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Thermal effects in low-temperature QED

Jens O. Andersen
Institute for Theoretical Physics, University of Utrecht, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands

~Received 15 August 2001; published 26 December 2001!

QED is studied at low temperature (T!m, wherem is the electron mass! and zero chemical potential. By
integrating out the electron field and the nonzero bosonic Matsubara modes, we construct an effective three-
dimensional field theory that is valid at distancesR@1/T. As applications, we reproduce the ring-improved free
energy and calculate the Debye mass to ordere5.

DOI: 10.1103/PhysRevD.65.025014 PACS number~s!: 12.20.Ds, 11.10.Wx
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I. INTRODUCTION

If we have a quantum field theory in equilibrium at tem
peratureT, the abundance of particles of massm much larger
thanT is Boltzmann suppressed. More surprisingly, perha
is the fact that there are additional effects that are suppre
only by powers ofT/m @1–3#. The Boltzmann-suppresse
terms can be associated with loop integrations that invo
distribution functions of the heavy particle. On the oth
hand, the power-suppressed terms arise from perturba
corrections involving only distribution functions of light pa
ticles, with masses on the order ofT or less.

Effective field theory ideas suggest that one integrates
the heavy particle of massm to construct a low-energy ef
fective field theory that can be used forT!m @4,5#. Such an
approach was used by Kong and Ravndal@2# to study QED
at low temperature~see also Refs.@6–13# and references
therein for various calculations in low-temperature QED!.
By integrating out the electron field, they constructed a lo
energy effective field theory for photons. Since this pro
dure was carried out at zero temperature, dimensional an
sis tells us that the coefficients in the effective theory
suppressed by inverse powers of the electron massm. These
higher order interactions are induced by the coupling of
photon to virtual electron-positron pairs in the vacuum. Sin
the momenta of the photons are on the orderT and thus
much smaller thanm, the electron-positron pairs are off the
mass shell by an amount;m. Thus they can only propagat
a distanceR;1/m and their effects can be mimicked b
local interactions. Using this effective field theory to calc
late corrections to the Stefan-Boltzmann law for the press
they showed that the leading correction varies asa2T8/m4.
This correction was obtained by a straightforward two-lo
calculation in the effective theory. In full QED, it woul
require a three-loop calculation.

If we are interested only in power corrections, we c
determine the coefficients in the effective field theory
matching at zero temperature. In the case of QED, this wo
lead to the Euler-Heisenberg Lagrangian@14,15# with addi-
tional higher order operators that can be written in terms
the field strength and its dual@2# ~see e.g.@16# for such
higher order operators!. However, it can be shown that th
effective Lagrangian leads to a vanishing Debye mass to
orders in perturbation theory. We know that this is incorre
but one can account for Debye screening and ot
Boltzmann-suppressed effects in low-temperature QED
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s,
ed

e
r
ve

ut

-
-
ly-
e

e
e

-
e,

ld

f

ll
t,
r
y

carrying out the matching at finite temperature. Alternative
one may reorganize the usual perturbative series in Q
using resummed propagators in the usual way. Howe
such an approach is normally more cumbersome in prac
calculations than effective field theory.

If we are interested in static quantities such as the p
sure or Debye mass, it proves useful to construct a sec
effective field theory for the zero Matsubara mode and thi
done by integrating out the nonzero Matsubara modes@17–
20#. This effective field theory is three dimensional and
valid at distancesR@1/T. It can be constructed in a two-ste
process by first integrating out the electron field, and th
integrating out the nonzero bosonic Matsubara modes. F
a calculational point of view, however, it is easier to integra
out the fermions and the nonzero Matsubara modes at
same time. In this paper, we will take the latter approach

The paper is organized as follows. In Sec. II, we discu
QED at low temperature and the construction of the thr
dimensional effective field theory. In Sec. III, we determi
the coefficients in the effective field theory. In Sec. IV, w
apply the effective field theory to calculate the free energy
ordere3 and the Debye mass to ordere5. Finally, in Sec. V,
we summarize and conclude. All necessary details are
lected in three Appendixes.

II. QED AT LOW TEMPERATURE

In the imaginary-time formalism, one can view a quantu
field theory in four dimensions as a field theory in thr
Euclidean dimensions with an infinite tower of fields, whe
the Matsubara frequencies act as masses in the propag
@17#. In low-temperature QED, this implies that the fermio
have masses of orderm, while the nonzero bosonic mode
have masses of orderT. The zero-frequency bosonic mode
are massless. Thus for distancesR@1/T, we can construct an
effective three-dimensional field theory for the zero Matsu
ara modes by integrating out the electron field as well as
nonzero bosonic modes@17–20#. The coefficients of this ef-
fective field theory then encode the physics at the momen
scalesm and T. This procedure is briefly explained in Se
III.

The partition function of QED can be written as a pa
integral:

Z5E Dh̄DhDAmDc̄Dc expF2E
0

b

dtE d3xLG , ~1!
©2001 The American Physical Society14-1
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JENS O. ANDERSEN PHYSICAL REVIEW D 65 025014
where the Euclidean Lagrangian is

LE5
1

4
FmnFmn1mc̄c1c̄gm~]m2 ieAm!c

1~]mh̄!~]mh!1LGF. ~2!

Here,LGF denotes the gauge-fixing term. In the following w
work in the Feynman gauge, where

LGF5
1
2 ~]mAm!2. ~3!

However, we emphasize that physical quantities are indep
dent of the gauge-fixing condition.

In the three-dimensional effective theory, we can write
partition function as

Z5e2 f (L)VE Dh̄DhDĀ0DĀi expF2E d3xLeffG , ~4!

where the prefactorf (L) is interpreted as the coefficient o
the unit operator in the effective three-dimensional fie
theory. It depends on an ultraviolet cutoffL that cancels the
cutoff dependence in the path integral in Eq.~4! @19#. Leff is
the Lagrangian of the effective three-dimensional fie
theory. The effective field theory consists of a gauge fieldĀi

coupled to a real massive self-interacting scalar fieldĀ0.1

These fields can up to normalizations be identified with
zero-frequency modes of the gauge field in QED. We c
then schematically write

Leff5
1

4
Fi j Fi j 1

1

4
a3~L!Fi j ¹

2Fi j 1
1

2
~] i Ā0!21

1

2
M2~L!Ā0

2

1
l3~L!

24
Ā0

41~] i h̄ !~] ih!1LGF1dLeff , ~5!

wheredLeff represents all higher order local terms that c
be constructed out ofĀi andĀ0 and that respect the symme
tries of the theory. Examples of such symmetries are th
dimensional gauge invariance and rotational symmetry. T
includes renormalizable terms such asFi j

2 as well as non-

renormalizable terms such asĀ0
6 . Note also that we have

suppressed theL dependence of the fieldsĀi and Ā0 in Eq.
~5!. Let us finally look at the power-counting rules for th
effective theory Eq.~5!. The coefficients of the operators a
power series ine2 since we are ignoring infrared divergenc
and are using conventional perturbation theory to determ
them~see Sec. III!. Physical quantities are expressed in po
ers of the parametersf (L), a3(L), M (L), etc., and we mus
figure out at what order the operators that multiply them s
to contribute. Each power of momentum in a loop integra
the effective theory gives a factor ofM; in particular, the
measure gives a factorM3. If we want to calculate the free

1The fact that we must allow for terms such as (1/2)M2(L)Ā0
2

and @l3(L)/24#Ā0
4 is a direct consequence of the breakdown

Lorentz invariance at finite temperature.
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energy to ordere3, it is necessary to determinef (L) to order
e2. Moreover, the one-loop contribution to the free energy
the effective theory is proportional toM3, and we therefore
need to know the mass parameter to ordere. ~Note that the
operatorFi j ¹

2Fi j does not contribute to the free energy
order e2 since it involves only massless fields whose lo
integral vanishes in dimensional regularization. In fact, t
operator can be transformed away by a field redefinition
the expense of modifying the coefficients of higher ord
operators.! On the other hand, the operatorĀ0

4 starts to con-
tribute first at ordere6; its coefficientl3(L) varies ase4 and
it gives rise to a two-loop diagram in the effective theo
where each loop is proportional toM. In this manner we can
determine at what order ine an operator starts to contribut
to a given physical quantity, and in Eq.~5! we have explicitly
displayed those operators needed to determine the free
ergy to ordere3 and the Debye mass to ordere5.

III. SHORT-DISTANCE COEFFICIENTS

In this section, we determine the short-distance coe
cients in the effective Lagrangian Eq.~5!. These coefficients
must be tuned as functions ofe, T, and the ultraviolet cutoff
L so that the effective theory reproduces correlation fu
tions at distances much larger than 1/T. We can carry out
these calculations using conventional perturbation the
which is an expansion in powers ofe2. This expansion is
plagued with infrared divergences due to long-range for
mediated by the massless photon. These divergences are
bye screened, but can only be taken into account by res
mation. Although the naive perturbative expansion bre
down due to these infrared divergences, it can still be use
determine the short-distance coefficients@19#. As long as we
treat the long-distance physics in the same incorrect w
using the effective theory, the infrared divergences will ca
cel in the matching equations and the coefficients prope
encode the short-distance physics@19#. The Lagrangian of
QED is split in the usual way into free and interacting piec

L E
free5

1

4
FmnFmn1c̄~m1]” !c1~]mh̄!~]mh!1LGF,

~6!

L E
int52 ieA” c̄c, ~7!

while the Lagrangian Eq.~5! is split according to

Leff
free5

1

4
Fi j Fi j 1

1

2
~] i Ā0!21~]mh̄!~]mh!1LGF, ~8!

Leff
int5

1

4
a3~L!Fi j ¹

2Fi j 1
1

2
M2~L!Ā0

2

1
l3~L!

24
Ā0

41dLeff . ~9!f
4-2
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A. Coefficient of the unit operator

The matching condition that determines the coefficient
the unit operator is@19#

logZ52 f ~L!V1 logZeff . ~10!

The contributions to logZ through ordere2 are given by the
Feynman graphs in Figs. 1 and 2. A wavy line denote
photon, a solid line denotes a fermion, and a dotted
denotes a ghost. The expression is

T logZ
V

'2
1

2
~d21!X P log P212X $P% log~P21m2!

1
1

2
e2
X $PQ% TrFgm

P” 2m

P21m2
gm

3
Q” 2m

Q21m2

1

~P1Q!2G , ~11!

where the trace is over Dirac indices. The sign' is a re-
minder that the equality holds only in strict perturbati
theory. The fermionic one-loop diagram has a pole ine,
which is proportional tom4. This pole is canceled by th
vacuum countertermD1E0. The two-loop diagram also ha
poles ine. The temperature-independent pole is canceled
the vacuum countertermD2E0, while the temperature
dependent ones are canceled by the one-loop counter
diagrams. The two-loop sum integral is briefly discussed
Appendix A. Our renormalization prescription is that th
renormalized vacuum energy vanishes at the scaleL. Thus
the fermionic one-loop diagram and the two-loop diagr
are given by their finite-temperature pieces@see Eqs.~A3!
and~A23! in Appendix A#. After renormalization, the result
ing expression in the low-temperature limit is

T logZ
V

'
p2T4

45
1

4

~2p!3/2
m3/2T5/2e2m/T

1
e2

2~2p!3 m2T2e22m/T. ~12!

FIG. 1. One-loop vacuum diagrams in QED.

FIG. 2. Two-loop vacuum diagram in QED.
02501
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In the effective theory, all loop diagrams vanish with dime
sional regularization, since there is no mass scale in the
responding integrals. Hence, logZeff vanishes identically in
strict perturbation theory. The matching equation then i
plies

f ~L!52
logZ

V
, ~13!

where the right hand side is given by Eq.~12!.

B. Field normalization constant

The field normalization constants forAi and A0 are ob-
tained by reading off the coefficients ofd i j k

22kikj andk2 of
P i j

(1)(0,k) andP00
(1)(0,k), wherePmn

(1)(k0 ,k) is the one-loop
polarization tensor~C1! ~see Fig. 3!. These are given in Eqs
~C3! and ~C4! in Appendix C, and we obtain

Āi~L!'
1

AT
F11

4

3
e2
X $P%

1

~P21m2!2G1/2

Ai , ~14!

Ā0~L!'
1

AT
F11

1

3
e2
X $P%

6

~P21m2!2

2
8p0

2

~P21m2!3G1/2

A0 . ~15!

Equations~14! and~15! have poles ine that are canceled by
the wave function renormalization counterterm

ZA512
e2

12p2e
. ~16!

After renormalization, we obtain

Āi~L!'
1

AT
F11

e2

24p2 ~L2J2!GAi , ~17!

Ā0~L!'
1

AT
F11

e2

24p2~L2J22J3m2T22!GA0 ,

~18!

whereL5 log(L2/m2) and the integralsJn are defined in Ap-
pendix A. Note the different normalizations of the fieldsA0
andAi . In the low-temperature limit, this reduces to

Āi~L!→ 1

AT
F11

e2

24p2@L22~2p!1/2m21/2T1/2e2m/T#GAi ,

~19!

FIG. 3. One-loop polarization tensor in QED.
4-3
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JENS O. ANDERSEN PHYSICAL REVIEW D 65 025014
Ā0~L!→ 1

AT
F11

e2

24p2@L2~2p!1/2m1/2T21/2e2m/T#GA0 .

~20!

C. Mass parameter

The mass parameter can be determined in several w
We determine it by demanding that the screening mas
strict perturbation theory be the same in QED and the ef
tive theory. The screening massms is defined as the location
of the pole in the propagator for spacelike momentum@19#:

k21P00~0,k!50, k252ms
2 . ~21!

In the effective theory, we have

k21M2~L!1Peff~k,L!50, k252ms
2 , ~22!

where Peff(k,L) is the self-energy ofĀ0 in the effective
theory. We can expand the self-energy functionP00(0,k) in
powers of the external momentumk. To second order in the
loop expansion, the solution to Eq.~21! for the screening
mass is@21#

ms
2'@12P00

(1)8~0,0!#P00
(1)~0,0!1P00

(2)~0,0!. ~23!

Here P00
(n) denotes thenth order contribution to the stati

polarization tensor in the loop expansion, and the prime
notes differentiation with respect tok2. The self-energy func-
tion Peff(k,L) can also be expanded in a Taylor ser
aroundk50. The corresponding loop integrals are evalua
at k50 and since there is no other mass scale, the s
energy functionPeff(0,L) vanishes identically in strict per
turbation theory. Thus the matching condition reduces to

M2~L!'ms
2 . ~24!

The one-loop contribution toP00(0,0) is given by the first
term in Eq.~C4!, while P008 (0,0) is given by the second term
in Eq. ~C4!. The two-loop contribution toP00(0,0) is given
by Eq. ~A27!, and in Appendix B, we explain how one ca
obtain the expression for it from the two-loop contribution
the free energy. In the low-temperature limit, the mass
rameter becomes

M2~L!5
4e2

~2p!3/2
m3/2T1/2e2m/T2

4e4

3~2p!7/2
m3/2T1/2Le2m/T

1
10e4

3~2p!3 m2e22m/T. ~25!

Using the renormalization group equation for the runn
gauge coupling,

m
de2

dm
5

e4

6p2 , ~26!

we see that the mass parameter is independent of the re
malization scalem to ordere4.
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D. Coupling constants

The one-loop Feynman diagram for the four-point fun
tion G (4) with external timelike photons is shown in Fig 4
The matching equation is simply@21#

l3~L!5TG (4)~0,0,0,0!, ~27!

where the arguments indicate that the loop diagram is to
evaluated at zero external momenta The expression for
diagram is

G (4)~0,0,0,0!56e2
X $P% TrFg0

P” 2m

P21m2
g0

P” 2m

P21m2
g0

3
P” 2m

P21m2
g0

P” 2m

P21m2G
524e2

X $P% @m412m2P228m2p0
21P4

28p0
2P218p0

4#
1

~P21m2!4 . ~28!

The particular combination of sum integrals in Eq.~28! is
finite with dimensional regularization and we obtain

l3~L!52
8e4

~2p!2 J4m4T23. ~29!

The fact that this coefficient vanishes identically at zero te
perature, simply reflects the gauge invariance of QED. In
low-temperature limit, Eq.~29! reduces to

l3~L!52
4e4

~2p!3/2
m3/2T21/2e2m/T. ~30!

The coupling constanta3 is not affected by the field re
definition Eqs.~17! to leading order ine, so its value is given
directly by the coefficient of the last term in Eq.~C3!:

a3~L!5
8

15
e2
X $P%

1

~P21m2!3 ~31!

5
e2

60p2m2 @12m2T22J3#. ~32!

In the low-temperature limit, this reduces to

FIG. 4. Four-point function with external timelike photons
one loop in QED.
4-4
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THERMAL EFFECTS IN LOW-TEMPERATURE QED PHYSICAL REVIEW D65 025014
a3~L!5
e2

60p2m2 @12~2p!1/2m1/2T21/2e2m/T#. ~33!

The first term is the standard zero-temperature Uehling te
while the second is a new thermal correction.

IV. FREE ENERGY AND DEBYE MASS

In this section, we use the effective Lagrangian Eq.~5! to
calculate the free energy to ordere3 and the Debye mass t
order e5, respectively. In order to take electric screeni
properly into account, we must include the effects of t
mass termM to all orders in perturbation theory. Thus th
Lagrangian is split accordingly:

Leff
free5

1

4
Fi j Fi j 1

1

2
~] i Ā0!21

1

2
M2~L!Ā0

21~]mh̄!~]mh!

1LGF, ~34!

Leff
int5

1

4
a3~L!Fi j ¹

2Fi j 1
l3~L!

24
Ā0

41dLeff . ~35!

The e3 contribution to the free energy is given by a simp
one-loop calculation in the effective theory:

T logZeff

V
52

1

2
TE

p
log~p21M2!2

1

2
~d22!T

3E
p
log p21

1

2
a3~L!~d22!E

p
p2. ~36!

The total free energy is then given by

F5 f ~L!T2
T logZeff

V
, ~37!

where f (L) is given by Eq.~12!. Using Eq.~B3! in Appen-
dix B and the expression for the mass parameterM (L) to
leading order, Eq.~36! reduces to

T logZeff

V
5

4e3m9/4T7/4

3~2p!13/4
e23m/2T. ~38!

The total free energy density is minus the sum of Eqs.~12!
and ~38!:

F52
p2T4

45
2

4

~2p!3/2
m3/2T5/2e2m/T2

e2

2~2p!3 m2T2e22m/T

2
4e3m9/4T7/4

3~2p!13/4
e23m/2T. ~39!

Equation~39! is in agreement with the result first obtaine
by Gell-Mann and Bruc¨kner@6# in nonrelativistic QED. Note
the term that is nonanalytic ine2. It arises from the summa
tion of an infinite number of infrared divergent loops~ring
diagrams!.
02501
,
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The Debye massmD is given by the location of the pole in
the propagator

k21M2~L!1Peff~k,L!50, k5 imD , ~40!

wherePeff(k,L) denotes the self-energy function ofĀ0. To
leading order ine, the solution to Eq.~40! is simply mD

2

5M2(L). The one-loop approximation to the self-energy

Peff
(1)~k,L!5

1

2
l3~L!E

p

1

p21M2 . ~41!

Peff
(1)(k,L) is independent of the external momentum, so

solution to Eq.~40! is simply

mD
2 5M2~L!1Peff

(1)~k,L!. ~42!

Using Eq.~B3! and expanding the mass parameterM (L) in
powers ofe, we obtain the Debye mass through ordere5:

mD
2 5

4e2

~2p!3/2
m3/2T1/2e2m/T2

4e4

3~2p!7/2
m3/2T1/2Le2m/T

1
10e4

3~2p!3 m2e22m/T1
2e5

~2p!13/4
m9/4T21/4e23m/2T.

~43!

Equation~43! is the main result of the present paper. Usi
the renormalization group equation~26! for the running
gauge coupling, we see that the Debye mass is indepen
of the renormalization scaleL up to corrections of ordere6.
Note also that there is no term proportional toe3 in the
expression for the Debye mass. The reason is that there
no bosonic propagators in the one-loop self-energy grap
QED and fermions need no resummation, since their M
subara frequencies are never zero.

V. SUMMARY

In the present work, we have studied QED at low te
perature. We have constructed an effective field theory
three dimensions that is valid at distancesR@1/T by inte-
grating out the electron field and the nonzero Matsub
modes. Three-dimensional field theory was used to calcu
the pressure to ordere3 and the Debye mass to ordere5. The
pressure and the Debye mass can be calculated eithe
resummation or by effective field theory. Not only does e
fective field theory simplify these calculations, it also unra
els the contributions to physical quantities from different m
mentum scales.
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APPENDIX A: SUM INTEGRALS

In the imaginary-time formalism for thermal field theor
the 4-momentumP5(p0 ,p) is Euclidean withP25p0

21p2.
The Euclidean energyp0 has discrete values:p052npT for
bosons andp05(2n11)pT for fermions, wheren is an in-
teger. Loop diagrams involve sums overp0 and integrals
over p. With dimensional regularization, the integral is ge
eralized tod5322e spatial dimensions. We define the d
mensionally regularized sum integral by

X P[S egm2

4p D e

T (
p052npT

E d322ep

~2p!322e
, ~A1!

X $P% [S egm2

4p D e

T (
p05(2n11)pT

E d322ep

~2p!322e
,

~A2!

where m is an arbitrary momentum scale. The fact
(eg/4p)e is introduced so that, after minimal subtraction
the poles ine due to ultraviolet divergences,m coincides
with the renormalization scale of the modified minimal su
traction (MS) renormalization scheme.

1. One-loop sum integrals

The specific one-loop fermionic sum integrals needed

X $P% log~P21m2!5
1

~4p!2S m

mD 2e

3F2
egeG~11e!

e~12e!~22e!
m41J0T4G ,

~A3!

X $P%

1

P21m25
1

~4p!2S m

mD 2e

3F2
egeG~11e!

e~12e!
m22J1T2G , ~A4!

X $P%

1

~P21m2!25
1

~4p!2S m

mD 2eFegeG~11e!

e
2J2G ,

~A5!

X $P%

1

~P21m2!35
1

2~4p!2S m

mD 2e

3@egeG~11e!m222J3T22#,

~A6!

X $P%

1

~P21m2!45
1

6~4p!2S m

mD 2e

@egeG~11e!

3~11e!m242J4T24#, ~A7!
02501
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X $P%

pipj

~P21m2!25
d i j

2~4p!2 S m

mD 2e

3F2
egeG~11e!

e~12e!
m22J1T2G ,

~A8!

X $P%

p0
2

~P21m2!25
1

2~4p!2S m

mD 2eF2
egeG~11e!

e~12e!
m2

1~d22!J1T212J2m2G , ~A9!

X $P%

p0
2

~P21m2!35
1

4~4p!2S m

mD 2eFegeG~11e!

e

1~d24!J212J3m2T22G , ~A10!

X $P%

p0
2

~P21m2!45
1

12~4p!2S m

mD 2e

@egeG~11e!m22

1~d26!J3T2212J4m2T24#,

~A11!

X $P%

p0
2pipj

~P21m2!45
d i j

24~4p!2 S m

mD 2eFegeG~11e!

e

1~d24!J212J3m2T22G , ~A12!

The integralsJn(bm) can be expressed as integrals invo
ing the Fermi-Dirac distribution function:

Jn~bm!5
4egeG~ 1

2 !

G~ 5
2 2n2e!

b422nm2e

3E
0

`

dk
k422n22e

~k21m2!1/2

1

eb(k21m2)1/2
11

.

~A13!

These integrals are functions ofbm only and satisfy the
recursion relation

m
]

]m
Jn~bm!52eJn~bm!22~bm!2Jn11~bm!.

~A14!

We need the integralsJn for e50. In the low-temperature
limit, these integrals reduce to

J0→8~2p!1/2m3/2T23/2e2m/T, ~A15!

J1→4~2p!1/2m1/2T21/2e2m/T, ~A16!

J2→2~2p!1/2m21/2T1/2e2m/T, ~A17!
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J3→~2p!1/2m23/2T3/2e2m/T, ~A18!

J4→
1

2
~2p!1/2m25/2T5/2e2m/T. ~A19!

Note that the integralsJ3 andJ4 need subtractions to remov
power infrared divergences:

J3~bm!522T2E
0

`

dk
1

k2F 1

~k21m2!1/2

1

eb(k21m2)1/2
11

2
1

m

1

eb(k21m2)1/2
11

G , ~A20!

J4~bm!53T4E
0

`

dk
1

k4F 1

~k21m2!1/2

1

eb(k21m2)1/2
11

2
1

m

1

eb(k21m2)1/2
11

1
k2

2m3

1

eb(k21m2)1/2
11

G .

~A21!

The specific one-loop bosonic sum integral needed is

X P log~P2!52
p2T4

45
@11O~e!#. ~A22!

2. Two-loop sum integral

We also need the value of the two-loop diagram in E
~11!. The two-loop sum integral with nonzero chemicalm
potential was calculated in e.g. Refs.@7,8,22#. There are
T-dependent andm-dependent infinities in addition to th
usual vacuum infinities. These are canceled by the co
sponding infinities arising from the one-loop counterte
diagrams. The vacuum infinity is canceled by a vacu
counterterm in the usual way. If we demand that the tw
loop contribution to the vacuum energy vanishes at the s
L, the diagram is given by its finite-temperature piece. T
final result after renormalization is then@8#

1

2
e2
X $PQ% TrFgm

P” 2m

P21m2
gm

Q” 2m

Q21m2

1

~P1Q!2G
52

e2

12p2 T2E
0

`

dp
p2

Ep
@np

11np
2#

2
e2

16p4E
0

`

dp dq
p2q2

EpEq
F S 21

m2

pq
log

EpEq2m22pq

EpEq2m21pqD
3~np

2nq
21np

1nq
1!1S 21

m2

pq
log

EpEq1m21pq

EpEq1m22pqD
3~np

2nq
11np

1nq
2!G , ~A23!

whereEp5Ap21m2 and
02501
.

e-

-
le
e

np
65

1

eb(Ep6m)11
. ~A24!

In the low-temperature limit, this reduces to

1

2
e2
X $PQ% TrFgm

P” 2m

P21m2
gm

Q” 2m

Q21m2

1

~P1Q!2G
→ e2

2~2p!3 m2T2e2(m2m)/T. ~A25!

Equation~A23! gives the two-loop contribution to the pres
sureP. By applying the formula@22#

P00~0,0!5e2
]2P 2

]m2 ~A26!

to Eq. ~A25!, we obtain the two-loop contribution to th
photon polarization tensor at zero external momentum
vanishing chemical potential:

P00
(2)~0,0!5

2e4

~2p!3 m2e22m/T. ~A27!

APPENDIX B: INTEGRALS

Dimensional regularization can be used to regularize b
the ultraviolet divergences and infrared divergences
3-dimensional integrals over momenta. The spatial dim
sion is generalized tod5322e dimensions. Integrals are
evaluated at a value ofd for which they converge and the
analytically continued tod53. We use the integration mea
sure

E
p
[S egm2

4p D eE d322ep

~2p!322e
, ~B1!

where m is an arbitrary momentum scale. The fact
(eg/4p)e is introduced so that, after minimal subtraction
the poles ine due to ultraviolet divergences,m coincides
with the renormalization scale of theMS renormalization
scheme.

The one-loop integrals required are

E
p

log~p21m2!52
m3

6p
@11O~e!#, ~B2!

E
p

1

p21m252
m

4p
@11O~e!#. ~B3!

APPENDIX C: POLARIZATION TENSOR

In this appendix, we calculate the polarization tens
Pmn(vn ,k) to one loop. The Feynman diagram is shown
Fig. 3 and the expression for it is
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Pmn
(1)~k0 ,k!5e2

X $P% TrFgm

P” 2m

P21m2
gn

~P” 1K” !2m

~P1K !21m2G .

~C1!

Taking the Dirac trace, and using a Feynman parametey,
this can be written as

Pmn
(1)~k0 ,k!5e2E

0

1

dyX $P% F 8pmpn

@P21m21K2y~12y!#2

2
4dmn

@P21m21K2y~12y!#

1
8y~12y!~dmnK22kmkn!

@P21m21K2y~12y!#2 G . ~C2!

First considerP i j
(1)(0,k). By virtue of Eqs.~A4! and ~A8!,

the first two terms cancel identically. The remaining term
expanded to second order in a Taylor series aroundk50.
Integrating overy, we obtain
cs
us

ea

02501
s

P i j
(1)~0,k!5

4

3
e2~d i j k

22kikj !X $P%

1

~P21m2!2

2
8

15
e2k2~d i j k

22kikj !X $P%

1

~P21m2!3 .

~C3!

The first term gives the one-loop correction to the field n
malization constants, while the second gives the coeffic
of the Uehling term. The fact thatP i j

(1)(0,k) vanishes in the
limit k→0 reflects the fact that there is no screening of sta
magnetic fields in QED.

Consider nextP00
(1)(0,k). Expanding to second order i

the external momentumk and integrating overy yields

P00
(1)~0,k!54e2

X $P% F 2p0
2

~P21m2!2 2
1

P21m2G
1

1

3
e2k2

X $P% F 6

~P21m2!2 2
8p0

2

~P21m2!3G .
~C4!

The first term gives the one-loop expression for the m
parameter~which coincides with the one-loop expression f
the Debye mass!, while the second term gives the one-loo
correction to the field normalization constant.
hys.
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