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The effective quark Lagrangian is written for a light quark in the field of a static antiquark, explicitly
containing field correlators as coefficient functions of products of quark operators. AtNargfee closed
system of equations for the gauge-invariant quark Green’s function in the field of static source is examined
analytically. The formation of the string connecting the light quark to the static source is observed numerically.
The scalar Lorentz nature of the resulting confinement is shown to hold for the considered case, implying chiral
symmetry breaking. The resulting spectrum with and without perturbative gluon exchanges is obtained nu-
merically and compared to tH® and D meson masses and heavy quark effective theory.

PACS numbs(s): 12.38.Gc, 12.38.Lg, 12.39.Hg

[. INTRODUCTION In this paper we examine the properties of the Green’s
function of the color single)Q system, where the antiquark
The nature of QCD string formation between staticjs treated in the static limit. In Sec. Il we formulate the full
sources was studied on the lattidg2] and analytically{2].  form of nonlocal and nonlinear equations for the light quark
From these investigations it was shown that the string conpropagator and its eigenfunctions and study the behavior at
sists of a predominantly color-electric longitudinal field. At all distances. We also take into account both perturbative and
the critical temperatur, this electric field disappears and at nonperturbative contributions to the interaction kernel. As a
the same time the deconfined phase with color-magnetic cortesult our equations contain both a confining interaction and
densate sets in. This effect was predicted theoreticallgjn  color Coulomb part. Similar to the heavy quark situation we
and also seen in lattice measureme#ts At the same tem-  argue that the string formation for low angular momentum is
perature chiral symmetry breakiri@SB) for light quarks is  of a color-electric nature. Moreover, the confinement of the
found to disappedf5], which indicates that there is an inti- light quark to the heavy one is shown to be of Lorentz scalar
mate connection between the string formation and CSB. Ifype. In Sec. Ill the resulting nonlinear equations are studied
the case of heavy quark systems CSB occurs due to the quafiimerically. The energy spectrum and the structure of the
mass and confinement can be described as the area law of thgv-lying eigenfunctions are presented. We in particular
Wilson loop. How CSB and confinement are explicitly real- study theB and D meson spectra. We compare them with
ized for the light quark system and what equation describegxperimental data foB, D mesons and results of other cal-
its dynamics is an interesting and open problem. culations, exploiting for this purpose the expansion of heavy
Itis the purpose of the present paper to study this issue iquark effective theoryHQET). In Sec. IV the chiral conden-
the simplest dynamical example—in the system of one lightate of the light quarkgqq) is determined by taking the
quark and a heavy antiquark. This allows us to describe thgmit of the Green’s functiorS(x,y), with bothx andy tend-
dynamics of light quarKits propagatorin a gauge-invariant  ing to zero. In this limit the heavy quark is turned off and the

manner, while physically the light quark is expected to becondensatéqg)~ S(0,0) should have a value not depending
confined at the end of a string connected to the static sourcen the presence of heavy quark.

Applying the formalism of field correlatoré~C) [6,7], we

derive the effective quark Lagrangian, containing any num-

ber of quark operators multiplied by field correlators. To Il. DERIVATION OF EQUATIONS
proceed further one can use the limit of lafyg and write
down the Dyson-Schwinger equations with the mass operator ) ) ) )
expressed through the Green’s function. The resulting equa- N this section we give an outline of the procedure to
tions are nonlocal and nonlinear. It is not clear from thebtain the Dyson-Schwinger equations for the color white
beginning how confinement and CSB would manifest themqQ system. Our starting point is the gauge-invariant light
selves in the solution of these equations. Some hint was prauark Green’s functiorS(x,y) in the presence of a static
vided in Ref.[8] using a relativistic WKB analysi$9], heavy antiquark placed in the origin. In the static limit, the
where it was shown that at large distances from the heavfieavy quark can be treated as an external source. Assuming
source the dynamics of the light quark is described by théhe Euclidean metric and lettinG=(x—y),, the heavy an-
Dirac equation with a scalar linear confining interaction,tiquark propagator in the modified Fock-Schwinger gauge
which leads to CSB. [10] is proportional to the parallel transporter: namely,

A. Dyson-Schwinger equations

0556-2821/2000/62)/0145019)/$15.00 62 014501-1 ©2000 The American Physical Society



YU. A. SIMONOV AND J. A. TION
T
Sg(A)=h(x,y)Pex;{igJ’ A4(I’=0,T)d7'), 1
0
with

h(x,y)= '55<3>(x—y)[(1+ ya)e mTe(T)

H(T——T,v4——vd].
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the largeN, limit, in which case the connected self-energy
kernelM(x,y) is obtained from Eq(3) by replacing any pair
of adjacenty operators by

Yaa(¥) Yap(¥) = NcSap(X,Y), 5
whereaa are color and Lorentz index, respectivéfpr de-

tails of derivation se¢8]). As a result one obtains the equa-
tion for S(x,y)

This acts as a static source situated at the origin. As a result(_ié —im)S(x y)_iJ' M(x,2)S(z,y)d*z= 6 (x—y)
X il y il il

thE proper limit formgy— < of the Green’s function of the
gQ system can be defined as

S(x,y) = (YO)IL(X,y) " (y)). 2

Here we have to average over the gluon fieddand light

quark fieldsy, while IT contains the parallel transporters be-

tween the end points

IL(X,Y) = (X,X4;0X4) #(0.X4;0,Y4) (0. 4;Y,Y4a),
with
. y
¢(x,x4;y,YA)=Pexp<|gL AMdzﬂ) .

The averaging over the gluon fieldshas to be done over
the perturbative and nonperturbative gluon fiedgsandB,,
contributions, respectively, where the total gluonic fiéld

(6)
where the kerneM is expressed througN as
iM(x,y)=N2Z)(X,y)7,S5(%,Y) 7,
+ > f d*z...d%n 17, S(X,X2)
n=3
X ’)/,u.z' . "V,unils(xnfl :Y) ’yMnN,E?l)...p.n
X (X, X0 Xn_1,Y)- (7)

The system of equation(§), (7) is exact in the larg®, limit
and is well defined provided all NP correlators
((F(1)...F(n))) are known.

Evidence has been found in recent accurate lattice calcu-
lations[11] of static potentials in differen8U(3) represen-
tations, that the contributions of the higher correlators

=B,+a,. We now apply the method of field correlators, ((F(1)...F(n))) for n>2 to the planar Wilson loop are

which was developed in a series of papgdd] to derive the

small. In particular, these terms are found to contribute only

effective quark Lagrangian from QCD. Let us first consideraround a few percent of the dominant Gaussian correlator

the effects of averaging over nonperturbatii) field B, .
We may write for the partition function

<Pegf¢+é(x)wdx>BEeLeﬂ
gn
=Pexr{; Hf d*x;...d*%,j(1)...j(n)

X((B(1)...B(n))) |, ()

with — j(n)=j, (X0)=¢" (Xa) v, ¥(x,) and  B(n)
= BMn(xn). To write the correlato(B . . . B)) for the gauge-

invariant situation corresponding to the color Whité sys-
tem one can use the modified Fock-Schwinger gdagéto
express the correlator @&(x) through FC:

N(l,...n)E((B(l)...B(n)>)~J dx(1)...dx(n)

X((F(1)...F(n))). 4

The effective interaction kernel in E€B) can now be used to

write a Dyson-Schwinger-type equation for the quark

[12]. Hence, the Gaussian stochastic model, based on the
lowest correlato(F(1)F(2))), is expected to be a good
approximation. In view of this we assume in this paper that
the Gaussian approximation holds and we keep similar to
Ref. [8] only the first term in Eq(8). One can parametrize
the Gaussian correlator according[&] as

1
(F(LF@))= N—CU<FM(X)¢(X70)FW(0) $(0x))

:D(X)(5;LV5)\0'_ 5MU5V)\)+A(1) (8)

MAVO !
where onlyD(x) is responsible for confinement and it con-
tributes to string tension, while A is a full derivative. As
a consequence, the latter contributes to the perimeter of Wil-
son loop and¢(x,0)=P expigfoB,dz,. From this we find
that theN(?) can explicitly be written in the gaudd 0] as

v

X
NZ(X,Y) = (8,,,0k— 8,81 foduiaﬂ(w

Xfydvka,,(v)D(u—v), 9
0

Green’s functiorS. To simplify the matter, one can consider where a,(u) =1,a;(u) =u;/X; .
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In Eq. (9) only the nonperturbative confining piece of the with Mfi=<91|im|Mik|Qj|kM> andM;, is given by Eq.(13).
Gaussian correlatdB) is retained, since the perturbative part  gquations(15), (16) are invariant under the transforma-
and A do not produce either the stringonfinementor  tion
CSB[8]. In the case of a nonrotating string the terms in Eq.

(7) with space componentg, are suppressed by powers of en——&n, kK——k, GyoF, (18)
velocity of the endpoints of the string. In what follows we

shall keep for simplicity only the compone ﬁ)EJ(x,y) which also yieldaVl 11+ My, M 15> —My;. The symmetry

of N?). Hence the kerne¥l is proportional to the FC of the (18) implies that the spectrum is symmetric in«— — ey,
color-electric fieldE;=F;,. It is the dominant part of the Which is a property of a scalar interaction. The Lorentz scalar
string. Color-magnetic components are neglected in this firspature of the confining interaction has the nice feature that it
step and can be considered as a correction. does not lead to instability problems in the Dirac equation

In this way one arrives at the system of equatip8s  [14]. Moreover, nontrivial solutions of Eqg15), (16), if
where we keep the same notatih(x,y) for the retained they exist, signify spontaneous CSB.

piece of the kernel, We solve Egs(15), (16) using the relativistic WKB ap-
proximation for the kerneM;, . To simplify the calculations
IM(X,y)=J(X,y) ¥4S(X,Y) Va, (100 the Gaussian form fob(x) was usedsince all observables

are integrals of FC, its explicit form is not essential at large
. . . distances, provided the FC have a finite rafigeand it
_ih _ 4, (A (y_
( 'éx im)S(x,y) 'f M(x,2)S(zy)d*z= 5" (x~y). yields the same value of the string tension
11

g
D(u)=D(0)exp —u?/4T}), D(0)=~—= (19

B. Partial wave reduced equations 211-Tg

The kernelJ(x,y) in Eq. (10) depends on the time as
(Xa—Ya)/Ty. Therefore in the limit of T;—0 it becomes
local in time. As a result, the Fourier transform Mfin the . .
fourth coordinate does not depend on the momeryyrfor As the reference basis we take the WKB solutions of the
T,—0. The corresponding eigenfunction(x, pa) = ¥in(x) Dirac equation for the local I|n~ear co'rjfmlng.potenttal,
and eigenvalues,=e,(p,) of the light quark in the white and the WKB computed kerneld and A(x.y) in Eq. (13)
light-heavy configuration can readily be obtained from Eqs@re determined by explicit summation over eigenstates. It

(10), (11) in the discussed instantaneous limit. We find was checked by an independent calculafibhi that the rela-
tivistic WKB procedure yields eigenvalues of the linear po-

tential with accuracy better than 1%.

The general structure dft andM can be derived from
(12 Eqgs.(13), (14). One can writeVl as a 44 matrix as follows
[16]

with ¢=0.2Ge\%, and Tg=0.25fm, taken in accordance
with the lattice measuremenit4,13].

i dx

a J
<__+ﬂm) wn()_())'i_BJ- M(x,z)z//n(z)d3z=snz,//n(x),

— — + . .
M(x,2)=J(x,2) BA(X,2), A(x,z)—Ek: h(X)sgneiy (2). M=MO1+MO5+ M@y, + My, (20)
(13
wherey,, vy, are the usual Dirac matricess 1,2,3 anda;
The spherical-spinor decomposition ¢f, for the total and :(gi(f)_

orbital angular momentum chanrjel =j+1/2, The same representation holds for the WKB approxi-

1 Gu(NQy _ matedM. From the WKB analysi$8,16] we find thati (*)
Pn(r)= F(iF (D) I"=2j—-1 (14) s the only growing kernel. It behaves asymptotically as
n i
yields equations for the partial waves MO(x,y)= o |X”2Ly|~5(3)(x_y)7 (21)
dF, «

ar 7 et (enm MG My,Gr=iM 1R, =0, (19 where3®)(r) is a smeared function with the range of non-
locality decreasing asymptotically with growirg, |y|. The
dG, « _ term M is proportional to the angular momentumand
dr + FGH_ (entMFy=MaF,+iM2,G,=0, (16) asymptotically it behaves &3(1/x). One can also prove that
M@, M%) do not grow at large, y[16]. Hence in all prob-
with k= *(j +1/2). Clearly the kernel;, are nonlocal in  lems where large distances are dominant one can consider
space, i.e., only the first term in Eq(20). Using this approximation we

get, for the kerne(13),

Mian=f0 MIL(r,r)G(r"yrrdr, (17) = 00yl = I K eyl 22
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with 20_....,....,...., =]
- //
X 1 1 L 7
J(x,y)zo—yf(x,y), f(x,y):j dsf dt e~ (xs-yv?4Tg I 7
\/; 0 0 15 // .
(23 ; S
and whereA is now a scalar quantity. [ // 4
A curious feature of the considered equations is the Way": 10 yid ]
the string connecting the light quark to the source is belng> i //
created. Actually, if one takes only lowest partial waves in- L il
side the kerneM [i.e., in A(x)y), Eq. (13)], then the effec- s [ // ]
tive potential in Eqs(15), (16) is not confining. If one, how- i P
ever, sums up over aingular states and radial excitations -7 T Yonlocatkemel (22)
in A, then the resulting\ (x,y) is a smeared function lead- [ 7 "
. . . . ~ . 7 T Y S
ing to the quasilocal confining kernkl. For example, using 0 o 5 10 15 20

eigenfunctions for the local cas&, can be computed quasi-

. r
classically to be

) s FIG. 1. Behavior of the effective potential,Veg(r)
< _ Xy K[ o \xy(x=y)?+ 6xy] =[ My (r,x)rx dx, as a function of (solid line). The kernel(24)

A(Xy)= )
xy) 27 ~/(X—y)7+ azxy and units of\/; have been used. For comparison, the linear local
potentialVj;,(r)=r (dashed lingis also plotted.

Xy=XY COS6. (29

_ region with a slope almost the sameageflecting the pres-
In Eq. (24) one can clearly see that(x,y) is a normalized ence of a small local curvature. In particular, we find that in
smeareds function, with smearing radius ifx—y| being  the region 5<% <20 the effective potential can reason-
1/o\/xy. For large distances it is nonvanishing only in the ably well be described bY,o(r)=0.9r —1.80'2 In Fig. 1
forward direction. are shown the results up te=20 in units of a2

Insertion of thisA into M, Eq.(22) produces linear con- Since it is only the higher states and large distances which

finement due to the kerdi(x.y), as is given by Eq(24) are important in the creation of thi&function-type behavpr
[while simply averaging the contribution from each indi- °f A(X.y), and since the WKB method does well for high
vidual orbital in Eq.(13) over the angle betweex andy states and at large distances, one can clearly conclude that

would produce no confinement atJalThe computed kernel linear confinement should be obtained if one sums over all
~ . exact solutions of Eqs(15), (16). Hence this should be a
M (x,y) turns out to be nonlocal, but very close to the linear

’ . . ~“ property of the exact solution.
potent!al at !arge distances. Indeed, the effective Iocahzeg The property that the kernel has a focusing effect in the
potential defined as

forward direction can be used to get a somewhat simpler
form. For this purpose we may also Usd

veﬁ(r):f M©(r x)rx dx (25)
approaches at very large distances, i.e., §ofr>200, a A(xy)= Ko(a) 8(cosf,—cosh,), a=axylx—yl.
linear dependence with a slope given by However at 72Xy Y
shorter distance¥ . also looks linear over a relatively large (26)

TABLE |. Energy eigenvalues for Eq§13), (14) with J=% and the kernels, given by E{R4) and Eq.
(26), as compared with those of the Dirac equation for the linear local potantidr)=r.

V=r kernel (24) kernel (26)

n k=-—1 k=1 k=-1 k=1 k=-1 k=1

0 1.619 2.294 0.925 1.472 0.969 1.516
1 2.603 3.031 1.719 2.056 1.765 2.113
2 3.291 3.626 2.277 2.541 2.334 2.608
3 3.855 4.138 2.740 2.964 2.809 3.042
4 4.345 4.594 3.144 3.342 3.226 3.432
5 4.784 5.008 3.507 3.685 3.603 3.790
6 5.186 5.334 3.838 4.002 3.950 4.123
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The eigenvalues and eigenfunctions in E¢E5), (16)

have been determined using the keriwe(x,y), given by
Egs. (24) and (26). Some results are shown in Table | and
Fig. 2. In our present study we have take=0. Note that

M(x,y) is approaching a local linear potential at large dis-
tancesx,y= o2 which justifiesa posterioriour choice of

the reference basis. Due to the nonlocality of the interaction
the predicted spectrum is found to be different from that of
the linear potential, valid at large distances. Moreover, com-
paring the level structures of thle=1/2 channel as obtained
using the kernel$24) and(26) we see from Table | that they
are qualitatively very similar, corroborating that there is in-
deed a strong forward focusing effect in the quark propaga-
tor. From Fig. 2 we see that for dll values the higher radi-
ally excited levels are close to the predictions of linear
potentialVy(r)=0.9t — 1.85Y2 in agreement with the fact
that the interaction at large distance can indeed be described
by a local linear potential. On the other hand, the nonlocal
kernel predictions for the low-lying states clearly deviates

FIG. 2. Level structure calculated with the Dirac equation usingstrongly from those of théshifted linear potential. Hence
the kernel(26) (solid line) in comparison with the predictions of the the nonlocal nature of the force does affect the spectrum in

linear potentialVy(r)=0.9 —1.8 (dashed ling States carry the
quantum numberk ;, with L,J being the orbital and total angular

momentum.

08 T

086

04 F

02

0.0

Cmmms V,=091-1.8

kernel (22}

0.8 T

——m- V=0.9r-1.8

06 | 1
kernel (22)

"0'8012345678

0.8

0.6

0.4

0.2

an essential way.

The eigenfunctions for the nonlocal kernels look qualita-
tively similar to the corresponding ones of the shifted linear
potential. In Fig. 3 are shown the ground state and first ex-
cited state for thed=1/2 channels. Although the differences

——=- V,=0.9r-1.8
—— kernel (22)

FIG. 3. Eigenfunctions of the ground state
and the first excited state for th®, and P4,
channels. The solutions correspond to using the

———- V=0.9r-1.8
—— kernel (22)

kernel (26) (solid line) and the shifted linear po-
tential Vy(r)=0.9 — 1.8 (dashed ling
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are substantial for these low-lying states, the agreement fagraging procedure oveé8,, anda
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.- In other words, another

higher excited states is considerably better. Moreover, welass of diagrams is responsible for this interference.
find that the large distances and high states of the WKB Correspondingly in the static equatiofis2) one should

states agree well with the corresponding eigenfunctions.

C. Inclusion of perturbative exchanges

Till now we have considered only the NP part of the

replace

Coas

ER (3D

Bm— Bm—

gluonic erld,BM . In this Seqtion_V\{e inC|U(_Zie the pel"[urbative The equations for the partial WavéB5)1 (16) are modified
part,a,, and neglect for simplicity the interference terms. que to the presence of the color Coulomb potential) in a

Therefore the effect od,,

of an additional factor in the partition functig®), namely,

) a i
Z=ZnpZpert: zpen:<egfd><l/ ax)¢()+igf dz4a4(z4)>a'

(27)

where the second term in the exponent of EZj) corre-

sponds to the interaction of the perturbative part of the gluo

field with the static antiquark. We have used in E2j/) that

due to the 't Hooft identity{17] one can average indepen-

dently overB, anda,, .
The result of averaging yields a new additive ternt_jig,
Eq.(3),

Lc=9 f dx " ()AL (X) (), (28)
where we have defined
c . (—i)gC
A0 =19 [ dzu(@d00320) = S0 g
(29)

The presence df. in Eq. (3) does not influence the deriva-
tion of basic Eqs(10), (11). The only difference is that Eq.
(11) assumes the form

[—id—gA%(X)—im]S(X,y)—i f M(x,2)S(z,y)d*z
=59 (x—y). (30

Equation(10) does not change and the kerrkk,y) con-

is accounted for in the appearance simple way. Since

Coas
r

V(r)=— (32

is local and a Lorentz vector, it always appears in the com-
binatione,—V(r). Hence one has instead of E¢§5), (16)

n

dF, « .
W_ FFV"I‘[SV_V(r)_m]GV_MllG_|M 12F:O,
(33

dG,
dr

K
+ FG,,—[s,,—V(r)-Fm]FV—|\/|22F+i|\/|21G=0,
(34)
where we have denoted

G
E

_ ’ GV’(W)
Mik :f<y|Mik|V >(F,,1(W))rWdW (35)
Here M, is defined as in Eq13) and the matrixA, in Eq.
(13) involves the sum over all states, including positive and
negativee,,. There in Sec. Il B we have exploited the sym-
metry (18). However, Eqs(33), (34) are invariant under an-
other transformation, namely,

en——en, V(1) —=V(r),k—k,G,—F,. (36)
Now the sum over negative, can be expressed through the
corresponding sum over positivg with exchangeG,«F,
as before, but also with the inversion of sign of Coulomb
interaction, i.e., Coulomb attraction for positivg, is re-

tains as before only nonperturbative contributions. Noteplaced by Coulomb repulsion for negatieg.

however, thatS(x,y) in M(x,y) in Eq. (10) now contains

In what follows we shall denote wave functions of the

also perturbative gluon exchanges. This is a new type oPOSitive energy states with repulsive Coulomb with the sign
interference of perturbative and NP terms, which appearsf tilde: G,, F,. Then using Eq(13) the matrix 8A;, can
irrespective of our neglect of this interference within the av-be written as a sum over only positivg as follows:

* = T* H * = _R*
L G,G: —F,F%,,  —i(G,F: -F,G) -
©oxYinaso | —i(G,GE, -G, Fr),  G,GL —F,F,

SinceBA is exactly the combination which enters the mass matrdy, one can list in Eq(37) scalar and vectajproportional

to B) parts:

M=M +M,B+AM,

(38)
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TABLE II. Ground state energy eigenval(ie units of Jo) for ~ from 0 to 0.3 and whefT is changing from 0 to 0.25, while

Egs. (33), (34 with ¢s=0, 0.3, and 0.39 and quark masses  further increase ofrs or Ty does not produce such a strong
=5 MeV, 0.15 GeV, and 0.2 Gelupper, middle, and lower entry  dependence.

for different values Ong, T =0, 0.25, 0.5, and Xin units of Solutions of our equation$33), (34) can be Compared
1Wo). with physical states 0B, D andBg, D mesons. To this end
one should have in mind that in Eq&3), (34) the static
Tq approximation for the heavy qualk cwas used, and hence
%s 0 025 05 L all correctionsO(l/mg) with n=1 are neglected.
1.628 0.985 0.979 0.907 One can exploit at this point the HQET expansion for the
0 1.886 1.225 1.217 1.145  massmy of heavy-light bosor18,19
1.978 1.314 1.305 1.233 1 .
1.163 0.684 0.679 0.628
0.3 1.378 0.884 0.877 0.826 MH=Mg 1% 1 * m()‘ﬁdHMHO(lmg) ’
1.456 0.959 0.951 0.900 (42
1.004 0.585 0.580 0.536
0.39 1.201 0.768 0.761 0.717 where\,, are free parameters, depending on dynamics, and
1.272 0.837 0.830 0.786 dy is the hyperfine splitting parameter. It is clear from the

Eeceding that eigenvalues of E@33), (34) yield the value

A, which depends on the quantum numbers of the state,
where AM contains spin-dependent terms, which can be

considered as in Sec. II B, whiMg, M, are A Ln)=eq(j,D). (43)
=C G.G*—E E*+(G.G,—F F*)], Consider now the results of the present approach, i.e
JIM;n>O[ pCum FuFu= (GG FuFL)] solutions of Dirac-type equatiori83), (34). In the local case

(39  (Ty—0) when the kerneM reduces to the linear potential
or, we have
where
1 X-y AQ°9=0.690GeV (as=0, ¢=0.18Ge\¥) (44)
C=ZVmTP(0) SO,

and

f(x, y)—f dsf dtex p( ( S4TZ” ) (40) Al°9=0.493GeV (as=0.3, 0=0.18 GeV}). (45)

From Eq.(39) it is clear that the vector paM, is only due This should be compared to the nonlocal case
to the presence of Coulomb interaction. Corrections at large
distances due to the vector part can be treated again in the
relativistic WKB. A rough estimate oM, at larger yields

AQOM9=0.415GeV (=0, c=0.18 GeV) (46)

and
M, as
M or? (41) Ao =0 288 GeV (as=0.3, 0=0.18 Ge\?).

(47)

These latter values are in general agreement with the results
of the QCD heavy-flavor sum rulg¢f0,21]

and hence can be neglected at large enaugh

Ill. NUMERICAL SOLUTIONS OF EQUATIONS AND

COMPARISON TO B, D MESONS —
A=0.57+0.07 GeV (49)

We have performed numerical studies of E(@3), (34)
with the kernel(24) for different values of the quark mass  and more recent analysis from semileptoBidecayd 22]
and different values of 4. To simplify calculations only the

dominant part of the mass operatil, was retained, i.e., A=0.39+0.11GeV. (49
M 1,=M ,=M© while M,, M,; have been neglected. For _ _ o _
M©) the representatiof?2) was used Another interesting comparison is with the experimental
values of theB-meson masfthe term, in Eq. (42) can be
MO(x,y)=I(x,y) A (x,y)!, determined from th8* — B mass difference Using Eq.(47)

5 andMg=(3Mpg+ +Mpg)/4=5.312 GeV one can estimafiee-
whereA is taken to be the kerné24). Results of our calcu- glecting\;) the pole mass of the quark to bemy(pole)
lations for the ground state energy are listed in Table 1. One=5.0 GeV, which is in reasonable agreement with the analy-
can see a rather sharp change of energy wiagichanges sis of the quarkonium spectra j23].
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TABLE lIl. Energy eigenvalues\ of the heavy-light system in It can be arguedusing Eqgs.(8), (9) from [8]], that the
the static heavy quark approximation obtained in different ap-nonlocality of the kerneM in spacetime, present by defini-

proaches. tion in Eq. (8), improves the convergence of the series and
— yields a finite result foXqq). We have found\, ,B, from

Refs. Method A (GeV) the solutions of the nonlocal equatiofs5), (16) with the

[20] QCD sum rules ~05 ke(;nel M andh colmpellr?d them with_ tlhe Iocall case, V\;]Mn _

[21] QCD sum rules 04-05 reduces to the local linear potential. Results are shown in

. Table IV.
[24] Lattice 0.18=0.03 One can see from the results that in the nonlocal case the
[22] experim. 0.330.11

magnitude ofs,=(A,)?—(B;)? is clearly diminished as

25 CM 0.35 .

%26% 8CM 05-0.6 compared to the reference local case, and is of reasonable
e order of magnitude. From the obtained sequencs, gfe get

[T2h7|1_ work E‘jﬁﬁcgwac eq 0635 :7 that (qq) = —0.50*? and —0.70>? in the nonlocal cases of

the kernelg21) and (22), respectively. Adopting a value of
0=02GeV¥ we find (qg)=—(350MeV)® and

— (400 MeV)?, respectively, to be compared with the usually

_ — acceptable value of (250 MeV)®. However convergence is
corresponding values foks with mg=0.15 and 0.20 GeV, gj|| slow as seen from Table IV and the converged values
areAs—A=0.084 andA— A=0.115 foras=0.3. One can are somewhat higher. We have checked that convergence is
compare these values with the mass differencesomewhat improved when one takes into account the intrin-
Bs,B% AM(B)=(0.090+0.0038) GeV. These numbers for sic nonlocality of the kerneM in x, y. To this end we have

A can be compared with those in Table Ill, where also remodified the kerneM obtained from WKB analysis, replac-

sults of lattice calculationg24] and of the constituent quark jng 3 in Eq. (21) by a Gaussian factor
model (CQM) [25-27] are given.

A similar analysis can be done for tH& meson; the

(x—y)?
Nexp — 7— | 8(cosb,—cosh,) (51
IV. CHIRAL CONDENSATE a

As a check of CSB in our Eq¢15), (16) we have com-  anq studied the sequencesspfas functions of the nonlocal-

the eigenfunctions as i8] (to simplify the matter we disre- z—=0 3,2 and 0.%Y2 The strengthN is chosen such that
gard in this section perturbative contributions numerically the slope of=0.2 Ge\? is reproduced for large
distances. The condensate values vary in the considered re-
- Ne < gion substantially, showing that effects of nonlocality are
(@@)=—5_2 [(A)°~(By)?], (50 important.
n=o The slope of the effective potentislLy(r), determined by
- N, strongly depends oa for a=T,. We believe that the
whereA; =(Gn(r)/r)i—o, By =(Fn(r)/I);=o, andG,, F,  reason for this lies in the fact that the chiral condenégtg
refer to solutions withk=—1,1=0, andk=+1,1=1, re- depends crucially on the nonlocality both in time compo-
spectively. In the local linear potential case the values ohents ofM(x,y;X4,Y4) and in spatial components. The first
A, ,Bf{ have been computed in the WKB methf8] and  nonlocality was, however, disregarded in E@$2), (13),
shown to yield a monotonically divergent seriégq)  when thep, dependence was omitted h and ¢, (the static
= — N /273, constA/n. limit). It was indeed shown in Ref8] that taking this de-

TABLE IV. The differences,=|A,|>—|B,|? for n=0,1, .. .,6, in thecase of the nonlocal kerne{g4)
and (26) and corrected for a normalized Gaussian nonloc#bty) with a range ofa=0.3 anda=0.5. For
comparison the results are shown for a local linear poteltjgalFr.

A%2-B2
n V= kernel (24) kernel (26) a=0.3 a=0.5
0 0.79 0.42 0.50 0.15 0.23
1 0.51 0.21 0.34 0.04 0.12
2 0.41 0.12 0.19 0.02 0.10
3 0.35 0.10 0.16 0.02 0.09
4 0.31 0.08 0.11 0.01 0.09
5 0.27 0.07 0.11 0.01 0.08
6 0.26 0.06 0.09 0 0.07

014501-8



STRING FORMATION AND CHIRAL SYMMETRY . .. PHYSICAL REVIEW D62 014501

pendence into account significantly improves convergence aipproach. In the NJL model confinement and string are ab-
the sum in Eq(50). The full account of this effect requires sent and CSB may occur due to the condensatiaqogbairs
solution of time-dependent Eq&l0), (11), which is numeri-  in the scalar channel. In our case, being the Idtgapproxi-
cally a much more difficult problem. mation of the real QCD, a string is built up between light and
heavy quark, which depends not only on light quark coordi-
natesx, y, but also on the distance from them to the heavy
. o o antiquark. In the presence of confinement, the phenomenon
We have studied the confining and CSB properties in thg cSB is due to the spontaneous creation of the scalar
system of one light quark and one static antiquark. The efString, which is forbidden by chiral symmetry.
fective mass operator is written explicitly for largg , as a Eigenvaluess,, and eigenfunctions obtained numerically
sum over vacuum field correlators. Keeping only the Gausstor |owest states represent the leading contributions of the
ian field correlator, we have obtained a closed system OHQET expansion in powers of i, . Results for the ener-
equations in the limit of largéN.. Our results support the iese,, in our method are compared of the lattice and QCD

presence of a Lorentz scalar linear confinement for the lighfm ryle calculations, and also with experimental extraction
quark, which signifies CSB for this system, and yield eigen- = . .
functions and eigenvalues for the heavy-light system con9f en=A(n), showing an overall agreement with tBeand

L 9 y-ig y D meson masses.
taining both confinement and CSB.

As a direct evidence of CSB we have computed the chiral
condensate, which appears to be of the correct sign and hav-
ing the proper larg®l. dependence. Our result yields a rea- This work was started while one of the auth@i.S)
sonable order of magnitude ¢§g), provided convergence was visiting ITP Utrecht. The hospitality of the Institute and
of the sum is achieved. At this point it is useful to comparefinancial support by FOM are gratefully acknowledged.
the CSB picture of the Nambu—Jona—Lasinio model and oulu.S. is grateful to I. M. Narodetsky for a useful discussion.

V. CONCLUSION
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