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Operator product expansion and confinement
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The operator product expansion~OPE! technique is analyzed in Abelian and non-Abelian field theoretical
models with confinement. Special attention is paid to the regimes where the nonzero virtuality of vacuum fields
is felt by external currents. It is stressed that despite the fact that the physics of confinement is sometimes
considered as being caused by ‘‘soft’’ fields, it can exhibit pronounced ‘‘hard’’ effects in OPE.
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I. INTRODUCTION

The inclusion of nonperturbative contributions@1# ~pro-
portional to the gauge-invariant local condensates! in stan-
dard perturbative operator product expansion~OPE! allows
one to@2# formulate a powerful method of QCD sum rule
@1# ~for reviews, see@3–5#!. Nevertheless, some questio
about the method were formulated in the original pap
@6,7# and still remain unanswered.

In particular, a relation between the property of confin
ment and the structure of the sum-rule series has never
clearly established. On the one hand, one could guess
confinement appears as a result of the partial summatio
some OPE subseries, while on the other hand, confinem
itself might introduce some new unconventional terms
OPE series, with the structure different from the stand
form.

The phenomenological implication of such new term
e.g.,O(1/Q2), was investigated in@8#, where it was related
to the short-distance nonperturbative physics. The author
@9–12# checked the role of confinement for QCD sum ru
exploiting nonrelativistic solvable models, and exact resu
for Green’s functions were compared to the sum-rule resu

Especially popular is the example of nonrelativistic p
ticles in the oscillator potential, with the Euclidean sho
time expansion of the Green’s function@for a detailed dis-
cussion of the two-dimensional~2D! case, see@5#; for the 3D
case, see@9##,

Gosc~T!5
m

2pT S 12
~vT!2

6
1

7

360
~vT!41••• D . ~1!

Here the first term comes from the free Green’s funct
while the next terms play the role of ‘‘condensates,’’ i.
they identify Borel mass«51/T, One has the typical OPE
structuresv2/«2 andv4/«4.

The result ~1! has widely been used as an argume
that confinement~i.e., long-distance soft physics! can-
not modify the standard OPE, and confinement effe
should be looked for in the partial sums of the ty
(n50

` cn(Q2)^DnF(0)DnF(0)&.
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In what follows, we shall demonstrate explicitly that co
finement modifies the standard OPE for a relativistic qu
Green’s function; new terms appear, which bring unus
power terms in OPE.

It will be shown that the expansion~1! is typical for non-
relativistic potential Green’s functions, while for relativist
particles in the confining fields~or in the confining potential!
a specific long-distance instability~divergence! occurs in the
perturbative expansion, which could lead to new pow
terms.

Let us stress from the beginning an important differen
between OPE in coordinate and momentum spaces, w
was discussed already in@1,13# and which will be seen
clearly in what follows. Studying the small-x expansion of a
product of two operatorŝT$J(0)J(x)%& when x→0, one
observes that in the relativistic case~contrary to the nonrel-
ativistic one!, a small value ofx does not confine the virtu
alities of the internal lines in the corresponding diagrams
any way. Virtual particles created and annihilated by ope
tors J can travel over large distances in coordinate space
any smallx. As a result, in confining theory the product o
operators taken at two neighboring points carries informat
about large-distance behavior of a theory even ifx is much
smaller than the typical confinement scalel21.

To clarify the mechanism of this phenomenon, we star
the next section with the Green’s function of a relativis
quark in the linear confining potential of a static antiqua
corresponding to the Dirac equation with a scalar linear
tential. We shall expand Green’s function in powers of stri
tension~or equivalently in powers of Euclidean timeT) and
find explicitly a new dominant term at smallT and estimate
other terms. Comparison with the corresponding nonrela
istic Green’s function is done and demonstrates that no
usual terms appear in the latter case, the expansion b
essentially of the same type as in Eq.~1!. The reason for that
is traced to the structure of the nonrelativistic free Gree
function, for which spatial deflection of particleDx is limited
by the time elapsedDt, Dx;ADt/m.

The situation is different, however, in momentum spa
Large external momentumQ plays the role of infrared cutoff,
and if it is much greater than particle massm and nonpertur-
bative scalel, one can perform systematic expansions o
©2002 The American Physical Society29-1
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V. SHEVCHENKO AND YU. SIMONOV PHYSICAL REVIEW D65 074029
m2/Q2 andl2/Q2. This is how the standard OPE techniq
works. Nevertheless, the remaining problem in this case i
determine the structure of the latter, nonperturbative s
series. The problem here is that in real QCD, there are
eral different nonperturbative scales. The best known sc
are given by nonperturbative quark and gluon@1# conden-
sates^c̄c&, ^FmnFmn&. One can include in analysis highe
irreducible condensates as well. Another important scal
given by condensate virtualities@see expressions~21! and
~22! below#. So even remaining in the standard OPE fram
work, one can attempt to incorporate the different subse
in the full l2/Q2 expansion. It will be shown below how thi
problem is solved in particular cases.

Moreover, we present a few examples in Sec. VI wh
OPE in momentum space starts from the terms that nont
ally account for~monopole! condensate virtuality and henc
would be considered as subleading in the conventional
pansion.

The field-theoretical models are discussed in Sec.
where the QCD equations for the heavy-light system
tained in the limit of largeNc in @14# are discussed.

It is shown, in particular, based on the subsequent res
in @15,16#, that exact equations have a nonlinear kern
which at large spatial distances reduces to the linear con
ing termsurWu, and hence the expansion of the Green’s fu
tion reduces to the potential example considered in Sec.

We briefly consider Abelian models in Sec. VI, such
QED with monopoles, and study the influence of confin
ment on the short-time behavior of Green’s functions.
also discuss various approaches related to OPE, such a
Feynman-Schwinger proper time method~Sec. V!, and spec-
tral representations of Green’s functions~Sec. VII!, and we
study the interplay between confinement and OPE in th
frameworks. Finally, we present a short conclusion and o
look.

II. RELATIVISTIC GREEN’S FUNCTION OF A CONFINED
QUARK

We study Green’s function of the Dirac equation in t
Euclidean space-time,

2 i ~ ]̂1m1suxW u!S~x,y!5d (4)~x2y!. ~2!

In what follows, we shall study the functionS(xW50; x4

50; yW50, y45T)[S(T) as a function ofT at small values
of T.

The free Green’s functionS0(x2y) can be written as

S0~x!5E d4p

~2p!4

exp~ ipx!

p21m2
~gp1 im!

5 i ~m2 ]̂ !^0u~m22]2!21ux&

5 i ~m2 ]̂ !
m

4p2

K1~mx!

x

5 i S m2
x̂

x

]

]x
D m

4p2

K1~mx!

x
, ~3!
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wherex5AxW21x4
2 andK1 is the McDonald function. In the

massless limit, one obtains

S0~x!→ i x̂

2p2x4
. ~4!

In the first order ins, one obtains in the massless limit

S~0,T!5S0~0,T!1 i E d4x S0~0,x!suxW uS0~x,T!1•••

[S0~0,T!1S1~0,T!1•••, ~5!

where the functionS1 can be written in the massless limit a

S1~0,T!5
is

~2p2!2E x̂

x4
uxW u

~ x̂2T̂!

~x2T!4
d4x. ~6!

Integration in Eq.~6! yields

S1~0,T!5
is

8pT
. ~7!

Consider now the higher-order terms in the expansion~5!.
The typicalO(sn) term looks like

Sn~0,T!5 i nE d4x1•••d4xnS0suxW1uS0•••suxWnuS0 . ~8!

It is easy to see that the integrals are infrared-divergen
large uxW u starting from the term withn52, however form
Þ0 this divergence is eliminated and integrals are cut off
the mass atx;1/m. Therefore, typicalSn(0,T) has the form,
for n.2,

Sn~0,T!;S s

m2D n

m3 ~9!

while then51 term obtains corrections of the form

S1~0,T!5
is

8pT
@mTK1~mT!1O~mT!#. ~10!

It is instructive to compare Eqs.~4!, ~7!, and ~9! with the
nonrelativistic expansion~1!. One can see that apart from th
difference in free Green’s functions, the first dynamical te
is nonsingular in the nonrelativistic case~1!, G1

osc

52mv2T/12p, while it is singular in the relativistic case
~7! if T→0.

To clarify the origin of this difference, one can compu
S1(0,T) for the nonrelativistic Green’s function with a linea
potential. Note that the free Green’s function in 3D is

G0
nr~xW1 ,t1 ;xW2 ,t2!5S m

2p~ t22t1! D
3/2

expS 2
m~xW22xW1!2

2~ t22t1!
D .

~11!

A calculation similar to Eq.~6! immediately yields

G1
nr~0,T!5

sm

8p
, ~12!

which is nonsingular at smallT in contrast toS1(0,T) in Eq.
~7!. It is easy to see that also all higher terms insn are
9-2
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OPERATOR PRODUCT EXPANSION AND CONFINEMENT PHYSICAL REVIEW D65 074029
nonsingular due to the specific feature of the nonrelativi
Green’s function~11!: all time intervals are ordered (tn
.tn21.tn22) and all space intervals are cut off by the tim
intervals and the mass, so that a quark cannot escap
away during a short time interval, in contrast to the relat
istic case, in which a light quark can travel as far as 1m
@T for any smallT. This crucial difference between nonre
ativistic and relativistic dynamics causes the different beh
ior of the Green’s functions at small distances or times.

III. RELATIVISTIC EQUATION FOR THE HEAVY-LIGHT
SYSTEM

We shall discuss the situation for the field-theoreti
model in this section, namely for the two-body system ma
of a spinor particle with massm and a heavy scalar antipa
ticle whose mass is considered infinite. We assume that
‘‘meson’’ interacts with a confining gauge-field backgroun
which is characterized by the Gaussian field strength c
relator ~see review@17# and references therein!
tz
it
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Dm1n1 ,m2n2

(2) 5^trc„Fm1n1
~z1!F~z1 ,z2!Fm2n2

~z2!F~z2 ,z1!…&

5
1

2 S ]

]zm1

~zm2
dn1n2

2zn2
dn1m2

!

1
]

]zn1

~zn2
dm1m2

2zm2
dm1n2

! DD1~z12z2!

1~dm1m2
dn1n2

2dm1n2
dm2n1

!D~z12z2!, ~13!

whereF(x,y) stays for the phase factor,

F~x,y!5P expS i E
x

y

Am~u!dumD . ~14!

The Green’s function of such a system can be represente
follows:

^c̄~x!F~x,y!c~y!&5S0~x,y!1S2~x,y!1•••, ~15!

whereS0 is given by Eq.~3! while the first nontrivial inter-
action term has the form
Tr S2~x,y!5 K E d4uE d4w tr„S0~x,u!iÂ~u!S0~u,w!iÂ~w!S0~w,y!…L , ~16!
of
the

It
t of
where tr5trc trL is a product of traces over color and Loren
indices. We adopt the Fock-Schwinger gauge condition w
the base pointx05x: Am(u)(u2x0)m50. In this gauge, the
Green’s function of the heavy particle gives some numer
factor whose exact form is inessential in what follows wh
the gauge field propagator takes the form

^trc Am~u!An~w!&5D~0!•@~u2x!~w2x!dmn

2~u2x!n~w2x!m#• f ~u,w!, ~17!

where the dimensionless functionf (u,w) is given by the
following expression:
h

l

f ~u,w!5
1

D~0!
E

0

1

da aE
0

1

db bD~au2bw!. ~18!

Functions of this kind are often used in the formalism
coordinate gauges. One can find in the Appendix of
present paper a detailed analysis off (u,w) for a particular
choice of Gaussian ansatzD(z)5D(0)exp(2z2/Tg

2). We
shall keep only the functionD(z) in what follows since the
function D1(z) is not responsible for confinement effects.
was also found on the lattice that the nonperturbative par
D1(z) is significantly smaller than that ofD(z) in QCD; see
@17# and references therein.

In momentum space, Eq.~16! takes the form
Tr S2~x,y!54imE d4l

~2p!4E d4k

~2p!4E0

1

a daE
0

1

b db exp„i l ~x2y!…

3
D~k2!

l 21m2
•F ]

]r r

]

]ss
G

r 5ka
s5kb

H 1

~ l 2s1r !21m2

1

~ l 2s!21m2
3@drs~3m22 l 222lr 2sr1s2!14l rl s24l rss

12l rr s22l ssr12srss2r ssr2r rss#J . ~19!
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V. SHEVCHENKO AND YU. SIMONOV PHYSICAL REVIEW D65 074029
The properties of the expression~19! are determined by the
interplay of external parameters such as particle massm and
distanceux2yu and the properties of the confining bac
ground encoded in the functionD(z). In the case of QCD,
the latter is usually computed in the course of lattice sim
lations @18#. It decays with distance and has some typi
correlation length scale which we denote asTg throughout
the paper. The exact dependence ofD(z) on z is of no prin-
cipal importance; one usually takes exponential fits~see
@17#!. At the origin,D(z) is normalized to the nonperturba
tive gluon condensate according to

D~0!5 1
12 ^trc FmnFmn&.

It is worth mentioning that the actual numerical value ofTg
in gluodynamics and QCD is rather small: it is estimated
0.22 Fm for quenched SU~3! and as 0.34 Fm for full QCD
with four flavors@18,19,17#. As will be clear from what fol-
lows, this circumstance bounds the region of applicability
conventional OPE based on local condensates.

We study first the heavy quark case, i.e., we assume
mTg@1. The integrals in Eqs.~16! and~19! are saturated a
momental 2 of the order of the massm2 and one can make
systematic expansion over 1/mTg . Straightforward although
rather lengthy calculation leads to the following answer
the heavy quark condensate:

Tr S2~x,x!5
2 i ^trc FmnFmn&

24p2m
F12

44

45

1

m2T̃g
2

1OS 1

m4T̃g
4D G ,

~20!

whereT̃g is defined as

1

T̃g
2

5
1

4D~0!
E d4k

~2p4!
D~k2!k25

^trc~FD2F !&

^trc F2&
, ~21!

where the last relation is valid in the Gaussian approxima
when all contributions from higher correlators are neglect
Let us mention that the virtuality of the quark condens
usually measured by the quantity

lq
25

^c̄D2c&

^c̄c&
~22!

in the sum-rule approach is comparable with that of
gluon condensate~21!; indeed,lq

25(0.460.1) GeV2 accord-
ing to @20#, while Tg was found on the lattice to be (0.3
60.02) Fm in SU~3! with four dynamical flavors@19#, i.e.,
lqT̃g is of the order of one. It could be instructive, therefo
to reconcile our approach with the method of nonlocal qu
condensates worked out in@21,22# ~see also@45#!.

For D(z)}exp(2z2/Tg
2) with the correlation lengthTg ~as

is used in the Appendix!, one hasTg5A2T̃g . The first term
in the expansion~20! is the well known OPE result for the
heavy quark condensate@23#; see also@24#. The second term
is the first nonlocal correction. It is worth mentioning th
due to the smallness ofTg ~see above!, it can be omitted as a
numerically small correction forb,t quarks only, while for
07402
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s,c quarks keeping only the first term in the expansion
1/mTg is not to be considered as a good approximation.

Equations of the form~21! and ~22! account for nonzero
virtuality of vacuum lines in standard OPE language; o
considers quantum averages, which contain derivatives
we shall see in what follows, this language is not univer
and implicitly assumes small averaged virtuality correspo
ing to the vacuum state, i.e., the large-Tg limit. Another es-
sential ingredient of this language is the use of equation
motion for such averages. Although it is rather easy to jus
the validity of this component of the approach in the Abeli
case, to the best of the author’s knowledge this prescrip
has never been proved for non-Abelian theories with
level of rigor adopted in the field. Since we are discuss
nonlocal correlators, the following remark is of importanc
Consider the parallel transported field strength tensorFmn ,
i.e.,

Gmn~x,x0!5F~x0 ,x!Fmn~x!F~x,x0!,

and the nonlocal gauge-invariant two-point correlator,

^trc G~x,x0!G~y,x0!&. ~23!

The above correlator depends on the positions of the po
x,y,x0 and on the profiles of the contours used in the fact
F. However, ifx→y, all these dependences disappear~phase
factors cancel each other, while thex dependence is prohib
ited by translational invariance!, and the resulting local av
erage coincides witĥtrc F2&. Let us consider now an expan
sion of ~23! if ux2yu is small. In principle, one might
consider two different expansions, with correlators involvi
derivatives in both cases. In the first case, it reads

^trc Gmn~x,x0!Grs~y,x0!&'^trc FmnFrs&

1~y2x!a•K trc Gmn~x,x0!

F]Grs~y,x0!

]ya
GU

y5x
L 1•••,

~24!

where the derivative is given by

]Grs~y,x0!

]ya
5F~x0 ,y!S DaFrs~y!1 i ~y2x0!b

3E
0

1

s ds@Gba~z,y!,Frs~y!# DF~y,x0!

~25!

and @ . . . , . . .# in Eq. ~25! denotes a commutator with re
spect to color indices. The second term~and all higher terms!
on the right-hand side~rhs! of Eq. ~24! contains a nonloca
part and depends on contour profiles and on the position
the pointsx,x0 unlessx5y5x0. On the other hand, the ex
pansion goes in powers of the quantity (y2x), which is
assumed to be small.

In the second case, one expands eachG in Eq. ~23! in the
vicinity of the pointx0:
9-4
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^trc Gmn~x,x0!Grs~y,x0!&'^trc@Fmn~x0!1~x2x0!aDaFmn~x0!1•••#@Frs~x0!1~y2x0!aDaFrs~x0!1•••#&

'^trc FmnFrs&1~y2x0!a•^trc Fmn~x0!DaFrs~x0!&1~x2x0!a•^trc DaFmn~x0!Frs~x0!&

1•••. ~26!
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This is an expansion adopted in conventional OPE. In c
trast with Eq.~24!, nonlocal parts are absent. The price
pay, however, is that the expansion goes inx2x0 ,y2x0 in-
stead ofy2x. Needless to say, in many physical applicatio
uy2xu can be small whereasux2x0u and uy2x0u are very
large. Notice also that the opposite situation is impossib
smallness ofux2x0u,uy2x0u implies smallness ofuy2xu.

After this rather academic discussion we come back to
limit of small quark mass and/or correlation lengthmTg!1,
which is opposite to what has been explored in Eq.~20!. As
was already mentioned, in real QCD, the parame
^trc F2&Tg

4 can be considered as small, even in presence
dynamical quarks. In particular, typical momental 2 in Eq.
~19! can be rather large in comparison with the nonpertur
tive scale given by the condensateA^trc F2& but still small
when compared to the nonlocality scale;Tg

22 . The test par-
ticle resolves the nonlocality of vacuum field correlations
this regime.

The Green’s functionS2(x,y) in which we are interested
is defined in Eq.~16!. We are working in the coordinat
representation here and choose the Fock-Schwinger g
reference pointx0 at the originx05x50. We rewriteS2(x
50,y) using Eq.~17! as

S2~0,y!5
iD ~0!

64p6 E d4uE d4wF S m

u2
22

û

u4D •@4~uw!2ûŵ#

3 f ~u,w!•S 2
û2ŵ

~u2w!4
1

m

~u2w!2D
3S 2

ŵ2 ŷ

~w2y!4
1

m

~w2y!2D G , ~27!

where we have kept in the propagators only those terms
are linear in massm since we consider the small-mass lim
The kernelf (u,w) is defined in Eq.~18! and û5umgm .

The actual value of this integral is defined by the prop
ties of the functionf (u,w), which encodes all nonperturba
tive dynamics in the chosen Gaussian approximation. T
are rather peculiar, however~see the Appendix!, and this
circumstance precludes one from obtaining an exact ana
answer. On the other hand, Eq.~27! can be calculated nu
merically for any particular ansatz forD(x). Let us investi-
gate the general structure ofS2. In the massless limit, one
immediately obtains limy→0 S2(0,y)50 according to the ab
sence of chiral symmetry breaking in the problem in qu
tion. It is seen thatS2 is UV-finite ~small u,w domain! be-
cause the nonperturbative background is s
limu,w→0 f (u,w)5 1

4 . In the infrared domainuuu,uwu@Tg ,
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the integral is convergent due to the properties off (u,w)
~see the Appendix!. One obtains in the massless case
following leading term at smalluyu:

S2~0,y!52 ic•D~0!• ŷ1O~y2!.

The numerical constantc is determined by the function
f (u,w), but isTg-independent. The massive parts ofS2 pro-
vide a finite contribution aty50:

S2~0,y!; imD~0!Tg
2 .

If the mass is increasing and reaches values of the orde
Tg

21 , it begins to work as an IR cutoff instead ofTg and one
comes back to Eq.~20!. However, if the mass is small, the
light quarks essentially feel the virtuality distribution o
vacuum gluon fields@i.e., the profile off (u,w)#.

It is instructive to show how the potential problem co
sidered in Sec. II appears from the field-theoretical fram
work invoked by us here. To this end, one should consi
the equation for the heavy-light system which was obtain
from the QCD Lagrangian in@14# in the limit of largeNc .
Keeping only the Gaussian field correlator, one has inst
of Eq. ~2! the equation for the quark Green’s function~made
gauge-invariant due to the phase factor coming from
heavy source propagator!,

2 i ~ ]̂1m!S~x,y!2 i E M ~x,z!d4z S~z,y!5d (4)~x2y!,

~28!

where the nonlocal kernelM (x,z) depends on the exac
Green’s function S(x,z), making Eq. ~28! nonlinear.
Throughout this section, we are working in the so-call
modified Fock-Schwinger gauge~see all details in@25#!
where the temporal axis is singled out. We have retained
simplicity only the color electric part of the correlator a
defined in @26#, ^Ei(x)Ek(z)&;d ikD(x2z). Assuming for
D(x2z) the Gaussian ansatz, one arrives at the follow
form of the nonlocal kernelM (x,y):

M ~x,y!5D~0!~xWyW ! f ~xW ,yW !S~x,y!expS 2
~x42y4!2

Tg
2 D ,

~29!

where f (xW ,yW ) is given in the Appendix. Notice thatxW ,yW are
three-dimensional vectors here and not four-dimensiona
in Eq. ~27!.

As was shown in@15# using the relativistic WKB method
developed in@14#, the functionS(x,y) at largexW ,yW , i.e., if
uxW u,uyW u@Tg , can be written in the following form:
9-5
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S~h,xW ,yW !5 ie2(suxW u1m)hg~xW ,yW !S u~h!

u~2h!
D , ~30!

whereh[x42y4 andg(x,y) is a smearedd function,

g~xW ,yW !5 d̃ (3)~xW2yW !, sxW2;syW 2@1, ~31!

moreover for largexW and yW , and uxW2yW u!uxW u;uyW u ~see@14#
and also the Appendix of the present paper!,

f ~xW ,yW !;
Tg

uxW u
~32!

and in this region one can integrate in Eq.~28! over d4z,
since
i-

l

of

f

to

d
pa

07402
M ~x,z!>suxW ud (4)~x2z!, ~33!

where the string tensions5(p/2)D(0)Tg
2 for the Gaussian

ansatz@see Eq.~62! below#. Thus at large spacial argumen
the kernelM coincides with the linear potential considered
the previous section. Therefore, all estimates for terms in
expansion proportional toMn, n>2 are in agreement with
those for the local case, Eq.~9!, since integrals in these term
are essentially saturated by large spacial distances,uxW (n)u
@Tg .

Although the potential behavior~33! is typical for the
large-T regime, it is instructive to show how the nonlocali
cures the 1/T behavior found in the local potential problem
We shall demonstrate now that the Green’s functions in qu
tion have a finite limit whenT→0 either for small or for
large Tg . Let us briefly analyze the situation with the no
local equivalent of Eq.~6!, i.e.,
S1
(M )~0,T!5

iD ~0!

~2p!2E d4xE d4y
x̂~ ŷ2T̂!~xWyW ! f ~xW ,yW !S~h,xW ,yW !

x4~y2T!4
expS 2

h2

Tg
2D ~34!
s
s or

y a
d
ht
a-
nti-
by
with S given in Eq. ~30!. It is convenient to introduce the
dimensionless quantities

x̃m5xmAs, ỹm5ymAs, T̃g5TgAs, T̃5TAs.
~35!

Rewriting Eq.~34! in terms of tilde variables, one immed
ately realizes thatS tends to the three-dimensionald function
only in the limit whenux̃u,u ỹu@1 and otherwise the integra
is defined by the regionux̃u;u ỹu;1 when the nonlocality is
at work, i.e.,ux̃2 ỹu;ux̃u,u ỹu. Imposing the limit of smallTg ,
i.e., T̃g!1, one reduces two powers ofx̃,ỹ in the numerator
of Eq. ~34!, but the integral is still defined by large values
x̃,ỹ of the order of unity and one finally obtains

S1
(M )~0,T!;const•s3/2. ~36!

One can also show that the same estimate holds true
higher termsO(mn) and writeSn

(M )(0,T);cns3/2. Consider

now the opposite limitT̃g@1, i.e.,Tg@1/As. In this case,T̃g

does not confine the differencesx̃2 ỹ in f ( x̃,ỹ) and x̃42 ỹ4
in the exponent in Eq.~34! to small values as compared
ux̃u,ux̃4u or u ỹu,u ỹ4u. Therefore, the integration overd( x̃4

2 ỹ4) is limited only by the exponent in Eq.~30!. As a result,
one obtains forS1 the following estimate~as always, we
assume the massm to be not large,m&As):

S1
(M )~0,T!;const•

As

Tg
2

. ~37!

Thus in both cases the normal procedure of OPE, base
the analysis of subsequent terms of the perturbative ex
or

on
n-

sion ~and separating the soft and hard parts of the diagram!,
is not applicable and one should sum up the whole serie
else solve the nonlinear equation~28! exactly.

IV. ANOTHER FIELD-THEORETICAL EXAMPLE: HOW
THE LINEAR CONFINEMENT IS BUILT UP OUT

OF CONDENSATES

In this section, we consider another example, namel
scalar~Higgs-type! particle interaction with the backgroun
Yang-Mills field, and again we calculate the heavy-lig
Green’s function where the light particle is the color fund
mental Higgs boson while the heavy source is like an a
quark. The Lagrangian and the Green’s function are given

L5 1
4 ~Fmn

a !21uDmwu22
m2uwu2

2
,

G(w)~0,T!5^w̄~0!F~0,T!w~T!&. ~38!

One can rewriteG(w) as

G(w)~0,T!5^~m22Dm
2 !0,T

21F~0,T!&B ~39!

where we have introduced the external~background! field
Bm : Dm5]m2 igBm . For simplicity of consideration, we
shall confine ourselves to the vertices

L4[g2~Bm
abwb!~Bm

acwc!1 ~40!

and choose the gauge@25# to write an equation forG(w)(x,y)
analogous to Eq.~28!,
9-6
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~m22]m
2 !G(w)~x,y!1E I ~x,z!G(w)~z,y!d4z5d (4)~x2y!,

~41!

whereI (x,z)5I (1)(x,z)1I (2)(x,z) andI (1) refers to the ker-
nel with one power ofBm , while I (2) corresponds to the
Lagrangian~40! and can be written as

I (2)~x,y!5d (4)~x2y!g2Bm
2 ~x!. ~42!

The contributions fromI (1) not analyzed by us here are o
the same general structure as that ofI (2) apart from nonlo-
cality controlled by the particle massm. Our consideration in
this section is for illustration purposes only.

Let us take now the first-order graph ing2 @keeping only
I (2) in Eq. ~41!#. In Euclidean space-time, one has

G1
(w)~0,T!5g2K E d4xG0

(w)~0,x!Bm
2 ~x!G0

(w)~x,T!L
B

,

~43!

where

G0
(w)~x!5

m

4p2x
K1~mx!, x5Ax2. ~44!

We shall be interested in the vacuum-averaged expres
for G1

(w) and to this end one should expressBm
2 (x) in terms

of field correlators~one way! or in terms of condensate
~another standard way!. In the gauge@25#, one can write,
e.g., forB4

2

^B4
2~x!&5E

0

x

dumE
0

x

dvn^Fm4~u!F~u,v !Fn4~v !& ~45!

and using@26#, and keeping~as in Sec. III! only the confin-
ing partD, one has

^B4
2~x!&5E

0

x

duiE
0

x

dv iD~u2v !, i 51,2,3. ~46!

By way of example, let us consider an exponential ansatz
D(u2v). As was already said, this behavior ofD(x) was
observed in lattice simulations at distances larger than s
typical correlation lengthTg . So one has

^B4
2~x!&5D~0!xW2E

0

1

daE
0

1

db expS uxW u
Tg

•ua2bu D .

~47!

Notice the absence of additional multipliersa,b in Eq. ~47!
contrary to Eq.~18!. This is a property of the modified Fock
Schwinger gauge@25# ~the temporal axis is singled out! used
by us in this section, instead of the usual one used in Eq.~18!
~one point is singled out!.

Straightforward integration leads to the following resu
07402
on

or

e

^B4
2~x!&52D~0!uxW uTgH 12

Tg

uxW u
•F12expS 2

uxW u
Tg

D G J .

~48!

At large uxW u@Tg , one has, from Eq.~48!,

^B4
2~x!&'2D~0!Tg~ uxW u2Tg!. ~49!

Notice that nonlocality enters Eq.~49! in an explicit way. At
small uxW u, whenuxW u/Tg;1 the linear behavior of Eq.~49! is
replaced by the quadratic one,

^B4
2~x!&'D~0!•xW2. ~50!

It is clear that the vacuum field correlator method imp
mented in Eqs.~45!–~49! demonstrates the creation of th
string between the Higgs particle at the point (xW ,x4) and the
static source at the point (0,x4).

Now let us look at the same problem from the point
view of standard OPE. According to general rules@1,3–5#,
one should expandFm4(u),Fn4(v) in Eq. ~45! in the vicinity
of a point uW 5vW 50, u45v45x4 ~in the Fock-Schwinger
gauge, that would be the pointz0 usually chosen at the ori
gin, z050). In this way, one obtains

^B4
2~x!&5(

n,m

1

~n11!! ~m11!!

3xixi 1
•••xi n

xkxk1
•••xkm

3^Di 1
•••Di n

Fi4~0!Dk1
•••Dkm

Fk4~0!&.

~51!

In this form ~51!, the appearance of the string is not vi
ible, and one should rearrange the derivatives in a nontri
way, so as to separate out the correlatorD(u2v) as in Eq.
~46!. Derivatives of the latter produce powers ofTg

21 , while
a dependence on the sum12 (ui1v i) in the integral~46! is
separated out to yield linear confinement in Eq.~49!.

Now we consider the expansion ofG(w) in powers ofg2.
From Eqs.~49!, ~43!, and~44!, it is clear that one obtains

G1
(w)~0,T!;g2

c4

m
, Gn

(w);g2nS c4

m3D n

m2, ~52!

where the nonlocal constantc4;D(0)Tg;*dz D(z). All in-
tegrals like Eq.~43! are diverging at large distances form
50 and cut off atx;1/m whenmÞ0.

It is instructive to turn to the momentum space and defi
the following one-dimensional Fourier-transformed Gree
function:

G1
(f)~Q!5E

2`

`

dT G1
(f)~0,T!exp~2 iQT!. ~53!

@Our problem is (311)-dimensional; we do not perform
four-dimensional transformation, however, since the tem
ral axis was separated by our gauge choice from the be
9-7
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ning.# Since^B4
2(x)& does not depend on the temporal coo

dinatex4, integration in Eq.~43! is trivial:

G1
(f)~M !5

g2

16p2E d3xW
exp~22M uxW u!

xW2
^B4

2~ uxW u!&

5
g2

16p

D~0!

M3
•

2MTg

112MTg
, ~54!

where M25Q21m2. Expression~54! has the following
asymptotic expansions:

G1
(f)~M !5

g2

16p

D~0!

M3
•F12

1

2MTg
1

1

4M2Tg
2

1OS 1

M3Tg
3D G , MTg*1 ~55!

and

G1
(f)~M !5

g2

8p

D~0!Tg

M2
•@122MTg14M2Tg

2

1O~M3Tg
3!#, MTg&1. ~56!

It is clearly seen that the actual answer is given by differ
series in regionsQTg!1 andQTg@1 ~we assume thatQ
@m andM'Q). The expansion~55! is associated with the
standard OPE~51!, while Eq.~56! goes essentially in power
of a nonlocal quantity. It is also worth mentioning that bo
expansions~55! and ~56! are model-dependent beyond th
leading condensate term, and the actual coefficients in
~55! and ~56! are determined by the profile ofD(z).

V. FEYNMAN-SCHWINGER FORMALISM AND OPE

We start with the same Green’s functionG(w)(0,T) and
write the Feynman-Schwinger representation~FSR! for it
~see@27,28# where references to earlier papers are given!,

G(w)~0,T!5E
0

`

dsE ~Dz!0,T exp~2K !^W~Cz!&. ~57!

Here K5m2s1 1
4 *0

sżm
2 dt, s is Schwinger proper time, an

^W(Cz)& is a Wilson loop consisting of a straight line (0,T)
and the trajectory of the Higgs particle from 0 toT. Notice
also that

~Dz!0T5 )
n51

n
d4Dz~n!

~4p«!2 E d4p

~2p!4
expF ipS (

n
Dz~n!2TD G .

~58!

In a Gaussian approximation,^W(Cz)& can be written as
07402
-

t

s.

^W~Cz!&5expS 2
g2

2 E
S
dsmn~u!E

S
dsrl~v !

3^Fmn~u!Frl~v !& D ~59!

and we have omitted for simplicity the parallel transporte
inside^FF&. HereS is the prescribed minimal area surface
the loopCz ~there is no sensitivity on the choice ofS when
all higher cumulants are kept; with the choice of the Gau
ian correlators and minimal surface, the contribution of
higher correlators was estimated to be around a few perc
see@17# and references therein!.

For small contourCz ~which means that not onlyT is
small but also the spatial size of the contour is small!, one
has, from Eq.~59! @26#,

^W~Cz!&5expS 2
g2S2

24Nc
^Fmn

a ~0!Fmn
a ~0!& D . ~60!

For a rectangular contourCz of an arbitrary sizeR3T,
one can write

^W~C!&5expS 2
1

2E d2xE
S
d2yD~x2y! D . ~61!

Choosing for simplicityD(z)5D(0)exp(2z2/Tg
2), one has

s5
1

2E D~z!d2z5
pD~0!

2
Tg

2 ~62!

and finally

^W~C!&5expF2
sRT

p2
LS Tg

2

R2D LS Tg
2

T2D G , ~63!

where we have defined

L~u!5E
2`

`

dte2t2u
sin2 t

t2
~64!

with the expansions

L~u!5Ap

u H 12
11

72u2
1

1

80u4
1•••J , u@1, ~65!

L~u!5p1O~Au!, u!1. ~66!

Now we consider̂ W& inside the integral~57!. If one as-
sumes that for smallT one can indeed use the approximati
of a small area of the loopCz , i.e., Eq.~60!, then one has in
the relativistic case, but consideringT small, T!1/m, and
expanding Eq.~60!,

G(w)~0,T!5G0
(w)~0,T!1G1

(w)~0,T!1•••, ~67!

where
9-8
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G1
(w)~0,T!;g2^S2&^FaFa&

1

T2
;g2T2^FaFa&. ~68!

@We have assumed according to what was said before
~60! that ^S2&;T4. This is a standard result of OPE analys
with a local condensate accompanied by higher powersT
~or higher powers of 1/Q2 in the momentum representation!.#

Let us now consider again the termO(g2), but now tak-
ing into account the nonlocal character of the correlat
^F(x)F(y)&. To this end, we expand the Wilson loop in E
~57! and, making use of two simple identities

~Dz!xy5~Dz!xud
4u~Dz!uvd4v~Dz!vy ,

E
0

`

dsE
0

s

dt1E
0

t1
dt2f ~s,t1 ,t2!

5E
0

`

dsE
0

`

dt1E
0

`

dt2f ~s1t11t2 ,t11t2 ,t2!,

~69!

one can write

G1
(w)~0,T!5E d4xE d4yG0

(w)~0,x!

3^Am~x!An~y!&ẋmG0
(w)~x,y!ẏnG0

(w)~y,T!.

~70!

The notation used in Eq.~70! implies thatẋm(t)5dxm /dt,
and^Am(x)An(y)& is expressed through a vacuum average
field strength^F(u)F(v)&, e.g., as in the coordinate gaug
@25#,

^A4~x!A4~y!&5E
0

x

duiE
0

y

dvk^Fi4~u!Fk4~v !&. ~71!

One can show thatẋm→]J/]xm and one recovers in Eq.~70!
the usual perturbation expansion forG(w), where now, in
contrast to Sec. IV, only the linear verticesw2Am]Jm are taken
into account@the termw2Am

2 would also appear in Eq.~57!
when one takes into account the term withx5y].

From Eq.~70!, one can deduce that the rhs stays cons
at largeuxW2yW u while it decreases for largeux42y4u @this is
especially clear when one uses for the correlatorD(u2v)
the Gaussian form#. Therefore, the integral~70! is conver-
gent both at largex,y and at smallx,y. Integrating Eq.~70!,
one obtains

G1
(w)~0,T!;Tg

2^gFagFa&;s, ~72!

sinceD(0);^gFagFa&;s/Tg
2 . Thus one obtains a nonloca

constant for smallT!Tg . Comparing Eqs.~68! and ~72!,
one can see that at smallT the correct~nonlocal! procedure
yields a larger~dominant! term as compared with the stan
dard OPE estimation. The reason again lies in the fact
relativistic trajectories occupy a larger area for the Wils
loop when treated perturbatively and nonlocally, whereas
07402
q.

s

f

nt

at

in

standard OPE treatment one attributes to this term the l
condensate, implying that the Higgs particle~or quark! does
not go far from the static source.

VI. REMARKS ON OPE IN ABELIAN THEORIES
WITH CONFINEMENT

We are going to discuss OPE in Abelian confining mod
in this section. The complications due to path ordering
absent in the Abelian case and one may consider a gen
expression for the two-point correlator of the field streng
in the form ~13!, where the functionsD(z),D1(z) depend
entirely onz5x2y. We assume that the confining properti
of the theory are caused by the condensate of monopo
hence the equations of motion take the form

]mFmn5 j n ; ]mF̃mn5Jn , ~73!

whereF̃mn5 1
2 emnrsFrs and j m ,Jm are electrically and mag

netically charged currents, respectively. We define the po
ization operatorP(q2) of the electric currentsj m as

E ddx^ j m~0! j n~x!&exp~ iqx!5~dmnq22qmqn!P~q2!.

~74!

Differentiating the Abelian analog of Eq.~13! and taking into
account the equations of motion, it is straightforward to o
tain the following relation:

P~q2!5E ddxS D~x!1
d

2
D1~x!1x2

dD1

dx2 D exp~ iqx!.

~75!

In the d54 case, it can be rewritten in symmetric form a

^ j m~0! j n~x!&1^Jm~0!Jn~x!&

52 1
6 ~]2dmn2]m]n!^Fab~0!Fab~x!&, ~76!

where for the condensate one has

^Fab~0!Fab~x!&56@D~x!1D̃~x!#. ~77!

The function D̃(x)5D(x)12D1(x)1x2(dD1 /dx2) corre-
sponds to the confining part of the correlator of dual fie
strengthsF̃ in the same way asD(x) corresponds to the
correlator ofF in Eq. ~13!. In the case ofd54 QED without
monopoles, one easily finds@29#

D~x![0, D1~x!5
1

p2 S e2~x!

x4
2

1

x2

de2~x2!

dx2 D . ~78!

For the polarization operator, one obtains

P~q2!52
1

p2E d4x exp~ iqx!
d2e2~x2!

~dx2!2
. ~79!

It is seen that the free field term;e0
2/x4 does not contribute

to P(q2) and the only nonzero contributions to the rhs of E
9-9
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~75! come from either the running of the chargee2(x2) ~as in
perturbation theory! or from nonperturbative parts o
D(x),D1(x) if they are not equal to zero. This is easy
understand: in the absence of external currents, the th
describes free photons, vacuum is not polarizable, and ch
is not running, so all current-current correlators must van
identically. On the other hand, knowledge of the exact pro
gator ~and henceD andD1) would be equivalent to knowl-
edge ofP(q2).

Let us examine possible contributions toP(q2) coming
from the nonperturbative confining part of^FF& @i.e., from
D(x)# if it exists. Standard OPE reasoning would sugg
looking for the leading term of this kind in the form̂F2&/q4.
It is easy to see that for functionsD(x), which are smooth a
the origin @for example,D(x)5D(0)exp(2x2/Tg

2)#, the cor-
responding contribution toP(q2) is exponentially sup-
pressed at largeq2 ~i.e., for q2Tg

2@1), which means tha
power corrections are absent in this case, i.e., the nonpe
bative background is ‘‘too soft.’’ In particular, there is n
D(0)/q4 term. ForD(x) such that it is not smooth but finit
at the origin@e.g., for the often used exponential fitD(x)
5D(0)exp(2uxu/Tg)#, one has as a leading large-q nonpertur-
bative asymptotics

DP~q2!;
D~0!

Tg
S 1

q2D 5/2

;
^F2&

Tgq5
. ~80!

The situation becomes even more dramatic ifD(x) is singu-
lar at the origin~as it happens, for example, in the Londo
limit of the Abelian-Higgs model~AHM ! @30#!, where
D(x);M2/x2 if x→0. One has, in this particular case,

DP~q2!5
M2

q21M2
}

M2

q2
then q2@M2. ~81!

This 1/q2 regime in the AHM is bounded from above, how
ever, by the Higgs boson massmH : if q2*mH

2 , the
Ginzburg-Landau description of the condensate is not va
broken symmetry is restored, and microscopic degrees
freedom come into play. Presumably the same reasonin
applicable to the ‘‘thin’’ strings scenario proposed in@31#: at
distances much smaller than coherence length, nei
‘‘thick’’ nor ‘‘thin’’ strings can be formed. Notice that the
string tensions depends onmH logarithmically in the Lon-
don limit: s; ln(mH /M).

An interesting problem of systematic construction of O
in the Abelian-Higgs model is beyond the scope of t
present paper@notice, in particular, that the equations of m
tion in the AHM are different from Eq.~73!#. Nevertheless, it
is of interest to compare the result~81! with an answer for a
massive photon propagator.1 It can be obtained from Eq.~78!

1We stress again that we are speaking only about the theory w
equations of motion are given by Eq.~73!; therefore all effects such
as confinement and/or mass gap are associated with complic
dynamics of the currentsJ.
07402
ry
ge
h
-

t

ur-

d,
of
is

er

takinge2(x)5mxK1(mx), which corresponds to the massiv
vector field propagator̂Am(0)An(x)&. Differentiation in Eq.
~79! yields

P~q2!}2
m2

q2
then q2@m2. ~82!

This result is obvious from the form of propagator in m
mentum space. Notice the sign difference between Eqs.~82!
and ~81!. It can be said, following@32#, that the leading
power correctionDP(q2) in confining theory is caused b
an exchange of a massive particle with tachyonic ma
There is an obvious cancellation between Eqs.~81! and~82!
in the AHM, sinceM5m in the London limit in this theory,
which again reflects the fact that free expressions forD and
D1 have been taken~see above!. To find genuine confining
vacuum polarizability in the AHM requires explicit calcula
tions along the lines of Sec. III and IV of the present pap
and will be reported elsewhere.

VII. SPECTRAL REPRESENTATION OF GREEN’S
FUNCTIONS AND OPE

In this section, we shall look at OPE from another point
view, trying to calculate terms of OPE using the known pro
erties of the spectrum of the gauge-invariant Green’s fu
tion.

This type of analysis was done most extensively for the
Hooft model (111 QCD at largeNc) @33#, where exact
results for the spectra and Green’s functions are known.~For
details of the analysis, the reader is referred to@34–38#.! We
follow most closely the notation and the line of reasoning
@38#. We consider again the heavy-light system but now
the d5111 limit. The Green’s function can be written as

G(Qq)~x!5^0uq̄~x!F~x,0!q~0!u0&

5 (
n50

`
1

~2n!!
^q̄~xmDm!2nq&. ~83!

Defining, on the other hand, the correlation function

P~q2!5 i E eiqxd2x^0uT$q̄Q~x!,Q̄q~0!%u0&

; i E G(Qq)~x!eiqxd2x, ~84!

one can write an expansion in inverse powers ofE5mQ
2q0,

P~E!5
1

E F ^q̄q&2
1

E2
^q̄P0

4q&2•••G1pert. part, ~85!

whereP05 iD 0.
On the other hand, one can write a spectral decomposi

~dispersion relation! for P(E),

se

ted
9-10
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P~E!5
Nc

2p
m0Ap(

n

f n
2

E1En
;

Nc

p (
n

1

An~An1«!
,

~86!

where we have used the notationm0
2[g2Nc /p, 2m0Ap«

5E, and relations for the heavy-light spectrum@38#

En52m0ApnF11OS ln n

n D G , f n
25ApnF11OS ln n

n D G .
~87!

Now one can compare Eqs.~85! and~86! and, expanding
the latter in powers of 1/En;1/«n, one obtains@38# for the
coefficients in Eq.~85!

^q̄P0
2nq&;^q̄q&~pm0!2nn! ~88!

The factorial growth of the coefficients in Eq.~88! is typi-
cal both for 111 and 311, as will be shown below in this
section.

One can do another derivation of the coefficients~88!
starting from equations of motion, in which case instead
Eq. ~88! one obtains

^q̄~xmDm!2nq&;x2nn! ^q̄q&S 2
g2^q̄q&

2mq
D n

. ~89!

Thus another feature appears~or a puzzle, as it was for
mulated in@38#!: condensates computed from the spectr
or from microscopic equations of motion have drastica
different scales,m0

2n in the first case and (m0
3/mq)2n in the

second case, wheremq tends to zero in the chiral limit.
We shall now show that in the 311 QCD, at least for

Nc→` the situation is very similar to that of the ’t Hoo
model: ~a! OPE coefficients of the 1/Q2n expansion~‘‘con-
densates’’! have factorially growing behavior;~b! Conden-
sates calculated from the spectrum and from diagrams~plus
equations of motion! are different.

Consider now the 311 problem, a description of the sel
energy partP(q2). For two light quarks, the standard OP
of P(Q2) in the Euclidean region is well known@1#:

P~Q2!52
1

4p2 S 11
as

p D ln
Q2

m2
1

6m2

Q2
1

2m^q̄q&

Q4

1
as^FF&

12pQ4
1•••. ~90!

Following @39#, one can use the background perturbat
theory for the calculation ofP(Q2) and represent it in the
form

P~Q2!5P (0)~Q2!1asP
(1)~Q2!1as

2P (2)~Q2!. ~91!

Let us first considerP (0)(Q2) ~for details of computations
the reader is referred to@39# and papers quoted therein!.

In the large-Nc limit, P (0)(Q2) has the form
07402
f

n

P (0~Q2!5
1

12p2 (
n50

`
Cn

Q21Mn
2

. ~92!

The massesMn can be taken as the eigenvalues of t
well-known Hamiltonian, which was derived from QCD
with the assumption of area law for minimal surface and w
shown to be valid for small angular momentumL50,1,2
@40#, while for largerL the string rotation should be take
into account, DHstr, yielding the correct Regge slop
(2ps)21 for massesMn @40–42#,

H (0)Cn5Mncn , H (0)52ApW 21mf
21sr 1DHstr.

~93!

Solutions to Eq.~93! can be written in the form

Mn
252ps~2nr1L !1M0

2 , ~94!

whereM0
2'mr

2 . For Cn , one has

Cn~L50!5 2
3 Qf

2Ncm0
2 , Cn~L52!5 1

3 Qf
2Ncm0

2 .
~95!

Herem0
254ps, andQf is the electric charge of the quark o

flavor f. Taking into account the degeneracy of masses w
L50, nr51 andL52, nr50, the totalCn is the sum

C̄n5Cn~L50!1Cn~L52!5Qf
2Ncm0

2 . ~96!

SinceC̄n does not depend onn in this approximation, one
obtains the sum

(
n50

`
1

Mn
21Q2

52
1

m0
2
cS Q21M0

2

m0
2 D 1const, ~97!

where the constant term is divergent and is eliminated
renormalization ofP(Q2)→P(Q2)2P(0).

Herec(z) is the Euler function,

c~z!5
G8~z!

G~z!
, c~z!uz→`5 ln z2

1

2z
2 (

k51

`
B2k

2kz2k
,

~98!

where Bn are Bernoulli numbers. Hence at largeQ2, the
leading term in Eq.~98! yields

P (0)~Q2!52
Qf

2Nc

12p2
ln

Q21M0
2

m2
1OS m0

2

Q2D . ~99!

For Q2@M0
2, this term coincides with the leading term in th

OPE ~90! ~the latter is written forQf51).
From Eqs.~92! and ~97!, one can compute also the ne

terms of the expansion in 1/Q2,

P (0)~Q2!52
Qf

2Nc

12p2
ln

Q21M0
2

m2
1 (

n51

`
l2nm0

2n

Q2n
. ~100!
9-11
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It is clear thatln at largen grow factorially due to the as
ymptotics of the Bernoulli numbers, B2n
5@(2)n21(2n)!/(22n21p2n)#z(2n).

Two properties are clearly visible in the expansion~100!:
~a! the ‘‘condensates’’m0

2n are large,m0'2.5 GeV, as com-
pared to the standard OPE condensates, e.g.,^FF&;0.1
20.2 GeV4; ~b! the coefficientsln grow factorially, which is
in agreement with the discussion in@36# and analysis of the
’t Hooft model in @37,38#, signifying that the OPE series i
asymptotic.

Thus in both cases 111 and 311, when confinement is
present and the spectrum contains nondecreasing prob
ties Cn ~which is a feature of the linear confining intera
tion!, the OPE is a factorially diverging series, implyin
renormalon singularities in the Borel plane@39#. Another fea-
ture which is general to both 111 and 311 theories is the
mismatch between condensates calculated via the spec
@as in Eq.~100!# and via diagrammatic analysis@as in Eq.
~90!#. In @38#, a possible solution of this mismatch for th
111 case was suggested, which introduces the notion
‘‘effective condensates,’’ which may differ from actual co
densates~defined, for example, on the lattice! due to the
asymptotic character of the OPE series.

In 311 case, there is another possibility to explain t
mismatch, namely one should take into account that coe
cientsln of all higher condensates get contributions not o
from the leading terms inn of Mn andcn but also from the
subleading terms, and the final result for, say,l4 could be
two orders of magnitude smaller due to cancellation betw
different terms, thus removing the mismatch. However, t
requires a mechanism of fine-tuning between the sublea
coefficients, the physical reason for which is still not know

One could leave the discussion of the mismatch at
point, if another check were not possible. Indeed, let us t
the OPE with large~spectral! condensates and do a sum-ru
analysis of experimental data fore1e2→ hadrons withI
51 ~see@43#!.

This analysis was done in@39# using the hadronic ratio
RI(s)512p Im P I(S). For I 51, adding the perturbative
terms with the known coefficients as in@1,43#, but taking the
background modified coupling constant@39#, e.g., in one
loop

aB~Q2!5
4p

b0 lnS Q21MB
2

LB
2 D ,

whereMB'1.5 GeV andLB
(3)'482 MeV, one has

RI 51~s!5
3

2 (
n50

`

Cn
I 51d~s2Mn

2!

1
3

2 F11
aB~s!

p
11.64S aB

p D 2G ,
Cn

I 515m0
2 , Mn

25mr
21nm0

2 ,
~101!

n51,2, . . . ; C05 2
3 m0

2 ,
07402
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and the corresponding Borel transform is

Ĩ 0~M !5
2

3M2E0

`

ds e2s/M2
RI 51~s!. ~102!

Substituting Eqs.~101! into Eq. ~102! yields

Ĩ 0~M !5
m0

2

M2 H 2

3
e2mr

2/M2
1 (

n51

`

e2(mr
2
1nm0

2)/M2J 1
aB~M !

p

12.94S aB~M !

p D 2

, m0
254ps. ~103!

This should be compared to the standard result@1# with
standard~small! condensates,

Ĩ 0
st~M !511

as~M !

p
12.94S as~M !

p D1
p2

3

G2

M4

1
448p3as

81

z^0uq̄qu0& z2

M6
. ~104!

In Eq. ~104!, as(M ) is standard, i.e., obtained fromaB by
settingMB[0.

It is clear that Eq.~103! contains in the Borel plane a se
of poles atM25Mk

256 i (m0
2/2pk), k51,2, . . . and an es-

sential singularity atM50. These features imply the pres
ence of renormalons and are connected to the facto
growth of coefficientsl2n in Eq. ~100!.

Now remarkably both Borel transforms lie inside the co
ridor of experimental errors, thus describing satisfactor
data with very different values of condensates~for details of
comparison, see@39#!. This situation is becoming even mor
unclear: not only does one have two sets of condensates~and
consequently two sets of sum rules!, but in addition experi-
mental data cannot give preference to either of them.

While leading perturbative large-M asymptotics ofĨ 0(M )
and Ĩ 0

st(M ) coincide, there is an important difference at sm

M: while M2 Ĩ 0(M ) is defined for allM, M2 Ĩ 0
st(M ) is diverg-

ing for M→0 due to higher condensates and higher pow
of as(M ).

VIII. CONCLUSIONS AND OUTLOOK

The main emphasis of the present paper is the influenc
confinement on the behavior of Green’s functions in th
dependence on momentum and the behavior of Borel tra
forms. We stressed above everywhere the importance
large distances working in the coordinate representation,
pecially for light quarks in the presence of confinement.
the first and most clear example, the Green’s function of
Dirac equation with a linear scalar potential was conside
and it was demonstrated that the Euclidean time expan
~the equivalent of the Borel transform for heavy-light sy
tems! looks completely different from the nonrelativisti
case and from the template oscillator Green’s function.
this way, it was shown that large distances may be impor
9-12
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even for small Euclidean times and may bring about n
terms in the OPE in coordinate space.

As another example, we have treated the nonlinear eq
tions for a quark in the heavy-light system—the nonlo
equivalent of the Dirac case—and found that again the re
is different from what one would expect in standard OP
but the terms of expansion turn out to be constant,S1(T)
;const•s3/2. Translating this contribution into the form o
the usual correlation functionP(Q2) of vector currents~as it
is done in the reactione1e2→ hadrons!, one would have the
contribution DP(Q2);ms3/2/Q4, which is similar to the

standard termm^q̄q&/Q4 and is presumably one term in th

subseries generatingm^q̄q&. In this example, large distance
explicitly accounted for in our analysis, do not produce n
OPE terms but give some path to calculating the chiral c
densate through confinement characteristics~i.e., string ten-
sion s). One arrives at similar conclusions studying t
Green’s functions in the Feynman-Schwinger formalism;
Sec. V.

In Sec. IV, in contrast to that, another problem was elu
dated: how is linear confinement built up out of higher co
densates of OPE? The answer is given by a compariso
Eqs. ~46!–~49! and ~51!. Indeed, the infinite sum of deriva
tives of field correlators in Eq.~51! is equivalent to the linea
confinement term in Eq.~49!, and to extract it explicitly one
needs to rearrange all derivatives.

We have briefly analyzed Abelian electrodynamics w
monopoles in Sec. VI and described different possi
sources of nonstandard OPE terms, e.g., 1/q2. To investigate
OPE in Abelian models with confinement, notably in t
AHM systematically, is an interesting task for the future.

Finally, the last problem considered in the paper conce
the derivation of OPE from the spectral representation of
meson Green function. When the spectrum and coefficie
cn ~equivalent to the quark decay constantsf p) are known,
the OPE is calculated automatically and can be compa
with that obtained ‘‘microscopically,’’ i.e., via Feynman dia
grams in the external fields and equations of motion.

In thed5111 QCD, this program was fully investigate
in a series of papers~see, e.g.,@38# and references therein!
and a mismatch between condensates obtained in those
ways was found.

In the d5311 QCD, the situation is similar, and a
shown in @39# and in the present paper, the mismatch
condensates in scales and order of magnitude is also evi
The situation is sharpened by the fact that the QCD s
rules for e1e2→ hadrons reproduce experimental data
both choices of condensates.

We have not tried here to resolve this puzzle, and leav
for the future. There are two important topics in OPE w
have not discussed. First, this is the partial summation of
OPE terms which can be done by introduction of nonlo
condensates in OPE, initiated and studied in@21,22#. It
would be interesting to find the link between our treatmen
long-distance nonperturbative physics and the method
nonlocal condensates worked out in@21,22#. Second, the
problem of perturbative-nonperturbative interference, wh
may produce new singular OPE terms, such as 1/q2, which
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was discussed in@32,44,8#, is touched upon in Sec. VI only
briefly. This set of problems certainly deserves further stu
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APPENDIX

We discuss in this appendix the properties of the ker
~18!, which we used in the main text. The reader is refer
to Appendix 3 of the paper@14# where the 3D counterpart o
Eq. ~18! was analyzed. Since the kernels of the form~18!
play an important role in the discussed formalism, w
present an independent detailed analysis here both for
sible future applications and for the reader’s convenience

We are interested in the properties of the following fun
tion:

f ~hW ,rW !5E
0

1

daaE
0

1

dbb expS 2
~ahW 2brW !2

Tg
2 D , ~A1!

wherehW ,rW ared-dimensional vectors with angleu between
them. We denote absolute values of the arguments ah
5uhW u, r5urW u, and we assume in what follows, without los
of generality, thath>r. The symmetry of formulas below
with respect to the exchanger↔h @which is manifest in the
definition ~A1!# is to be restored by replacementsr
→min$r,h% andh→max$r,h%.

It is instructive to consider four different asymptotic r
gions:

~i! h,r;Tg ; ~ii ! h@Tg ; r;Tg ; ~iii ! h,r@Tg ; u*1;
~iv! h,r@Tg ; u!1

In the region~i!, one can expand Eq.~A1! in Taylor series
with respect to both arguments. Subsequent integratio
straightforward,

f ~hW ,rW !5
1

4
2

r21h2

8Tg
2

1
2rh cosu

9Tg
2

1
r41h4

24Tg
4

1
r2h2

8Tg
2 S cos2u1

1

2D2
2rh cosu

15Tg
4

3~r21h2!1O~Tg
26!. ~A2!

In derivation of expression~20! in the main text, we have
used in fact the leading term of this asymptotics~i.e., 1

4 ).
In the regions~ii !, ~iii !, and ~iv!, we will systematically

omit exponentially small terms, i.e., terms proportional
9-13
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exp(2h2/Tg
2) and also terms;exp(2r2/Tg

2) in the regions
~iii ! and~iv!. One easily obtains the following expression
the region~ii !:

f ~hW ,rW !5
Tg

2

h2 S 1

4
1

Ap

6

r cosu

Tg
1

1

8

r2

Tg
2 ~2 cos2u21!

2
Ap

10

r3cosu sin2u

Tg
3

1O~r4!D . ~A3!

Now we come to the regions~iii ! and~iv!. It is instructive
to introduce the following variables:

s5
~hW r2rW h!2

Tg
2

5
4h2r2

Tg
2

sin2
u

2
,

q5
~hW r1rW h!2

4Tg
2

5
h2r2

Tg
2

cos2
u

2
, ~A4!

and alsoj5As/Aq52 tan(u/2).
In the region~iii !, the upper limit of the integration in Eq

~A1! can be shifted to infinity up to exponentially small co
rections. The functionf (hW ,rW ) in the region~iii ! can be writ-
ten, therefore, as

f ~hW ,rW !5
Tg

4

4h2r2
•f~j!, ~A5!

wheref(j) is given by

f~j!5
Ap

8

~41j2!2

j3 E
0

`

dy exp~2y2!H F12erfS yj

2 D G
3S 12

y2j2

2 D1
yj

Ap
expS 2

y2j2

4 D J . ~A6!

The functionf(j) is a monotonically decreasing function o
j. Whenj is going to infinity,f(j) is approaching the fol-
lowing asymptotics:

f~j!5
1

3
1

32

15

1

j2
1O~j24!. ~A7!

At the pointj52, which corresponds tou5p/2 and hence
orthogonal vectorshW and rW , one findsf(2)51, in agree-
ment with simple direct calculation from Eq.~A1!.

We are now in the position to analyze the properties
f (hW ,rW ) in the region ~iv!, where j;u!1. Making the
change of variables, one gets from Eq.~A1!
07402
f

f ~hW ,rW !52
Tg

2

sinu F H E
As/hj

0

dyE
yj/2

(As/h)2(yj/2)
dx

1E
0

2As/rj
dyE

2yj/2

(As/r)1(yj/2)
dx

1E
0

2w

dyE
2yj/2

(As/h)2(yj/2)
dx

2E
0

2w

dyE
2yj/2

(As/r)1(yj/2)
dxJ S x2

s
2

y2j2

4s D
3exp~2x22y2!G , ~A8!

wherew5Aq(1/r21/h)5(h2r)cos(u/2)/Tg . One can re-
write Eq. ~A8! in the following form:

f ~hW ,rW !5
Tg

2

sinu

1

s FgSAs

h
,j D 1gSAs

r
,j D 1 f 2SAs

h
,w,j D

2 f 2SAs

r
,w,2j D G , ~A9!

where thej expansion of the functionsg, f 3 , f 4 can be per-
formed systematically. It gives

g~z,j!5
p

8
k~z!2

exp~2z2!z2

4
•j

2
p

32S k~z!1
2z3

Ap
exp~2z2!D •j21O~j3!,

~A10!

f 2~z,w,j!5erf~w!
p

8
k~z!1@12exp~2w2!#

exp~2z2!z2

4
•j

1O~j2!, ~A11!

where the functionk(z) is defined as

k~z!5erf~z!2
2z

Ap
exp~2z2!. ~A12!

Extracting coefficient functions in front of higher powers
j is a matter of straightforward algebra.

The expressions~A10! and ~A11! are exact at the given
order inj up to omitted exponentially small terms. They ca
be simplified in different limiting cases. Ifw50 ~i.e., h
5r), one hasf 250, while the first two terms on the rhs o
Eq. ~A9! are equal. In the opposite limitw→`, the follow-
ing relations hold true:
9-14
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lim
w→`

FgSAs

r
,j D 2 f 2SAs

r
,w,2j D G50,

lim
w→`

f 2SAs

h
,w,j D 5gSAs

h
,2j D . ~A13!

Notice that in all cases the first argument of the functio
g, f 2 need not be small:As/h5(2r/Tg)sin(u/2) and in the
region ~iv! r@Tg , but u!1.

In terms of the original variablesh,r,u, the leading term
in Eq. ~A9! can be represented as

f ~hW ,rW !'
p

64 sin3
u

2
cos

u

2

Tg
4

h2r2
F kS 2r sin

u

2

Tg

D @11erf~w!#

1kS 2h sin
u

2

Tg

D @12erf~w!#G , ~A14!

where w5(h2r)cos(u/2)/Tg and k(z) is defined in Eq.
~A12!, k(z).0 if z.0. This expression is valid in the smal
u limit.

Notice that f is nonsingular ifu→0 @which is evident
from Eq. ~A1!#,
s.

,’’

s.

07402
s

lim
u→0

f ~hW ,rW !5
TgAp

6 F r

h2
1

h

r2
1ErfS h2r

Tg
D S r

h2
2

h

r2D G .

~A15!

One needs some simple extrapolating representation
Eq. ~A1! for practical calculations. Notice that it is onl
asymptotic behavior off (hW ,rW ) that matters; the particula
form of Gaussian kernel was taken in Eq.~A1! just as an
example. A possible expression respecting all desired p
erties off in the regions of largeh,r is as follows:

f ~hW ,rW !'
Tg

4

4h2r2
l ~u!, ~A16!

where the functionl (u) has the following ‘‘focusing’’ prop-
erty: being integrated with a regular functionF(u), it acts
like a smoothedd function ~see@14#!,

E duF~u!l ~u!'c1

r3

Tg
3

FS c0Tg

r D1c2E duF~u!,

~A17!

wherec0 ,c1 ,c2 are some constants of the order of unity. It
worth remembering thatr is the length of the smaller vecto
in our notation, i.e.,r5min$r,h%. In particular, it is seen tha
in the limit of larger@Tg , the smallu asymptotics gives a
dominant contribution unlessF(u) vanishes at the origin
faster thanu3.
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