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Thermal effects in low-temperature QED
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QED is studied at low temperatur@ €m, wherem is the electron magsnd zero chemical potential. By
integrating out the electron field and the nonzero bosonic Matsubara modes, we construct an effective three-
dimensional field theory that is valid at distané®&s 1/T. As applications, we reproduce the ring-improved free
energy and calculate the Debye mass to oefer
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[. INTRODUCTION carrying out the matching at finite temperature. Alternatively,
one may reorganize the usual perturbative series in QED
If we have a quantum field theory in equilibrium at tem- using resummed propagators in the usual way. However,
peratureT, the abundance of particles of mamsnuch larger  such an approach is normally more cumbersome in practical
thanT is Boltzmann suppressed. More surprisingly, perhapsgalculations than effective field theory.
is the fact that there are additional effects that are suppressed If we are interested in static quantities such as the pres-
only by powers ofT/m [1-3]. The Boltzmann-suppressed sure or Debye mass, it proves useful to construct a second
terms can be associated with loop integrations that involvé&ffective field theory for the zero Matsubara mode and this is
distribution functions of the heavy particle. On the otherdone by integrating out the nonzero Matsubara m¢dés-
hand, the power-suppressed terms arise from perturbativ€0]- This effective field theory is three dimensional and is
corrections involving only distribution functions of light par- valid at distance®>1/T. It can be constructed in a two-step
ticles, with masses on the order Bfor less. process by first integrating out the electron field, and then
Effective field theory ideas suggest that one integrates oufitegrating out the nonzero bosonic Matsubara modes. From
the heavy particle of mas® to construct a low-energy ef- @ calculational point of view, however, it is easier to integrate
fective field theory that can be used for<m [4,5]. Such an  out the fermions and the nonzero Matsubara modes at the
approach was used by Kong and Ravnd@lto study QED same time. In this paper, we will take the latter approach.
at low temperaturgsee also Refs[6—13 and references The paper is organized as follows. In Sec. Il, we discuss
therein for various calculations in low-temperature QED QED at low temperature and the construction of the three-
By integrating out the electron field, they constructed a low-dimensional effective field theory. In Sec. Ill, we determine
energy effective field theory for photons. Since this procethe coefficients in the effective field theory. In Sec. IV, we
dure was carried out at zero temperature, dimensional anal@pply the effective field theory to calculate the free energy to
sis tells us that the coefficients in the effective theory areordere® and the Debye mass to ordet. Finally, in Sec. V,
suppressed by inverse powers of the electron masghese We summarize and conclude. All necessary details are col-
higher order interactions are induced by the coupling of thdected in three Appendixes.
photon to virtual electron-positron pairs in the vacuum. Since
the momenta of the photons are on the ordleand thus Il. QED AT LOW TEMPERATURE
much smaller tham, the electron-positron pairs are off their ) ) ) ) .
mass shell by an amourtm. Thus they can only propagate _ In the imaginary-time formahsm, one can view a quantum
a distanceR~1/m and their effects can be mimicked by field theory in four dimensions as a field theory in three
local interactions. Using this effective field theory to calcu- Euclidean dimensions with an infinite tower of fields, where
late corrections to the Stefan-Boltzmann law for the pressurdn® Matsubara frequencies act as masses in the propagators
they showed that the leading correction variesed%8/m?*. [17]. In low-temperature QED, this implies that the fermions

This correction was obtained by a straightforward two-loop@veé masses of orden, while the nonzero bosonic modes
calculation in the effective theory. In full QED, it would N@ve masses of orddi The zero-frequency bosonic modes

require a three-loop calculation. are massless. Thus for distané&s 1/T, we can construct an

If we are interested only in power corrections, we canéffective three-.dimens.ional field theory for Fhe zero Matsub-
determine the coefficients in the effective field theory by@r@ modes by integrating out the electron field as well as the
matching at zero temperature. In the case of QED, this woul@0nzero bosonic mod¢d7-20. The coefficients of this ef-
lead to the Euler-Heisenberg Lagrangfda,15 with addi- fective field theory'then encode t'he p'hyS|cs at t_he mpmentum
tional higher order operators that can be written in terms ofcalesm and T. This procedure is briefly explained in Sec.
the field strength and its dudP] (see e.g[16] for such . . _ _
higher order operatoysHowever, it can be shown that this _ The partition function of QED can be written as a path
effective Lagrangian leads to a vanishing Debye mass to alltegral:
orders in perturbation theory. We know that this is incorrect,

but one can account for Debye screening and other Z=jD;DnDA DEDwex _fﬁdTJ d3x L
Boltzmann-suppressed effects in low-temperature QED by ® 0

. (@
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where the Euclidean Lagrangian is

1 T .
LE:ZFquuv+ M+ ¢y, (d,—1eA,) &

+(9,m (3, + Lok (2)

Here,Lsr denotes the gauge-fixing term. In the following we
work in the Feynman gauge, where

‘CGF: %(a,uA/.L)z (3)
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energy to ordee?, it is necessary to determiri¢A) to order

e?. Moreover, the one-loop contribution to the free energy in
the effective theory is proportional a3, and we therefore
need to know the mass parameter to oreleiNote that the
operatorF”V Fi; does not contribute to the free energy at
order €2 since it involves only massless fields whose loop
integral vanishes in dimensional regularization. In fact, this
operator can be transformed away by a field redefinition at
the expense of modifying the coefficients of higher order

operators. On the other hand, the operaTE‘b* starts to con-
tribute first at ordee®; its coefficienth 3(A) varies ae* and

However, we emphasize that physical quantities are indepelit gives rise to a two-loop diagram in the effective theory

dent of the gauge-fixing condition.

where each loop is proportional M. In this manner we can

In the three-dimensional effective theory, we can write thedetermine at what order ie an operator starts to contribute

partition function as

(4)

Z=g fV f DyDyDAGDA; exp{— f d3X Leg!,

where the prefactof(A) is interpreted as the coefficient of

the unit operator in the effective three-dimensional field

theory. It depends on an ultraviolet cutdffthat cancels the
cutoff dependence in the path integral in E4). [19]. Ly is
the Lagrangian of the effective three-dimensional fiel

theory. The effective field theory consists of a gauge_fEld
coupled to a real massive self-interacting scalar fig,

to a given physical quantity, and in E¢) we have explicitly
displayed those operators needed to determine the free en-
ergy to ordere® and the Debye mass to ordet.

Ill. SHORT-DISTANCE COEFFICIENTS

In this section, we determine the short-distance coeffi-
cients in the effective Lagrangian Ecp). These coefficients

dmust be tuned as functions ef T, and the ultraviolet cutoff

A so that the effective theory reproduces correlation func-
tions at distances much larger tharmT 1We can carry out
these calculations using conventional perturbation theory,

These fields can up to normalizations be identified with tthhmh is an expansu)n in powers e? This expans|0n is
zero-frequency modes of the gauge field in QED. We carplagued with infrared divergences due to long-range forces

then schematically write

1 1,1
Leg= 4F,JF”+ ag(A)Fi V2Fij+5 (iA0)7+ 5 MP(A)AG

N3(A)—

+
24

AG+ (9, 1)(3i 1) + Lot 6Le, (5)

where 6L represents all higher order local terms that can

mediated by the massless photon. These divergences are De-
bye screened, but can only be taken into account by resum-
mation. Although the naive perturbative expansion breaks
down due to these infrared divergences, it can still be used to
determine the short-distance coefficiefits]. As long as we

treat the long-distance physics in the same incorrect way
using the effective theory, the infrared divergences will can-
cel in the matching equations and the coefficients properly
encode the short-distance phys[d®]. The Lagrangian of

be constructed out ok andA, and that respect the symme- QED is split in the usual way into free and interacting pieces
tries of the theory. Examples of such symmetries are three-

dimensional gauge invariance and rotational symmetry. This
includes renormalizable terms such as well as non-

renormalizable terms such @. Note also that we have

suppressed tha dependence of the fields and A, in Eq.

(5). Let us finally look at the power-counting rules for the
effective theory Eq(5). The coefficients of the operators are
power series ire? since we are ignoring infrared divergences
and are using conventional perturbation theory to determine
them(see Sec. I). Physical quantities are expressed in pow-While the Lagrangian E(5) is split according to
ers of the parametefgA), az(A), M(A), etc., and we must
figure out at what order the operators that multiply them start
to contribute. Each power of momentum in a loop integral in
the effective theory gives a factor ®fl; in particular, the
measure gives a factdv®. If we want to calculate the free

Efree EF

2 FudF ot (M~ 0) Y+ (3,m)(3,m) + Lok,

(6)

LIM=—ieAyy, @)

Efree F”F,J'f‘ (&AO) +((9M7])( #7])4-[:@;:, (8

int 1 2 1 2 A

Log= 4a3(A) iVFij+35 M ( )A0
1The fact that we must allow for terms such as (MZIA)K%

and [)\3(A)/24]Aé is a direct consequence of the breakdown of

Lorentz invariance at finite temperature.

N3(A)—,

+ 7 AS+ 6L

C)
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FIG. 3. One-loop polarization tensor in QED.
In the effective theory, all loop diagrams vanish with dimen-

FIG. 1. One-loop vacuum diagrams in QED. . o . . .
sional regularization, since there is no mass scale in the cor-

A. Coefficient of the unit operator responding integrals. Hence, 1&g vanishes identically in
The matching condition that determines the coefficient of;:ir(g perturbation theory. The matching equation then im-
the unit operator i$19]
log Z
log 2= — f(A)V+log Zey. (10) F(A)=— 3= (13

v
The contributions to log through ordee? are given by the

Feynman graphs in Figs. 1 and 2. A wavy line denotes avhere the right hand side is given by HG2).
photon, a solid line denotes a fermion, and a dotted line

denotes a ghost. The expression is B. Field normalization constant
TlogZ 1 ) - The field normalization constants féy; and A, are ob-
v~ pld- 1)$ p logP“+ Zi,{p} log(P“+m") tained by reading off the coefficients 6fk®— k;k; andk? of
1{"(0k) andTI§(0k), whereIT{!)(ko k) is the one-loop
1 P—m polarization tensofC1) (see Fig. 3 These are given in Egs.
+ Eezi{PQ} Tr yﬂmm (C3) and(C4) in Appendix C, and we obtain
o 1 4 1 1/2
Q—-m 1 Ai(A)~— 1+—e2$ Sz A, (14
{P} i
XQ2+m2(P+Q)2 , (12) JTL 3 (P?+m?)
where the trace is over Dirac indices. The signis a re- — 1, 6
minder that the _quality holds only in strict perturbqtion AO(A)“E 1+§e i{P} (PZ+m?)2
theory. The fermionic one-loop diagram has a poleejn
which is proportional tom*. This pole is canceled by the 8ps Y2
vacuum countertermh ;&,. The two-loop diagram also has - (PZrm?)? Ao. (15

poles ine. The temperature-independent pole is canceled by

the vacuum countertermi,&,, while the temperature- gqationg(14) and(15) have poles ire that are canceled by
dependent ones are canceled by the one-loop countertefie wave function renormalization counterterm
diagrams. The two-loop sum integral is briefly discussed in

Appendix A. Our renormalization prescription is that the g2
renormalized vacuum energy vanishes at the sdal@hus Zp=1— . (16)
L ) . 127°%e
the fermionic one-loop diagram and the two-loop diagram
are given by their finite-temperature piedege Eqs(A3) o ;
and(A23) in Appendix A]. After renormalization, the result- After renormalization, we obtain
ing expression in the low-temperature limit is 1 o2
A(AN)~—|1+=——(L—J )}A-, 17)
214 i 2 2 i
TIogZ% T N 4 R —— JT 241
\Y 45 (2m)%7
e? KA~11+62LJJ2T’2A
+ mZTze_zm/T. (12) 0( )N ﬁ 24772( 2 3Mm ) 0
2(2m)° (18)
wherel =log(A%n?) and the integralg,, are defined in Ap-
pendix A. Note the different normalizations of the fieldlg
andA; . In the low-temperature limit, this reduces to
A 1 e2 1/24—1/271/24,—mM/T
Ai(A)HJ—? 1+W[L—2(27T) m~ V2T~ T 1A, |
FIG. 2. Two-loop vacuum diagram in QED. (29
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— 1 e?
AO(A)HJ—T 1+W[L—(277)1’2m1/2T’1’2e’m’T] A. LH Jf
(20)

C. Mass parameter ,—fr LLL

The mass parameter can be determined in several ways. giG, 4. Four-point function with external timelike photons at
We determine it by demanding that the screening mass igne loop in QED.
strict perturbation theory be the same in QED and the effec-
tive theory. The screening mass is defined as the location D. Coupling constants
of the pole in the propagator for spacelike momenfui8i:

The one-loop Feynman diagram for the four-point func-
K2+TToo(0K)=0, k2=—m2. (21)  tion I'®) with external timelike photons is shown in Fig 4.
The matching equation is simp[21]
In the effective theory, we have
A3(A)=TTr'®(0,0,0,0, (27)

K2+ M2(A)+ gk, A)=0, k?=-m? (22)

* where the arguments indicate that the loop diagram is to be

where [I4(k,A) is the self-energy ofs, in the effective €valuated at zero external momenta The expression for the

theory. We can expand the self-energy functidgy(0k) in  diagram is
powers of the external momentukn To second order in the

loop expansion, the solution to EQR1) for the screening 4(00.00=6 Zi - P—m P—m
mass ig21] (0,0,0,0=6€"2.p; Tr| 70 P2 m2 % p2y m2 70
mi~[1-TI§) (0,01 (0,0 +IF(0,0. (23 P-m  P-m
I . X P2y m2 0 p2y m2
Here I1{) denotes thenth order contribution to the static +m +m
polarization tensor in the loop expansion, and the prime de-
notes differentiation with respect k3. The self-energy func- = 24e2i{p} [m*+2m2P2—8m?p3+ P*

tion Il.4(k,A) can also be expanded in a Taylor series

aroundk =0. The corresponding loop integrals are evaluated - .

at k=0 and since there is no other mass scale, the self- —8pgP +8F30](P T (28
energy functionll #(0,A) vanishes identically in strict per-

turbation theory. Thus the matching condition reduces to ¢ particular combination of sum integrals in E88) is

finite with dimensional regularization and we obtain

M2(A)~mZ. (24)
4
The one-loop contribution tdlyy(0,0) is given by the first Ng(A)=— 8e J,m*T 3, (29)
term in Eq.(C4), while I14(0,0) is given by the second term (2m)?

in Eq. (C4). The two-loop contribution tdIyy(0,0) is given . o ) . )

by Eq.(A27), and in Appendix B, we explain how one can The fact that this coefficient vanishes identically at zero tem-
obtain the expression for it from the two-loop contribution to Perature, simply reflects the gauge invariance of QED. In the
the free energy. In the low-temperature limit, the mass palow-temperature limit, Eq(29) reduces to

rameter becomes

4e*
2 4 Ng(A)=— me/2T o= mT, 30
M2(A)= e M3 V2= m/T_ e m32TV2 @=m/T () (27)%2 (30
(2,”_)3/2 3(2,”_)7/2
4 The coupling constard; is not affected by the field re-
+ 10e m2e~2m/T (25) definition Eqs(17) to leading order irg, so its value is given
3(2m)* ' directly by the coefficient of the last term in EGC3):
Using the renormalization group equation for the running 38 1
gauge coupling, az(A)= Eezi{p} [CETx (31
de? ¢t 26 ,
KT == 7, e B
d'u 6 = m[l—sz 2J3]. (32
we see that the mass parameter is independent of the renor-
malization scaleu to ordere®. In the low-temperature limit, this reduces to
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eZ
ag(A): W[l_ (2,“_) l/2m1/2-|-—1/2e— m/T]_ (33)

The first term is the standard zero-temperature Uehling term,

while the second is a new thermal correction.

IV. FREE ENERGY AND DEBYE MASS

In this section, we use the effective Lagrangian &.to

calculate the free energy to ordet and the Debye mass to

respectively. In order to take electric screening
properly into account, we must include the effects of the
mass termM to all orders in perturbation theory. Thus the

order e°,

Lagrangian is split accordingly:

Efree _|:”|:Ij+ (aAO)Z—i— MZ(A)AO+( M’?)(a,uﬂ)
Lo, (34

A3(A)—

o1
L= 7as(M)F V2R + —

AR 8Lt (35

The €2 contribution to the free energy is given by a simple

one-loop calculation in the effective theory:

TlogZey 1 ) , 1
T——ETfplog(p +M )—E(d—Z)T

2 E _ 2
xfplogp +2a3(A)(d Z)Lp . (36)

The total free energy is then given by

T log Zek

F=f(A)T-— =,

(37)
wheref(A) is given by Eq.(12). Using Eq.(B3) in Appen-
dix B and the expression for the mass param&iérn\) to
leading order, Eq(36) reduces to

Tlog Zey  4e3m¥4T7"

—-3m/2T
Vv N 3(277)13/4e e (38)

The total free energy density is minus the sum of E48)
and (38):

214 2
T 4 e
_ 3/ 5/2 -m/T_ 272,~—2mM/T
F 5 (277)3/2 T 2275 T2
3 9/4T7/4
_ 4e’m™ T e*Sm/ZT (39)
3(2,“_)13/4 !

Equation(39) is in agreement with the result first obtained
by Gell-Mann and Brukner[6] in nonrelativistic QED. Note

PHYSICAL REVIEW [B5 025014

The Debye mass is given by the location of the pole in

the propagator

K2+ M?(A)+ g4k, A)=0, k=imp, (40)

wherell(k,A) denotes the self-energy function E{,. To

leading order ine, the solution to Eq(40) is simply m3
=M?2(A). The one-loop approximation to the self-energy is

1E(k,A) = Hrs(A) f (41)

Vs

(1)(k A) is independent of the external momentum, so the
solution to Eq.(40) is simply

=M2(A)+ T (k,A). (42

Using Eq.(B3) and expanding the mass parame¥fA) in
powers ofe, we obtain the Debye mass through oréer

4e? 4e*
mD — - 3/2-|-1/ -m/iT_ — m3/2-|-1/2|_ e~ m/T
(2m) 3(2m)
10e* 2e°
32m)° m-e (2715 T e

(43

Equation(43) is the main result of the present paper. Using
the renormalization group equatiof26) for the running
gauge coupling, we see that the Debye mass is independent
of the renormalization scal& up to corrections of ordes®.

Note also that there is no term proportional @ in the
expression for the Debye mass. The reason is that there are
no bosonic propagators in the one-loop self-energy graph in
QED and fermions need no resummation, since their Mat-
subara frequencies are never zero.

V. SUMMARY

In the present work, we have studied QED at low tem-
perature. We have constructed an effective field theory in
three dimensions that is valid at distand@s 1/T by inte-
grating out the electron field and the nonzero Matsubara
modes. Three-dimensional field theory was used to calculate
the pressure to order and the Debye mass to ordet. The
pressure and the Debye mass can be calculated either by
resummation or by effective field theory. Not only does ef-
fective field theory simplify these calculations, it also unrav-
els the contributions to physical quantities from different mo-
mentum scales.
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APPENDIX A: SUM INTEGRALS

PHYSICAL REVIEW D 65 025014

pip; Sij w2
In the imaginary-time formalism for thermal field theory, i{"} (P2+m?)? 2(47)2\m
the 4-momentunP = (p,,p) is Euclidean withP?= pZ+ p2.
The Euclidean energg, has discrete valueg,=2n=T for e”I'(l+e) )
- ; . ) - m—J;T7|,
bosons angy=(2n+1)#T for fermions, wheren is an in- e(l—e)
teger. Loop diagrams involve sums ovpg and integrals (A8)
over p. With dimensional regularization, the integral is gen-
eralized tod=3—2¢ spatial dimensions. We define the di- p2 1 (M 24 @Y[(1+e)
mensionally regularized sum integral by i P = O e T2
P (PZ+m?)2 2(47)2%m e(l—e)
eyMZ)e f d3—25p
= T —_—, Al +(d—2)3;,T?+23,m?|, A9
3 (477 D T (d-2)3,T2+23, (A9)
2 2e €
Po 1 (,u e’ I'(1+¢)
v,,2\ € 3-2¢ = .
${P} E(e_“) > fd_p' i{P} (PZ+m?)3 4(4w)2\m) P
Am | po=(ntnyat ) (24m)372€
(A2)

where p is an arbitrary momentum scale. The factor )
(e/47)€ is introduced so that, after minimal subtraction of Po

+(d—4)J,+ ZngZTZ}, (A10)

(1

the poles ine due to ultraviolet divergenceg coincides
with the renormalization scale of the modified minimal sub-
traction (MS) renormalization scheme.

1. One-loop sum integrals 5
PoPiPj

{P} (P7+ m2)4:

2¢
12(477)2\5) [e”T(1+e)m 2

+(d—6)J3T 2+ 2J,m?T 4],
(A11)

e”T(1+¢)

The specific one-loop fermionic sum integrals needed are i{P} (

1 2e
i (P} |Og( P2+ m2) = W( %)

+(d—4)J2+2J3m2T2}, (A12)
e”l(1+e) 4
X| = d-eiz—oM +JoT7|, The integrals],(8m) can be expressed as integrals involv-
ing the Fermi-Dirac distribution function:
(A3)
4e7€]"(%) 4—2N~2€
1 1 u 2e Jn(BmM)= W m
—_— | — 5—Il—€
i{P} PZ+m?2  (4m)2m 2
or . K4—2n-2e 1
e’I'(1+e
_ #mz_\]ﬂ—z} (A4) X jo dk(k2+m2)1/2 BT
(A13)
2e[ pye
i{P} > ! = 1 z/ﬁ) erT(1te) _\]2}, These integrals are functions @gfm only and satisfy the
(P?+m?)? (4m)*\m € recursion relation
(A5)
J
L 1z M- Jn(BM) = 2eJy(BM) = 2(8M) 23y, 1(BM).
i{P} (PZ+m?)3” 2(4m)2\ m (A14)
X[e”I'(14+e)m 2—J3,T7 2], We need the integrald,, for e=0. In the low-temperature
limit, these integrals reduce to
(A6)
JOH8(27T)1/2IT]3/2T_3/2€_m/T, (A15)
1 1 m 2e .
Lo o 6(4mzm| [&T(*e 33— 4(2m) VYT e T, (A16)
X(1+e)m 4=J3,T 4], (A7) J,—2(2m)Y°m~ 12TV M (A7)
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J3*>(27T)1/2m_3/2T3/29_m/T, (A18) . 1
. AT Az
J— = (21)Yom = S2T52g =T (A19) -
2 In the low-temperature limit, this reduces to
Note that the integrald; andJ, need subtractions to remove _ _
. i 1 P—m Q—m 1
power infrared divergences: —er:{P y Trly % >
2 @ P2 m2 Q2 m2 (P+Q)
35(Bm) 2T2f°°o|k1 ! ! e?
m)=— 'l 272:2(u—m)/T
3 o K| (K2t m?)L2 AT g — 2(277)3m T2e2(k=m)/T, (A25)
_ i 1 (A20) Equation(A23) gives the two-loop contribution to the pres-
, i
m eB(E+mA)T2 sureP. By applying the formuld22]
i 1 1 >*P*
B 10,0 = €2 (A26)
_aT4 il 00 A
Ja(BM)=3T jo dkk4 (Ot m) BIETTATT, e
1 1 2 1 to Eq. (A25), we obtain the two-loop contribution to the
__ ——+ o3 S _ photon polarization tensor at zero external momentum and
m eBCHm) Ty 1 2m® @B M)y g vanishing chemical potential:
(A21) 264
. _ , , 11$2)(0,0 = sme 2mT, (A27)
The specific one-loop bosonic sum integral needed is (2m)
214
a .
i - log( P2)= . it [1+0(e)]. (A22) APPENDIX B: INTEGRALS

Dimensional regularization can be used to regularize both
the ultraviolet divergences and infrared divergences in
2. Two-loop sum integral 3-dimensional integrals over momenta. The spatial dimen-
We also need the value of the two-loop diagram in Eq.Sion is generalized tal=3—2e dimensions. Integrals are
(11). The two-loop sum integral with nonzero chemigal ~€valuated at a value af for which they converge and then
potential was calculated in e.g. Refd,8,23. There are analytically continued ta=3. We use the integration mea-
T-dependent angk-dependent infinities in addition to the Suré
usual vacuum infinities. These are canceled by the corre-
sponding infinities arising from the one-loop counterterm _[ewP\ [ d¥%p
diagrams. The vacuum infinity is canceled by a vacuum fp: At f(zw)3—2€’ (B1)
counterterm in the usual way. If we demand that the two-
loop con_tribution_ to _the vacuum energy vanishes at the scalgnere w is an arbitrary momentum scale. The factor
A, the diagram is given by its finite-temperature piece. Thge7/4x)< is introduced so that, after minimal subtraction of

final result after renormalization is thé¢8] the poles ine due to ultraviolet divergenceg coincides
with the renormalization scale of th€lS renormalization
1, P—m Q—m 1 h
— @ i{PQ} Tr 7# 2 > ’ylu B > 5 scheme. . .
2 P2+m? *Q%+m? (P+Q) The one-loop integrals required are
ez o p2 3
_ 2 + - m
T dpg [+ ] Jp log(p?+m?)=~z—[1+0(e)], (B2
2 2~2 2 2
e (= p-q ( m*  EpEq—m —pq)
-~ Tea | dpdag | 2+ —og=Prt———— 1 m
1677“]0 P pEq pq “EpEq—m*+pq J—2—2=——[1+0(s)]. (B3)
ppP +m 4
m?  E,E,+m?+pq
—n— + o+ P—q
E— g—
X(NpNg +nyng)+| 2+ pqIo Equ+m2—pq

APPENDIX C: POLARIZATION TENSOR

X(nont+nin;)|, A23 . . o
(Mo Ng N Ng ) (A23) In this appendix, we calculate the polarization tensor
I1,,(w,,k) to one loop. The Feynman diagram is shown in
whereE,= Jp?+m? and Fig. 3 and the expression for it is
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P—m (P+K)—m (1) 4, 2 i 1
(1) _ 2 (: - _ K2 Kok
ko k0= Fi T rumm st il T00= 50k Lot ooy
(D

_8 2k2( 8, k*—kik !
158K () i) 4 tp Pz

Taking the Dirac trace, and using a Feynman paramgter (C3)

this can be written as The first term gives the one-loop correction to the field nor-

malization constants, while the second gives the coefficient
of the Uehling term. The fact thdl{”(0k) vanishes in the
8p.p, limit k— O reflects the fact that there is no screening of static
T o 2 > magnetic fields in QED.
[PT4+m + Ky (1-y)] Consider nextlI{{)(0k). Expanding to second order in
the external momenturk and integrating ovey yields

1
.0 -2y

46,,
_ 2
P2+ m?+ K2y (1— 1 = 260 -
| y(z " Hgo)(o,k)—4e2$m [(P2+ m?)2 PZ+m?
8y(1— 1) VK -k kV
[)llv(2+r:2)(+£2 (1—M>]2) | “ +5ed o
y y 3e {P} (P2+m2)2 (P2+m2)3 .
(C4)

FirSt_COHSiderHi(jl)(O,k)- By virtue of Egs.(A4) and (A8),  The first term gives the one-loop expression for the mass
the first two terms cancel identically. The remaining term isparametefwhich coincides with the one-loop expression for
expanded to second order in a Taylor series arckisd®.  the Debye magswhile the second term gives the one-loop

Integrating ovely, we obtain correction to the field normalization constant.
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