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Nonperturbative and perturbative interaction mechanisms of Wilson loops are studied within the background
field formalism. The first one operates when the distance between the minimal surfaces of the loops is small
and may be important for sea quark effects and strong decay processes. The second mechanism—the pertur-
bative interaction in a nonperturbative confining background—is found to be physically dominant for all loop
configurations characteristic of scattering processes. It reduces to perturbative gluon exchanges at small dis-
tances, while at larger distances it corresponds ta-ttennel exchange of glueball states. A comparison to
other approaches is made and the possible physical applications are discussed.
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I. INTRODUCTION Thus the answer will contain two parts: purely nonperturba-
tive and perturbative inside a nonperturbative background,
The interaction of Wilson loops in QCD is the basic ele-i-€., glueball exchanges between Wilson loops.
ment of many physical applications. One can mention the For the former it is convenient to use the n@belian)
hadron-hadron scattering amplitude, in particular the pheStokes theorem and express the answer in terms of the
nomenology of Pomeron exchange; the assumed color tranggatuge-|nvanant field correlators and finally via the string

ension. The perturbative part in a nonperturbative back-

e st e aaoround phyiclly coresponds (o a exchange o gluebal
% ble int ‘i | Ipt' Wil ’ | : 4 Pol states between loops. We shall keep the number of cblgrs

considerable interest in calculating viison 100p and Folya,q 5 free parameter in what follows. It will be argued that the

kov loop correlatorsper se not only in QCD but also i 1e54ing term for a typical kinematics of the scattering pro-
other field theories, in particular in supersymmetric Yang-cess is thébackground-modifiegperturbative one. This is in
Mills theory. In all cases one starts Wlth the connected. aveltine with the old observation that the high-energy scattering
age of t_wo(or more) W|Isqn loops and tries to qalculate It amplitude is dominated by the Pomeron exchange. We do not
the region of interest using the appropriate field-theoreticatonsider here the leading inNl/ terms of ordinary Reggeon
technique. It is the aim of the present paper to do this in thexchanges, which formally refer to the one-loop case and are
framework of the field correlator method in gluodynamicssubleading in the high-energy limit. We are also not discuss-
(see, e.g., the reviepl] and references thergiimcorporat-  ing pion exchanges which may give the main contribution in
ing both perturbative and nonperturbative contributions. Lesome cases at not large energies; we will concentrate our
us briefly recall the basic ideas behind the method. The gerattention on the case of the theory without dynamical quarks,
eral Wilson loop approach was introduced originally fori.e., gluodynamics. In another physical situation, e.g., when
heavy quarkonid2]. For quarks of finite mass one can use accounting for the sea quark loops or for a decay transition
the Feynman-Schwinger representatieae[3] for a review  Of a hadron state, the roles of the perturbative and nonper-
and references thergito write the meson Green’s function turbative mechanisms may change depending on the hadron
as an integral over all possible Wilson loops formed by thequantum numbers. In all cases, however, the loop-loop inter-
quark trajectories and finally to express the megand action is the starting point of the field correlator formalism

baryon dynamics in terms of gauge-invariant correlators Ofgpplicationhfor scattelring,kstrong dfecay,l_etc. fln ﬁeq. Il we
the field strengths, characterizing the properties of the corntroduce the general background formalism for the interac-

fining background. When going to the hadron-hadron scatteflon Of Wilson loops. In Sec. il the nonperturbative mecha-
ing one can adopt the same formalism to express the scattdiSM IS studied in detail. In Sec. IV perturbative gluon ex-
ing amplitude through the vacuum average of the product ofhange IS shown to tr_ansform into t_he qu_ebaII exchange
two Wilson loops, with the subsequent integration over thdN€chanism at large distances. Section V is devoted to a
ensemble of loops. To proceed, we use the background fielelysical discussion of the results and a brief comparison
formalism to separate nonperturbative gluon configuration/ith the existing models.

from perturbative (sometimes called “valence” gluons. Il INTERACTION OF WILSON LOOPS IN THE

BACKGROUND FIELD FORMALISM

*Email address: V.Shevchenko@phys.uu.nl In this section we are going to exploit the background
"Email address: simonov@heron.itep.ru field formalism[4] in the form worked out irf5]. We refer
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the interested reader to the cited papers for all the details and X(C1,C2)=(W(C1)W(C5))—(W(C)}{W(Cy)). (7)
recall the basic steps only briefly. We start with decomposing
the gluon fieldA,(x) into a nonperturbative background This average can also be expanded in powergayf:
B,(x) and a perturbative pad, , propagating in the back- o X
ground: X(C1,C»)=x(Cy,Cy) +x?(Cy,Cy)
_ +x*(Cy,C)+ - 8
A,=B,+a,. (1) X(Cy1,Cy) (8
Here x(9)(C,,C,) is the purely nonperturbative interaction
of two Wilson loops and depends only on the fiels,
. i . while higher termsy("(C,,C,) are proportional to the av-
B,—U (BM— aﬁﬂ)U, a,—U'a,U. (2 erage of ga,)". One immediately notices that sin¢e/"))
is identically zero the termy(®)(C,,C,) vanishes and the
The principle of separation is of no importance at the level ofeXpansion starts with the two-gluon exchange term

the partition function due to the obvious identity x*(C1,Cy). o
In some cases th€-odd exchange contributiofodderon

1 type) is also important; it is contained ig(®(C;,C,). In
Z= X/f DA, exp—S[A]) what follows we discuss mostly the purely nonperturbative
term x(°)(C,,C,), and in the last part of the paper also the
two-gluon exchangg(¥(C,,C,) in Sec. IV.

The total gauge transformation is decomposed as

1
:/\_/"f DB,LJ Da, exp—S[B+a]) (3
I1l. NONPERTURBATIVE INTERACTION OF WILSON

(here gauge-fixing and ghost terms are assumed to be in- LOOPS
cluded in the measure gf integratjormhe Wilson loop de- We consider in this section the first term in the expansion
pends on botfB, anda,: (8), namely,x(®)(C;,C,), and use the contour gau@] to

1 write down the Wilson loop as a surface integral:
W(C)= N—TrP exr( ig JC(BZ+ a;)tcdzﬂ)
Cc

1
W(C)=—Tr,Pexp(igfFW(u,xo)daW(u) . (9
1 M N S
=—Ilim Tr|] P{1+ig[B,(zI™
New —co rrgl {1+ig[B,(z™) We have defined in Eq9) F,,(u,xo)=® F,(u)d,
XoU UXgy
+aM(z[m])]Asz]}. 4) where the phase factors along the cubve, with the edge

pointsxy, andu are given by
The trace in fundamental representation is normalized as

X
(ON =Pex;<igf °B (z)dz,u). (10
~ 1 Xou u #
Tri=N,, Tnatbziaab.
Consider Wilson loops defined for two conto@s andC,,

Our general strategy is the followir{§]: we expand the where individual minimal surfaces will be denoted $8"
correlators under study in powers of the fi@ld, while ac-  and Sy, respectively, throughout the pageThe typical
counting for effects caused by the nonperturbative backproblem in the discussed framework is to choose optimal
ground exactly(i.e., without expansion in powers d@&,); integration surfaces in integrals of the fof®). The Wilson
namely, one has loop (9) is gauge invariant and surface independent. For a

single Wilson loop it can be arguddee discussion and ref-
W(C)=WO(C)+WH(C)+WE(C)+- - - (5  erencesinl,7)) that in the case of a minimal surfatehich
is obviously the distinguished surface for a given contour
where, e.g., the dominant nonperturbative contribution in the cluster ex-
ig pansion of Eq.(9) comes from the lowest, Gaussian cor-
(1)) — 2 relator of the field strength operators. This property is known
WO NCTrPZ”fca"(Z)dZ“ as Gaussian dominan¢®] and it plays an important role in
all phenomenological applications of the field correlator
; method.
8 exp( '9 fczB”(u)du") ’ © In the physical picture described above the appearance of
the minimal surface has been in some sense a result of the
while W((C) contains only the fiel®, and the ordering
operator B, takes care of the orderirg,(z) andB,,(u).

Let us define now the connected average of two Wilson !For any surface we use one and the same I&tfer a surface as

loops as geometrical object and for its area.
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field correlator dynamics. However, one can take anothecontours are drastically different, just because of the different
view by saying that Gaussian dominance corresponds to thgeometry of the strings providing the minimal energy con-
profile of the confining string worldsheet that minimizes thefiguration. On the other hand, it remains to be studied which
total energy of the system. In other words, to calculatenonperturbative effectthe overlap due to the finite trans-
(W(C)) one may proceed as follows: First, find the minimal verse size of the string or string rearrangemesiays the
energy of the confining string configuratidtrivially corre-  dominant role for the particular geometry of loops. We will
sponding to the minimal area surface in the case of a singlargue that for the high-energy scattering case neither does,
static loop and, as the next step, calculate the aver@je and the dominant contribution comes from the exchange by
with a Gaussian ensemble of correlators integrated over thieggeized gluons in a confining background, i.e., Pomerons.
surface. It is this principle which we shall use in what fol- So, we adopt the following algorithm for computing the
lows to choose the shape of the surfaces entering our prolmonperturbative Wilson loop correlator. First, for a given ge-
lem. For example, the Green'’s function describing an interometry of the contours, we have to find the confining string
acting two-meson system configuration which gives the dominant contribution to the
quantity (W(C{)W(C,)) (notice that there might be differ-
ent surfaces for different representations that appear in the
GU=(w| Wl v W ) (1) expansion of the product of fundamental Wilson loopé
the configuration providing the maximum coincides with in-
where dividual minimal surfaces, we conclude that the nonpertur-
bative interaction is absent. As the second step, we calculate
_ the correlatory(®)(C;,C,) via Eq. (9) in terms of gauge-
V= ¢>T(Y)¢Ly;¢()/) invariant field correlators. We assume that the ensemble of
correlators obeys the same hierarchy on this surface as it
and ¢(x), @ represent quark fields and phase factorsdoes on the minimal surface for a single Wilson loop, i.e.,
along the contout.,, respectively, must be dominated at exhibits Gaussian dominance.
large separation/time by the confining string configuration of We keep generality at the moment and perform the
lowest total energy, in direct analogy with the case of avacuum averaging of Wilson loops, i.e., we explicitly calcu-
single meson. late y(©(C,,C,). Suppose that surfac&,S, have already
It should be stressed from the very beginning that in thoeen chosen according to our criteria. For field-strength ten-
approach adopted by us in the present paper the confiningprs belonging to surface andS, and gauge-transported
strings are assumed to be infinitely thin. Correspondingly, wéo the same poirk, we define
do not study the effects of string overlap, and assume that for
two well separated loops the minimal configuration of con-
fining strings is given by two individual minimal surfaces
with no common points of intersection, which means that the (Fdo)D(u)=F ,,(uxp)da,,(u), ueS;, (12
average(W(C;)W(C,)) factorizes into(W(C4)}{W(C,))
and no nonperturbative interaction takes place. This is in
contrast to another approach, which is also based on the fiemhd analogously for the second surface. One can now write
correlator method, but follows a different logic. The strategydown the product of two Wilson loops in matrix form as
started in[9] has many successful phenomenological appli-
cations and modificationésee, e.g.[10]). The integration
surfaces are taken in, e.q11] as individual minimal sur-
faces for each contour and all physical effects are due to the Nﬁ(W(Cl)W(Cz))
nonzero value of string thickne3g which brings about non-
zero overlap between hadron Wilson loops. In other words, — | 1,71, P
the expression$31),(32) have a nontrivial limit if T4—0, 1772712

exp(igjS (chr)(l)(u))

while the string tensiow~(F2)T? is kept fixed, in contrast “1h1
to the corresponding expressions fr¢&-11] which vanish

in this limit. Accordingly the hadron-hadron cross section in X exp( igJ (ng)(Z)(v)) > (13
that approach is proportional @, in the tenth powef10] 2 ayB,

and is very sensitive to the exact value Bf. It is worth

mentioning that the existing lattice calculations yield values

in the range 0.35 fm T,>0.1 fm for different numbers of where the traces Trand T go over indices carrying sub-
colors and light quark flavorgsee [12] and references scripts 1 and 2, respectively, and the ordering operaigr P
therein. However, the discussed difference between physicabrders the products of matrices in a proper way according to
pictures is not just a question of numbers. We assume physthe definition of the P exponei#).

cal rearrangement of the confining strings at small distances One can derive the following rule for vacuum averaging
(which could in principle be detected on the lattice for staticof several matrix operators, transported to one pg@ints
contourg, as happens, e.g., for soap films. For example, oueasy to show that these relations are gauge invariant under
answers(37) and (39) for parallel and oppositely oriented field-independent gauge transformatipns
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([F(u®W,x0)- - - F(u™®,x0) 14, ,[F(0 %0) - - - F (0™, %) ] 5,)

8, 5.0
a,B,%a
zﬁ[(”[':(u(l) Xo) - F(U(k),Xo)F(U(l),Xo)' o F(U(m)ﬁxo)D
2

- Ni<Tr[F(U(l)7X0)' : 'F(U(k)vxo))Tr(F(U(l)MO)‘ : 'F(U(m),xo)]ﬁ

S5, 5.6

aB,Y%a,p

+;21—122[(Tr[F(u(1),x0)- - FUu® xo) Tr(F(v™®,xg) - - - F(v™,x0) 1)
2_

(14)

- Ni<Tr[F(U(l),X0) e F(U(k),XO)F(U(l),Xo) e F(U(m)!XO):D .

For the lowest Gaussian correlator whearm=1 one has, sizes of the loops are larger than the gluon correlation length
from Eq. (14), Tgy) one gets
<[F(U1XO)]alB1[F(U1X0)]a2[32>

_(TrF(u,xO)F(v,xo))( . o
= NZ—1 | Oa18,0a,81 N _Ourps%msp, |- The string tensiom is given by
C

(W(Cy))xcexp— o m'“) (19

(19

. . . . oSPN= do(u®) [ do(u®)
The above relations are valid in theories without global color 2N¢Js, s,
symmetry breaking. Now one can proceed with the matrix o @)
cumulant expansiofsee, e.g.[13]): X(TrgF(u* Xo)gF(u'“,x)) +- -+ (20)
NZ(W(C1)W(C,)) where the ellipsis denotes higher non-Gaussian terms. As
(ig)" mentioned above, we do not take into account perimeter
9 = terms; it is implicitly supposed that all the considered loops
—Tflez,PlzeXF{ 2 ((F F(n)))) are large enough in this sense. It is straightforward to rewrite
Eq. (16) combined with Eqs(18) and (14) in the following
(16) way:
where we use the notation
NZ(W(C1)W(Cy))
E(k)= Wy +J @)Ky . R
Rk Jsl(FdU) (™) sZ(FdU) @™). @D =TrTroexdl - (Ag+Ap)+e-Ae] (21
Here the double bracketg- - -)) denote irreducible correla- \are
tors (see the definition ifi1,13]). The quantityF (k) carries
four independent fundamenatal color indices and the traces Ag=—0S,— S, (22)
Tr,, Tr, go over indices corresponding B and F(?), re-
spectively.

and the terms\; and A contain correlators of powers &f
defined on different surfaces and hence provide a contribu-
Yion to y(©). They are as follows:

Expression(16) provides the basis for our discussion. For
a single loop the corresponding cluster expansion is given b

1
(W(C1)>— Trl,P

><exp( (9) <<J (Fdo)yD(u®). ...
=1 xj do(vO)(TrF (U, x0)F (o™, x0)) +

o)DM
xLl(Fd) (u >>>) (18 (23

and in the area law regim@vhich means that the typical and

A= i—f do(u)
Ne(Ng
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gz
Ae=F— fda(u“))
NZ-1Js

XJ do (o) (TrF(U®, xo)F (o™, x0))+ - - -
S

L 2R ]
(24) A Sl A Sz )

where the ellipses again denote higher non-Gaussian terms. -
The upperlower) sign in the above expressions corresponds
to the case of paralldbpposite orientation of the contours
C, andC, and surface$; andS, (we assume that the ori-
entation of the surface is fixed by the orientation of its -

boundary antour . . _ FIG. 1. Planar geometry of the Wilson loops &""C S"" (the
The matrix structures &nde introduced above are given case of coinciding orientations

in index notation by

plained in detail above, we always assume Gaussian domi-

[i]alﬁliazﬂzz Ouypy0ar8, nance. One easily gets the following result for the contours
A with linear sizes greater thahn, and omitting perimeter con-
[e]alﬁ1 rayBy= Oy B, 0B, (25)  tributions:
It can be checked that the matricesuide obey the follow- 2 - 2N o
ing algebra: A1:iN§_1052 : Ae:+N§_1052 , (30
e-l=1.e=e, 1%2=1, %=1 (26)

and Eqs.(28),(29) become

for the case of parallel orientation of surfaces and o
X( )(CLCZ)

e-l=1.e=e, 1?=1, e?’=N.e (27)

1 1 208"
E 1_N_C ex No—1

— _ min__ miny
for antiparallel orientation. We also notice that in both cases =exp— oS oS

Tr,Tr,i=NZ and Ty Tre=N,.

min
With Egs.(26), (27) at hand, we can easily compute Eq. +£ 1+ i ex;{ _ 205
(21). For parallel orientation of surfaces one gets 2 N¢ Ne+1
—exp(— oS- ¢S (32)

c

©) 1 1
xV(Cq,Cy)= > 1 N expAg+tAi—Ag)
for parallel orientations and

1
1+N—C exp Ao+ A+ Ae) x9(C1,Cy)

"2

_ Amin 28 ) .
expAg ) (28) = exp — oSMN— SN

1 )
—exp20S;"")
NC

1 208"
1-—|exp ——
NZ NZ-1

where the last term corresponds to the product of averages of
two loops. For oppositely directed contours the result is

+
1
X(O)(Cl,CZ)Z _zquAO"'Al"'NcAe) , )
Ng —exp(— oS- oS (32
1 . .
+(1——2) exp(Ag+Aq) | —expADM). for opposite orientations. It is worth recalling th&""
Ng >S"" by our convention.
(29) Notice that in the case of coinciding but oppositely di-

rected contoursi.e., C=C,;=[C,]"), expressior(32) gives
Expressiond28),(29) together with the prescription for the the Casimir scaled adjoint string tension:
choice of optimal integration surface provide the answer for
the nonperturbative interaction term. Let us come to concrete N2
examples and first consider the simplest possible case when o‘adjzz—cg'_ (33
S,=9"",S,=5)"" and S;'""CS"" (see Fig. 1 As ex- Ne—1
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/]

4

7

FIG. 2. Nonperturbative interaction of rectangular Wilson con-  FIG. 3. Nonperturbative interaction of rectangular Wilson con-
tours. The minimal string profile for the case of opposite orienta-tours. The time slices of the minimal string profile for the case of
tions is given by “enveloping” geometry. Leading large area con-parallel orientations are depicted. It is assumed thgt3. The
tribution corresponds to annihilation of fluxes aloRg leading large area contribution corresponds to a single fundamental

flux in the R direction.
This result is to be expected since, as already mentioned,
Gaussian dominance yields Casimir scalfi If both con- A;=A.=0 for this choice of surfaceip to exponentially
toursC,,C, lie on the same plane ar@, is insideC,, the  small terms~exp(—2h/Ty), which we always omit in this
geometry becomes effectively two dimensional and the repapel. Correspondingly, the second term in square brackets
sults (31),(32) coincide with formulas obtained in a slightly in Eq. (29 would be
different way in[14]. The same expressions hold true in
(1+1)-dimensional Yang-Mills theory, where one has just
two-dimensional geometry and, on the other hand, an exact
Gaussian picture. One can also look upon E84),(32) as
an algebraic rule for adding up parallel or antiparallel fundayith the sum of the two giving the expected answer
mental fluxes which illustrate the decompositi@®3=3  (W(C;))(W(C,))=exp(—20RT) and hencex®=0. One
®6 and 3® 3= 1@ 8, respectively, with the string tension in immediately sees that this choice is not optimdi is small.
each representation given by the Casimir scaling law. Instead, if we choos&, as a minimal enveloping surface

We are now interested in the case of contours separateslith a boundary orC, and coinciding withS,=S)"" inside
by distances greater thah,. By way of example let us C, (due to the apparent symmetry of our problem, one could
calculate the purely nonperturbative correlator of two Wilsonof course easily interchange the indices 1 ahda@ get for
loops (W(C,)W(C,)) for simple rectangular geometry of the first term in square brackets in H9)
the contours. We choose two rectangular contdrIxsT ly-

1
1- ﬁ) exp(—20RT)

C

ing on parallel planes, at a distanodrom each othefsee 1
Figs. 2 and 3 We suppose thal>R and will not take care mexp(—ZahT)
of subleading IV terms. If h is of the order ofTgy, one ¢

comes back to the case described by E8$),(32). We take | here hT= S,,=5,—S,. The second term contributes to
the distanceh such thatR=h=T,, where the strings are (W(C,)W(C,)) as

supposed to rearrange themselves. Consider first the case of

opposite loop orientations and let us examine different

choices of surfaces. As a trivial example we might adopt the (
same choice as above, name§;=S"", S,=S)"". The

first term in square brackets in E@29) contributes to . . o
(W(C)W(C,)) as whereo,g4; is given by Eq.(33) and this contribution is al-

ways subleading with respect to the former on&#h and

N, is not exponentially largésee below. So these two dif-
exp —20RT), ferent choices give different answers for the Wilson loop

correlator:

1
1- ﬁ) eX[i—ZO'hT— O'adeT)

Cc

N2
as it should, since\o=AT"=¢S]""+¢S)'""=20RT and (W(C1)W(Cy))=exp(—20RT) (34)
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in the first casdtwo individual minimal surfacgsand sextet representation string formatiés Symm{3® 3} with
tension 2 +2)/(N.+1)=2.5 times larger than the funda-
1 1 mental one. In this particular case Nf=3 one can addi-
(W(C)W(C2))= ﬁexp(—ZUhT)Jr ( 1- ﬁ) tionally consider a double Y-shape profile, shown in Fig. 3,
¢ ¢ with the result for the first term in square brackets in )

Xexp(—20hT—o,qRT) (35

in the second cas@nveloping geometjy According to our Eexp(— J3ochT—0oRT).
criteria, the answer that is dominant should be chosen as 3
correct, since it corresponds to the actual string configura-
tion. It is seen that there is a critical distance between 100pSsince \/3<2, this term is seen to be dominant over the en-
veloping geometry in thé&l.=3 case.

As in the opposite orientation case there appears a critical

1
herii~R——=IlogN., 36 . S
erit oT 09N 36 lengthh,i; which for N.=3 is given by

in our problen? For h<h,; confining strings rearrange

themselve$with respect to the noninteracting case, which is I P (38
encoded in the expressidid5). Correspondingly, one has C”‘_\/g oT |’ )
n((JOr;zero x. For larger h they do not interact and
x\"(C4,C,) vanishes. It is important that in our picture it .
happens dynamically; in particular, one cannot just naiverThe expression fox(® becomes K= 3)
take the large\, limit in Egs. (28),(29). On the other hand, if
h is kept fixed, then it is clear from E¢36) that in the large ) 1
N, limit x(© should vanish. It is worth saying that with X (C1,Co) =exp(— oSy | g exp— 0S;)
going to infinity in Eqgs.(34),(35), h,; is increasing and ) 505,
approachingR; therefore for static loops the minimal energy o
state always wins eventually, as it should. +§exp< N T) —exp(—20RT)
To summarize, the answer is given by (39

1 1

X(O)Zﬁexﬁ —20hT)+ ( 1‘@) exp(—20hT—0,qRT)  whereS,, represents the boundary surfege=4hT/+/3 and
¢ ¢ S;=(R—h/+/3)T is the common part 08, and S,. Notice
—exp(—20RT) (37)  that | ;=R—hg//3>0; therefore one is never in the
situation ofS; shrinking to zero.

if h<<h; andx©=0 if h>h,;;. We now come tothe case ~ The physical picture is the same as for opposite
of parallel orientations. Let us consider the two geometriesrientations—at small distancés hg>h=T,, the pref-
analyzed above. The case of individual minimal surfaces igrable string configuration is given by the double Y-shape
identical for parallel and opposite orientations and has jusprofile shown in Fig. 3 while at larger distances there is no
been considered. The enveloping geometry gives for the firsflommon string state formation and hence the nonperturba-

term in square brackets in E(8) tive interaction is absenk(®(C,,C,)=0.
To conclude this section let us say a few words about the
1( 1 i) exp( —ZahT—ZURT(NC_Z)) case of distant loops. If contours are distant from each other,
2 N, N.—1 ' it is always preferable to deforr§,, to two disks, corre-

sponding to minimal surfaces for each contour plus whatever
while the second term becomes thin tube connects these surfaces through the pginthus
reducingx(®)(C;,C,) to zero. This is a sign that the purely
nonperturbative contribution vanishes, and one should con-
sider next terms in the expansiod), namely,x(*(C;,C,).
It is important to realize that the surface entering E).is
and is always subleading. In the particular cike=3 the  not dynamical, which is reflected in the possibility of infi-
former term corresponds to the creation of the string3in nite squeezing of the tube connecting two distant minimal
representation of the lengRwhich has the same tension as surfaces. The situation changes, however, when one includes
the fundamental string, while the second term describes theerturbative gluons, propagating inside its wall and forming
a physical glueball state in this way. It is actually this glue-
ball exchange mechanism which corresponds to the term
2For Abelian confining strings including soap films the last term in
Eq. (36) is absent.
3See alsd15], where static multiquark interactions were studied “Iit has come from the Stokes theorem and therefore could be
in the strong coupling expansion regime. arbitrary, subject to our principle of minimal action.

1

2

20RT(N +2)

14t
N, No+1

N¢

exp{ —20hT—
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Y*(C,,C,) when the background field is taken into ac-

count. We study this term in the next secton. (aZ(x)aB(y))z 5W5""b (40

4P (x—y)?
Our expression fox*) will have the same form as E(R1),
where one should keep only the nonperturbative background
We now turn to the termy()(C,,C,) in the expansion field B, in diagonal correlator¢TrF*F*) while terms pro-

(8). We shall see that in the absence of a nonperturbativgortional to(TrF'F?) contain only perturbative exchange.
background this term reduces to the purely perturbative twoThese perturbative exchanges are modified, however, by the
gluon exchange term suggested 1] as a basic element of presence of the nonperturbative background. To take it into
Pomeron exchange. To be more precise, let us consider firatcount, one has to perform averaging in two steps: first in

IV. GLUEBALL EXCHANGE INTERACTION

the case of no background fields. In the Feynman gauge fahe valence(perturbative field a, and second in the back-

a,, one has in the lowest order

4

g
(WCHW(Co))= 5TrTr, Py f dx) f dx?) f dyt)
C

ground fieldB,,:

f dyD- b (X2, x D)t ¢ (XD, x D)t

X (y @yt (y,y@)or [(a(xM)a(y®) (a(x®)a(y®)) + (a(xP)a(y@))

x(a(xP)a(yM))]

where the shorthand notatica(x(l))zaill(x(l)) was used.

The coordinates(*) x(?) are ordered along the conto@y
andy™®,y®?) are ordered along the contoGy,. Notice also
the gauge invariance of E@41) due to the transformation
law (2).

Before proceeding further one is to define the dependence

of (a,(x)a,(y)) on background fields. To this end it is con-

venient to use the Feynman-Schwinger representation for the

gluon Green’s function3] and represent it as

ab _
GW—

(a2(x)as(y))

= J:ds(Dz)Xy exp — Ko)beﬁ(X,y) (42

where

1 (>

Kozzfo

dz,\?
dr F)

and

@Zﬁ(x,y>=[PFPA eXp(ig LXAM(z)dzM)

X exp{ 29 f:dTF(Z( T)))

anda,b are adjoint color indices, whereas v are Lorentz
indices, i.e.[F]30=—iF fac,

ab

nv

To understand better the topology of the resulting con-

struction, it is useful to consider the largjg limit. One can
write in this limit for the adjoint phase factors in E@i2)

(41
[
[£]0s®2° X, Y[ 5
X ab
y
1
=0, 5(X,y) P4y, X)+ O N—) (43

Where® ,s5(x,y) is a parallel transporter in the fundamental
representation. The expressi¢d3) exemplifies the well
known 't Hooft rule for replacing the gluon line by a double
adjoint in the largeN.. limit. Inserting Eq.(43) into Eqg. (41),

one obviously obtains two new Wilson loogs, and C;,’
instead of the previou€; andC,: each initial loop is now
divided by two gluon emissions/absorptions into two arcs
which are connected by double lines of gluon propagators
(see Figs. 4 and)5At small N, this construction goes over
into that of two fundamental loopS; andC, connected by

51

-

FIG. 4. Dominant two-gluon glueball term responsible for per-
turbative interaction with the two-dimensional geometry of Fig. 1.
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T2 To define the profiles of the surfaces we shall use the same
principle outlined above, i.e., we require the effective value
of the are&S;,+S,;,') averaged over possible gluon trajec-
toriesLq, andL;,’ to be minimal. The result will of course

Cs I strongly depend on the relative positions and orientations of
” ” the contoursC; andC,. In the first case when both loops lie
1 on the same plane ari@}, is entirely insideC,, it is clear that
L Iy the sumS;,+S;,’ does not depend on trajectories, and
12_’|_|‘_ 12 L,,’, and one ha$;,+S;,’=S;—S,. Thus one obtains ef-
fectively the surfacés; with the hole due taC,, i.e., a con-

C, struction which has already appeared in purely nonperturba-
tive term for oppositely oriented contou€s;,C,, but now
with two valence gluons connecting conto@gandC, (see
Fig. 4).

. However, for large enough distances the true minimum of
) S, + S, is reached by another construction—when the two
FIG. 5. Dominant two-gluon glueball term responsible for per- contoursC, andC, are connected by a narrow strip formed
turbative interaction in nonperturbative background at large dishy the trajectoried ;, and L,,’ with the double(adjoint
tances. Gluon propagator lines are replaced by double fundamentg{ring worldsheet between the(fig. 5). This narrow strip is
lines in largeN, limit. nothing but the glueball Green’s function and the width of

L . . . the strip is equal to the average size of the lowest-mass glue-
two adjoint lines and the final result will amount to replacing g j.e., around 0.5 fm. Notice that due to the kinetic terms

a double fundamental string worldsheet by one adjoint stringy, Eq. (45) this strip is dynamicalcontrary to the nonpertur-
wordsheet. In terms of string tensions it corresponds to repaiive caspand cannot be shrunk. This is a typical construc-
placement of 2 by 90/4 in the Gaussian approximation. tion for the high-energy scattering amplitude when the glue-
We will keep the largé\. limit and replacement3) inwhat  pa|| exchange diagram is gradually replaced by the glueball
follows. _ _ Regge trajectory exchange, i.e., by Pomeron exchange,
_ The averaging over background fields leads to the followyhich persists to larger experimentally accessible energies.
ing result: To demonstrate that explicitly, one should rewrite the ex-
pression(45) directly in terms of the glueball Green’s func-
tion:

(W(C)W(C2)){Myg=x*(Cy,Cy)

4
g
:EL dSlDZ(l)jL ’dszDz(z) M:P dx(l)J dx(z)J’ dy(l)
ot 12 (W(COW(Cp)) e, ™ )c, *2)c, "
X exp(— K — K2
/ % | dy@rG 1z (x® x@]y1) y(@
X(W(CW(C)) (44 fcz Vi [Cu (XX YY)
whereg?=g®N,.. Here the contour€,, andC;,’ comprise +(yMeoy@)] (46)
pieces ofC; andC, connected by two double fundamental
linesL,,andL,,’. Itis understood that the surfacg,,S;,’  where Gzlljfz(x(l),x(2)|y(1),y(2)) is the two-gluon glueball
are sut_)Ject to our general assumption about m"’!'ma' actiong reens function, describing propagation from points
This gives different forms depending on the distance bes((l) x@ to y,y@) which has the Feynman-Schwinger rep-

tween the original loopE; and C; (see below. It is also  aqentation as in E¢45). The spectrum of this Green's func-

understood that the gluon spin operatog,sF_zz) are 10 be  yion (with spin terms includedwas computed analytically in
placed on the gluon trajectoriés, andL,," in accordance

with Eq. (42). It will produce gluon spin interaction terms
which influence the glueball Green’s function; to simplify
discussion we omit these terms at the moment.

Now we can use the largd, factorization property for
the producf W(C,,)W(C,,')) and use area law asymptotics
for each piece, i.e., for surfac&, andS;,’. One obtains

When all points are close to each other, i.e.,
XD —xD|<Ty, [xO—y0]<T,,

one can replace the glueball Green'’s function by the product
of free gluon propagators

4
X(‘”(Cl,cz):g—2 f ds, DzV J ds,Dz? G172 (x(1) x()]y(D) y(2)
Ng/ Lo L1o' K1tz
X exp( — K§—KEP)exd — o(Si+ S15) 1. , Ouyv1Ou,m, an
(@5 ¥ (@m (- y @)Dy @)z
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Another asymptotics is available when bdt#t{)—y®| are  F(p,,p,,Q=0)

large; then the spectral decomposition is possible: )

N2 f
V172 (1 (1) 4 (2)[(1) \(2) =——| d*kG@(k,Q=0)-[2—exp —ik

—exp(ikpy) ][2—exp(—ikpy) —explikpz)].  (51)

In the above expressio(?)(k,Q) is the Fourier transform
(D)4 x(2) y(1)+y(2)| of Eq. (49 with respect to total momentupy, +p,=Q and
5 2 |/ (48)  relative momentunp; —p,=Q— 2k; the former is equal to
zero for the forward scattering amplitufiee also suppose in
Eq. (51) vanishing transverse momenta of opidhe mixed
representation wave functiogi(p,,z;) defined on the light
cone describes the state of the color dipole with transverse
sizep, and the fraction of total onium light cone momentum
x®(h)~exp(—Mg|h|). p; carried by the quark,;. We omit spinor indices, assum-
ing proper summation over them. If one “turns off” confine-
The situation is qualitatively similar to the one studied inment (i.e., in our formalism put the confining background
[18,19, where the gluon was assumed to have effective masield to zero everywhejethe Green’s function in the leading
m,~0.9 GeV. One expects a dipole-dipole cross sectiorprder of perturbation theory will be just a product of two
around a few millibarns in this case, wheq is of the order ~ gluon propagators:
of 1. To obtain realistic large hadron-hadron scattering one 4
needs the glueball exchange to be reggeized, in which case G2 (k,Q)= 9
the radius of interaction grows logarithmicallg0]. In the freet™ (Q—k)2K?’
particular case of the Balitskii-Fadin-Kuraev-Lipatov _ ] )
(BFKL) Pomeron this picture was studied [i21]. Our pic- and inserting Eq(52) into Eq.(51) one returns to the fesults
ture differs from that of BFKL, since the nonperturbative Of [18]. One would expect that the effects of confinement
background is taken into account. For example, in the probSuppress the amplitudé8] in two different ways: first, be-
lem of high-energy forward onium-onium scattering the in-cause of the mass gdpnd actually quite a large mass even
teraction time between particles at high energies is mucker the lightest glueball and, second, due to the fast de-
smaller than the typical interaction time for quarks insidecréase of the glueball wave function at large relative dis-
onium, and hence one can consider the onium in this proced@nces[see Eq.(48)]. These properties solve the artifact of
as a free quark-antiquark paisee, e.g.[18]). The small cplor van de.r Waa}ls force; appearing in the purely perturba-
radius of the onium compared with typical transversal lengtiive dipole-dipole interaction.
scales of the problem dictatgé® dominance ovey(® in
the problem since possible nonperturbative string configura-
tions which could contribute tq(®) are strongly suppressed  |n the present paper we discussed interactions of Wilson
over individual minimal noninteracting strings. loops in confining theory, having in mind gluodynamics as a
Since it is more convenient to study the scattering of sysconcrete example. The effects of confinement were taken
tems in given quantum states rather than the scattering gfito account in the formalism of perturbation theory in a
Wilson loops, we switch to spectral decomposition and tak&onfining background. We described the background by a
only one term, corresponding to the scattering of particulagauge-invariant Gaussian correlator with small correlation
states. The resulting expression coincifgsto a normaliza-  |ength, which is supported by lattice and analytic calcula-
tion facton with the scattering amplitudésee, €.9.[22]).  tions. Two main physically different mechanisms of interac-

~ ; \I,E.Ln]?#z(x(l) , X(Z)) WI/E):)VZT(y(l),y(z))

-exp(—Mn~

Since the lowest glueball is rather heaiy~1.5 GeV, one
expects a fast decrease pf*) when the distance between
loops is growing:

(52

V. CONCLUSIONS

Since in the Feynman gauge for the fielg we have tion were analyzed. The first one, which we call nonpertur-
bative, refers to the process of a confining string
G;’Lllfz(x(l),x(2)|y(1),y(2)) rearrangement, which can be energetically preferable for par-

ticular geometries of the contours. In this way a common
= 5M1V15M2V2G(2)(X(1),X(2)|y(l),y(z)) (49)  surface of two contour€,,C, is created and in the case of
opposite orientation this surface is a ring betw€grandC,
the answer can be straightforwardly obtained using the sam@ith a hole inside the smaller loppThis mechanism has a
strategy as 18] direct classical analogue in soap films, while for parallel ori-
entation non-Abelian properties of Wilson loops lead to a
. ) 5 1 1 ) nonclassical configuration with the same ring but the hole
Tforw_lf d Plf d szo dzlfo dz,| ¢(p1,24) filled by the film. The second mechanism arises due to two-
gluon exchange between loops and the corresponding ampli-
X|#(p2,25)|?F(p1,p2,Q=0) (500  tude isO(g?). In the confining background and at lartye
this simple picture of two contours connected by two gluon
where lines is transformed into a new geometry of two new com-
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posite loops, as shown in Figs. 4 and 5. As a result one has ACKNOWLEDGMENTS
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