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Interaction of Wilson loops in a confining vacuum
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Nonperturbative and perturbative interaction mechanisms of Wilson loops are studied within the background
field formalism. The first one operates when the distance between the minimal surfaces of the loops is small
and may be important for sea quark effects and strong decay processes. The second mechanism—the pertur-
bative interaction in a nonperturbative confining background—is found to be physically dominant for all loop
configurations characteristic of scattering processes. It reduces to perturbative gluon exchanges at small dis-
tances, while at larger distances it corresponds to thet-channel exchange of glueball states. A comparison to
other approaches is made and the possible physical applications are discussed.
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I. INTRODUCTION

The interaction of Wilson loops in QCD is the basic e
ment of many physical applications. One can mention
hadron-hadron scattering amplitude, in particular the p
nomenology of Pomeron exchange; the assumed color tr
parency phenomenon, strong hadron decays and Ok
Zweig-Iizuka-~OZI-! forbidden processes, etc. There is a
considerable interest in calculating Wilson loop and Pol
kov loop correlatorsper se, not only in QCD but also in
other field theories, in particular in supersymmetric Yan
Mills theory. In all cases one starts with the connected av
age of two~or more! Wilson loops and tries to calculate it i
the region of interest using the appropriate field-theoret
technique. It is the aim of the present paper to do this in
framework of the field correlator method in gluodynami
~see, e.g., the review@1# and references therein! incorporat-
ing both perturbative and nonperturbative contributions.
us briefly recall the basic ideas behind the method. The g
eral Wilson loop approach was introduced originally f
heavy quarkonia@2#. For quarks of finite mass one can u
the Feynman-Schwinger representation~see@3# for a review
and references therein! to write the meson Green’s functio
as an integral over all possible Wilson loops formed by
quark trajectories and finally to express the meson~and
baryon! dynamics in terms of gauge-invariant correlators
the field strengths, characterizing the properties of the c
fining background. When going to the hadron-hadron sca
ing one can adopt the same formalism to express the sca
ing amplitude through the vacuum average of the produc
two Wilson loops, with the subsequent integration over
ensemble of loops. To proceed, we use the background
formalism to separate nonperturbative gluon configurati
from perturbative ~sometimes called ‘‘valence’’! gluons.
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Thus the answer will contain two parts: purely nonperturb
tive and perturbative inside a nonperturbative backgrou
i.e., glueball exchanges between Wilson loops.

For the former it is convenient to use the non-~Abelian!
Stokes theorem and express the answer in terms of
gauge-invariant field correlators and finally via the stri
tension. The perturbative part in a nonperturbative ba
ground physically corresponds to an exchange of glue
states between loops. We shall keep the number of colorsNc
as a free parameter in what follows. It will be argued that
leading term for a typical kinematics of the scattering p
cess is the~background-modified! perturbative one. This is in
line with the old observation that the high-energy scatter
amplitude is dominated by the Pomeron exchange. We do
consider here the leading in 1/Nc terms of ordinary Reggeon
exchanges, which formally refer to the one-loop case and
subleading in the high-energy limit. We are also not discu
ing pion exchanges which may give the main contribution
some cases at not large energies; we will concentrate
attention on the case of the theory without dynamical qua
i.e., gluodynamics. In another physical situation, e.g., wh
accounting for the sea quark loops or for a decay transi
of a hadron state, the roles of the perturbative and non
turbative mechanisms may change depending on the ha
quantum numbers. In all cases, however, the loop-loop in
action is the starting point of the field correlator formalis
application for scattering, strong decay, etc. In Sec. II
introduce the general background formalism for the inter
tion of Wilson loops. In Sec. III the nonperturbative mech
nism is studied in detail. In Sec. IV perturbative gluon e
change is shown to transform into the glueball exchan
mechanism at large distances. Section V is devoted t
physical discussion of the results and a brief compari
with the existing models.

II. INTERACTION OF WILSON LOOPS IN THE
BACKGROUND FIELD FORMALISM

In this section we are going to exploit the backgrou
field formalism@4# in the form worked out in@5#. We refer
©2002 The American Physical Society12-1
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V. I. SHEVCHENKO AND YU. A. SIMONOV PHYSICAL REVIEW D66, 056012 ~2002!
the interested reader to the cited papers for all the details
recall the basic steps only briefly. We start with decompos
the gluon fieldAm(x) into a nonperturbative backgroun
Bm(x) and a perturbative partam , propagating in the back
ground:

Am5Bm1am . ~1!

The total gauge transformation is decomposed as

Bm→U†S Bm2
i

g
]mDU, am→U†amU. ~2!

The principle of separation is of no importance at the leve
the partition function due to the obvious identity

Z5
1

NE DAm exp~2S@A# !

5
1

N8
E DBmE Dam exp~2S@B1a# ! ~3!

~here gauge-fixing and ghost terms are assumed to be
cluded in the measure of integration!. The Wilson loop de-
pends on bothBm andam :

W~C!5
1

Nc
TrP expS igE

C
~Bm

c 1am
c !tcdzmD

5
1

Nc
lim

M→`

Tr )
m51

M

P$11 ig@Bm~z[m] !

1am~z[m] !#Dzm
[m]%. ~4!

The trace in fundamental representation is normalized a

Tr1̂5Nc , Trtatb5
1

2
dab.

Our general strategy is the following@5#: we expand the
correlators under study in powers of the fieldam , while ac-
counting for effects caused by the nonperturbative ba
ground exactly~i.e., without expansion in powers ofBm);
namely, one has

W~C!5W(0)~C!1W(1)~C!1W(2)~C!1••• ~5!

where, e.g.,

W(1)~C!5
ig

Nc
TrPzuE

C
am~z!dzm

3expS igE
Cz

Bn~u!dunD , ~6!

while W(0)(C) contains only the fieldBm and the ordering
operator Pzu takes care of the orderingam(z) andBm(u).

Let us define now the connected average of two Wils
loops as
05601
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g

f

in-

-

n

x~C1 ,C2!5^W~C1!W~C2!&2^W~C1!&^W~C2!&. ~7!

This average can also be expanded in powers ofgam :

x~C1 ,C2!5x (0)~C1 ,C2!1x (2)~C1 ,C2!

1x (4)~C1 ,C2!1••• . ~8!

Here x (0)(C1 ,C2) is the purely nonperturbative interactio
of two Wilson loops and depends only on the fieldsBm ,
while higher termsx (n)(C1 ,C2) are proportional to the av
erage of (gam)n. One immediately notices that since^W(1)&
is identically zero the termx (2)(C1 ,C2) vanishes and the
expansion starts with the two-gluon exchange te
x (4)(C1 ,C2).

In some cases theC-odd exchange contribution~odderon
type! is also important; it is contained inx (6)(C1 ,C2). In
what follows we discuss mostly the purely nonperturbat
term x (0)(C1 ,C2), and in the last part of the paper also th
two-gluon exchangex (4)(C1 ,C2) in Sec. IV.

III. NONPERTURBATIVE INTERACTION OF WILSON
LOOPS

We consider in this section the first term in the expans
~8!, namely,x (0)(C1 ,C2), and use the contour gauge@6# to
write down the Wilson loop as a surface integral:

W~C!5
1

Nc
Tr,P expS igE

S
Fmn~u,x0!dsmn~u! D . ~9!

We have defined in Eq.~9! Fmn(u,x0)5FLx0u
Fmn(u)FLux0

where the phase factors along the curveLx0u with the edge

pointsx0 andu are given by

FLx0u
5P expS igE

u

x0
Bm~z!dzm D . ~10!

Consider Wilson loops defined for two contoursC1 andC2,
where individual minimal surfaces will be denoted asS1

min

and S2
min , respectively, throughout the paper.1 The typical

problem in the discussed framework is to choose optim
integration surfaces in integrals of the form~9!. The Wilson
loop ~9! is gauge invariant and surface independent. Fo
single Wilson loop it can be argued~see discussion and ref
erences in@1,7#! that in the case of a minimal surface~which
is obviously the distinguished surface for a given conto!
the dominant nonperturbative contribution in the cluster
pansion of Eq.~9! comes from the lowest, Gaussian co
relator of the field strength operators. This property is kno
as Gaussian dominance@8# and it plays an important role in
all phenomenological applications of the field correla
method.

In the physical picture described above the appearanc
the minimal surface has been in some sense a result o

1For any surface we use one and the same letterS for a surface as
geometrical object and for its area.
2-2
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INTERACTION OF WILSON LOOPS IN A CONFINING VACUUM PHYSICAL REVIEW D66, 056012 ~2002!
field correlator dynamics. However, one can take anot
view by saying that Gaussian dominance corresponds to
profile of the confining string worldsheet that minimizes t
total energy of the system. In other words, to calcul
^W(C)& one may proceed as follows: First, find the minim
energy of the confining string configuration~trivially corre-
sponding to the minimal area surface in the case of a sin
static loop! and, as the next step, calculate the average~9!
with a Gaussian ensemble of correlators integrated over
surface. It is this principle which we shall use in what fo
lows to choose the shape of the surfaces entering our p
lem. For example, the Green’s function describing an in
acting two-meson system

G[4]5^CLxx̄

† CLuū

† CLyȳ
CLvv̄

& ~11!

where

CLyȳ
5f†~y!FLyȳ

f~ ȳ!

and f(x), FLyȳ
represent quark fields and phase fact

along the contourLyȳ , respectively, must be dominated
large separation/time by the confining string configuration
lowest total energy, in direct analogy with the case o
single meson.

It should be stressed from the very beginning that in
approach adopted by us in the present paper the confi
strings are assumed to be infinitely thin. Correspondingly,
do not study the effects of string overlap, and assume tha
two well separated loops the minimal configuration of co
fining strings is given by two individual minimal surface
with no common points of intersection, which means that
average^W(C1)W(C2)& factorizes into^W(C1)&^W(C2)&
and no nonperturbative interaction takes place. This is
contrast to another approach, which is also based on the
correlator method, but follows a different logic. The strate
started in@9# has many successful phenomenological ap
cations and modifications~see, e.g.,@10#!. The integration
surfaces are taken in, e.g.,@11# as individual minimal sur-
faces for each contour and all physical effects are due to
nonzero value of string thicknessTg which brings about non-
zero overlap between hadron Wilson loops. In other wor
the expressions~31!,~32! have a nontrivial limit if Tg→0,
while the string tensions;^F2&Tg

2 is kept fixed, in contrast
to the corresponding expressions from@9–11# which vanish
in this limit. Accordingly the hadron-hadron cross section
that approach is proportional toTg in the tenth power@10#
and is very sensitive to the exact value ofTg . It is worth
mentioning that the existing lattice calculations yield valu
in the range 0.35 fm.Tg.0.1 fm for different numbers of
colors and light quark flavors~see @12# and references
therein!. However, the discussed difference between phys
pictures is not just a question of numbers. We assume ph
cal rearrangement of the confining strings at small distan
~which could in principle be detected on the lattice for sta
contours!, as happens, e.g., for soap films. For example,
answers~37! and ~39! for parallel and oppositely oriente
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contours are drastically different, just because of the differ
geometry of the strings providing the minimal energy co
figuration. On the other hand, it remains to be studied wh
nonperturbative effect~the overlap due to the finite trans
verse size of the string or string rearrangement! plays the
dominant role for the particular geometry of loops. We w
argue that for the high-energy scattering case neither d
and the dominant contribution comes from the exchange
reggeized gluons in a confining background, i.e., Pomero

So, we adopt the following algorithm for computing th
nonperturbative Wilson loop correlator. First, for a given g
ometry of the contours, we have to find the confining stri
configuration which gives the dominant contribution to t
quantity ^W(C1)W(C2)& ~notice that there might be differ
ent surfaces for different representations that appear in
expansion of the product of fundamental Wilson loops!. If
the configuration providing the maximum coincides with i
dividual minimal surfaces, we conclude that the nonpert
bative interaction is absent. As the second step, we calcu
the correlatorx (0)(C1 ,C2) via Eq. ~9! in terms of gauge-
invariant field correlators. We assume that the ensemble
correlators obeys the same hierarchy on this surface a
does on the minimal surface for a single Wilson loop, i.
exhibits Gaussian dominance.

We keep generality at the moment and perform
vacuum averaging of Wilson loops, i.e., we explicitly calc
late x (0)(C1 ,C2). Suppose that surfacesS1 ,S2 have already
been chosen according to our criteria. For field-strength t
sors belonging to surfacesS1 andS2 and gauge-transporte
to the same pointx0 we define

~Fds!(1)~u!5Fmn~u,x0!dsmn~u!, uPS1 , ~12!

and analogously for the second surface. One can now w
down the product of two Wilson loops in matrix form as

Nc
2^W~C1!W~C2!&

5K Tr1Tr2 ,P12FexpS igE
S1

~Fds!(1)~u! D G
a1b1

3FexpS igE
S2

~Fds!(2)~v ! D G
a2b2

L ~13!

where the traces Tr1 and Tr2 go over indices carrying sub
scripts 1 and 2, respectively, and the ordering operator12
orders the products of matrices in a proper way according
the definition of the P exponent~4!.

One can derive the following rule for vacuum averagi
of several matrix operators, transported to one point~it is
easy to show that these relations are gauge invariant u
field-independent gauge transformations!:
2-3
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^@F~u(1),x0!•••F~u(k),x0!#a1b1
@F~v (1),x0!•••F~v (m),x0!#a2b2

&

5
da1b2

da2b1

Nc
221

F ^Tr@F~u(1),x0!•••F~u(k),x0!F~v (1),x0!•••F~v (m),x0!#&

2
1

Nc
^Tr@F~u(1),x0!•••F~u(k),x0!!Tr~F~v (1),x0!•••F~v (m),x0!#&G

1
da1b1

da2b2

Nc
221

F ^Tr[F~u(1),x0!•••F~u(k),x0!Tr~F~v (1),x0!•••F~v (m),x0!#&

2
1

Nc
^Tr@F~u(1),x0!•••F~u(k),x0!F~v (1),x0!•••F~v (m),x0!#&G . ~14!
lo
tri
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For the lowest Gaussian correlator whenk5m51 one has,
from Eq. ~14!,

^@F~u,x0!#a1b1
@F~v,x0!#a2b2

&

5
^TrF~u,x0!F~v,x0!&

Nc
221

S da1b2
da2b1

2
1

Nc
da1b1

da2b2D .

~15!

The above relations are valid in theories without global co
symmetry breaking. Now one can proceed with the ma
cumulant expansion~see, e.g.,@13#!:

Nc
2^W~C1!W~C2!&

5Tr1Tr2 ,P12expS (
n51

`
~ ig !n

n!
^^F̃~1!•••F̃~n!&& D

~16!

where we use the notation

F̃~k!5E
S1

~Fds!(1)~u(k)!1E
S2

~Fds!(2)~v (k)!. ~17!

Here the double brackets^^•••&& denote irreducible correla
tors ~see the definition in@1,13#!. The quantityF̃(k) carries
four independent fundamenatal color indices and the tra
Tr1 ,Tr2 go over indices corresponding toF (1) andF (2), re-
spectively.

Expression~16! provides the basis for our discussion. F
a single loop the corresponding cluster expansion is given

^W~C1!&5
1

Nc
Tr1 ,P

3expS (
n51

`
~ ig !n

n! K K E
S1

~Fds!(1)~u(1)!•••••

3E
S1

~Fds!(1)~u(n)!L L D ~18!

and in the area law regime~which means that the typica
05601
r
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sizes of the loops are larger than the gluon correlation len
Tg) one gets

^W~C1!&}exp~2sS1
min!. ~19!

The string tensions is given by

sS1
min5

1

2Nc
E

S1

ds~u(1)!E
S1

ds~u(2)!

3^TrgF~u(1),x0!gF~u(2),x0!&1••• ~20!

where the ellipsis denotes higher non-Gaussian terms.
mentioned above, we do not take into account perime
terms; it is implicitly supposed that all the considered loo
are large enough in this sense. It is straightforward to rew
Eq. ~16! combined with Eqs.~18! and ~14! in the following
way:

Nc
2^W~C1!W~C2!&

5Tr1Tr2 exp@ 1̂•~L01L1!1ê•Le# ~21!

where

L052sS12sS2 ~22!

and the termsL1 andLe contain correlators of powers ofF
defined on different surfaces and hence provide a contr
tion to x (0). They are as follows:

L156
g2

Nc~Nc
221!

E
S1

ds~u(1)!

3E
S2

ds~v (1)!^TrF~u(1),x0!F~v (1),x0!&1•••

~23!

and
2-4
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Le57
g2

Nc
221

E
S1

ds~u(1)!

3E
S2

ds~v (1)!^TrF~u(1),x0!F~v (1),x0!&1•••

~24!

where the ellipses again denote higher non-Gaussian te
The upper~lower! sign in the above expressions correspon
to the case of parallel~opposite! orientation of the contours
C1 andC2 and surfacesS1 andS2 ~we assume that the ori
entation of the surface is fixed by the orientation of
boundary contour!.

The matrix structures 1ˆ andê introduced above are give
in index notation by

@ 1̂#a1b1 ;a2b2
5da1b1

da2b2
;

@ ê#a1b1 ;a2b2
5da1b2

da2b1
. ~25!

It can be checked that the matrices 1ˆ andê obey the follow-
ing algebra:

ê•1̂51̂•ê5ê, 1̂251̂, ê251̂ ~26!

for the case of parallel orientation of surfaces and

ê•1̂51̂•ê5ê, 1̂251̂, ê25Ncê ~27!

for antiparallel orientation. We also notice that in both ca
Tr1Tr21̂5Nc

2 and Tr1Tr2ê5Nc .
With Eqs.~26!, ~27! at hand, we can easily compute E

~21!. For parallel orientation of surfaces one gets

x (0)~C1 ,C2!5F1

2 S 12
1

Nc
Dexp~L01L12Le!

1
1

2 S 11
1

Nc
Dexp~L01L11Le!G

2exp~L0
min! ~28!

where the last term corresponds to the product of average
two loops. For oppositely directed contours the result is

x (0)~C1 ,C2!5F 1

Nc
2

exp~L01L11NcLe!

1S 12
1

Nc
2D exp~L01L1!G2exp~L0

min!.

~29!

Expressions~28!,~29! together with the prescription for th
choice of optimal integration surface provide the answer
the nonperturbative interaction term. Let us come to conc
examples and first consider the simplest possible case w
S15S1

min,S25S2
min , and S2

min,S1
min ~see Fig. 1!. As ex-
05601
s.
s
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plained in detail above, we always assume Gaussian do
nance. One easily gets the following result for the conto
with linear sizes greater thanTg and omitting perimeter con
tributions:

L156
2

Nc
221

sS2
min , Le57

2Nc

Nc
221

sS2
min , ~30!

and Eqs.~28!,~29! become

x (0)~C1 ,C2!

5exp~2sS1
min2sS2

min!•F1

2 S 12
1

Nc
DexpS 2sS2

min

Nc21 D
1

1

2 S 11
1

Nc
DexpS 2

2sS2
min

Nc11 D G
2exp~2sS1

min2sS2
min! ~31!

for parallel orientations and

x (0)~C1 ,C2!

5exp~2sS1
min2sS2

min!•F 1

Nc
2

exp~2sS2
min!

1S 12
1

Nc
2D expS 2

2sS2
min

Nc
221

D G
2exp~2sS1

min2sS2
min! ~32!

for opposite orientations. It is worth recalling thatS1
min

.S2
min by our convention.

Notice that in the case of coinciding but oppositely d
rected contours~i.e., C5C15@C2#†), expression~32! gives
the Casimir scaled adjoint string tension:

sad j5
2Nc

2

Nc
221

s. ~33!

FIG. 1. Planar geometry of the Wilson loops forS2
min,S1

min ~the
case of coinciding orientations!.
2-5
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This result is to be expected since, as already mentio
Gaussian dominance yields Casimir scaling@7#. If both con-
toursC1 ,C2 lie on the same plane andC2 is insideC1, the
geometry becomes effectively two dimensional and the
sults ~31!,~32! coincide with formulas obtained in a slightl
different way in @14#. The same expressions hold true
~111!-dimensional Yang-Mills theory, where one has ju
two-dimensional geometry and, on the other hand, an e
Gaussian picture. One can also look upon Eqs.~31!,~32! as
an algebraic rule for adding up parallel or antiparallel fund
mental fluxes which illustrate the decomposition3^ 353̄
% 6 and3^ 3̄51% 8, respectively, with the string tension i
each representation given by the Casimir scaling law.

We are now interested in the case of contours separ
by distances greater thanTg . By way of example let us
calculate the purely nonperturbative correlator of two Wils
loops ^W(C1)W(C2)& for simple rectangular geometry o
the contours. We choose two rectangular contoursR3T ly-
ing on parallel planes, at a distanceh from each other~see
Figs. 2 and 3!. We suppose thatT@R and will not take care
of subleading 1/T terms. If h is of the order ofTg , one
comes back to the case described by Eqs.~31!,~32!. We take
the distanceh such thatR*h*Tg , where the strings are
supposed to rearrange themselves. Consider first the ca
opposite loop orientations and let us examine differ
choices of surfaces. As a trivial example we might adopt
same choice as above, namely,S15S1

min, S25S2
min . The

first term in square brackets in Eq.~29! contributes to
^W(C1)W(C2)& as

1

Nc
2

exp~22sRT!,

as it should, sinceL05L0
min5sS1

min1sS2
min52sRT and

FIG. 2. Nonperturbative interaction of rectangular Wilson co
tours. The minimal string profile for the case of opposite orien
tions is given by ‘‘enveloping’’ geometry. Leading large area co
tribution corresponds to annihilation of fluxes alongR.
05601
d,

-

t
ct

-

ed

of
t
e

L15Le50 for this choice of surfaces@up to exponentially
small terms;exp(22h/Tg), which we always omit in this
paper#. Correspondingly, the second term in square brack
in Eq. ~29! would be

S 12
1

Nc
2D exp~22sRT!

with the sum of the two giving the expected answ
^W(C1)&^W(C2)&5exp(22sRT) and hencex (0)50. One
immediately sees that this choice is not optimal ifh is small.
Instead, if we chooseS1 as a minimal enveloping surfac
with a boundary onC1 and coinciding withS25S2

min inside
C2 ~due to the apparent symmetry of our problem, one co
of course easily interchange the indices 1 and 2!, we get for
the first term in square brackets in Eq.~29!

1

Nc
2

exp~22shT!

where 2hT5S125S12S2. The second term contributes t
^W(C1)W(C2)& as

S 12
1

Nc
2D exp~22shT2sad jRT!

wheresad j is given by Eq.~33! and this contribution is al-
ways subleading with respect to the former one ifR@h and
Nc is not exponentially large~see below!. So these two dif-
ferent choices give different answers for the Wilson lo
correlator:

^W~C1!W~C2!&5exp~22sRT! ~34!

-
-
-

FIG. 3. Nonperturbative interaction of rectangular Wilson co
tours. The time slices of the minimal string profile for the case
parallel orientations are depicted. It is assumed thatNc53. The
leading large area contribution corresponds to a single fundame
flux in the R direction.
2-6
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in the first case~two individual minimal surfaces! and

^W~C1!W~C2!&5
1

Nc
2

exp~22shT!1S 12
1

Nc
2D

3exp~22shT2sad jRT! ~35!

in the second case~enveloping geometry!. According to our
criteria, the answer that is dominant should be chosen
correct, since it corresponds to the actual string configu
tion. It is seen that there is a critical distance between loo

hcrit'R2
1

sT
logNc , ~36!

in our problem.2 For h,hcrit confining strings rearrang
themselves3 with respect to the noninteracting case, which
encoded in the expression~35!. Correspondingly, one ha
nonzero x (0). For larger h they do not interact and
x (0)(C1 ,C2) vanishes. It is important that in our picture
happens dynamically; in particular, one cannot just naiv
take the largeNc limit in Eqs. ~28!,~29!. On the other hand, if
h is kept fixed, then it is clear from Eq.~36! that in the large
Nc limit x (0) should vanish. It is worth saying that withT
going to infinity in Eqs.~34!,~35!, hcrit is increasing and
approachingR; therefore for static loops the minimal energ
state always wins eventually, as it should.

To summarize, the answer is given by

x (0)5
1

Nc
2

exp~22shT!1S 12
1

Nc
2D exp~22shT2sad jRT!

2exp~22sRT! ~37!

if h,hcrit andx (0)50 if h.hcrit . We now come to the cas
of parallel orientations. Let us consider the two geometr
analyzed above. The case of individual minimal surface
identical for parallel and opposite orientations and has
been considered. The enveloping geometry gives for the
term in square brackets in Eq.~28!

1

2 S 12
1

Nc
DexpS 22shT2

2sRT~Nc22!

Nc21 D ,

while the second term becomes

1

2 S 11
1

Nc
DexpS 22shT2

2sRT~Nc12!

Nc11 D
and is always subleading. In the particular caseNc53 the
former term corresponds to the creation of the string in3̄
representation of the lengthR which has the same tension a
the fundamental string, while the second term describes

2For Abelian confining strings including soap films the last term
Eq. ~36! is absent.

3See also@15#, where static multiquark interactions were studi
in the strong coupling expansion regime.
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sextet representation string formation65Symm$3^ 3% with
tension 2(Nc12)/(Nc11)52.5 times larger than the funda
mental one. In this particular case ofNc53 one can addi-
tionally consider a double Y-shape profile, shown in Fig.
with the result for the first term in square brackets in Eq.~28!

1

3
exp~2A3shT2sRT!.

SinceA3,2, this term is seen to be dominant over the e
veloping geometry in theNc53 case.

As in the opposite orientation case there appears a cri
lengthhcrit which for Nc53 is given by

hcrit5
1

A3
S R2

log 3

sT D . ~38!

The expression forx (0) becomes (Nc53)

x (0)~C1 ,C2!5exp~2sS12!•F1

3
exp~2sS3!

1
2

3
expS 2

5sS3

2 D G2exp~22sRT!

~39!

whereS12 represents the boundary surfaceS1254hT/A3 and
S35(R2h/A3)T is the common part ofS1 and S2. Notice
that l crit5R2hcrit /A3.0; therefore one is never in th
situation ofS3 shrinking to zero.

The physical picture is the same as for oppos
orientations—at small distancesh, hcrit.h*Tg , the pref-
erable string configuration is given by the double Y-sha
profile shown in Fig. 3 while at larger distances there is
common string state formation and hence the nonpertu
tive interaction is absent,x (0)(C1 ,C2)50.

To conclude this section let us say a few words about
case of distant loops. If contours are distant from each ot
it is always preferable to deformS12 to two disks, corre-
sponding to minimal surfaces for each contour plus whate
thin tube connects these surfaces through the pointx0, thus
reducingx (0)(C1 ,C2) to zero. This is a sign that the purel
nonperturbative contribution vanishes, and one should c
sider next terms in the expansion~8!, namely,x (4)(C1 ,C2).
It is important to realize that the surface entering Eq.~9! is
not dynamical,4 which is reflected in the possibility of infi-
nite squeezing of the tube connecting two distant minim
surfaces. The situation changes, however, when one inclu
perturbative gluons, propagating inside its wall and formi
a physical glueball state in this way. It is actually this glu
ball exchange mechanism which corresponds to the t

4It has come from the Stokes theorem and therefore could
arbitrary, subject to our principle of minimal action.
2-7
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x (4)(C1 ,C2) when the background field is taken into a
count. We study this term in the next secton.

IV. GLUEBALL EXCHANGE INTERACTION

We now turn to the termx (4)(C1 ,C2) in the expansion
~8!. We shall see that in the absence of a nonperturba
background this term reduces to the purely perturbative t
gluon exchange term suggested in@16# as a basic element o
Pomeron exchange. To be more precise, let us consider
the case of no background fields. In the Feynman gauge
am , one has in the lowest order
n
-

r t

on

05601
e
-

rst
or

^am
a ~x!an

b~y!&5dmndab
1

4p2~x2y!2
. ~40!

Our expression forx (4) will have the same form as Eq.~21!,
where one should keep only the nonperturbative backgro
field Bm in diagonal correlatorŝTrF1F1& while terms pro-
portional to ^TrF1F2& contain only perturbative exchange
These perturbative exchanges are modified, however, by
presence of the nonperturbative background. To take it
account, one has to perform averaging in two steps: firs
the valence~perturbative! field am and second in the back
ground fieldBm :
^W~C1!W~C2!&5
g4

Nc
2
Tr1Tr2 ,P12E dxm1

(1)E dxm2

(2)E dyn1

(1)E dyn2

(2)
•FC1

~x(2),x(1)!ta1FC1
~x(1),x(2)!ta2FC2

3~y(2),y(1)!tb1FC2
~y(1),y(2)!tb1

•@^a~x(1)!a~y(1)!&^a~x(2)!a~y(2)!&1^a~x(1)!a~y(2)!&

3^a~x(2)!a~y(1)!&# ~41!
al

le

rcs
ors
r

r-
1.
where the shorthand notationa(x(1))[am1

a1 (x(1)) was used.

The coordinatesx(1),x(2) are ordered along the contourC1
and y(1),y(2) are ordered along the contourC2. Notice also
the gauge invariance of Eq.~41! due to the transformation
law ~2!.

Before proceeding further one is to define the depende
of ^am(x)an(y)& on background fields. To this end it is con
venient to use the Feynman-Schwinger representation fo
gluon Green’s function@3# and represent it as

Gmn
ab5^am

a ~x!an
b~y!&

5E
0

`

ds~Dz!xy exp~2K0!Fmn
ab~x,y! ~42!

where

K05
1

4E0

`

dtS dzm

dt D 2

and

Fmn
ab~x,y!5FPFPA expS igE

y

x

Am~z!dzmD
3expS 2gE

0

s

dtF„z~t!…D G
mn

ab

anda,b are adjoint color indices, whereasm,n are Lorentz
indices, i.e.,@F#mn

ab52 iF mn
c f abc.

To understand better the topology of the resulting c
struction, it is useful to consider the largeNc limit. One can
write in this limit for the adjoint phase factors in Eq.~42!
ce

he

-

@ ta#abFab~x,y!@ tb#gd

5PA expS igE
y

x

ÂldzlD ab

@ ta#ab@ tb#gd

5Fad~x,y!Fgb~y,x!1OS 1

Nc
D ~43!

whereFad(x,y) is a parallel transporter in the fundament
representation. The expression~43! exemplifies the well
known ’t Hooft rule for replacing the gluon line by a doub
adjoint in the largeNc limit. Inserting Eq.~43! into Eq.~41!,
one obviously obtains two new Wilson loopsC12 and C128
instead of the previousC1 andC2: each initial loop is now
divided by two gluon emissions/absorptions into two a
which are connected by double lines of gluon propagat
~see Figs. 4 and 5!. At small Nc this construction goes ove
into that of two fundamental loopsC1 andC2 connected by

FIG. 4. Dominant two-gluon glueball term responsible for pe
turbative interaction with the two-dimensional geometry of Fig.
2-8
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INTERACTION OF WILSON LOOPS IN A CONFINING VACUUM PHYSICAL REVIEW D66, 056012 ~2002!
two adjoint lines and the final result will amount to replaci
a double fundamental string worldsheet by one adjoint str
wordsheet. In terms of string tensions it corresponds to
placement of 2s by 9s/4 in the Gaussian approximation
We will keep the largeNc limit and replacement~43! in what
follows.

The averaging over background fields leads to the follo
ing result:

^^W~C1!W~C2!&a
(4)&B5x (4)~C1 ,C2!

5
g̃4

Nc
2EL12

ds1Dz(1)E
L128

ds2Dz(2)

3exp~2K0
(1)2K0

(2)!

3^W~C12!W~C128!& ~44!

whereg̃25g2Nc . Here the contoursC12 andC128 comprise
pieces ofC1 andC2 connected by two double fundament
linesL12 andL128. It is understood that the surfacesS12,S128
are subject to our general assumption about minimal act
This gives different forms depending on the distance
tween the original loopsC1 and C2 ~see below!. It is also
understood that the gluon spin operators 2gF(z) are to be
placed on the gluon trajectoriesL12 andL128 in accordance
with Eq. ~42!. It will produce gluon spin interaction term
which influence the glueball Green’s function; to simpli
discussion we omit these terms at the moment.

Now we can use the largeNc factorization property for
the product̂ W(C12)W(C128)& and use area law asymptotic
for each piece, i.e., for surfacesS12 andS128. One obtains

x (4)~C1 ,C2!5
g̃4

Nc
2EL12

ds1Dz(1)E
L128

ds2Dz(2)

3exp~2K0
(1)2K0

(2)!exp@2s~S121S128!#.

~45!

FIG. 5. Dominant two-gluon glueball term responsible for p
turbative interaction in nonperturbative background at large
tances. Gluon propagator lines are replaced by double fundam
lines in largeNc limit.
05601
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To define the profiles of the surfaces we shall use the s
principle outlined above, i.e., we require the effective va
of the areâ S121S128& averaged over possible gluon traje
toriesL12 andL128 to be minimal. The result will of course
strongly depend on the relative positions and orientations
the contoursC1 andC2. In the first case when both loops li
on the same plane andC2 is entirely insideC1, it is clear that
the sumS121S128 does not depend on trajectoriesL12 and
L128, and one hasS121S1285S12S2. Thus one obtains ef-
fectively the surfaceS1 with the hole due toC2, i.e., a con-
struction which has already appeared in purely nonpertu
tive term for oppositely oriented contoursC1 ,C2, but now
with two valence gluons connecting contoursC1 andC2 ~see
Fig. 4!.

However, for large enough distances the true minimum
S121S128 is reached by another construction—when the t
contoursC1 andC2 are connected by a narrow strip forme
by the trajectoriesL12 and L128 with the double~adjoint!
string worldsheet between them~Fig. 5!. This narrow strip is
nothing but the glueball Green’s function and the width
the strip is equal to the average size of the lowest-mass g
ball, i.e., around 0.5 fm. Notice that due to the kinetic ter
in Eq. ~45! this strip is dynamical~contrary to the nonpertur
bative case! and cannot be shrunk. This is a typical constru
tion for the high-energy scattering amplitude when the gl
ball exchange diagram is gradually replaced by the glue
Regge trajectory exchange, i.e., by Pomeron exchan
which persists to larger experimentally accessible energi

To demonstrate that explicitly, one should rewrite the e
pression~45! directly in terms of the glueball Green’s func
tion:

x (4)~C1 ,C2!

^W~C1!W~C2!&
5P12E

C1

dxm1

(1)E
C1

dxm2

(2)E
C2

dyn1

(1)

3E
C2

dyn2

(2)@Gm1m2

n1n2 ~x(1),x(2)uy(1),y(2)!

1~y(1)↔y(2)!# ~46!

where Gm1m2

n1n2 (x(1),x(2)uy(1),y(2)) is the two-gluon glueball

Green’s function, describing propagation from poin
x(1),x(2) to y(1),y(2), which has the Feynman-Schwinger re
resentation as in Eq.~45!. The spectrum of this Green’s func
tion ~with spin terms included! was computed analytically in
@17#.

When all points are close to each other, i.e.,

ux( i )2x( j )u!Tg , ux( i )2y( j )u!Tg ,

one can replace the glueball Green’s function by the prod
of free gluon propagators

Gm1m2

n1n2 ~x(1),x(2)uy(1),y(2)!

;g4
dm1n1

dm2n2

~2p!4~x(1)2y(1)!2~x(2)2y(2)!2
. ~47!

-
-
tal
2-9
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V. I. SHEVCHENKO AND YU. A. SIMONOV PHYSICAL REVIEW D66, 056012 ~2002!
Another asymptotics is available when bothux( i )2y( j )u are
large; then the spectral decomposition is possible:

Gm1m2

n1n2 ~x(1),x(2)uy(1),y(2)!

;(
n

Cm1m2

(n) ~x(1),x(2)!Cn1n2

(n) †~y(1),y(2)!

•expS 2Mn•Ux(1)1x(2)

2
2

y(1)1y(2)

2 U D . ~48!

Since the lowest glueball is rather heavy,M0'1.5 GeV, one
expects a fast decrease ofx (4) when the distance betwee
loops is growing:

x (4)~h!;exp~2M0uhu!.

The situation is qualitatively similar to the one studied
@18,19#, where the gluon was assumed to have effective m
mg;0.9 GeV. One expects a dipole-dipole cross sect
around a few millibarns in this case, whenas is of the order
of 1. To obtain realistic large hadron-hadron scattering o
needs the glueball exchange to be reggeized, in which
the radius of interaction grows logarithmically@20#. In the
particular case of the Balitskii-Fadin-Kuraev-Lipato
~BFKL! Pomeron this picture was studied in@21#. Our pic-
ture differs from that of BFKL, since the nonperturbativ
background is taken into account. For example, in the pr
lem of high-energy forward onium-onium scattering the
teraction time between particles at high energies is m
smaller than the typical interaction time for quarks insi
onium, and hence one can consider the onium in this pro
as a free quark-antiquark pair~see, e.g.,@18#!. The small
radius of the onium compared with typical transversal len
scales of the problem dictatesx (4) dominance overx (0) in
the problem since possible nonperturbative string configu
tions which could contribute tox (0) are strongly suppresse
over individual minimal noninteracting strings.

Since it is more convenient to study the scattering of s
tems in given quantum states rather than the scatterin
Wilson loops, we switch to spectral decomposition and ta
only one term, corresponding to the scattering of particu
states. The resulting expression coincides~up to a normaliza-
tion factor! with the scattering amplitude~see, e.g.,@22#!.
Since in the Feynman gauge for the fieldam

a we have

Gm1m2

n1n2 ~x(1),x(2)uy(1),y(2)!

5dm1n1
dm2n2

G(2)~x(1),x(2)uy(1),y(2)! ~49!

the answer can be straightforwardly obtained using the s
strategy as in@18#:

Tfor w5 i E d2r1E d2r2E
0

1

dz1E
0

1

dz2uc~r1 ,z1!u2

3uc~r2 ,z2!u2F~r1 ,r2 ,Q50! ~50!

where
05601
ss
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F~r1 ,r2 ,Q50!

5
Nc

221

32p2Nc
2E d2kG(2)~k,Q50!•@22exp~2 ikr1!

2exp~ ikr1!#@22exp~2 ikr2!2exp~ ikr2!#. ~51!

In the above expressionG(2)(k,Q) is the Fourier transform
of Eq. ~49! with respect to total momentump11p25Q and
relative momentump12p25Q22k; the former is equal to
zero for the forward scattering amplitude@we also suppose in
Eq. ~51! vanishing transverse momenta of onia#. The mixed
representation wave functionc(r1 ,z1) defined on the light
cone describes the state of the color dipole with transve
sizer1 and the fraction of total onium light cone momentu
p1

1 carried by the quarkz1. We omit spinor indices, assum
ing proper summation over them. If one ‘‘turns off’’ confine
ment ~i.e., in our formalism put the confining backgroun
field to zero everywhere!, the Green’s function in the leadin
order of perturbation theory will be just a product of tw
gluon propagators:

Gf ree
(2) ~k,Q!5

g4

~Q2k!2k2
, ~52!

and inserting Eq.~52! into Eq.~51! one returns to the result
of @18#. One would expect that the effects of confineme
suppress the amplitude@18# in two different ways: first, be-
cause of the mass gap~and actually quite a large mass eve
for the lightest glueball!, and, second, due to the fast d
crease of the glueball wave function at large relative d
tances@see Eq.~48!#. These properties solve the artifact
color van der Waals forces appearing in the purely pertur
tive dipole-dipole interaction.

V. CONCLUSIONS

In the present paper we discussed interactions of Wil
loops in confining theory, having in mind gluodynamics as
concrete example. The effects of confinement were ta
into account in the formalism of perturbation theory in
confining background. We described the background b
gauge-invariant Gaussian correlator with small correlat
length, which is supported by lattice and analytic calcu
tions. Two main physically different mechanisms of intera
tion were analyzed. The first one, which we call nonpert
bative, refers to the process of a confining stri
rearrangement, which can be energetically preferable for
ticular geometries of the contours. In this way a comm
surface of two contoursC1 ,C2 is created and in the case o
opposite orientation this surface is a ring betweenC1 andC2
~with a hole inside the smaller loop!. This mechanism has a
direct classical analogue in soap films, while for parallel o
entation non-Abelian properties of Wilson loops lead to
nonclassical configuration with the same ring but the h
filled by the film. The second mechanism arises due to tw
gluon exchange between loops and the corresponding am
tude isO(g4). In the confining background and at largeNc
this simple picture of two contours connected by two glu
lines is transformed into a new geometry of two new co
2-10
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INTERACTION OF WILSON LOOPS IN A CONFINING VACUUM PHYSICAL REVIEW D66, 056012 ~2002!
posite loops, as shown in Figs. 4 and 5. As a result one
two types of surface configurations—for small and for lar
separations between minimal surfacesS1 andS2, shown re-
spectively in Fig. 4 and Fig. 5. We have briefly argued th
the configuration generic for the scattering corresponds
Fig. 5, and reduces to the~reggeized! glueball exchanges
between loops, while for the case of decay and sea qu
loop effects both nonperturbative and perturbative mec
nisms are important with small separation betweenS1 and
S2. The results obtained in the paper provide a basis fo
systematic development both in the direction of nonpertur
tive approach to hadron scattering and in the direction of
theory of strong hadron decays.
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