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String formation and chiral symmetry breaking in the heavy-light quark-antiquark system
in QCD
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The effective quark Lagrangian is written for a light quark in the field of a static antiquark, explicitly
containing field correlators as coefficient functions of products of quark operators. At largeNc the closed
system of equations for the gauge-invariant quark Green’s function in the field of static source is examined
analytically. The formation of the string connecting the light quark to the static source is observed numerically.
The scalar Lorentz nature of the resulting confinement is shown to hold for the considered case, implying chiral
symmetry breaking. The resulting spectrum with and without perturbative gluon exchanges is obtained nu-
merically and compared to theB andD meson masses and heavy quark effective theory.

PACS number~s!: 12.38.Gc, 12.38.Lg, 12.39.Hg
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I. INTRODUCTION

The nature of QCD string formation between sta
sources was studied on the lattice@1,2# and analytically@2#.
From these investigations it was shown that the string c
sists of a predominantly color-electric longitudinal field. A
the critical temperatureTc this electric field disappears and
the same time the deconfined phase with color-magnetic
densate sets in. This effect was predicted theoretically in@3#
and also seen in lattice measurements@4#. At the same tem-
perature chiral symmetry breaking~CSB! for light quarks is
found to disappear@5#, which indicates that there is an int
mate connection between the string formation and CSB
the case of heavy quark systems CSB occurs due to the q
mass and confinement can be described as the area law o
Wilson loop. How CSB and confinement are explicitly rea
ized for the light quark system and what equation descri
its dynamics is an interesting and open problem.

It is the purpose of the present paper to study this issu
the simplest dynamical example—in the system of one li
quark and a heavy antiquark. This allows us to describe
dynamics of light quark~its propagator! in a gauge-invariant
manner, while physically the light quark is expected to
confined at the end of a string connected to the static sou
Applying the formalism of field correlators~FC! @6,7#, we
derive the effective quark Lagrangian, containing any nu
ber of quark operators multiplied by field correlators. T
proceed further one can use the limit of largeNc and write
down the Dyson-Schwinger equations with the mass oper
expressed through the Green’s function. The resulting eq
tions are nonlocal and nonlinear. It is not clear from t
beginning how confinement and CSB would manifest the
selves in the solution of these equations. Some hint was
vided in Ref. @8# using a relativistic WKB analysis@9#,
where it was shown that at large distances from the he
source the dynamics of the light quark is described by
Dirac equation with a scalar linear confining interactio
which leads to CSB.
0556-2821/2000/62~1!/014501~9!/$15.00 62 0145
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In this paper we examine the properties of the Gree
function of the color singletqQ̄ system, where the antiquar
is treated in the static limit. In Sec. II we formulate the fu
form of nonlocal and nonlinear equations for the light qua
propagator and its eigenfunctions and study the behavio
all distances. We also take into account both perturbative
nonperturbative contributions to the interaction kernel. A
result our equations contain both a confining interaction a
color Coulomb part. Similar to the heavy quark situation w
argue that the string formation for low angular momentum
of a color-electric nature. Moreover, the confinement of
light quark to the heavy one is shown to be of Lorentz sca
type. In Sec. III the resulting nonlinear equations are stud
numerically. The energy spectrum and the structure of
low-lying eigenfunctions are presented. We in particu
study theB and D meson spectra. We compare them w
experimental data forB, D mesons and results of other ca
culations, exploiting for this purpose the expansion of hea
quark effective theory~HQET!. In Sec. IV the chiral conden
sate of the light quarkŝq̄q& is determined by taking the
limit of the Green’s functionS(x,y), with bothx andy tend-
ing to zero. In this limit the heavy quark is turned off and t
condensatêq̄q&;S(0,0) should have a value not dependin
on the presence of heavy quark.

II. DERIVATION OF EQUATIONS

A. Dyson-Schwinger equations

In this section we give an outline of the procedure
obtain the Dyson-Schwinger equations for the color wh
qQ̄ system. Our starting point is the gauge-invariant lig
quark Green’s functionS(x,y) in the presence of a stati
heavy antiquark placed in the origin. In the static limit, t
heavy quark can be treated as an external source. Assu
the Euclidean metric and lettingT5(x2y)4 , the heavy an-
tiquark propagator in the modified Fock-Schwinger gau
@10# is proportional to the parallel transporter: namely,
©2000 The American Physical Society01-1
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SQ̄~A!5h~x,y!P expS igE
0

T

A4~r50,t!dt D , ~1!

with

h~x,y!5
i

2
d~3!~x2y!@~11g4!e2mQTU~T!

1~T→2T,g4→2g4!#.

This acts as a static source situated at the origin. As a re
the proper limit formQ→` of the Green’s function of the
qQ̄ system can be defined as

S~x,y!5^c~x!P~x,y!c1~y!&. ~2!

Here we have to average over the gluon fieldsA and light
quark fieldsc, while P contains the parallel transporters b
tween the end points

P~x,y![f~x,x4 ;0,x4!f~0,x4 ;0,y4!f~0,y4 ;y,y4!,

with

f~x,x4 ;y,y4!5P expS igE
x

y

AmdzmD .

The averaging over the gluon fieldsA has to be done ove
the perturbative and nonperturbative gluon fieldsam andBm
contributions, respectively, where the total gluonic fieldAm
5Bm1am . We now apply the method of field correlator
which was developed in a series of papers@6,7# to derive the
effective quark Lagrangian from QCD. Let us first consid
the effects of averaging over nonperturbative~NP! field Bm .
We may write for the partition function

^Peg*c1B̂~x!cdx&B[eLeff

5P expF(
n

gn

n! E d4x1 ...d4xnj ~1!...j ~n!

3^^B~1!...B~n!&&G , ~3!

with j (n)[ j mn
(xn)5c1(xn)gmn

c(xn) and B(n)

5Bmn
(xn). To write the correlator̂^B . . . B&& for the gauge-

invariant situation corresponding to the color whiteqQ̄ sys-
tem one can use the modified Fock-Schwinger gauge@10# to
express the correlator ofB(x) through FC:

N~1,...,n![^^B~1!...B~n!&&;E dx~1!...dx~n!

3^^F~1!...F~n!&&. ~4!

The effective interaction kernel in Eq.~3! can now be used to
write a Dyson-Schwinger-type equation for the qua
Green’s functionS. To simplify the matter, one can consid
01450
ult

r

the largeNc limit, in which case the connected self-energ
kernelM (x,y) is obtained from Eq.~3! by replacing any pair
of adjacentc operators by

caa~x!cab
1 ~y!→NcSab~x,y!, ~5!

whereaa are color and Lorentz index, respectively~for de-
tails of derivation see@8#!. As a result one obtains the equ
tion for S(x,y)

~2 i ]” x2 im!S~x,y!2 i E M ~x,z!S~z,y!d4z5d~4!~x2y!,

~6!

where the kernelM is expressed throughN as

iM ~x,y!5Nmn
~2!~x,y!gmS~x,y!gn

1 (
n53

` E d4x2 ...d4xn21gm1
S~x,x2!

3gm2
...gmn21

S~xn21 ,y!gmn
Nm1 ...mn

~n!

3~x,x2 ...xn21 ,y!. ~7!

The system of equations~6!, ~7! is exact in the largeNc limit
and is well defined provided all NP correlato
^^F(1)...F(n)&& are known.

Evidence has been found in recent accurate lattice ca
lations @11# of static potentials in differentSU(3) represen-
tations, that the contributions of the higher correlato
^^F(1)...F(n)&& for n.2 to the planar Wilson loop are
small. In particular, these terms are found to contribute o
around a few percent of the dominant Gaussian correl
@12#. Hence, the Gaussian stochastic model, based on
lowest correlator̂ ^F(1)F(2)&&, is expected to be a goo
approximation. In view of this we assume in this paper th
the Gaussian approximation holds and we keep simila
Ref. @8# only the first term in Eq.~8!. One can parametrize
the Gaussian correlator according to@6# as

^^F~1!F~2!&&5
1

Nc
tr^Fml~x!f~x,0!Fns~0!f~0,x!&

5D~x!~dmndls2dmsdnl!1Dmlns
~1! , ~8!

where onlyD(x) is responsible for confinement and it co
tributes to string tensions, while D (1) is a full derivative. As
a consequence, the latter contributes to the perimeter of W
son loop andf(x,0)5P expig*0

xBmdzm . From this we find
that theNmn

(2) can explicitly be written in the gauge@10# as

Nmn
~2!~x,y!5~dmnd ik2dmkdn i !E

0

x

duiam~u!

3E
0

y

dvkan~v !D~u2v !, ~9!

wherea4(u)51,a i(u)5ui /xi .
1-2
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In Eq. ~9! only the nonperturbative confining piece of th
Gaussian correlator~8! is retained, since the perturbative pa
and D (1) do not produce either the string~confinement! or
CSB @8#. In the case of a nonrotating string the terms in E
~7! with space componentsgk are suppressed by powers
velocity of the endpoints of the string. In what follows w
shall keep for simplicity only the componentN44

(2)[J(x,y)
of Nmn

(2) . Hence the kernelM is proportional to the FC of the
color-electric fieldEi[Fi4 . It is the dominant part of the
string. Color-magnetic components are neglected in this
step and can be considered as a correction.

In this way one arrives at the system of equations@8#
where we keep the same notationM (x,y) for the retained
piece of the kernel,

iM ~x,y!5J~x,y!g4S~x,y!g4 , ~10!

~2 i ]” x2 im!S~x,y!2 i E M ~x,z!S~z,y!d4z5d~4!~x2y!.

~11!

B. Partial wave reduced equations

The kernelJ(x,y) in Eq. ~10! depends on the time a
(x42y4)/Tg . Therefore in the limit ofTg→0 it becomes
local in time. As a result, the Fourier transform ofM in the
fourth coordinate does not depend on the momentump4 for
Tg→0. The corresponding eigenfunctionscn(x,p4)5cn(x)
and eigenvalues«n5«n(p4) of the light quark in the white
light-heavy configuration can readily be obtained from E
~10!, ~11! in the discussed instantaneous limit. We find

S a

i

]

]x
1bmDcn~xW !1bE M ~x,z!cn~z!d3z5«ncn~x!,

~12!

M ~x,z!5J~x,z!bL~x,z!, L~x,z!5(
k

ck~x!sgn«kck
1~z!.

~13!

The spherical-spinor decomposition ofcn for the total and
orbital angular momentum channelj, l 5 j 61/2,

cn~r !5
1

r S Gn~r !V j lM

iF n~r !V j l 8M
D , l 852 j 21 ~14!

yields equations for the partial waves

dFn

dr
2

k

r
Fn1~«n2m!Gn2M11Gn2 iM 12Fn50, ~15!

dGn

dr
1

k

r
Gn2~«n1m!Fn2M22Fn1 iM 21Gn50, ~16!

with k56( j 11/2). Clearly the kernelsMik are nonlocal in
space, i.e.,

MikGn5E
0

`

Mik
j j ~r ,r 8!Gn~r 8!rr 8dr8, ~17!
01450
.

st

.

with Mik
j j 5^V j l i M

uMikuV j l kM& andMik is given by Eq.~13!.
Equations~15!, ~16! are invariant under the transforma

tion

«n→2«n , k↔2k, Gn↔Fn ~18!

which also yieldsM11↔M22, M12↔2M21. The symmetry
~18! implies that the spectrum is symmetric in«n↔2«n ,
which is a property of a scalar interaction. The Lorentz sca
nature of the confining interaction has the nice feature tha
does not lead to instability problems in the Dirac equat
@14#. Moreover, nontrivial solutions of Eqs.~15!, ~16!, if
they exist, signify spontaneous CSB.

We solve Eqs.~15!, ~16! using the relativistic WKB ap-
proximation for the kernelMik . To simplify the calculations
the Gaussian form forD(x) was used~since all observables
are integrals of FC, its explicit form is not essential at lar
distances, provided the FC have a finite rangeTg and it
yields the same value of the string tensions!

D~u!5D~0!exp~2u2/4Tg
2!, D~0!5

s

2pTg
2 ~19!

with s50.2 GeV2, and Tg50.25 fm, taken in accordanc
with the lattice measurements@4,13#.

As the reference basis we take the WKB solutions of
Dirac equation for the local linear confining potentialsr ,
and the WKB computed kernelsM̃ and L̃(x,y) in Eq. ~13!
are determined by explicit summation over eigenstates
was checked by an independent calculation@15# that the rela-
tivistic WKB procedure yields eigenvalues of the linear p
tential with accuracy better than 1%.

The general structure ofM and M̃ can be derived from
Eqs.~13!, ~14!. One can writeM as a 434 matrix as follows
@16#

M5M ~0!I 1M ~ i !ŝ i1M ~4!g41Mg
~ i !g i , ~20!

whereg i , g4 are the usual Dirac matrices,i 51,2,3 andŝ i

5(0 s i

s i 0).

The same representation holds for the WKB appro
matedM̃ . From the WKB analysis@8,16# we find thatM̃ (0)

is the only growing kernel. It behaves asymptotically as

M ~0!~x,y!5s
ux1yu

2
d̃ ~3!~x2y!, ~21!

whered̃ (3)(r ) is a smearedd function with the range of non-
locality decreasing asymptotically with growinguxu, uyu. The
term M ( i ) is proportional to the angular momentumL and
asymptotically it behaves asO(1/x). One can also prove tha
M (4), Mg

( i ) do not grow at largex, y @16#. Hence in all prob-
lems where large distances are dominant one can cons
only the first term in Eq.~20!. Using this approximation we
get, for the kernel~13!,

M̃5M̃ ~0!~x,y!I 5J~x,y!L̃~x,y!I , ~22!
1-3
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with

J~x,y!5s
xy

Ap
f ~x,y!, f ~x,y!5E

0

1

dsE
0

1

dt e2~xs2yt!2/4Tg
2

~23!

and whereL̃ is now a scalar quantity.
A curious feature of the considered equations is the w

the string connecting the light quark to the source is be
created. Actually, if one takes only lowest partial waves
side the kernelM @i.e., in L(x,y), Eq. ~13!#, then the effec-
tive potential in Eqs.~15!, ~16! is not confining. If one, how-
ever, sums up over allangular states and radial excitation
in L, then the resultingL(x,y) is a smearedd function lead-
ing to the quasilocal confining kernelM̃ . For example, using
eigenfunctions for the local case,L̃ can be computed quas
classically to be

L̃~x,y!5
s2xy

2p2

K1@sAxyA~x2y!21u2xy#

A~x2y!21u2xy
,

xy5xy cosu. ~24!

In Eq. ~24! one can clearly see thatL̃(x,y) is a normalized
smearedd function, with smearing radius inux2yu being
1/sAxy. For large distances it is nonvanishing only in t
forward direction.

Insertion of thisL̃ into M̃ , Eq. ~22! produces linear con
finement due to the kernelL̃(x,y), as is given by Eq.~24!
@while simply averaging the contribution from each ind
vidual orbital in Eq.~13! over the angle betweenx and y
would produce no confinement at all#. The computed kerne
M̃ (x,y) turns out to be nonlocal, but very close to the line
potential at large distances. Indeed, the effective locali
potential defined as

Veff~r !5E M ~0!~r ,x!rx dx ~25!

approaches at very large distances, i.e., fors1/2r .200, a
linear dependence with a slope given bys. However at
shorter distancesVeff also looks linear over a relatively larg
01450
y
g
-

r
d

region with a slope almost the same ass, reflecting the pres-
ence of a small local curvature. In particular, we find that
the region 5,s1/2r ,20 the effective potential can reaso
ably well be described byV0(r )50.9sr 21.8s1/2. In Fig. 1
are shown the results up tor 520 in units ofs1/2.

Since it is only the higher states and large distances wh
are important in the creation of thisd-function-type behavior
of L(x,y), and since the WKB method does well for hig
states and at large distances, one can clearly conclude
linear confinement should be obtained if one sums over
exact solutions of Eqs.~15!, ~16!. Hence this should be a
property of the exact solution.

The property that the kernel has a focusing effect in
forward direction can be used to get a somewhat simp
form. For this purpose we may also use@8#

L̃~x,y!5
s

p2Axy
K0~a!d~cosux2cosuy!, a5sAxyux2yu.

~26!

FIG. 1. Behavior of the effective potential,Veff(r)

5*M̃11(r ,x)rx dx, as a function ofr ~solid line!. The kernel~24!
and units ofAs have been used. For comparison, the linear lo
potentialVlin(r )5r ~dashed line! is also plotted.
TABLE I. Energy eigenvalues for Eqs.~13!, ~14! with J5
1
2 and the kernels, given by Eq.~24! and Eq.

~26!, as compared with those of the Dirac equation for the linear local potentialVlin(r )5r .

n

V5r kernel ~24! kernel ~26!

k521 k51 k521 k51 k521 k51

0 1.619 2.294 0.925 1.472 0.969 1.516
1 2.603 3.031 1.719 2.056 1.765 2.113
2 3.291 3.626 2.277 2.541 2.334 2.608
3 3.855 4.138 2.740 2.964 2.809 3.042
4 4.345 4.594 3.144 3.342 3.226 3.432
5 4.784 5.008 3.507 3.685 3.603 3.790
6 5.186 5.334 3.838 4.002 3.950 4.123
1-4
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FIG. 2. Level structure calculated with the Dirac equation us
the kernel~26! ~solid line! in comparison with the predictions of th
linear potentialV0(r )50.9r 21.8 ~dashed line!. States carry the
quantum numbersLJ , with L,J being the orbital and total angula
momentum.
ex-
s

01450
The eigenvalues and eigenfunctions in Eqs.~15!, ~16!

have been determined using the kernelM̃ (x,y), given by
Eqs. ~24! and ~26!. Some results are shown in Table I an
Fig. 2. In our present study we have takenm50. Note that
M̃ (x,y) is approaching a local linear potential at large d
tances,x,y*s21/2, which justifiesa posterioriour choice of
the reference basis. Due to the nonlocality of the interact
the predicted spectrum is found to be different from that
the linear potential, valid at large distances. Moreover, co
paring the level structures of theJ51/2 channel as obtaine
using the kernels~24! and~26! we see from Table I that they
are qualitatively very similar, corroborating that there is i
deed a strong forward focusing effect in the quark propa
tor. From Fig. 2 we see that for allL values the higher radi-
ally excited levels are close to the predictions of line
potentialV0(r )50.9sr 21.8s1/2, in agreement with the fac
that the interaction at large distance can indeed be descr
by a local linear potential. On the other hand, the nonlo
kernel predictions for the low-lying states clearly deviat
strongly from those of the~shifted! linear potential. Hence
the nonlocal nature of the force does affect the spectrum
an essential way.

The eigenfunctions for the nonlocal kernels look quali
tively similar to the corresponding ones of the shifted line
potential. In Fig. 3 are shown the ground state and first
cited state for theJ51/2 channels. Although the difference

g

te

the
FIG. 3. Eigenfunctions of the ground sta
and the first excited state for theS1/2 and P1/2

channels. The solutions correspond to using
kernel ~26! ~solid line! and the shifted linear po-
tential V0(r )50.9r 21.8 ~dashed line!.
1-5
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are substantial for these low-lying states, the agreemen
higher excited states is considerably better. Moreover,
find that the large distances and high states of the W
states agree well with the corresponding eigenfunctions.

C. Inclusion of perturbative exchanges

Till now we have considered only the NP part of th
gluonic field,Bm . In this section we include the perturbativ
part, am , and neglect for simplicity the interference term
Therefore the effect ofam is accounted for in the appearan
of an additional factor in the partition function~3!, namely,

Z5ZNPZpert, Zpert5^eg*dx c1â~x!c~x!1 ig* dz4a4~z4!&a ,
~27!

where the second term in the exponent of Eq.~27! corre-
sponds to the interaction of the perturbative part of the glu
field with the static antiquark. We have used in Eq.~27! that
due to the ’t Hooft identity@17# one can average indepen
dently overBm andam .

The result of averaging yields a new additive term inLeff ,
Eq. ~3!,

Lc5gE dx c1~x!Â~c!~x!c~x!, ~28!

where we have defined

Am
~c!~x!52 igE dz4^a4~x!a4~z4!&5dm4

~2 i !gC2

4puxu
.

~29!

The presence ofLc in Eq. ~3! does not influence the deriva
tion of basic Eqs.~10!, ~11!. The only difference is that Eq
~11! assumes the form

@2 i ]̂2gÂc~x!2 im#S~x,y!2 i E M ~x,z!S~z,y!d4z

5d~4!~x2y!. ~30!

Equation~10! does not change and the kernelJ(x,y) con-
tains as before only nonperturbative contributions. No
however, thatS(x,y) in M (x,y) in Eq. ~10! now contains
also perturbative gluon exchanges. This is a new type
interference of perturbative and NP terms, which appe
irrespective of our neglect of this interference within the a
01450
or
e

B

.

n

,

of
rs
-

eraging procedure overBm andam . In other words, anothe
class of diagrams is responsible for this interference.

Correspondingly in the static equations~12! one should
replace

bm→bm2
C2as

uzu
. ~31!

The equations for the partial waves~15!, ~16! are modified
due to the presence of the color Coulomb potentialV(r ) in a
simple way. Since

V~r !52
C2as

r
~32!

is local and a Lorentz vector, it always appears in the co
bination«n2V(r ). Hence one has instead of Eqs.~15!, ~16!

dFn

dr
2

k

r
Fn1@«n2V~r !2m#Gn2M11G2 iM 12F50,

~33!

dGn

dr
1

k

r
Gn2@«n2V~r !1m#Fn2M22F1 iM 21G50,

~34!

where we have denoted

MikS G
F D[E ^nuMikun8&S Gn8~w!

Fn8~w! D rw dw. ~35!

HereMik is defined as in Eq.~13! and the matrixL ik in Eq.
~13! involves the sum over all states, including positive a
negative«n . There in Sec. II B we have exploited the sym
metry ~18!. However, Eqs.~33!, ~34! are invariant under an
other transformation, namely,

«n↔2«n ,V~r !↔2V~r !,k↔k,Gn↔Fn . ~36!

Now the sum over negative«n can be expressed through th
corresponding sum over positive«n with exchangeGn↔Fn
as before, but also with the inversion of sign of Coulom
interaction, i.e., Coulomb attraction for positive«n is re-
placed by Coulomb repulsion for negative«n .

In what follows we shall denote wave functions of th
positive energy states with repulsive Coulomb with the s
of tilde: G̃n , F̃n . Then using Eq.~13! the matrixbL ik can
be written as a sum over only positive«n as follows:
bL ik
mm85

1

xy (
j lM ,n.0

S GmGm8
* 2F̃mF̃m8

* , 2 i ~GmFm8
* 2F̃mG̃m8

* !

2 i ~GmGm8
* 2G̃mF̃m8

* !, G̃mG̃m8
* 2FmFm8

* D . ~37!

SincebL is exactly the combination which enters the mass matrix~13!, one can list in Eq.~37! scalar and vector~proportional
to b! parts:

M5MsI 1M vb1DM , ~38!
1-6
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where DM contains spin-dependent terms, which can
considered as in Sec. II B, whileMs , M v are

Ms,v5C (
j lM m,n.0

@GmGm* 2F̃mF̃m* 6~G̃mG̃m2FmFm* !#,

~39!

where

C5
1

4
ApTgD~0!

x•y

xy
f ~x,y!,

f ~x,y!5E
0

1

dsE
0

1

dt expS 2
~xs2yt !2

4Tg
2 D . ~40!

From Eq.~39! it is clear that the vector partM v is only due
to the presence of Coulomb interaction. Corrections at la
distances due to the vector part can be treated again in
relativistic WKB. A rough estimate ofM v at larger yields

M v

Ms
;

as

sr 2 ~41!

and hence can be neglected at large enoughr.

III. NUMERICAL SOLUTIONS OF EQUATIONS AND
COMPARISON TO B, D MESONS

We have performed numerical studies of Eqs.~33!, ~34!
with the kernel~24! for different values of the quark massm
and different values ofTg . To simplify calculations only the
dominant part of the mass operatorMik was retained, i.e.
M̂115M225M (0), while M12, M21 have been neglected. Fo
M (0) the representation~22! was used

M ~0!~x,y!5J~x,y!L̃~x,y!I ,

whereL̃ is taken to be the kernel~24!. Results of our calcu-
lations for the ground state energy are listed in Table II. O
can see a rather sharp change of energy whenas changes

TABLE II. Ground state energy eigenvalue~in units ofAs) for
Eqs. ~33!, ~34! with ss50, 0.3, and 0.39 and quark massesm
55 MeV, 0.15 GeV, and 0.2 GeV~upper, middle, and lower entry!
for different values ofTg , Tg50, 0.25, 0.5, and 1~in units of
1/As).

Tg

as 0 0.25 0.5 1

1.628 0.985 0.979 0.907
0 1.886 1.225 1.217 1.145

1.978 1.314 1.305 1.233
1.163 0.684 0.679 0.628

0.3 1.378 0.884 0.877 0.826
1.456 0.959 0.951 0.900
1.004 0.585 0.580 0.536

0.39 1.201 0.768 0.761 0.717
1.272 0.837 0.830 0.786
01450
e

e
he
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from 0 to 0.3 and whenTg is changing from 0 to 0.25, while
further increase ofas or Tg does not produce such a stron
dependence.

Solutions of our equations~33!, ~34! can be compared
with physical states ofB, D andBs , Ds mesons. To this end
one should have in mind that in Eqs.~33!, ~34! the static
approximation for the heavy quarkb, c was used, and henc
all correctionsO(1/mQ

n ) with n>1 are neglected.
One can exploit at this point the HQET expansion for t

massmH of heavy-light boson@18,19#

mH5mQF11
L̄

mQ
1

1

2mQ
2 ~l11dHl2!1O~1/mQ

3 !G ,

~42!

whereln are free parameters, depending on dynamics,
dH is the hyperfine splitting parameter. It is clear from t
preceding that eigenvalues of Eqs.~33!, ~34! yield the value
L̄, which depends on the quantum numbers of the state

L̄~ j ,l ,nr !5«n~ j ,l !. ~43!

Consider now the results of the present approach,
solutions of Dirac-type equations~33!, ~34!. In the local case
(Tg→0) when the kernelM reduces to the linear potentia
sr , we have

L̄D
~ loc!50.690 GeV ~as50, s50.18 GeV2! ~44!

and

L̄D
~ loc!50.493 GeV ~as50.3, s50.18 GeV2!. ~45!

This should be compared to the nonlocal case

L̄D
~nonloc!50.415 GeV ~as50, s50.18 GeV2! ~46!

and

L̄D
~nonloc!50.288 GeV ~as50.3, s50.18 GeV2!.

~47!

These latter values are in general agreement with the re
of the QCD heavy-flavor sum rules@20,21#

L̄50.5760.07 GeV ~48!

and more recent analysis from semileptonicB decays@22#

L̄50.3960.11 GeV. ~49!

Another interesting comparison is with the experimen
values of theB-meson mass@the terml2 in Eq. ~42! can be
determined from theB* 2B mass difference#. Using Eq.~47!

andM̄B5(3MB* 1MB)/455.312 GeV one can estimate~ne-
glecting l1) the pole mass of theb quark to bemb(pole)
>5.0 GeV, which is in reasonable agreement with the ana
sis of the quarkonium spectra in@23#.
1-7
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A similar analysis can be done for theBs meson; the
corresponding values forL̄s with ms50.15 and 0.20 GeV,
areL̄s2L̄50.084 andL̄s2L̄50.115 foras50.3. One can
compare these values with the mass differen
Bs ,B0,DMs(B)5(0.09060.0038) GeV. These numbers fo
L̄ can be compared with those in Table III, where also
sults of lattice calculations@24# and of the constituent quar
model ~CQM! @25–27# are given.

IV. CHIRAL CONDENSATE

As a check of CSB in our Eqs.~15!, ~16! we have com-
puted the chiral condensate, which can be expressed thr
the eigenfunctions as in@8# ~to simplify the matter we disre
gard in this section perturbative contributions!.

^q̄q&52
Nc

2p (
n50

`

@~An
2!22~Bn

1!2#, ~50!

whereAn
25„Gn(r )/r …r 50 , Bn

15„Fn(r )/r …r 50 , andGn , Fn

refer to solutions withk521, l 50, andk511, l 51, re-
spectively. In the local linear potential case the values
An

2 ,Bn
1 have been computed in the WKB method@8# and

shown to yield a monotonically divergent series^q̄q&
52Nc/2pSn const/An.

TABLE III. Energy eigenvaluesL̄ of the heavy-light system in
the static heavy quark approximation obtained in different
proaches.

Refs. Method L̄ ~GeV!

@20# QCD sum rules .0.5
@21# QCD sum rules 0.4–0.5
@24# Lattice 0.1860.03
@22# experim. 0.3360.11
@25# QCM 0.35
@26# QCM 0.5–0.6
@27# Rel. QCM 0.386
This work Nonlin. Dirac eq. 0.287
01450
e
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It can be argued@using Eqs.~8!, ~9! from @8##, that the
nonlocality of the kernelM in spacetime, present by defin
tion in Eq. ~8!, improves the convergence of the series a
yields a finite result for̂ q̄q&. We have foundAn

2 ,Bn
1 from

the solutions of the nonlocal equations~15!, ~16! with the
kernel M̃ and compared them with the local case, whenM̃
reduces to the local linear potential. Results are shown
Table IV.

One can see from the results that in the nonlocal case
magnitude ofsn[(An

2)22(Bn
1)2 is clearly diminished as

compared to the reference local case, and is of reason
order of magnitude. From the obtained sequence ofsn we get
that ^q̄q&520.5s3/2 and 20.7s3/2 in the nonlocal cases o
the kernels~21! and ~22!, respectively. Adopting a value o
s50.2 GeV2 we find ^q̄q&52(350 MeV)3 and
2(400 MeV)3, respectively, to be compared with the usua
acceptable value of2(250 MeV)3. However convergence is
still slow as seen from Table IV and the converged valu
are somewhat higher. We have checked that convergen
somewhat improved when one takes into account the int
sic nonlocality of the kernelM in x, y. To this end we have
modified the kernelM̃ obtained from WKB analysis, replac
ing d̃ in Eq. ~21! by a Gaussian factor

N expS 2
~x2y!2

a2 D d~cosux2cosuy! ~51!

and studied the sequences ofsn as functions of the nonlocal
ity rangea. Results are shown in Table IV for two values
a50.3s1/2 and 0.5s1/2. The strengthN is chosen such tha
numerically the slope ofs50.2 GeV2 is reproduced for large
distances. The condensate values vary in the considere
gion substantially, showing that effects of nonlocality a
important.

The slope of the effective potentialVeff(r), determined by
N, strongly depends ona for a>Tg . We believe that the
reason for this lies in the fact that the chiral condensate^q̄q&
depends crucially on the nonlocality both in time comp
nents ofM (x,y;x4 ,y4) and in spatial components. The fir
nonlocality was, however, disregarded in Eqs.~12!, ~13!,
when thep4 dependence was omitted inM andcn ~the static
limit !. It was indeed shown in Ref.@8# that taking this de-

-

TABLE IV. The differencesn5uAnu22uBnu2 for n50,1, . . . ,6, in thecase of the nonlocal kernels~24!
and ~26! and corrected for a normalized Gaussian nonlocality~51! with a range ofa50.3 anda50.5. For
comparison the results are shown for a local linear potentialVlin5r .

n

An
22Bn

2

V5r kernel ~24! kernel ~26! a50.3 a50.5

0 0.79 0.42 0.50 0.15 0.23
1 0.51 0.21 0.34 0.04 0.12
2 0.41 0.12 0.19 0.02 0.10
3 0.35 0.10 0.16 0.02 0.09
4 0.31 0.08 0.11 0.01 0.09
5 0.27 0.07 0.11 0.01 0.08
6 0.26 0.06 0.09 0 0.07
1-8
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pendence into account significantly improves convergenc
the sum in Eq.~50!. The full account of this effect require
solution of time-dependent Eqs.~10!, ~11!, which is numeri-
cally a much more difficult problem.

V. CONCLUSION

We have studied the confining and CSB properties in
system of one light quark and one static antiquark. The
fective mass operator is written explicitly for largeNc , as a
sum over vacuum field correlators. Keeping only the Gau
ian field correlator, we have obtained a closed system
equations in the limit of largeNc . Our results support the
presence of a Lorentz scalar linear confinement for the l
quark, which signifies CSB for this system, and yield eige
functions and eigenvalues for the heavy-light system c
taining both confinement and CSB.

As a direct evidence of CSB we have computed the ch
condensate, which appears to be of the correct sign and
ing the proper largeNc dependence. Our result yields a re
sonable order of magnitude of^q̄q&, provided convergence
of the sum is achieved. At this point it is useful to compa
the CSB picture of the Nambu–Jona–Lasinio model and
s.

cl
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r

approach. In the NJL model confinement and string are
sent and CSB may occur due to the condensation ofqq̄ pairs
in the scalar channel. In our case, being the largeNc approxi-
mation of the real QCD, a string is built up between light a
heavy quark, which depends not only on light quark coor
natesx, y, but also on the distance from them to the hea
antiquark. In the presence of confinement, the phenome
of CSB is due to the spontaneous creation of the sc
string, which is forbidden by chiral symmetry.

Eigenvalues«n and eigenfunctions obtained numerical
for lowest states represent the leading contributions of
HQET expansion in powers of 1/mQ . Results for the ener-
gies«n in our method are compared of the lattice and QC
sum rule calculations, and also with experimental extract
of «n5L̄(n), showing an overall agreement with theB and
D meson masses.
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@24# V. Giménez, G. Martinelli, and C. T. Sachrajda, Nucl. Phy
B486, 227 ~1997!; Phys. Lett. B393, 124 ~1997!.

@25# F. De Fazio, Mod. Phys. Lett. A11, 2693~1996!.
@26# D. S. Hwang, C. S. Kim, and W. Namgung, Phys. Rev. D54,

5620 ~1996!; Phys. Lett. B406, 117 ~1997!.
@27# S. Simula, Phys. Lett. B415, 273 ~1997!.
1-9


