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The operator product expansi¢®PE technique is analyzed in Abelian and non-Abelian field theoretical
models with confinement. Special attention is paid to the regimes where the nonzero virtuality of vacuum fields
is felt by external currents. It is stressed that despite the fact that the physics of confinement is sometimes
considered as being caused by “soft” fields, it can exhibit pronounced “hard” effects in OPE.
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I. INTRODUCTION In what follows, we shall demonstrate explicitly that con-
finement modifies the standard OPE for a relativistic quark
The inclusion of nonperturbative contributiofis] (pro-  Green’s function; new terms appear, which bring unusual
portional to the gauge-invariant local condensaiasstan-  power terms in OPE.
dard perturbative operator product expansi@iPE allows It will be shown that the expansidd) is typical for non-
one to[2] formulate a powerful method of QCD sum rules relativistic potential Green’s functions, while for relativistic
[1] (for reviews, sed3-5]). Nevertheless, some questions particles in the confining field®r in the confining potential
about the method were formulated in the original papers specific long-distance instabilitgivergence occurs in the
[6,7] and still remain unanswered. perturbative expansion, which could lead to new power
In particular, a relation between the property of confine-terms.
ment and the structure of the sum-rule series has never been Let us stress from the beginning an important difference
clearly established. On the one hand, one could guess thbetween OPE in coordinate and momentum spaces, which
confinement appears as a result of the partial summation afas discussed already il,13] and which will be seen
some OPE subseries, while on the other hand, confinemegtearly in what follows. Studying the smatlexpansion of a
itself might introduce some new unconventional terms inproduct of two operator¢T{J(0)J(x)}) when x—0, one
OPE series, with the structure different from the standardbserves that in the relativistic caémntrary to the nonrel-
form. ativistic ong, a small value of does not confine the virtu-
The phenomenological implication of such new terms,alities of the internal lines in the corresponding diagrams in
e.g.,0(1/Q?), was investigated ifig], where it was related any way. Virtual particles created and annihilated by opera-
to the short-distance nonperturbative physics. The authors abrs J can travel over large distances in coordinate space for
[9-12 checked the role of confinement for QCD sum rulesany smallx. As a result, in confining theory the product of
exploiting nonrelativistic solvable models, and exact result®perators taken at two neighboring points carries information
for Green'’s functions were compared to the sum-rule resultsabout large-distance behavior of a theory ever i much
Especially popular is the example of nonrelativistic par-smaller than the typical confinement scale’.
ticles in the oscillator potential, with the Euclidean short-  To clarify the mechanism of this phenomenon, we start in
time expansion of the Green’s functigfor a detailed dis- the next section with the Green’s function of a relativistic
cussion of the two-dimensioné2D) case, seg5]; for the 3D quark in the linear confining potential of a static antiquark,

case, seg9]], corresponding to the Dirac equation with a scalar linear po-
tential. We shall expand Green’s function in powers of string
m (0T 7 tension(or equivalently in_ powers of Euclidean tinTe)_and
G*q(T)= 7T 1- 6 + 3_60(wT)4+ ---]. (@  find explicitly a new dominant term at smdlland estimate

other terms. Comparison with the corresponding nonrelativ-
istic Green'’s function is done and demonstrates that no un-
Here the first term comes from the free Green’s functionusual terms appear in the latter case, the expansion being
while the next terms play the role of “condensates,” i.e., essentially of the same type as in E#).. The reason for that
they identify Borel masg = 1/T, One has the typical OPE is traced to the structure of the nonrelativistic free Green'’s

structuresw?/e? and w*/&*. function, for which spatial deflection of particlex is limited
The result(1) has widely been used as an argumentby the time elapsedt, Ax~At/m.
that confinement(i.e., long-distance soft physicscan- The situation is different, however, in momentum space.

not modify the standard OPE, and confinement effectd arge external momentu@ plays the role of infrared cutoff,
should be looked for in the partial sums of the typeand if it is much greater than particle massand nonpertur-
S oCn(Q?)(D"F(0)D"F(0)). bative scalex, one can perform systematic expansions over
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m?/Q* and\?/QZ. This is how the standard OPE technique wherex= \/x2+x2 andK, is the McDonald function. In the
works. Nevertheless, the remaining problem in this case is tghassless limit, one obtains

determine the structure of the latter, nonperturbative sub- -

series. The problem here is that in real QCD, there are sev- Sy(X) IX )
eral different nonperturbative scales. The best known scales 4

are given by nonperturbative quark and glydi conden-

’ vt pv/-

irreducible condensates as well. Another important scale is ) 4 -

given by condensate virtualitigsee expression&1) and S(O'T):SO(O'T)+'J d*x S(0) x| Sp(x, T) + - - -
(22) below]. So even remaining in the standard OPE frame-

work, one can attempt to incorporate the different subseries =S5(0,T)+5(0T)+---, &)

in the full A2/Q? expansion. It will be shown below how this

problem is solved in particular cases where the functiors; can be written in the massless limit as

Moreover, we present a few examples in Sec. VI where io L (x=T)
OPE in momentum space starts from the terms that nontrivi- S1(0,T)= (2m 2)2f |x |(x—T)4d X. (6)
ally account for(monopole condensate virtuality and hence
would be considered as subleading in the conventional exntegration in Eq.(6) yields
pansion. .

The field-theoretical models are discussed in Sec. llI, S, (0T)=—— 17 7)
where the QCD equations for the heavy-light system ob- 8mT’

tained in the limit of largeN, in [14] are discussed.

It is shown, in particular, based on the subsequent resul
in [15,16], that exact equations have a nonlinear kernel,
which at large spatial distances reduces to the linear confin-

ing terma|r|, and hence the expansion of the Green’s func-
tion reduces to the potential example considered in Sec. Il. . . . .

We briefly consider Abelian models in Sec. VI, such asIt is easy to see that the integrals are infrared-divergent at
QED with monopoles, and study the influence of confine-arge|x| starting from the term witm=2, however form
ment on the short-time behavior of Green’s functions. We# 0 this divergence is eliminated and mtegrals are cut off by
also discuss various approaches related to OPE, such as tH& mass ax~ 1/m. Therefore, typicaB,(0,T) has the form,
Feynman-Schwinger proper time meth@ec. \j, and spec- for n>2,

onsider now the higher-order terms in the expang®n
he typicalO(co") term looks like

S,(0T)=i" f d*xy- - - d*%, S0 X[ Sp- - - o] X[ Sp. (8)

tral representations of Green’s functiof®ec. VII), and we o \"
study the interplay between confinement and OPE in these Si(0T)~| — m3 9
frameworks. Finally, we present a short conclusion and out- m
look. . . .
while then=1 term obtains corrections of the form
Il. RELATIVISTIC GREEN'S FUNCTION OF A CONFINED _ io
QUARK S1(0T) = g7 [MTK(MT)+O(mT)]. (10)
We study Green’s function of the Dirac equation in thet js instructive to compare Eqg4), (7), and (9) with the
Euclidean space-time, nonrelativistic expansiofil). One can see that apart from the
—i(5+m+a|x])S(x,y) = 5D(x—y). ) Qifferencg in free Green’s functions_, t_hg first dynamical term
is nonsingular in the nonrelativistic casél), GI*
In what follows, we shall study the functioB(x=0: x, =jmw2T/1277, while it is singular in the relativistic case
=0; y 0,y,=T)=9S(T) as a function ofT at small values (7) if T-0.

To clarify the origin of this difference, one can compute
S,(0,T) for the nonrelativistic Green’s function with a linear
potential. Note that the free Green'’s function in 3D is

m_|% p( m(X,—Xy)?
2n(t-t)) O 20—ty |
=i(m—?9)<0|(m2—(92)‘1|x> 11)
A calculation similar to Eq(6) immediately yields

of T.
The free Green’s functioSy(x—y) can be written as

d*p exp(lpx)
s500= [ i

ez YPTim) G(Xy,ty5Xa,tp) =

m K;(mx)
=i(m— )— " nr _om
Gj_ (OyT)_ o (12)
8
='(m— X i)i M 3) which is nonsingular at small in contrast taS;(0,T) in Eq.
X X472 X (7). It is easy to see that also all higher termsdf are
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nonsingular due to the specific feature of the nonrelativistic A(Z)V L =(tre(F ., (20)D(21,25)F ., (22)P(25,21)))
Green's function(11): all time intervals are orderedt Farp ket e 22

>t,_1>t,_,) and all space intervals are cut off by the time _ 1 L 2.8 7.8 )

intervals and the mass, so that a quark cannot escape far 2 (92#1( Ma"viva  TP2TViK2

away during a short time interval, in contrast to the relativ-

istic case, in which a light quark can travel as far as 1/ N i 5. —2 5 D _

>T for any smallT. This crucial difference between nonrel- azyl(ZVz w1y ZupOuyry) | P2(21=22)
ativistic and relativistic dynamics causes the different behav-

ior of the Green’s functions at small distances or times. (011,00, 0, ™ O 1,0y ) D(21—25), (13

where®(x,y) stays for the phase factor,

lll. RELATIVISTIC EQUATION FOR THE HEAVY-LIGHT [y
SYSTEM d(x,y)=Pex If A, (u)du,
X

We shall discuss the situation for the field-theoretical_l_h G 's funci f h i b ted
model in this section, namely for the two-body system mad%"iwsr_eens unction of such a system can be represented as

of a spinor particle with mass and a heavy scalar antipar-
ticle whose mass is considered infinite. We assume that this vy

X)D(x, =Sy(X,y)+S,(X,y)+---, (15
“meson” interacts with a confining gauge-field background, (POIPXY)P(Y)) = So(xY) +So(x,y) a3
which is characterized by the Gaussian field strength corwhereS; is given by Eq.(3) while the first nontrivial inter-
relator (see review17] and references thergin action term has the form

. (14)

TrSz(x,y)=<fd4uJ d“wtr(SO(x,u)iA(u)So(u,w)iA(w)So(w,y))>, (16)

where te=tr. tr, is a product of traces over color and Lorentz 1 (1 1

indices. We adopt the Fock-Schwinger gauge condition with f(u,w)= TO)J da af dB BD(au—pw). (18

the base poinky=x: A,(u)(u—Xg),=0. In this gauge, the 0 0

Green’s function of the heavy particle gives some numericafFunctions of this kind are often used in the formalism of
factor whose exact form is inessential in what follows while coordinate gauges. One can find in the Appendix of the

the gauge field propagator takes the form present paper a detailed analysisféfi,w) for a particular
choice of Gaussian ansatD(z)zD(O)exp(—zleé). We
(tre AL (WA,(W))=D(0)-[(U=X)(W—X)E,, shall keep only the functio®(z) in what follows since the

function D 4(2) is not responsible for confinement effects. It
—(U=x),(Ww=x),]-f(uw), (17)  was also found on the lattice that the nonperturbative part of
D(2) is significantly smaller than that @(z) in QCD; see
where the dimensionless functidi{u,w) is given by the [17] and references therein.
following expression: In momentum space, E@16) takes the form

TrSz(x,y)=4imJ d* f d'k jladaJ:,Bd,Bexp(il(x—y))

2m*) (2m)*)o
D) [a J ! ! X[8,,(3m>—12—2| +s2)+4l | —4l
N A3M°—=1=2Ir —sr+s o—4l s,
124m? [9F, 9Soli=ka| (I=s+1)2+m?* (I —5)%+m? ’ ’ !
+21,r,—2l,8,+28,5,—1,S,— rpsg]] . (19
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The properties of the expressig¢h9) are determined by the s,c quarks keeping only the first term in the expansion in
interplay of external parameters such as particle maasd ~ 1/mT, is not to be considered as a good approximation.
distance|x—y| and the properties of the confining back-  Equations of the forn{21) and(22) account for nonzero
ground encoded in the functidd(z). In the case of QCD, virtuality of vacuum lines in standard OPE language; one
the latter is usually computed in the course of lattice simu-considers quantum averages, which contain derivatives. As
lations [18]. It decays with distance and has some typicalwe shall see in what follows, this language is not universal
correlation length scale which we denote Bsthroughout  and implicitly assumes small averaged virtuality correspond-
the paper. The exact dependenceDgk) on zis of no prin-  ing to the vacuum state, i.e., the larggHimit. Another es-
cipal importance; one usually takes exponential fise sential ingredient of this language is the use of equations of
[17]). At the origin,D(z) is normalized to the nonperturba- motion for such averages. Although it is rather easy to justify

tive gluon condensate according to the validity of this component of the approach in the Abelian
. case, to the best of the author’s knowledge this prescription
D(0)=15(trc F i F u0)- has never been proved for non-Abelian theories with the

level of rigor adopted in the field. Since we are discussing
nonlocal correlators, the following remark is of importance.
Lonsider the parallel transported field strength tertsgy,

It is worth mentioning that the actual numerical valueTgf

in gluodynamics and QCD is rather small: it is estimated a:

0.22 Fm for quenched SB) and as 0.34 Fm for full QCD

with four flavors[18,19,17. As will be clear from what fol-

lows, this circumstance bounds the region of applicability of

conventional OPE based on local condensates. and the nonlocal gauge-invariant two-point correlator,

We study first the heavy quark case, i.e., we assume that

mTg>1. The integrals in Eq416) and(19) are saturated at (tre G(X,X0) G(Y,Xg))- (23

momentei2 of the order of the mas®? and one can make a

systematic expansion ovemiT. Straightforward although The above correlator depends on the positions of the points

rather lengthy calculation leads to the following answer forX,Y,Xo and on the profiles of the contours used in the factors

the heavy quark condensate: ®. However, ifx—y, all these dependences disappgdmase
factors cancel each other, while tRelependence is prohib-

G (X, X0) = P (X0, X)F ,,(X)P(X,X0),

—i(tre F . F ) 44 1 1 ited by translational invariangeand the resulting local av-
Tr Sy(x,x)= T oam T 72 +0 4| |r erage coincides withir, F2). Let us consider now an expan-
m m m™Tg sion of (23) if |x—y| is small. In principle, one might

(200 consider two different expansions, with correlators involving
derivatives in both cases. In the first case, it reads

whereT, is defined as
<trcG;LV(XIXO)Gpa'(y1XO)>~<trC F,qupo'>

1 1 d*k o, (tre(FD?F))
N—zz—f DKk =—>—, (2] o G
T, 4D(0)) (27 (tr  F?) FY=X)a { e Guu(X,Xo)
where the last relation is valid in the Gaussian approximation 9G ,,(Y,Xo)
when all contributions from higher correlators are neglected. [ i > +...
Let us mention that the virtuality of the quark condensate Wa y=x
usually measured by the quantity (24)
, {(yD?y) 22 where the derivative is given by
a o &G (T(yIXO) .
) L0~ 0 (%o.y)| DY)+l
in the sum-rule approach is comparable with that of the ¢
gluon condensat1); indeed,)xgz (0.4+0.1) GeV accord- 1
ing to [20], while T4 was found on the lattice to be (0.34 X OS d9Gpa(2.Y).Fpo(Y)1 | P(Y:X0)
+0.02) Fm in SW3) with four dynamical flavorg19], i.e.,
A ':I' is of the order of one. It could be instructive, therefore, (25
to reconcne our approach with the method of nonlocal quarkgng( ..., ...] in Eq. (25) denotes a commutator with re-
condensates worked out j21,22 (see alsd45]). spect to color indices. The second tefand all higher terms

For D(2) xexp(~Z/Tg) with the correlation lengtiTy (@S on the right-hand sidérhs) of Eq. (24) contains a nonlocal
is used in the Appendjxone hasT,= ﬁg. The first term  part and depends on contour profiles and on the position of
in the expansior{20) is the well known OPE result for the the pointsx,x, unlessx=y=x,. On the other hand, the ex-
heavy quark condensaf23]; see alsd24]. The second term pansion goes in powers of the quantity—{x), which is
is the first nonlocal correction. It is worth mentioning that assumed to be small.
due to the smallness df; (see abovk it can be omitted as a In the second case, one expands €adh Eq. (23) in the
numerically small correction fob,t quarks only, while for  vicinity of the pointxg:
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<trcGMV(X!XO)Gpo(leO)>%<trc[FMV(XO)+(X_XO)aDaF,uV(XO)+ o '][FpU(XO)+(y_XO)aDanU(XO)+ o ]>

%<trc F,uVFp(r> + (y_ XO)a' <trC F,uV(XO)DanU'(XO)>+ (X_XO)a' <trc DaF,uv(XO)Fp(J'(XO)>
. (26

This is an expansion adopted in conventional OPE. In conthe integral is convergent due to the propertiesf @f,w)
trast with Eq.(24), nonlocal parts are absent. The price to(see the Appendix One obtains in the massless case the
pay, however, is that the expansion goesinx,,y—Xq in-  following leading term at smally|:

stead ofy —x. Needless to say, in many physical applications

|y—x| can be small whereds—x,| and|y—x,| are very S,(0y)=—ic-D(0)-y+O(y?).
large. Notice also that the opposite situation is impossible: ) . . )
smallness ofX—Xo|,|y —Xo| implies smallness ofy —x|. The numerical constant is determined by the function

Atfter this rather academic discussion we come back to thé(U,w), but isTg-independent. The massive partsSfpro-
limit of small quark mass and/or correlation lengtiT,<1,  vide a finite contribution ay=0:
which is opposite to what has been explored in &§). As , 2
was already mentioned, in real QCD, the parameter S2(0y)~imD(0)Ty.

2\ 14 ; ;
grc F )_Tglcan bke ccljn3|detredl as tsmall,l even I?hgg_resEence qff the mass is increasing and reaches values of the order of
ynamical quarks. in particuiar, typical momertain £9. T, 1, it begins to work as an IR cutoff instead ©f and one
(19) can be rather large in comparison with the nonperturba- 9

; . 7 : comes back to Eq20). However, if the mass is small, then
tive scale given by the conden_s etre F _>2bm still small light quarks essentially feel the virtuality distribution of
when compared to the nonlocality scatel { “. The test par-

) _ _ ! _ vacuum gluon field$i.e., the profile off (u,w)].
ticle resolves the nonlocality of vacuum field correlations in |+ is instructive to show how the potential problem con-
this regime.

, ) ) . ) sidered in Sec. Il appears from the field-theoretical frame-
~ The Green's functiorS,(x,y) in which we are interested ok invoked by us here. To this end, one should consider
is defined in Eq.(16). We are working in the coordinate e equation for the heavy-light system which was obtained
representatlo_n here and those the Fock-Schvymger gauge m the QCD Lagrangian ifi4] in the limit of largeN,.
reference poink, at the originxo=x=0. We rewriteS,(X  Keeping only the Gaussian field correlator, one has instead
=0y) using Eq.(17) as of Eq. (2) the equation for the quark Green’s functiomade
gauge-invariant due to the phase factor coming from the
heavy source propagajor

D) [y [ (Mo U e

S,(0y)= 64776Jd uf d*w <u2 2u4) [4(uw)—uw]

—iGrmSy)—i [ Mx2)dtz Szy)= 590 y),
(28)

( U—w m
X f(u,w)-| 2 +
(u—w)

u—w)?2

( ) where the nonlocal kerndWl(x,z) depends on the exact
Green’s function S(x,z), making Eg. (28) nonlinear.

' (27) Throughout this section, we are working in the so-called
modified Fock-Schwinger gaugésee all details in[25])

here the temporal axis is singled out. We have retained for

mplicity only the color electric part of the correlator as

w—y m
x| 2 2t 5
(w=y)* (w-y)
where we have kept in the propagators only those terms th%\g

are linear in mass since we consider the small-mass limit. defined in[26], (E;(X)Ex(2))~ 8, D(x—2). Assuming for

The kernelf(u,w) is defined in Eq(18) andu=u,y,, . D(x—2z) the Gaussian ansatz, one arrives at the following
The actual value of this integral is defined by the proper+qm of the nonlocal kerneM (x,y):

ties of the functionf(u,w), which encodes all nonperturba-

tive dynamics in the chosen Gaussian approximation. They o ;{ (x4—y4)2>

are rather peculiar, howevdsee the Appendix and this M(x,y)=D(0)(xy)f(x,y)S(X,y)ex - |
circumstance precludes one from obtaining an exact analytic T

answer. On the other hand, E®7) can be calculated nu- (29)

merically for any particular ansatz f@(x). Let us investi- here f(%.V) is ai in th . ice that v
gate the general structure 8. In the massless limit, one WNeré '(x,y) s given in the Appendix. Notice thaty are
immediately obtains lig_o S,(0y) =0 according to the ab- three-dimensional vectors here and not four-dimensional as

; Lo : in Eq. (27).
sence of chiral symmetry breaking in the problem in ques—'n . . S
tion. It is seen thaS, is UV-finite (small u,w domain be- As was shown if15] using the relativistic WKB method

cause the nonperturbative background is  softdeveloped in(14], the functionS(x,y) at largex,y, i.e., if
limy o f(u,w)=3. In the infrared domairfu|,|w|>T,,  [x|.]ly|>T,, can be written in the following form:
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6(h) M(x,2)=a]|x| 5 (x—2), (33

N

S(h,x,y)=ie~ (7 +mng(x v

, (30

o(— h)) where the string tensioa=(w/2)D(0)Té for the Gaussian

ansatZsee Eq(62) below]. Thus at large spacial arguments

the kernelM coincides with the linear potential considered in

e . . the previous section. Therefore, all estimates for terms in the
a(x,y)=83(x-y), ox’~oy*>1, (81)  expansion proportional tM", n=2 are in agreement with

those for the local case, E(®), since integrals in these terms
moreover for largex andy, and|x—y|<|x|~|y| (see[14] are essentially saturated by large spacial distanpe®)
and also the Appendix of the present paper >T,.
Although the potential behaviof33) is typical for the
largeT regime, it is instructive to show how the nonlocality

whereh=x,—y, andg(x,y) is a smeared function,

-~ T
f(X,y)~ — (32)  cures the IF behavior found in the local potential problem.
|| We shall demonstrate now that the Green’s functions in ques-
tion have a finite limit whenT—0 either for small or for
and in this region one can integrate in Hg8) over d*z, large Ty . Let us briefly analyze the situation with the non-
since local equivalent of Eq(6), i.e.,
|
iD(0 x(y—T)(xy)f(x,y)S(h,x,y h?
S (0T)— ( )fd4xf dy (= DOeNTYIShxy) v (30
(2m)? x4(y—-T)* 2

with S given in Eq.(30). It is convenient to introduce the sion(and separating the soft and hard parts of the diagrams

dimensionless quantities is not applicable and one should sum up the whole series or

_ _ _ _ else solve the nonlinear equati@B) exactly.

X=X, o, V,=yNo, Ty=Tglo, T=T\o.

(35 IV. ANOTHER FIELD-THEORETICAL EXAMPLE: HOW

Rewriting Eq.(34) in terms of tilde variables, one immedi- THE LINEAR CONFINEMENT IS BUILT UP OUT
ately realizes tha®tends to the three-dimensiong&function OF CONDENSATES
only in the limit when[x|,|y|>1 and otherwise the integral  |n this section, we consider another example, namely a
is defined by the regiofx|~|y|~1 when the nonlocality is scalar(Higgs-type particle interaction with the background
atwork, i.e.x—y|~[X|,[y|. Imposing the limit of smal,, ~ Yang-Mills field, and again we calculate the heavy-light

Green’s function where the light particle is the color funda-
mental Higgs boson while the heavy source is like an anti-
quark. The Lagrangian and the Green’s function are given by

i.e., Ty<1, one reduces two powers ®fy in the numerator
of Eq. (34), but the integral is still defined by large values of

X,y of the order of unity and one finally obtains
m?|¢|?
2 L

(M) _ 3/2
Si"(0,T)~const o< (36) L:%(FZV)ZHDM‘PF_

One can also show that the same estimate holds true for

higher termsO(m”? "’Td wrltgsﬁM)(O,T)~cno3’2._ Consider GO(0T)=(o(0)D(0T)o(T)). (39)
now the opposite limiT;>1, i.e.,Ty> 1/\o. In this caseTq

does not confine the differences-y in f(x,y) andx,~y,  One can rewritec(¥ as

in the exponent in Eq(34) to small values as compared to

[X[,[Xa| or [yl|.[ya4]. Therefore, the integration oved(x, G)(0,T)=((m?*~D2%)o7P(0.T))g (39)
—Y,) is limited only by the exponent in E¢30). As a result,

one obtains forS; the following estimate(as always, we where we have introduced the exterrfbhckground field

assume the masa to be not largem= \/o): B,: D,=d,—igB,. For simplicity of consideration, we
shall confine ourselves to the vertices

s™)(0,T)~const g (37)

2 L,=0%(B3 ¢")(Bi ¢%) " (40)

Thus in both cases the normal procedure of OPE, based and choose the gau@25] to write an equation fo6(¥)(x,y)
the analysis of subsequent terms of the perturbative expamnalogous to Eq28),
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2 _
(mz—aM)G(‘P)(x,y)ﬁtf 1(x,2)G¥(z,y)d*z= 6P (x—y),
(41)
wherel (x,z) =11(x,2) +1)(x,z) andl® refers to the ker-

nel with one power ofB,,, while 1) corresponds to the
Lagrangian(40) and can be written as

1@(x,y) = 6" (x—y)g?BZ(X). (42)

The contributions froml (*) not analyzed by us here are of

the same general structure as that 6t apart from nonlo-
cality controlled by the particle mass Our consideration in
this section is for illustration purposes only.

Let us take now the first-order graph g [keeping only
1) in Eq. (41)]. In Euclidean space-time, one has

G§‘°)(0,T)=gz< f d4xG§;")(0,x)Bi(x)Gé“”(X,T>> :
B
(43

where

G§(x)= Ki(mx), x=x2. (44)

472X
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ol )

- Ty
<B§(x)>=2D(0)|x|Tg[ 1-—-

I
(48)
At large |X|>T, one has, from Eq48),
(BZ())~2D(0)Ty(|x| = Ty). (49

Notice that nonlocality enters E¢49) in an explicit way. At
small |x|, When|§|/Tg~1 the linear behavior of Eq49) is
replaced by the quadratic one,

(B4(x))~D(0)-x?. (50)
It is clear that the vacuum field correlator method imple-
mented in Eqs(45)—(49) demonstrates the creation of the
string between the Higgs particle at the poiﬁt>(4) and the
static source at the point 6Q,).

Now let us look at the same problem from the point of
view of standard OPE. According to general rufés3—5,
one should expanB ,4(u),F ,4(v) in Eq.(45) in the vicinity
of a point u=v=0, u,=v,=x, (in the Fock-Schwinger
gauge, that would be the poirg usually chosen at the ori-
gin, zo=0). In this way, one obtains

1
(BiC)=2 (e pime

We shall be interested in the vacuum-averaged expression

for G{¥) and to this end one should expré&%(x) in terms

of field correlators(one way or in terms of condensates

(another standard wayIn the gaugg25], one can write,
e.g., forB?

<B§<x)>=f:duﬂf:dvxﬁm(u)cb(u,v>Fy4<v)> (45)

and using 26], and keepindas in Sec. Il) only the confin-
ing partD, one has

(Bi(x))zfoxduifoxdviD(u—v), i=1,2,3. (46

By way of example, let us consider an exponential ansatz for

D(u—v). As was already said, this behavior bf(x) was

observed in lattice simulations at distances larger than some

typical correlation lengtiTy. So one has

(1 1 X
<B§(x)):D(0)x2JO dafo dg exp('Tﬁ- a—/3|).
[¢]
(47)

Notice the absence of additional multipliersg in Eq. (47)

contrary to Eq(18). This is a property of the modified Fock-

Schwinger gaugg?5] (the temporal axis is singled quised
by us in this section, instead of the usual one used inE).
(one point is singled out

XXiXil' . 'XinXkal' . 'ka
X(Dj,-Dj Fi4(0)Dy,- - -Dy_Fa(0)).
(51)

In this form (51), the appearance of the string is not vis-
ible, and one should rearrange the derivatives in a nontrivial
way, so as to separate out the correlddfu—uv) as in Eq.
(46). Derivatives of the latter produce powers@‘l, while
a dependence on the suhfu;+v;) in the integral(46) is
separated out to yield linear confinement in E4P).

Now we consider the expansion 6(¢) in powers ofg?.
From Egs.(49), (43), and(44), it is clear that one obtains

n

c c
G0N ~g* T, G#th”(;‘;) m’, (52
where the nonlocal constaot~D(0)T4~ fdz D(z). All in-
tegrals like Eq.(43) are diverging at large distances for
=0 and cut off atx~1/m whenm=#0.

It is instructive to turn to the momentum space and define
the following one-dimensional Fourier-transformed Green’s
function:

G{P(Q)= F dT G{?(0,T)exp —iQT).

(53

[Our problem is (3+1)-dimensional; we do not perform a
four-dimensional transformation, however, since the tempo-

Straightforward integration leads to the following result: ral axis was separated by our gauge choice from the begin-
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ning.] Since{Bi(x)) does not depend on the temporal coor-
dinatex,, integration in Eq(43) is trivial:

5 -
g -exp(—2M|x]) -
G (M)= fd3x = B2(|x
i7(M) 1672 2] (Ba([x))
~¢g> D(0) 2MT,

T 16m M2 1+2MTy’ 4

where M2=Q?+m?. Expression(54) has the following
asymptotic expansions:

2 D(0 1 1

G(l"b)(l\/l):g— (3) — + P

16m M 2MTy  4Mm T3

+0 et MTg=1 (55)

g
and

9° D(0)Tyq 212
G(l"’)(M):% 7 [1-2MTg+aM?Tg

+O(M3TY)], MTy=L. (56)

It is clearly seen that the actual answer is given by differen
series in region T <1 andQT,>1 (we assume tha®
>m andM~Q). The expansiornt55) is associated with the
standard OPHE51), while Eq.(56) goes essentially in powers
of a nonlocal quantity. It is also worth mentioning that both
expansiong55) and (56) are model-dependent beyond the
leading condensate term, and the actual coefficients in Eq
(55) and (56) are determined by the profile @f(z).

V. FEYNMAN-SCHWINGER FORMALISM AND OPE

We start with the same Green’s functi@{#(0,T) and
write the Feynman-Schwinger representati®tsR for it
(see[27,28 where references to earlier papers are giyen

G9(0T)= f:ds f (D2)or exi —K)(W(C,). (57)

Here K=m?s+ %fﬁzidr, s is Schwinger proper time, and
(W(C,)) is a Wilson loop consisting of a straight line 19,
and the trajectory of the Higgs particle from O To Notice
also that

In a Gaussian approximatiofWW(C,)) can be written as

n

(D2)or=11

n=1

d*Az(n)
(47e)?

d*p
(2m)*

exp[ip(; Az(n)—T”.

(58)

PHYSICAL REVIEW D65 074029

2
<W(CZ)>ZEX[{ - %Jsdaﬂv(u)jsdgpk(v)

X<F;LV(U)FP)\(U)>> (59)

and we have omitted for simplicity the parallel transporters
inside(FF). HereSis the prescribed minimal area surface in
the loopC, (there is no sensitivity on the choice Sfwhen
all higher cumulants are kept; with the choice of the Gauss-
ian correlators and minimal surface, the contribution of all
higher correlators was estimated to be around a few percent;
see[17] and references thergin

For small contourC, (which means that not only is
small but also the spatial size of the contour is sialhe
has, from Eq(59) [26],
gZSZ
24N,

<W(Cz)>=exp( - <F2V(O)Ff‘,,y(0)>)- (60)

For a rectangular contou€, of an arbitrary sizeRXT,
one can write

(W(C))zexr{ - %f dzxfsdzyD(x—y)> . (6))

Choosing for simplicityD (z) = D(O)exp(—ZZ/Tg), one has

t 1 7D (0)
_ 2,_ 2
o zf D(z)d°z 5 Tg (62
and finally
oRT (T2| (T3
S. (W(C)>=ex —7 Q L F ) (63
where we have defined
% , Sirt
L(U)Zf dte! ut_2 (64)

with the expansions

L(u)=\/§ 1

L(u)=m+0(Ju),

Now we considefW) inside the integral57). If one as-
sumes that for small one can indeed use the approximation
of a small area of the loo@,, i.e., Eq.(60), then one has in
the relativistic case, but considerifigsmall, T<1/m, and
expanding Eq(60),

11
72u?

+

1
+..-¢, ux>1, (65
~ } (65

u<l. (66)

G0T)=GOT)+G¥O0T)+---, (67)

where
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1 standard OPE treatment one attributes to this term the local
G(l‘*’)(O,T)~gZ<SZ)<FaFa>—2~gZT2(FaFa)_ (68)  condensate, implying that the Higgs parti¢te quark does
T not go far from the static source.

[We have assumed according to what was said before Eq.
(60) that(S?*)~T*. This is a standard result of OPE analysis
with a local condensate accompanied by higher poweft of
(or higher powers of 1y? in the momentum representatioh We are going to discuss OPE in Abelian confining models
Let us now consider again the tel@(g?), but now tak-  in this section. The complications due to path ordering are
ing into account the nonlocal character of the correlatorsibsent in the Abelian case and one may consider a general
(F(X)F(y)). To this end, we expand the Wilson loop in Eq. expression for the two-point correlator of the field strengths

VI. REMARKS ON OPE IN ABELIAN THEORIES
WITH CONFINEMENT

(57) and, making use of two simple identities in the form (13), where the function(z),D,(z) depend
B 4 4 entirely onz=x—y. We assume that the confining properties
(D2)yy=(P2)xd"U(D2)y,d"v(D2) .y, of the theory are caused by the condensate of monopoles,
" s o hence the equations of motion take the form
dede dr,f(s,71,79) ~
fo 0 ! 0 2 ( L2 r7/_;,I:,LJ,V:JV! &;LF/J.V:‘JV’ (73)
— fmdsfwdTlfxdef(S+ Tit+ o, T1F To, ), wh(_arerzwz 2 €uvpoF poe @ndj , ,J, are electrically and mag-
0 0 netically charged currents, respectlvely We define the polar-

(69) ization operatod1(qg?) of the electric currentg,, as

one can write f d%%(j ,(0)] ,(x))exp(iqx) =(8,,4°—d,9,)T1(g?).
74
G{POT)= f d*x f d*y G (0,x) (74
Differentiating the Abelian analog of E¢L3) and taking into
><<AM(x)Ay(y)>>'<#Gg“’)(x,y)nyg“’)(y,T). account the equations of motion, it is straightforward to ob-

tain the following relation:
(70)

d ,dD;y )
D(x)+ §D1(X)+X W exp(igx).
(75)

The notation used in Eq70) implies thatkﬂ(q-)zdxﬂldr, H(q2)=f dx
and(A,(x)A,(y)) is expressed through a vacuum average of
field strength(F(u)F(v)), e.g., as in the coordinate gauge

[25], In thed=4 case, it can be rewritten in symmetric form as

(Ad()AL(y))= f “du f G0y (Fia(W)Fa(0). (7D (1u(0)5,00)+(3,.(0)3,(x))
0 0 :_%(ﬁz‘sm/—‘9#01/)“:&,3(0)':“5()(»’ (76)

One can show that#—u?/o?x and one recovers in E¢470)

) where for the condensate one has
the usual perturbation expansion f&(#), where now, in

contrast to Sec. IV, only the linear vertlcqa%A (9 are taken <Fa3(0)Faﬁ(X)>:6[D(X)+5(X)]- (77)
into accountthe term<,«>2A2 would also appear in Eq57)
when one takes into account the term with yl. The function D(x) =D (x)+2D(x)+x3(dD,/dx?) corre-

From Eq.(70), one can deduce that the rhs stays constangponds to the confining part of the correlator of dual field

at large|x—y| while it decreases for large,—y,| [this is  strengthsF in the same way a®(x) corresponds to the
especially clear when one uses for the correl@du—v)  correlator offF in Eq. (13). In the case ofl=4 QED without
the Gaussian forin Therefore, the integral70) is conver-  monopoles, one easily find&9]

gent both at large,y and at smalk,y. Integrating Eq(70),

one obtains 2(x) 1 de?(x?)
D(x)=0, 1(x)— I - (79
Gi(0T)~Tg(gFgF?) ~o, (72 xToxTdx
sinceD(0)~(gF2gF?)~¢/T; . Thus one obtains a nonlocal For the polarization operator, one obtains
constant for smalll<T,. Comparing Eqs(68) and (72), 4262
one can see that at_ smdllthe correct(nonloca) _procedure M(g?)=— _f d*x exqu) e*(x?) ' (79
yields a largendominanj term as compared with the stan- x?)?

dard OPE estimation. The reason again lies in the fact that
relativistic trajectories occupy a larger area for the Wilsonlt is seen that the free field terme3/x* does not contribute
loop when treated perturbatively and nonlocally, whereas irio I1(g?) and the only nonzero contributions to the rhs of Eq.
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(75) come from either the running of the chameféx?) (asin  takinge?(x) = mxK;(mx), which corresponds to the massive
perturbation theory or from nonperturbative parts of vector field propagatofA,(0)A,(x)). Differentiation in Eq.
D(x),D4(x) if they are not equal to zero. This is easy to (79) yields

understand: in the absence of external currents, the theory

describes free photons, vacuum is not polarizable, and charge m?2
is not running, so all current-current correlators must vanish I1(g?)oc— - then g?>m?. (82
identically. On the other hand, knowledge of the exact propa- q

gator (and henceéd andD,) would be equivalent to knowl- . ) . )
edge oflI(g?). This result is obvious from the form of propagator in mo-

Let us examine possible contributions (g2 coming Mentum space. Notice the sign difference between &g.
from the nonperturbative confining part ¢¢F) [i.e., from and (81). It can be 5%'d7_ following 32], that the leading
D(x)] if it exists. Standard OPE reasoning would suggesPower correctioAIl(q?) in confining theory is caused by
looking for the leading term of this kind in the for(2)/q®. ~ @n exchange of a massive particle with tachyonic mass.
It is easy to see that for functiof(x), which are smooth at There is an obvious cancellation between Eg$) and(82)
the origin[for example,D(x)= D(O)exp(—leTS)], the cor- N t_he AHM, sinceM =m in the London limit in §h|s theory,
responding contribution td1(g?) is exponentially sup- which again reflects the fact that frge expres'smnsﬂa.rr?d
pressed at large? (i.e., for q2T§> 1), which means that D, have beer_1 tak_e;(se_e above To fmd_genume_ qonfmlng
power corrections are absent in this case, i.e., the nonpertustlCuum polanza_blllty in the AHM requires explicit calcula-
bative background is “too soft.” In particular, there is no tions qlong the lines of Sec. lll and IV of the present paper
D(0)/g* term. ForD(x) such that it is not smooth but finite and will be reported elsewhere.
at the origin[e.g., for the often used exponential B(x)

=D(0)exp(-[x//Ty], one has as a leading largeronpertur- VIl. SPECTRAL REPRESENTATION OF GREEN'S
bative asymptotics FUNCTIONS AND OPE
5/ ) In this section, we shall look at OPE from another point of
ATI(qD)~ DO 1) (F9 (80 view, trying to calculate terms of OPE using the known prop-
(9 Ty | g2 qus' erties of the spectrum of the gauge-invariant Green’s func-
tion.

This type of analysis was done most extensively for the 't
Hooft model (1+1 QCD at largeN,) [33], where exact
results for the spectra and Green'’s functions are kndfor.
details of the analysis, the reader is referrefi3%—-38.) We
follow most closely the notation and the line of reasoning of
[38]. We consider again the heavy-light system but now in

M2 M2 _ L. , . .
Sy e then g2>M2. 81) thed=1+1 limit. The Green’s function can be written as
q q

The situation becomes even more dramatiP (k) is singu-
lar at the origin(as it happens, for example, in the London
limit of the Abelian-Higgs model(AHM) [30]), where
D(x)~M?/x? if x—0. One has, in this particular case,

ATI(g?)=

G (x)=(0|q(x)®(x,0q(0)|0)
This 162 regime in the AHM is bounded from above, how- ®
ever, by the Higgs boson massy: if qzzmﬁ, the = E L(a(x D ,)?"q) (83)
Ginzburg-Landau description of the condensate is not valid, n=o (2n)! a '
broken symmetry is restored, and microscopic degrees of
freedom come into play. Presumably the same reasoning Befining, on the other hand, the correlation function
applicable to the “thin” strings scenario proposed[81]: at

distances much smaller than coherence length, neither o iax 42 _ _
“thick” nor “thin” strings can be formed. Notice that the P(q ):lf e'Pd?x(0[T{qQ(x),Qq(0)}|0)
string tensiono- depends omy, logarithmically in the Lon-
don limit: o~ In(my /M). N.f (QQ)/ v i GX 42
An interesting problem of systematic construction of OPE F] GER)e™d, (84

in the Abelian-Higgs model is beyond the scope of the
present papemnotice, in particular, that the equations of mo- one can write an expansion in inverse powersEsf mg
tion in the AHM are different from Eq.73)]. Nevertheless, it —qq,

is of interest to compare the res(@®1) with an answer for a

massive photon propagatbit can be obtained from E79) 1

— 1 —
P(E)= | (aa)~ 5(aPog)—--- | +pert part, (85)

We stress again that we are speaking only about the theory whose
equations of motion are given by EF3); therefore all effects such WherePy=iD,.
as confinement and/or mass gap are associated with complicated On the other hand, one can write a spectral decomposition
dynamics of the currentd (dispersion relationfor P(E),
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N 1 1 & G,

N M2 = _
E+E w ; yn(vn+e)’ (= & Q%+ M2
(86)

P(E)=5_ mofE

(92

The massed, can be taken as the eigenvalues of the
where we have used the notatiofp=g?N./7, 2mg\/7e well-known Hamiltonian, which was derived from QCD
=E, and relations for the heavy-light spectr|88] with the assumption of area law for minimal surface and was

shown to be valid for small angular momentum=0,1,2

Inn Inn [40], while for largerL the string rotation should be taken
_ [ - 2_ I ’
Eq=2mgyn 1+O( n ) - Ta Jn 1+O( n ) ' into account, AHg,, yielding the correct Regge slope
(87) (27o) ! for massesM,, [40-47,
Now one can compare Eg&5) and(86) and, expanding HOW =M.y, HO=2p?+m?+or+AHg,.
the latter in powers of H"~1/e", one obtaing38] for the (93
coefficients in Eq(85)
- - Solutions to Eq(93) can be written in the form
(aP§"a)~(ag)(mmp)*"n! (88)

M2=2zo(2n,+L)+M3, (94)
The factorial growth of the coefficients in E@8) is typi- _—
cal both for 1 and 3+1, as will be shown below in this WhereMg~m.. ForC,, one has
section. Lo 5
One can do another derivation of the coefficie(88) Cn(L=0)=3QfN.mj, Cp(L=2)=3QfN,mj.
starting from equations of motion, in which case instead of (99

Eq. (88) one obtains 5 . .
Heremg=4mo, andQy is the electric charge of the quark of

2<aq> n flavor f. Taking into account the degeneracy of masses with
) (89 L=0,n=1andL=2,n,=0, the totalC, is the sum

<5(XMDM)2“q>~X2“n!<Eq>(— 2m,

c = _ 9 —2 2

Thus another feature appeds a puzzle, as it was for- Ca=Cn(L=0)+Cn(L=2)=QfNcmp. (96)
mulated in[38]): condensates computed from the spectrum — ) ) ) )
or from microscopic equations of motion have drastically ~SinceC, does not depend amin this approximation, one
different scalesmg” in the first case andn3/mg)>" in the obtains the sum

second case, wherg, tends to zero in the chiral limit. -

We shall now show that in the-81 QCD, at least for i i
N.— the situation is very similar to that of the 't Hooft n=0 Mﬁ+ Q? B mg
model: (a) OPE coefficients of the Q2" expansion(“con-
densates] have factorially growing behaviorp) Conden-  where the constant term is divergent and is eliminated by
sates calculated from the spectrum and from diagr@hs  renormalization ofi1(Q?)—I1(Q?)—I1(0).

Q2+M2

+const, (97

mo

equations of motionare different. Here ¢(z) is the Euler function,

Consider now the 3 1 problem, a description of the self-
energy partil(g?). For two light quarks, the standard OPE I'(2) 1 & By
of I1(Q?) in the Euclidean region is well know]: )= ——, 2|, w=INZ2— ——

Q@ em_2m(qq) 99
n_
u? Q2 Q4 where B,, are Bernoulli numbers. Hence at lar@?, the

leading term in Eq(99) yields

1
H(QZ)——4—(1+

o

FF
" a5< >
127TQ4

(90)
H(O)(QZ): Qf Q2LZMS_FO

mg
22 m _2

(99

Following [39], one can use the background perturbation
theory for the calculation ofI(Q?) and represent it in the For Q?>M3, this term coincides with the leading term in the
form OPE (90) (the latter is written foiQ;=1).
From Egs.(92) and(97), one can compute also the next
2y _ 171(0)( 2 1) 2 211202
Q) =II(Q) + all™(QY) + asITF(Q%). (9D torms of the expansion in @7,

Let us first considefl(®)(Q?) (for details of computations, DN, QPEM2 E ,men
the reader is referred {89] and papers quoted thergin MOQ?)=— TN o4 > 2n 0
In the largeN, limit, II(®)(Q?) has the form 1272 u? =1 Q2"
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It is clear that\,, at largen grow factorially due to the as- and the corresponding Borel transform is

ymptotics of the Bernoulli numbers, B,
=[(—)""Y(2n)1/(22" "t ]¢(2n). ~ P m2
Two properties are clearly visible in the expansia00): lo(M)= azlo ds e MR X(s). (102

(a) the “condensatesfné” are largemy~2.5 GeV, as com-

pared to the standard OPE condensates, €Rf;)~0.1  gypstituting Eqs(101) into Eq. (102) yields
—0.2 GeV; (b) the coefficients\ , grow factorially, which is

in agreement with the discussion[i86] and analysis of the m(2 o . ag(M)
't Hooft model in[37,38, signifying that the OPE series is  T,(M)= _Zf_emp/'\/'er 2 e(mﬁnmo)/mz] , asM)
asymptotic. M2 (3 n=1 77
Thus in both cases#1 and 3+ 1, when confinement is 2
- i ag(M) ,
present and the spectrum contains nondecreasing probabili +2.9 , my=4zo. (103
ties C,, (which is a feature of the linear confining interac-

tion), the OPE is a factorially diverging series, implying _ )
renormalon singularities in the Borel plaf89]. Another fea- This should be compared to the standard refliitwith
ture which is general to both-11 and 3+ 1 theories is the Standardsmal) condensates,

mismatch between condensates calculated via the spectrum

[as in EQ.(100] and via diagrammatic analysjss in Eq. T (M)=1+ as(M) ) 94( as(M)> n 77_2%

(90)]. In [38], a possible solution of this mismatch for the 0 T ' iy 3 M4

1+1 case was suggested, which introduces the notion of .

“effective condensates,” which may differ from actual con- 4483y [(0]qq|0)[?

densategdefined, for example, on the latticelue to the + 81 M6 . (104

asymptotic character of the OPE series.
In 3+ 1 case, there is another possibility to explain the
mismatch, namely one should take into account that Coeff"settingMBEO.

cients\,, of aII_higher copdensates get contributions notonly  + is clear that Eq(103 contains in the Borel plane a set
from the leading terms im of M,, andc, but also from the poles atM2=M2==i(m2/2mk), k=12, ... and an es-

subleading terms, and the final result for, Sy, could be  opiiq) singularity aM =0. These features imply the pres-
two orders of magnitude smaller due to cancellation betweeance of renormalons and are connected to the factorial
different terms, thus removing the mismatch. However, this rowth of coefficientsk ,, in Eq. (100

2n . .

requi_re_s a mechanisr_n of fine-tuning be_tween 'Fhe subleadin% Now remarkably both Borel transforms lie inside the cor-
coefficients, the physical reason for which is still not known'ridor of experimental errors, thus describing satisfactorily

One could leave the discussion of the mismatch at thi ata with very different values of condensatis details of

Fhoemé)'F|>fEa\r/]v?ttr??;rcgicégfa;ecggggg:;zfé:qn;zidé f&;ifﬁg%omparison, sef89]). This situation is becoming even more
gesp unclear: not only does one have two sets of condensateb

. : o :
analysis of experimental data fe"e”— hadrons withl consequently two sets of sum rulebut in addition experi-

=1 (see[43)). : .
This analysis was done if89] using the hadronic ratio mental data cannot give preference to either of them.

R'(s)=127ImII'(S). For I=1, adding the perturbative V\~/hile leading perturbative larget asymptotics of o(M)

terms with the known coefficients as[ib,43], but taking the ~andIg(M) coincide, there is an important difference at small

background modified coupling constaf89], e.g., in one M: while M?T (M) is defined for allM, MZI§(M) is diverg-

loop ing for M—0 due to higher condensates and higher powers
of ag(M).

In Eq. (104), as(M) is standard, i.e., obtained fromg by

VIIl. CONCLUSIONS AND OUTLOOK

2
B

o n
ap(Q )—W,
boIn| — 2

The main emphasis of the present paper is the influence of
confinement on the behavior of Green’s functions in their

whereMg=~1.5 GeV andA)~482 MeV, one has dependence on momentum and the behavior of Borel trans-
- forms. We stressed above everywhere the importance of
R'=1(s)= § 2 C'=15(s— M?) large distances working in the coordinate representation, es-

2750 " n pecially for light quarks in the presence of confinement. As

the first and most clear example, the Green'’s function of the

2 . . . . . .
" § 14 ag(s) 116 ag Dirac equation with a linear scalar potential was considered
2 T T\ w) ] and it was demonstrated that the Euclidean time expansion
1 . ) (the equivalent of the Borel transform for heavy-light sys-
C, =mp, My=m;+nng, tems looks completely different from the nonrelativistic
- (101) case and from the template oscillator Green’s function. In
n=12,...; Co=3my, this way, it was shown that large distances may be important
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even for small Euclidean times and may bring about newwas discussed if32,44,§, is touched upon in Sec. VI only
terms in the OPE in coordinate space. briefly. This set of problems certainly deserves further study.
As another example, we have treated the nonlinear equa-
tions for a quark in the heavy-light system—the nonlocal
equivalent of the Dirac case—and found that again the result
is different from what one would expect in standard OPE, The authors acknowledge support from Grants No. RFFI-
but the terms of expansion turn out to be const&(.T) 00-02-17836, No. RFFI-00-15-96786, and No. INTAS 00-
~const o2, Translating this contribution into the form of 110. V.S. acknowledges support from the foundation “Fun-
the usual correlation functiol (Q?) of vector currentgas it ~damenteel Onderzoek der Materie(FOM), which is
is done in the reactioa” e~ — hadrong, one would have the f!nanually supported by the Dutch National Science Founda-
contribution ATI(Q2)~ma¥%Q*, which is similar to the tion (NWO). V.S. also acknowledges support from Grant No.

— 4 . . RFFI-01-02-06284. Yu.S. acknowledges financial support
standard ternm{qq)/Q" and is presumably one term in the from INTAS Grant No. 00-00366.

subseries generatimg(qq). In this example, large distances,
explicitly accounted for in our analysis, do not produce new
OPE terms but give some path to calculating the chiral con-
densate through confinement characteristies, string ten- We discuss in this appendix the properties of the kernel
sion ¢). One arrives at similar conclusions studying the(18), which we used in the main text. The reader is referred
Green’s functions in the Feynman-Schwinger formalism; se¢o Appendix 3 of the papdil4] where the 3D counterpart of
Sec. V. Eqg. (18) was analyzed. Since the kernels of the fofh®)

In Sec. IV, in contrast to that, another problem was eluci-play an important role in the discussed formalism, we
dated: how is linear confinement built up out of higher con-present an independent detailed analysis here both for pos-
densates of OPE? The answer is given by a comparison afble future applications and for the reader’s convenience.
Egs. (46)—(49) and (51). Indeed, the infinite sum of deriva- We are interested in the properties of the following func-
tives of field correlators in Eq51) is equivalent to the linear tion:
confinement term in Eq49), and to extract it explicitly one
needs to rearrange all derivatives. 1 1

We have briefly analyzed Abelian electrodynamics with f(,;,ﬁ):f dan dpp ex;{ —
monopoles in Sec. VI and described different possible 0 0
sources of nonstandard OPE terms, e.g@j?.1To investigate

OPE in Abelian models with confinement, notably in the . . o 7,5 ared-dimensional vectors with anglé between

AHM systematically, is an Interesting t".iSk for the future. o, “\We denote absolute values of the arguments; as
Finally, the last problem considered in the paper concerns

the derivation of OPE from the spectral representation of tha| 7l: #=1pl, and we assume in what follows, without loss

meson Green function. When the spectrum and coefficient@f generality, thaty=p. The symmetry of formulas below

¢, (equivalent to the quark decay constaht3 are known, Wltr_l respect to th_e exchange— » [which is manifest in the

the OPE is calculated automatically and can be compare@€finition (Al)] is to be restored by replacemenis

with that obtained “microscopically,” i.e., via Feynman dia- —MiMp, 7 and 7—maxp, 7}. . .

grams in the external fields and equations of motion. It is instructive to consider four different asymptotic re-
In thed=1+1 QCD, this program was fully investigated 9'°NS: o _ o e

in a series of paper&see, e.g.[38] and references thergin (1) 7:p~Tg: (i) 7>Tg; p~Tg; (i) 7,p>Tg; 6=1;

and a mismatch between condensates obtained in those tA%) ’7")>T95 0§1 . .
ways was found. In the region(i), one can expand E¢A1) in Taylor series

In the d=3+1 QCD, the situation is similar, and as with respect to both arguments. Subsequent integration is

shown in[39] and in the present paper, the mismatch ofStraightforward,
condensates in scales and order of magnitude is also evident.

ACKNOWLEDGMENTS

APPENDIX

(an—pBp)?
2

g

. (A1)

The situation is sharpened by the fact that the QCD sum .. 1 p?+5® 2pnycossd pt+ gt
rules fore*e™— hadrons reproduce experimental data for f(n.p)= 4 > T > 2
both choices of condensates. 8Tg 9Tg 24T
We have not tried here to resolve this puzzle, and leave it 2 2 1\ 2pncosd
for the future. There are two important topics in OPE we +P (co§0+ _> _ Pty
have not discussed. First, this is the partial summation of the 8T§ 2 15|"g1
OPE terms which can be done by introduction of nonlocal 5, o _6
condensates in OPE, initiated and studied[21,27. It X(p™t 77 +O(Tg"). (A2)

would be interesting to find the link between our treatment of

long-distance nonperturbative physics and the method dh derivation of expressioifi20) in the main text, we have
nonlocal condensates worked out [in1,22. Second, the used in fact the leading term of this asymptotice., 7).
problem of perturbative-nonperturbative interference, which In the regions(ii), (iii), and(iv), we will systematically
may produce new singular OPE terms, such @g,MWhich  omit exponentially small terms, i.e., terms proportional to
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0 (Vslm) = (yél2)
dy dx
sige T Jyer

exp(~ 7/T;) and also terms-exp(—p%/T;) in the regions 2

(iii ) and(|v) One easily obtains the followmg expression in f(7.p)=~— siné
the region(ii):

—\slpé (Vslp) +(yél2)
2 \/— 2 +f dyf &l dx
.. Tif1 mpcosd 1p Y
9z, Y7 -7 _
tCmp)= 246 T, '8 Tg(z co$o-1) J' f( )
)
7 p3cosésirto /
SET = +0(p"Y |. (A3) f f( s,p)+(y§/2) X2 B y2¢2
g yérR S 4s
Now we come to the regior(di) and(iv). It is instructive
to introduce the following variables: Xexr(—xz—yz)}, (A8)
T N\2
_(mp p7) _ 4n°p? i nz wherew= \/q(1/p—1/7) = (- p)cos@2)/T4. One can re-
TS T2 write Eq. (A8) in the following form:
N N 2
(mp+pm)?  np° _ gl (ig Vs Vs )
g
Js
and alsoé= \/s/\/q=2 tan(6/2). —f; F!Wff : (A9)

In the region(iii ), the upper limit of the integration in Eq.
(A1) can be shifted to infinity up to exponentially small cor-
rections. The functiori(7,p) in the region(iii) can be writ-
ten, therefore, as

where the¢ expansion of the functiong,f3,f, can be per-
formed systematically. It gives

o T4 ™ - exp(—zz)zz.
(7= —2s (6, I L e Bt
4np
T 278 ) ) 3
where ¢ (&) is given by 3| k@ \/;exp(—z )| €7+ 0(£5),
- (A10)
oz §)=erw) 2 (@) +[1-exp~w P22
z,w, &) =erf(w) = «(z —exp(—w) ] —-
|1~ §2)+y—§exp(—g) (A6) 2 ° )
2] m 4 7) +0(£%), (ALD)
The function¢g (&) is a monotonically decreasing function of where the functionc(z) is defined as
&. When¢ is going to infinity, ¢(&) is approaching the fol-
lowing asymptotics:
2
k(z)=erf(z)— —Zexp( —7%). (A12)
321 4 Vm
¢(§)—§+1—5?+0(§ ) (A7)

Extracting coefficient functions in front of higher powers in
. . ¢ is a matter of straightforward algebra.
At the pointé=2, which corresponds t6= /2 and hence The expression§A10) and (A1l) are exact at the given
orthogonal vectorsy and p, one finds¢(2)=1, in agree-  order in£ up to omitted exponentially small terms. They can
ment with simple direct calculation from E(AL). be simplified in different limiting cases. =0 (i.e., 7
We are now in the position to analyze the properties of=p) one hasf,=0, while the first two terms on the rhs of
f(n p) in the region (iv), where é~6<1. Making the Eq. (A9) are equal. In the opposite limit— o, the follow-
change of variables, one gets from E41) ing relations hold true:
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To\m

: Vs ) Vs } : - - p 7 n—p\[p 7
M'/'Lnx[g P -1, p W,—§&]|=0, (LTOf(n,p) 6 772erszErf T, ) o
(Al15)
lim f2(£5 W 5) :g(\/_g _§>. (A13) One needs some simple extrapolating represe_ntation of
wowe A7 7’ Eqg. (Al) for practical calculations. Notice that it is only

asymptotic behavior of (7,p) that matters; the particular
Notice that in all cases the first argument of the functionsiorm of Gaussian kernel was taken in E#1l) just as an
0,f, need not be small;/§/77=(2p/Tg)sin(0/2) and in the example. A possible expression respecting all desired prop-
region(iv) p>T,, but 6<1. erties off in the regions of largey,p is as follows:

In terms of the original variables,p, 6, the leading term 4

in Eg. (A9) can be represented as . T
% (A9 P f(mp)~—2=1(0), (A16)
p 4np
- T4 2p sini where the functiori(6) has the following “focusing” prop-
f(;y,[;)% 292 K [1+erf(w)] erty: being integrated with a regular functié(6), it acts
64 sin’*fco% P T like a smootheds function (see[14]),
2
0 f doF(0)l(8)~c /[)—:%F(CO—Tgj +c fdaF(e)
27 sins L3t p 2 ‘

9
[1—erf(w)] |, (A14) (A17)
wherecg,Cq,C, are some constants of the order of unity. It is
where w=(7—p)cos@?2)/T, and «x(z) is defined in Eq. worth remembering that is the length of the smaller vector
(A12), k(z)>0 if z>0. This expression is valid in the small- in our notation, i.e.p=min{p,7}. In particular, it is seen that

+ K

0 limit. in the limit of largep>T,, the small¢ asymptotics gives a
Notice thatf is nonsingular if 0—0 [which is evident dominant contribution unlesE(6) vanishes at the origin
from Eq. (A1)], faster thang®.
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