibrium distributions, o(z, 6) we calcu- A. 1-Ny and N;-N interfaces
lated the local density and the nematic order parameter Thel-N, interfaces exist only in a small pressure regime
profiles Pinin=P=p;. They closely resemble tHeN interface of the
o pure hard-rod fluid, |_§ the profiles of the ordgr parameters
U(Z)=47Tf désindp, oz 0), S,(z) and the QenS|t|e$10(z) change monoton|cally from
0 the bulk values in thé phase to those in thd,; phase.

The thickness of thé-N; interface is of ordet which is
similar to that of the pure system. With increasththel-N;
surface tension at triple phase coexistenge ;) decreases
monotonically to thd -N surface tension of the pure system,
with P,(x)=(3x?—1)/2 the second Legendre polynomial. as shown in Fig. 3, where the dimensionless surface tension
In the case of iterating Eq$10) the biaxiality is defined as y* =pB7y/LD, is plotted. This is expected from an inspection
[27,2§ of the phase diagrams agy —0 for increasingd. For the

/2
S,(z)= 47-rf désingP,(cosh)p, o(z,60)/n,(z),
0
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diameter ratiad=4.0 the surface tension pt= p; is given by
yf‘_N1=0.209t 0.001 with the same level of accuracy for all

other calculations of the surface tensions. For the long-shor

mixtures the behavior of the surface tension atlthé; in-
terface as a function of length ratlois very similar. Forl
=3.0 the surface tension at=p; is given byyl*_N1:O.212

+0.001.

In general, the order parameter and density profiles are
shifted with respect to each other. Such a shift can be char

acterized by the distanag=|z,— z¢| between the center,

andzg of the density and order parameter profiles, defined by0.005

[24]

1
n(z)=n_+5(n.—n),

1
5(S.=8.),

S(Zs) =S_+ 2

PHYSICAL REVIEW E 68, 061703 (2003

AG

0.015

0.01

FIG. 4. Biaxiality profilesA ,(z) of the thin (without symbol$

where+/— indicate asymptotic bulk values. A nonzero shift and thick(marked byx) rods in thel-N, andI-N, (at undersatu-
5 reflects the fact that the thickness of the interface is differfation e=5x10"7) interfaces for diameter ratid=4.0. The inset

ent for rods of different orientations. For monodisperse rod

it was found thats=0.50L [24]. For binary mixturess can

§hows the same quantity for tié-N, interface.

be determined for each component separately. For thin-thicl€! side of the interface have(amal) preference for splay

mixtures withd= 4.0 thel-N; interface at triple phase coex-
istence showss,i,=0.39. and Siicx=0.59.. For long-
short mixtures withl =3.0 the effect is similar for the short
rods (Ospor=0.37.;) and much more pronounced for the
long rods ©jong=1.54 1, i.€., djong=0.51).

The profiles ofS,(z) andn,(z) at N;-N, interfaces are
also monotonic. For the diameter ratic=4.0 atp=p, the
interface thickness is given byL =0.592 and the surface
tensiony’,ﬁ,l_N2=O.019i 0.001, which is an order of magni-

tude smaller thany,*_Nl. Upon the approach of the critical

point t/L—o and the surface tension vanishes. BEor4.0
surface tensiony’,{ll_Nz (at p=p,) increases approximately

linearly with d as shown in Fig. 3.

The biaxiality is found to be small in both tHeN; and
theN;-N, interfaces. In Fig. 4 we present the profiles(z)
of the triple pointl-N; andN;-N, (insej interfaces of the
thin-thick mixture withd=4.0, as well as that of the-N,

interface to be discussed later. The marked curves represe'?l?

A,(2) (thick rodsg, the unmarked oned(z) (thin rods.

Figure 4 reveals thatA ,(z)|<0.017 in thel-N; interface,
and|A ,(z)|<4.0x10 4 in the N;-N, interface. Such small
biaxialities indicate that the expansion of E§), truncated
atM=1, is accurate for calculating ,(z), while a trunca-

in the XY plane, whereas those at tNg side tend to “stick”
through the interfac@nto thel side. A similar effect exists

in the N;-N, interface, but now both species have an oppo-
site tendencysee inset the thin rods splay in thXY plane

at theN; side, whereas the thick ones “stick” through, and
vice versa at thé&l, side. Recall, however, that these effects
are small.

B. The I-N, interfaces

Thel-N, interfaces exist, fod>3.8, in a pressure regime
Pihick<P<P;. The properties of thé-N, interfaces depend
strongly on the pressure difference with the triple-point
(I-N;-N, phase coexistengeThe surface tension of the
I-N, interface shows a nonmonotonic dependence on the
bulk pressurep. It develops a maximum, which is several
times larger than a linear interpolation between the tension of
the two pure systems, as shown in Fig. 5. It turns out that the
nmonotonic character o;‘/|.N2(p) is related to the frac-

tionation at thel-N, coexistence, i.e., a larger composition
change through the interface leads to a larger interfacial ten-
sion. However, the surface tension which corresponds to the
pressure of maximal bulk fractionatiotindicated by the
dashed line in Fig. bis lower than the maximum of

tion atM =0 yields accurate tensions and density profiles. Ini-n,(P). The maximal interface stiffness grows with species
fact, we checked that the difference between the tensiondiameter ratial as the composition difference betweeand

based on uniaxial\l =0) and biaxial M =1) profiles falls

N, phases increasésee Fig. 1L We have also compared the

within the numerical accuracy, i.e., less than 1%. Our numaximal surface tensions for different orientations of the di-
merical data for the-N, interface is consistent with that of rector (iLZ and A||2) in several thin-thick mixtures and
Refs.[27,28. Even though the magnitude &f (z) is small, found the geometriiL Zto be thermodynamically stable, i.e.,

it is interesting to consider the structure of the profiles inys, ;< g, by at least a factor of two.

some more detail. The first observation we make is that The relatively large surface tension of a mixture of rods
A, (2)>0 (<0) at the isotropidnemati¢ side of thel-N;  compared to that of the pure systems of its components may
interface for both species=1,2. This indicates that rods at well be an explanation for the relatively large tensions that
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FIG. 5. Dimensionless surface tensiofiy,=B7.n,/LD; at n, ' ' ' ' '
I-N, interfaces as a function of dimensionless presspre
=BpL2D,(w/4) for different diameter ratial=4.0 (O), 4.2 (),
4.5 (<), 5.0 (>) of thin-thick mixtures. The dashed line indicates
the pressure of maximum fractionation. The datader3.0 (CJ) are
included for comparisoiffrom Ref.[28]). 2

were measured in suspensions of cellulp3§|, which are
known to be very polydisperse. This remains to be investi-
gated in detail, however.

The dimensionless undersaturaties 1—p/p; is a con- 1
venient measure of the pressure difference with the triple
point. For 0.0k e<0.5 the profiles of the order parameters
S,(z) and the density of the thick componens(z) are
smooth and monotonic, whereag(z) shows an accumula-
tion of thin rods at the isotropic side of the interface. This 0
effect becomes more pronounced for small undersaturatior

i.e.,e—0, when a film of the nematic phabhg appears in the z/L
I-N, interface. Note that th&l; phase is a metastable bulk
phase for anye>0, so the film thickness is finite. Fat FIG. 6. Density profiles of the thin rods; (z) (&) and the thick

=4.0 several profiles;(z) andn,(z) for different values of ~rods n3(z) (b) in the I-N, interface for diameter ratial=4.0
e are presented in Fig. 6, which clearly shows the film for-at triple-point undersaturationse=1-p/p;=0.29, 0.1, 0.01,
mation whene—0. The asymptotic densities at-+w are ~ 5X107% 1.3<10°% 2.5<10°°. The bulkI-N, phase is az—
those of the coexisting and N, bulk phasesat the corre- %/ The dashed lines} =3.977 andn; =0.312 represent the
spondinge). Using translational invariance of the interface bulk_ den_sn)_/ of thin(thick) ro&_js in the tnple_-pom_Nl phase. These
between the bulk phases, we have shifted the profiles Witﬁroflles indicate the formation of a wetting, film in the I-N,
respect to each other such that tHel, interfaces coincide. interface.
This shows that the local density of thithick) rods in the . . .
growing film remains constant, and exactly corresponds to FOr all explored mixtures the thickness of the interface
the thin(thick) -rod density of the bulk triple-point phasé, t/!_ (or the adsorptlo)_wwa_s found to diverge Iogar_|thm|cal_ly
(indicated by the dashed lines in Fig. @he same identifi- With é~0 as shown in Fig. 7. For short-ranged interactions
cation can be made for al (or | for long-short mixturesas ~ ©N€ expects, on the basis of mean-field thd@3}, that
well as for the order parameter profil8s(z). __

The biaxiality of thel -N, interface was found to be small. ! ¢In(e)+C, (D
A typical profile for thin-thick binary mixture witld=4.0 at
€=5x10"*is presented in Fig. 4. ThieN, biaxiality pro- ~ WhereC is an irrelevant constant offset, agds the corre-
file can be considered as a Composition of (bar“er dis- lation Iength of the Wettlng film. This |mp||eS that the bulk
cussedl I-N; and N;-N, profiles which is expected as the correlation lengthEy, of the wettingN; phase should follow
thickness of the wetting{, film is larger thanL. from the slope of the logarithmic growth ofL in Fig. 7.
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t/L

YL,
5 5l
4| 2t
3

FIG. 7. Thicknesg/L as a function of the undersaturatien
=1-p/p, from the triple-point pressurg, for diameter ratiosd
=4.0 (0), 4.2(9), 4.5 (<), 5.0 (>) of thin-thick mixtures. The
inset shows the film thicknessL, for long-short mixtures with
length ratiol =3.0 (O), 3.1(0).

The asterisks (*) in Fig. 8 show the resulting valuesggI

as a function ofl. These can be compared to the correlation

PHYSICAL REVIEW E 68, 061703 (2003

FIG. 9. Surface tension ratiB [see Eq.(13)] as a function of
the triple-point undersaturatios for diameter ratiod=4.0 (O),
4.2 (), 45(<), 5.0 (>). The inset shows the same quantity for
long-short mixture$=3.0 (O), 3.1( ).

of the deviation from theN; bulk density p,(z,®)
=p,(z,@)— p\(@), which we find to decay as

length that one can extract from the asymptotic decay of the

one-particle distributiong,(z, @) of thel-N, interface into

§p(r(z’&,) :A(r( a’)eXF(_Z/gNl)v Z— 0, (12)

the bulkN; phase. This decay can best be analyzed in terms

gL

0.45

0.4

0.35

0.3 ! '

FIG. 8. Correlation length for rods in the triple-poiNt phase
of thin-thick mixtures as a function of diameter ratipdetermined
from adsorption*) analysis[Eq. (11)] and from density asymptot-
ics (O) [Eg. (12)]. Inset(a) shows Idp(z 6)| for several values of
at theN, side of thel-N; interface ford=4.0. Insetb) displays the
correlation lengthin units of length of short rodk,) for long-short
mixtures as a function of length ratlo The dashed lines indicate
the correlation length for rods in tHé phase of the monodisperse
hard-rod fluid.

where the only species and orientation dependence is in the
decay amplitud® ,(®), i.e., the decaycorrelation lengthé&

is one and the same for all species and orientations. Such a
“decay law,” with a single correlation length, is well-known

in mixtures of simple liquidd36]. The form (12) is illus-
trated ford=4.0 atp=p; in the inset(a) of Fig. 8, where all
curves(representing differeng’s) are parallel on a logarith-
mic scale. The correlation length follows from tt@mmon

slope of these curves, and is marked ky)(in the main
figure. The agreement with the valuesapj‘,\,l obtained from

the logarithmic growth of the interface thickness is clearly
good. The insetb) of Fig. 8 shows the similar dependence of
the bulk correlation length of triple-poiritl; phase in the
case of long-short mixtures, i.e., as a function of rods length
ratio |, using the same symbols.

In order to verify the thermodynamic condition of com-
plete wetting,yl_sz Yi-n, T YNgN, At the triple-point pres-
surep=p;, we determine the ratio of surface tensions

7|-N2(€)

lim (yi-n, + vngeny)
[

R(e)= , (13

shown in Fig. 9. For all diameter ratias considered here
lim._oR(e)=1, which implies a vanishing contact angle.
This constitutes the thermodynamic proof of complete triple
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point wetting in all thin-thick hard-rod mixtures witth=4. film. The thickness of this film is found to diverge as
For mixtures of long and short rods the behavioR{k) is —¢In(1—p/p) whenp— p;, with £ the correlation length of
the same, as shown in the inset of Fig. 9. A mean-field analythe bulkN, phasep; the triple-point pressure, arn p; the
sis of the asymptotic behavior of the surface tengien0) pressure. The triple-point wetting phenomenon is confirmed
in the case of complete wetting shows th38] by the numerical value of the surface tensions, which satisfy
R(€)—1~e2@ (14) imp1p 71-n,(P) = ¥1-n,(PD) + ¥n-n,(Py). Such a complete
wetting scenario was found for all diameter ratios <3
with the critical exponentz=1. Analysis of our results in <5-2 and length ratios 2:91 <3.1 studied here. We expect

Fig. 9 givesa=1.00+0.05 which can be considered as athat this finding will also hold for more extreme ratids

rough consistency test of our mean-field calculations. >5.2 and >3.1, which are more difficult to analyze numeri-
cally because of the pronounced nematic ordering of the
V. SUMMARY AND DISCUSSION triple-point N, phase.

The predicted phenomenon of triple-point wetting may
We have studied free interfaces of binary mixtures of hardvell be observable in the experimental system of bare and
rods of either different diameters or different lengths within PEG-coatedd virus particles[23] mentioned in the Intro-
Onsager’s second virial functional. On the basis of a vanisheuction. We hope that this work stimulates further experi-
ingly small wetting parameter, which implies that capillary mental activities in this direction.
fluctuations are not important, we argued that this mean-field Another interesting direction for future theoretical work
functional provides a realistic description of isotropic- would be to consider isotropic-nematic interfaces of polydis-
nematic interfaces of long hard rods. We focused on diametgserse mixtures, e.g., extending the theory for bulk systems
ratiosd>3.8 (and length ratio$>3.0), for which the bulk developed in Ref.[37]. For suspensions of length-
phase diagram exhibits ah-N;-N, triple point, and re- polydisperse cellulose experimental measurements of the
stricted attention to the case whefie z, with A the bulk  surface tension have been perfornjd8], and show that the
nematic director and the interface normal. This is the ther- surface tension is much larger than that of a pure system of
modynamically most favorable geometry. rods. It is tentative to speculate that the fractionation effect
We have determined the behavior of the surface tensionthat is also present in binary systems may explain this in-
of I-N;, N;-N, andl-N, interfaces between coexisting iso- crease of the tension. We hope to address this question in
tropic and nematic phases as a function of the bulk pressufigiture work.
and/or the diameter ratid (length ratiol, respectively. The
tensiony,_Nl is always very close to the tension of the pure ACKNOWLEDGMENTS

fluid of thin (or shor} rods, andyy. .y, varies from zero at ) o -
172 It is a pleasure to thank Marjolein Dijkstra, Henk Lek-

the consglutd\ll—Nz point to valugs as large ag.y, at the kerkerker, and Seth Fraden for stimulating discussions, and
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This maximum surface tension is considerably larger than

that of the pure systems of the components, typically by a APPENDIX
factor of order 3-5, not unlike the findings of Re¢R8],
where the casd=3 (without any triple point was studied. In  terms of A=imax(,® 2L, & -2, B

The biaxiality was found to be very small in all cases, similar=3 min(L,®- 2L, ® -2 and the excluded volumé&,,.
to the findings in Refs[27,2§ for the one-component case. =L, L, (D,+D,/)|sin(arccos- @'))|, the results of Ref.
Perhaps our most interesting finding is the phenomenon d25] reduce forD,/L,—0 to the following expression for
complete triple-point wetting of the-N, interface by arlN; the “excluded slab” used in Eq.7):

0, |2|>|A|+8B],
EUO”(&)y&)I)
——(|A|+|B|—|z]), |A|—|B|=|z|<|A|+|B],
K. (|2 dmar)={ — alag (AITIBIZIZD |Al-|B|<|z|<|A|+|B]|
E(w o)
oAl zl<|(|A|—-|B])|.
20A] |z]<|(|A]—[B])]

061703-9



K. SHUNDYAK AND R. VAN ROIJ

[1] G.J. Vroege and H.N.W. Lekkerkerker, Rep. Prog. PI5s.

1241(1992.

[2] M.P. Allen, G.T. Evans, D. Frenkel, and B.M. Mulder, Adv.

Chem. Phys86, 1 (1993.

PHYSICAL REVIEW E 68, 061703 (2003

[18] R. van Roij and B. Mulder, Phys. Rev. &, 6430(1996.

[19] R. van Roij and B. Mulder, J. Chem. Phyi95 11237(1996);
109, 1584(1998.

[20] M. Dijkstra and R. van Roij, Phys. Rev. &6, 5594 (1997.

[3] S. Fraden, irDbservation, Prediction and Simulation of Phase [21] R. van Roij, B. Mulder, and M. Dijkstra, Physica261, 374

Transitions in Complex Fluidedited by M. Bau®t al. (Klu-
wer, Dordrecht, 1995 p. 113.
[4] H. Zocher, Z. Anorg. Chenil47, 91 (1925.

(1998.
[22] R. Sear and G. Jackson, J. Chem. PHS 8684 (1995.
[23] K. Purdy and S. Fradefprivate communication

[5] F.C. Bawden, N.W. Pirie, J.D. Bernal, and |. Fankuchen, Na-[24] Z.Y. Chen and J. Noolandi, Phys. Rev4A, 2389(1992.

ture (London 138 1051(1936.

[6] L. Onsager, Ann. N.Y. Acad. Sckl, 627(1949.

[7] Z. Dogic and S. Fraden, Phys. Rev. L&t8 2417(1997).

[8] X. Wen, R.B. Meyer, and D.L.D. Caspar, Phys. Rev. L&8.

2760(1989.

[9] P. Bolhuis and D. Frenkel, J. Chem. Ph$86, 666 (1997.
[10] J.A.C. Veerman and D. Frenkel, Phys. Rev A 3237(1990.
[11] B. Mulder, Phys. Rev. /85, 3095(1987.

[12] A. Poniewierski and R. Holyst, Phys. Rev. Le@l, 2461
(1988.

[13] A.M. Somoza and P. Tarazona, Phys. Rev. Létt, 2566
(1988; Phys. Rev. A41, 965(1990.

[14] H.N.W. Lekkerkerker, Ph. Coulon, R. Van Der Haegen, and R.

Deblieck, J. Chem. Phy80, 3427(1984.
[15] Th. Odijk and H.N.W. Lekkerkerker, J. Phys. Che®§, 1272
(1985.

[25] A. Poniewierski and R. Holyst, Phys. Rev.38, 1527(1988.

[26] B.G. Moore and W.E. McMullen, Phys. Rev. A2, 6042
(1990.

[27] Z.Y. Chen, Phys. Rev. B7, 3765(1993.

[28] K. Shundyak and R. van Roij, J. Phys.: Condens. Mat&r
4789 (2001).

[29] A.J. McDonald, M.P. Allen, and F. Schmid, Phys. Rev6E
010701(2001.

[30] K. Shundyak and R. van Roij, Phys. Rev. Le&8, 205501
(2002.

[31] R. Evans, Adv. Phys28, 143(1979.

[32] J. S. Rowlinson and B. WidonMolecular Theory of Capillar-
ity (Clarendon, Oxford, 1982

[33] M. Schick, in Liquids at Interfacesedited by J. Charvolin
et al. (Elsevier, Amsterdam, 1990p. 415.

[34] P.C. Hemmer, Mol. Phy€96, 1153(1999.

[16] T.M. Birshtein, B.l. Kolegov, and V.A. Pryamitsyn, Polym. [35] W. Chen and D.G. Gray, Langmuli8, 633 (2002.

Sci. U.S.S.R30, 316(1988.
[17] G.J. Vroege and H.N.W. Lekkerkerker, J. Phys. Ché&mn.
3601(1993.

[36] R. Evans, R.J.F. Leote de Carvalho, J.R. Henderson, and D.C.

Hoyle, J. Chem. Physl00, 591 (1994.
[37] P. Sollich, J. Phys.: Condens. Mattet, R79(2002.

061703-10



