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Chern-Simons vortices in supergravity
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We study supersymmetric vortex solutions in three-dimensional Abelian gauged supergravity. First, we
construct the generalU(1)-gaugedD53, N52 supergravity whose scalar sector is an arbitrary Ka¨hler mani-
fold with U(1) isometry. This construction clarifies the connection between local supersymmetry and the
specific forms of some scalar potentials previously found in the literature—in particular, it provides the locally
supersymmetric embedding of the Abelian Chern-Simons Higgs model. We show that the Killing spinor
equations admit rotationally symmetric vortex solutions with asymptotically conical geometry which preserve
half of the supersymmetry.
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I. INTRODUCTION

In three space-time dimensions, pure Einstein gravity
no local propagating degrees of freedom and is thus to
logical. The solutions to the field equations are locally fl
except at conical singularities at the location of mat
sources@1,2#. Moreover, there is a precise sense in which
theory is soluble@3–6#. Similar results hold for cosmologica
Einstein gravity@7#, and for the three-dimensional topolog
cal supergravity theories@8,9#.

A complete classification ofN-extended supergravities i
three dimensions was given in Ref.@10#. In particular, the
geometry of the target manifolds parametrized by the sc
fields is Kähler for N52, quaternionic forN53,4 and sym-
metric for N55,6,8. For N59,10,12,16, the theories ar
based on a single supermultiplet and are associated
coset spaces with the exceptional isometry groupsF4 , E6 ,
E7, and E8, respectively. Recently, a number of maxim
(N516) gauged models with a variety of admissible co
pact and noncompact gauge groups were constructe
@11,12#. In these three-dimensional gauged supergravitie
key role is played by the on-shell duality between the ga
fields and the scalar fields. This is implemented in the
grangian by means of a Chern-Simons term for the ga
fields ~rather than the usual Yang-Mills term!, which ensures
that the duality relation is an equation of motion while t
gauge fields do not carry physical degrees of freedom.

In this paper we construct the generalU(1)-gauged non-
linear sigma model coupled toN52 supergravity in three
dimensions, and study supersymmetric vortex solutions
this theory. As particular examples, we obtain the supers
metric embedding of the Abelian Chern-Simons Higgs mo
coupled to gravity@13–17# and generalizations of theCPn
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andCHn models, recently constructed in@18#.
The Abelian Higgs model with a Chern-Simons term

three-dimensional flat Minkowski space and its vortex so
tions were studied in@19,20# ~see also the earlier reference
therein!. This model is of some practical interest because
its relation to the physics of high temperature supercond
ors, which violate both theT and P symmetries~like the
Chern-Simons term! and which often exhibit two-
dimensional spatial structures. In particular, it was fou
@19,20# that the model with a specific sixth-order Higgs p
tential admits topologically stable vortex solutions which s
isfy ~first order! self-duality, or Bogomol’nyi-type@21# equa-
tions. This special Higgs potential has aU(1)-symmetric
minimum which is degenerate with a symmetry-breaki
one, as a result of which it also admits charged nontopolo
cal soliton solutions@22#. In Ref. @23#, the specific form of
this potential was shown to originate from the unique e
bedding of this model into a globallyN52 supersymmetric
theory; the Bogomol’nyi bound may be obtained from t
superalgebra and is saturated by the supersymmetric s
tions.

In the present paper—as a byproduct of our gene
construction—we give a similar explanation for the origin
the specific eighth-order potential found in the Abelian
Chern-Simons Higgs model coupled to gravity. More p
cisely, it has been found in@13–15# that the Einstein equa
tions and the matter field equations of this model can
recast into a set of self-duality equations for a spec
eighth-order choice of the Higgs potential which reduces
the sixth-order potential of the flat space model when
Newton gravitational coupling constant is set to zero. W
show that this is the unique potential which may be emb
ded into a locally supersymmetric theory, with th
Bogomol’nyi-type equations descending from the Killin
spinor equations of this underlying supergravity. This in p
ticular allows us to address the stability of the vortex so
tions studied in@13–17#.

In the second part of the paper we study supersymme
vortex solutions of the generalU(1)-gauged supergravity

,
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M. ABOU-ZEID AND H. SAMTLEBEN PHYSICAL REVIEW D 65 085016
with a single complex scalar field. We show that with a r
tationally symmetric ansatz, the Killing spinor equations
duce to a set of four first-order differential equations. T
generalizes the results of@15,17#, where these equations we
found by the Bogomol’nyi-type arguments mentioned abo
to arbitrary Kähler manifolds. Identifying an integral of mo
tion, we show that after suitable redefinition of coordinat
these equations may further be reduced to a single sec
order differential equation. For a given vortex number, it h
a unique solution with regular asymptotics, from which
the original fields may be restored. It represents a rotat
ally symmetric, finite energy, topologically stable vortex s
lution, preserving one-half of the supersymmetry.

Another motivation for the study of locally supersymme
ric theories in three dimensions and their solutions ste
from an observation made by Witten@24#: in three dimen-
sions, the cosmological constant of the vacuum can be
actly zero because of local supersymmetry, yet the spect
of excited states may not exhibit the usual Bose-Fermi m
degeneracy because for non-zero energy states the s
charges are defined in conical space-times. A realization
this mechanism in theN52 supersymmetric Abelian
Maxwell-Higgs model coupled to gauged three-dimensio
supergravity was exhibited in@25#, and studied further e.g.
in Refs. @26–28#. The Abelian gaugedN52 supergravities
and their half supersymmetric vortex solutions constructe
the present paper provide additional examples of this me
nism. As in@25,27#, the covariantly constant spinors require
to define these supersymmetries exist by virtue of a can
lation between the Aharonov-Bohm phase and the phase
sociated with the holonomy of the spin connection. Howev
the same mechanism as in@25# prevents the existence o
normalizable covariantly constant spinors associated with
other half of the supersymmetry transformations, and he
Bose-Fermi degeneracy is absent in the soliton spectrum
course, it remains to be seen whether a locally supersym
ric four-dimensional theory with zero cosmological consta
but without the phenomenologically unviable Bose-Fer
degeneracies can be constructed along the lines sugges
@24#.

The plan of this paper is as follows. In Sec. II we co
struct the generalU(1)-gaugedN52 supergravity by de-
forming the three-dimensional sigma model of Ref.@10#,
whose target space is an arbitrary Ka¨hler manifold with
U(1) isometry. We show that our results reduce to those
@18# when the target spaces are the homogeneous sp
CPn andCHn ~and, moreover, include a possible extens
by Fayet-Iliopoulos terms!, while for the complex plane they
give the supersymmetric embedding of the Abelian Che
Simons Higgs model coupled to gravity. In Sec. III we stu
the Killing spinor equations of the general model with
single complex scalar field and we find that they reduce t
set of four first-order differential equations. We then sh
that they admit a unique solution with the prescribed~regu-
lar! asymptotics and give some numerical examples.
close with a summary and comments on possible appl
tions.
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II. U„1…-GAUGED DÄ3, NÄ2 SUPERGRAVITY

We start this section by reviewing the Lagrangian a
transformations rules for a non-linear sigma model coup
to N52 supergravity. This mainly serves to set our notati
and conventions; the reader is referred to@10# for full results
and a detailed discussion. Assuming anU(1) isometry of the
Kähler potential, we apply the standard Noether procedur
obtain the generalU(1)-gaugedN52 supergravity. In four
dimensions, analogous supergravity theories have been s
ied in @29–31#. We then evaluate the general formulas
several examples.

A. DÄ3, NÄ2 supergravity and Kähler geometry

The gravity multiplet of the ungaugedN52 supergravity
in three dimensions consists of a dreibeinem

a and two gravi-
tini which we assemble into one complex spinorcm . The
matter sector is given byp copies of theN52 scalar mul-
tiplet, each consisting of two real scalars and fermio
Again we use complex notation (fa,f̄ ā) and (la,l̄ ā)
(a51, . . . ,p), respectively. The scalar fields parametrize
Kähler manifold of real dimension 2p, characterized by its
Kähler potentialK(fa,f̄ ā).

TheN52 locally supersymmetric Lagrangian is given b

L S5
1

4
eR1«mnrc̄mDncr2eGaā~f,f̄ !~]mfa]mf̄ ā

1l̄ āgmD mla!1eGaā~f,f̄ !l̄ āgmgncm]nfa

1eGaā~f,f̄ !c̄mgngmla]nf̄ ā, ~1!

up to terms quartic in the fermions. Here,Gaā(f,f̄) denotes
the Kähler metricGaā(f,f̄)5]a]āK(f,f̄). We use 232
matrices ga for the SO(2,1) Dirac algebra, withgagb

5hab2«abcgc ; the charge conjugation matrix isg0. Our
metric has signature (211), and «01251. A convenient
representation isg05 is3, g152s2 and g252s1. The
sign of the Newton gravitational coupling, which in thre
dimensions is not physically fixed, is taken to be positiv
The Kähler covariant derivatives acting on the fermions a

Dmcn5~¹m2Qa]mfa1Qā]mf̄ ā!cn ,

Dmlb5~¹m2Qa]mfa1Qā]mf̄ ā!lb1Gag
b ]mfalg, ~2!

with spin-,SO(2)2, and Kähler connections

¹m5]m1
1

4
vm

abgab ,

Qa~f,f̄ !5
1

2
]aK~f,f̄ !,

Qā~f,f̄ !5
1

2
]āK~f,f̄ !, ~3!

Gbg
a ~f,f̄ !5Gaā~f,f̄ !]bGgā~f,f̄ !.
6-2
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CHERN-SIMONS VORTICES IN SUPERGRAVITY PHYSICAL REVIEW D65 085016
Up to cubic terms, the supersymmetry transformations wh
leave the Lagrangian~1! invariant are given by

dem
a5 ēgacm2c̄mgae,

dcm5Dme5~¹m2Qa]mfa1Qā]mf̄ ā!e,

dfa5 ēla, ~4!

dla5]mfagme,

wheree is a complex spinor.

B. Kähler transformations and isometries

The sigma model geometry of Sec. II A is clearly inva
ant under the Ka¨hler transformations

K~f,f̄ !→K~f,f̄ !1F~f!1F̄~f̄ !, ~5!

while the potentialQa transforms as

Qa→Qa1
1

2
]aF~f!. ~6!

As in higher dimensions@29,30#, the Lagrangian~1! is in-
variant under these transformations, provided the fermio
fields simultaneously transform as

cm→exp~ iIF !cm , l→exp~ iIF !l. ~7!

Moreover, we assume that the Ka¨hler potential possesses a
U(1) isometry generated by the vector field

j5 i ~fa]a2f̄ ā]ā!; ~8!

i.e., j generates a Ka¨hler transformation

LjK5 i ~fa]a2f̄ ā]ā!K5 f ~f!1 f̄ ~f̄ !. ~9!

The Lagrangian~1! is then invariant under the globalU(1):

dfa5 iqfa,

dcm5 iqIf cm , ~10!

dla5 iq~11If !la,

where the functional parameterf is defined in terms of the
Kähler potentialK by Eq. ~9!. Observe that Eq.~9! deter-
mines the holomorphic functionf only up to a constan
imaginary shift

f→ f 1 ic, ~11!

with c real.

C. The gauged Lagrangian and transformation rules

We proceed to gauge the Abelian Ka¨hler isometry~10! of
the locally supersymmetric Lagrangian~1!. As in the maxi-
mally supersymmetric theories@11,12#, this requires the cou
08501
h

ic

pling to a Chern-Simons gauge potentialAm with Abelian
field strengthFmn52] [mAn] via

L CS52
1

8
g«mnrAmFnr . ~12!

Note that this term is topological and hence does not in
duce new propagating degrees of freedom in the gau
theory. The derivatives in Eq.~2! are gauge covariantize
according to

D mfa[~]m1 igAm!fa,

Dmcn[@¹m2QaD mfa1QāD mf̄ ā1 ig~If !Am#cn

5~¹m2Qa]mfa1Qā]mf̄ ā1 igCAm!cn ,
~13!

D mlb[ @¹m2Qa]mfa1Qā]mf̄ ā1 ig~11C!Am#lb

1Gag
b D mfalg,

where we have defined the real Ka¨hler invariant function

C52Qafa2Qāf̄ ā2
1

2
i ~ f 2 f̄ !. ~14!

The latter transforms under the constant shifts~11! as

C→C1c. ~15!

As will be seen shortly, this function is intimately related
the superpotential of the gauged theory. The freedom in p
ing a constantc in Eq. ~15! can then be related to the exis
tence of the Fayet-Iliopoulos term.

As usual, theg-dependent terms introduced above gi
rise to extra terms in the supersymmetry variation of Eq.~1!
according to

@Dm ,Dn#cr5
1

4
Rmn

abgabcr12GaāD[mfaDn]f̄
ācr

1 igCFmncr . ~16!

In order for these terms to vanish, extra Yukawa-type bilin
fermionic terms and a scalar potentialV(f,f̄) must be
added:

L Y52egc̄mgmncnB2egl̄ ālaSaā1egC~ c̄mgmlaSa

2l̄ āgmcmSā!, ~17!

L V5eg2V.

Here, the functionalsB(f,f̄) and V(f,f̄) are real scalars

while the vector functionalsSa(f,f̄)5Sā(f,f̄) and the
tensor functionalsSab̄(f,f̄) are complex. Their dependenc
on the scalarsf,f̄ will be specified below.
6-3
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The supersymmetry variations are likewise modified
g-dependent contributions:

dem
a5 ēgacm2c̄mgae,

dcm5Dme2gBgme,

dfa5 ēla, ~18!

dla5D mfagme2gGaāCSāe,

dAm522i ~ ēcm2c̄me!C

12iGaā~fal̄āgme1f̄ āēgmla!.

A straightforward calculation shows that—modulo higher
der fermionic terms which presumably remain unchanged
in the maximal theories of@11,12#—the full Lagrangian,

L5L S1L CS1L Y1L V, ~19!

is invariant under Eq.~18! if the functionalsB,Sa ,Saā sat-
isfy the following set of consistency relations:

]aB52CSa ,

Sa52Gaāf̄ ā,

DbSa[]bSa2Gab
g Sg50, ~20!

Sab̄5BGab̄2SaSb̄1C]b̄Sa ,

while the potential is given by

V52B22GaāC2SaSā

52B22Gaā]aB]āB. ~21!

It is easily checked that the system~20! is consistent. The
general solution to these equations takes the form

B5C21b,

Sa522]aC52Gaāf̄ ā, ~22!

Sab̄5BGab̄2SaSb̄22C]a]b̄C,

whereb is an arbitrary constant real parameter.
This completes the construction of a family ofN52 su-

persymmetric gauged Lagrangians parametrized by a Ka¨hler
manifold and two real numbersb and c. In particular, the
constant shifts ofC by c correspond to the presence of
Fayet-Iliopoulos term@30#. Note that according to Eq.~21!
B5C21b is the superpotential forV. In the limit g→0, one
recovers the ungauged theory~1!.

The gauged Lagrangian~19! is still invariant under gen-
eral Kähler transformations~5!, ~7!, under which the func-
tional parameterf changes as

f→ f 1 ifa]aF. ~23!
08501
y
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D. Examples

In this section we consider some special cases of the A
lian gauged Lagrangian constructed in the preceding sec
In particular, this will reproduce and explain the form of th
eighth order potential of the Abelian Chern-Simons Hig
model coupled to gravity, which was previously derived
@13–17# by Bogomol’nyi-type arguments. Moreover, we r
produce the gauged theories constructed in@18# and their
generalization by Fayet-Iliopoulos terms.

In this paper we will mainly be interested in the ca
p51, i.e. that of a single complex scalar field. Furthermo
we will restrict ourselves to Ka¨hler manifolds for whichf as
defined in Eq.~9! is an imaginary constantf 5 iC0, i.e. K is
a function ofR5ufu only. We then use the notations

f[f1,

Q[Q1̄5
f

4R
K8, ~24!

G[G11̄5
1

4R
~RK91K8!,

while for the Yukawa tensors and the potential we find

B5C21b, C52
1

2
RK81C0 ,

S[S1̄5
f

2R
~RK91K8!, ~25!

S[S11̄5BG2uSu22CC9,

V52B224GR2C2.

Here,K8, K9, etc. denote the derivatives ofK with respect to
R5f.

The simplest example in this class of models is the co
plex plane, with Ka¨hler potentialK(R)5R2. The above for-
mulas then reduce to

G51,

C52R21C0 , ~26!

V0524R2~R22h2!2

12~R422R2h21f`
2 h4!2,

where we have set

h25C0 , f`
2 5

b1C0
2

C0
2

.

This precisely reproduces the eighth order potential of
Abelian Chern-Simons Higgs model coupled to grav
which was derived in@13–17# by requiring the existence o
Bogomol’nyi-type equations. What we have shown here
that this form of the potential is naturally explained by s
6-4
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CHERN-SIMONS VORTICES IN SUPERGRAVITY PHYSICAL REVIEW D65 085016
persymmetry: it is the unique potential~depending on two
arbitrary parametersh andf`) which allows the embedding
into anN52 locally supersymmetric theory~19!. In the fol-
lowing section, we will see in more detail that th
Bogomol’nyi-type equations found in@15# indeed descend
from the supergravity Killing spinor equations.

For other examples we may consider the Ka¨hler potentials

K«~R!5
«

a2
ln~11«R2!. ~27!

The cases«511 and«521 correspond to the coset spac
S25SU(2)/U(1) andH25SU(1,1)/U(1), respectively; the
constanta denotes the characteristic curvature of these m
folds. With the particular choice of parameters

C05
«

2a2
, b50, ~28!

the above formulas reduce to

G«5
1

a2~11«R2!2
,

C«5
«

2a2

12«R2

11«R2
, ~29!

V«5
~12«R2!2@~12«R2!228a2R2!]

8a8~11«R2!4
,

which upon settingg54ma4 and rescaling the vector fiel
Am→2«g21Am precisely reproduces the two models stu
ied in detail in Ref.@18#. For a complete translation betwee
the notation of@18# and that of the present paper, we no
that the matter fermions differ by rescaling with a vielbe
living on the Kähler manifold, which forp51 simply re-
duces toAG; cf. @10# for further details. Likewise, for highe
p and for particular choices of the Ka¨hler manifold, Eqs.
~19!–~22! reproduce theCPp andCHp models of Ref.@18#.

Our general construction, furthermore, yields a straig
forward generalization of Eq.~29! by introducing a Fayet-
Iliopoulos term, i.e. leavingC0 as a free parameter

C05
h2

a2~11«h2!
, ~30!

we find

G«5
1

a2~11«R2!2
,

C«5
h22R2

a2~11«R2!~11«h2!
, ~31!
08501
i-
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t-

V«5
2~R22h2!2@~R22h2!222a2R2~11«h2!2#

a8~11«R2!4~11«h2!4
.

These potentials have Minkowski vacua atR56h. The par-
ticular choices in Eq.~29! correspond toh25«. In the fol-
lowing, we will mainly be interested in the models with po
tentials given by Eqs.~26! and ~31!. As an illustration, in
Figs. 1 and 2 we depict these potentials for the particu
values of parametersa51, h51/4. Their behavior for 0
,R,h is of similar form, exhibiting aU(1)-symmetric
AdS vacuum atR50 and symmetry breaking Minkowsk
vacua atR56h. Their global behavior, however, differ
drastically withV1 being bounded whereasV0 andV2 be-
come singular at infinite and finiteR, respectively. We will
see in the next section that all these potentials support su
symmetric vortex solutions interpolating betweenR50 and
R5h.

III. SUPERSYMMETRIC VORTICES

In this section we derive a set of first order different
equations for rotationally symmetric, supersymmetric fie
configurations and show that they admit regular vortex so
tions. We restrict ourselves to models with a single sca

FIG. 1. Scalar potentialsV0 ~solid!, V1 ~dotted!, V2 ~dashed!,
from Eqs.~26!, ~31!: vacua atR50, R56h.

FIG. 2. Scalar potentialsV0 ~solid!, V1 ~dotted!, V2 ~dashed!,
from Eqs.~26!, ~31!: global behavior.
6-5
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field p51 and a constant value off in Eq. ~9!, i.e. to Kähler
potentials depending on the absolute valueufu only. It would
be interesting to generalize this construction to Ka¨hler poten-
tials with an arbitrary holomorphicf 5 f (f); however, this
necessitates a more general ansatz for theu dependence o
the fields than will be considered here. For the complex s
lar f, we make the following time independent and rotatio
ally symmetric ansatz:

f5R~r !e2 inu. ~32!

For the vector fieldAm we choose the gauge in which

Ar50, Au5P~r !1
n

g
, At5W~r !. ~33!

Together with the boundary conditions at the origin and
infinity discussed in detail in Sec. III C, Eqs.~32! and ~33!
constitute our ansatz for the static and rotationally symme
n-vortex.

For the three-dimensional metric, we take the~stationary
and rotationally symmetric! parametrization

ds252dt212l ~r !sinhx~r !dtdu1 l 2~r !du21dr2.
~34!

The Chern-Simons term in the Lagrangian induces the
order duality equations

«mnrFnr58ieG~f̄D mf2fD mf̄!, ~35!

relating the vector and the scalar field. With the ansatz~32!–
~34!, two of these equations take the form

l coshx] rW524gGR2~P1 l sinhxW!, ~36!

l coshx] r P524gGR2~ l 2W2 l sinhxP!,

while the third one (m5r ) is identically satisfied.

A. Killing spinors

For supersymmetric vortices we seek solutions to the K
ing spinor equations

decm5
!

0, del5
!

0. ~37!

The transformation of the matter fermions is given by

del5~D mfgm22gCf!e5
!

0, ~38!

together with the complex conjugate equation. The existe
of nontrivial solutions to this equation implies that

~2gCf!25DmfD mf, ~39!

which yields

4C25W21S ] rR

gRD 2

2
1

cosh2x
S W sinhx1

P

l D 2

.

08501
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This equation is solved, e.g. by setting

W522C,

] rR

R
52

g

coshx S W sinhx1
P

l D . ~40!

Note that Eq.~24! implies the relation]RC522RG. Utiliz-
ing this, the ansatz~40! is shown to be compatible with th
duality equations~36!. Substituting Eq.~40! back into Eq.
~38!, the latter equation can be factorized as

~2lC2 iPg1!~coshx1 ig02sinhxg2!e50. ~41!

It is straightforward to check that the solution to this proje
tor equation is given by

e5FcoshS 1

2
x D1sinhS 1

2
x Dg2Ge0 , ~42!

with ~11 ig0!e050.

It remains to study the first equation of~37!, i.e. the require-
ment of vanishing transformation of the gravitini, whic
reads explicitly

@¹m2Q̄]mf1Q]mf̄1 igAmC2gBgm#e5
!

0. ~43!

For m5u this yields

]ue52S igPC1
n

2
~ f 2 f̄ ! D e2

1

2
l 8g0e

2
1

4
~ lx82 l 8tanhx24gBl!g1e, ~44!

where primes now denote derivatives with respect to the
dial variabler: x8[] rx, etc. Utilizing the projection~41! to
eliminateg1e, this equation can be equivalently written as

]ue52 i S gPC1
1

2
nC0D e1

i

4 sinhx
~ lx82 l 8tanhx

24gBl!e2
1

4
cothx~ lx81 l 8tanhx24gBl!g0e.

~45!

The term in g0e must vanish separately, which gives a
equation for the metric coefficients, viz.

lx81 l 8tanhx54gBl. ~46!

Substituting this back into Eq.~45!, we find

]ue52 i S gPC1
1

2
nC01

l 8

2 coshx D e,

which is solved by a separation of variables such that

l 852~2gPC1nC012k!coshx, ]ue5 ike, ~47!
6-6
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where k is an arbitrary real parameter. The Killing spin
equation~43! for m5t may be treated similarly. Separatin
variables and utilizing~46! and the projection~41!, Eq. ~43!
reduces to

W52
2B

C
2

k8

gC
, ] te5 ik8e, ~48!

which coincides with Eq.~40! provided thatk8522gb and
thus determines the time dependence of the spinor. Fin
there remainsm5r , for which Eq.~43! takes the form

] re5
1

2
x8g2e.

This equation is indeed satisfied by the ansatz~42!, provided
] re050. Together with Eq.~42! and ~47!, this implies that
the Killing spinor is given by

e~ t,u,r !5eikue22igbtFcoshS 1

2
x D1sinhS 1

2
x Dg2Ge0 ,

~49!

with a constant spinore0 satisfying

~11 ig0!e050.

The field configurations which solve Eqs.~40!, ~46!, and~47!
preserve half of the space-time supersymmetry; the co
sponding covariantly Killing spinor is given by Eq.~49!.

B. The Bogomol’nyi equations

To summarize, we have shown that with the ansatz~32!–
~34!, the duality and the Killing spinor equations reduce
the following set of first order differential equations:

] rR5gRS 2 tanhx C2
1

l coshx
PD ,

] r P54gGR2S 2l

coshx
C1tanhxPD , ~50!

] r l 5~ l `22gPC! coshx,

] r~ l sinhx!54gBl coshx,

where we have defined the constant

l `[22~k1nC0!. ~51!

Moreover, straightforward ~albeit tedious! computation
shows that every solution to Eq.~50! indeed gives a solution
to the full set of field equations derived from Eq.~19!. For
the Abelian Chern-Simons Higgs model~26!, these equations
reduce to the set of differential equations derived in@15#.
In the next section we shall show that for givenn, these
equations admit a unique vortex solution with regu
asymptotics.
08501
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C. Asymptotics of the Bogomol’nyi equations

We are mainly interested in topologically stable, finite e
ergy vortex solutions. In particular, we expect the scalar fi
R to run from the symmetric AdS vacuum atr 50, R50 into
a Minkowski vacuum atR5h for r→`. Hence, these solu
tions cannot be continuously deformed into the vacuum
lution.

More precisely, around the originr 50 we assume the
following asymptotic AdS behavior of the metric

l 5r 1O~r !, x5m r1O~r 2!, ~52!

where the constantm in our conventions ism54g(C0
21b)

and gives the inverse AdS radius of the metric. Regularity
the scalar and gauge field aroundr 50 then requires~we
assumen.0, g.0)

R5R0r n1O~r n11!, P52
n

g
1O~r 2n!, ~53!

and fixesk521/2 in Eq. ~51!. The constantR0.0 is the
only free parameter in the asymptotics around zero. It will
fixed by demanding regularity of the solution atr→`. For
r→` we assume the following behavior of the matter fiel
and metric:

R~r !→h.0, P~r !→0,
~54!

l ~r !→ l `r , x~r !→ x`

r
,

with constants l `5122nC0 defined in Eq. ~51!, and
x`5n2/(2gl`

2 ). Closer inspection of the differential equa
tions ~50! shows that demanding regular asymptotics at
finity leaves one free integration constant which appears
subleading order inR, cf. Eq. ~67!. Asymptotically, the met-
ric ~54! describes a locally flat space with deficit angle

d54npC0 , ~55!

or, more precisely, a particle with massM52nC0 and spin
J5n2/(2g) @1,15,32#. A well defined conical geometry a
radial infinity requires the upper bound

n,
1

2C0
, ~56!

for the vortex numbern. The values 2nC051 andnC051
correspond to cylindrical and spherical asymptotic geome
respectively@1#. Since Eq.~54! requires the functionB as
well as the potentialV to vanish at radial infinity, i.e.B(h)
5V(h)50, together we find that

C~R5h!50, b50, ~57!

which fixes the constantsb and C0. Recalling thatC85
22RG and thatG remains positive to ensure a nondegen
ate kinetic scalar term, this in particular implies thatC0.0.
6-7
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In turn, Eq.~57! already implies thatV8(h)50, i.e. at radial
infinity the scalar field runs into a Minkowski vacuum of th
potential.

We seek a solution of the system of differential equatio
~50! which interpolates between the proper asymptotics~52!,
~53! for r→0 and 54 forr→`, respectively. As we have
seen, there is precisely one free parameter in the asymp
expansion aroundr 50. It is a nontrivial problem whether
by properly choosing this parameterR0, one may find a se
of functions$R,P,l ,x% which obey regular asymptotics~54!
at radial infinity also. In the remaining part of this sectio
we shall show that this is indeed the case.

We start our analysis of the differential equations~50!
with some observations. Consider the quantity

Z[P224l sinhxS CP2
l `

2gD24l 2B. ~58!

From the differential equations~50!, one may verify thatZ is
an integral of motion, i.e.] rZ50, and hence reduces th
number of unknown functions to three. We further obse
that Eq.~50! imply the following second order equation fo
the scalar field:

]

]r S l coshx

R

]R

]r D58g2C~B2GR2!l coshx. ~59!

To analyze the existence of solutions with proper asym
totics atr→0 andr→`, we introduce the new radial vari
able

r̃[ l coshxR22C0eK. ~60!

The system of equations~50! then yields the following
simple radial equation:

] ln r̃

]r
5

l `

l coshx
. ~61!

Recall that the bound for a regular asymptotically coni
geometry~56! implies that 0, l `,1 so that Eq.~60! is in-
deed a well-defined coordinate transformation. In contr
assuming asymptotically cylindrical geometry correspond
l `50, in which caser̃ is not a well defined coordinate bu
rather a constant. More precisely, in this case Eq.~61! may
be integrated to

l coshx5~R/R0!1/neK(0)2K(R).

The first equation of Eq.~50! together with Eq.~58! then
reduces to a decoupled first order differential equation foR

] rR5RAn2~R/R0!22/ne2[K(R)2K(0)]14g2C2,

which shows that its solutionR necessarily diverges at radia
infinity. With the ansatz~32!–~34!, there are hence no regula
solutions with asymptotically cylindrical geometry in the
models. This is in agreement with the discussion in@17# for
the Abelian Higgs model.
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According to Eqs.~52!, ~54!, the new radial variabler̃
~60! has the asymptotic behavior

r̃→R0
22C0

•r l ` as r→0,

~62!

r̃→ l `h2C0eK(h)
•r as r→`.

The metric element~34! becomes

ds252~dt2 l sinhxdu!21~ l coshx!2
dzdz̄

zz̄

with z5 r̃ 1/l `eiu. ~63!

The key observation for our analysis, however, is the f
that, in terms ofr̃ , the second order differential equation~59!
completely decouples from the metric functions and ta
the form

1

r̃

]

] r̃
S r̃

]U

] r̃
D 52

]Veff

]U
, U5 ln R, ~64!

with an effective potential

Veff52
2g2

l `
2

e4C0Ue22KC2. ~65!

The effective potentialVeff is negative definite~asR.0) and
it vanishes at minus infinity and atU5 ln h, where it has a
local maximum sinceC(h)50. For the particular example
given in Eqs.~26! and~31!, the effective potential is depicte
in Fig. 3.

Note that the gauge coupling constantg may be absorbed
by rescalingr̃ . As in the case of nongravitating vortices wit
Higgs potential@22#, Eq. ~64! can be approximated by
Liouville equation for smallR and by a Bessel equation i
the vicinity of the Minkowski vacuum atR5h. More pre-
cisely, we find in agreement with Eqs.~53!, ~54! that

FIG. 3. Effective potentialVeff from Eq. ~65! for the potentials
V0 ~solid!, V1 ~dotted!, V2 ~dashed! from Eqs.~26!, ~31!.
6-8
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R'~2gC0
2e2K(0)r̃ !21/2C0F S r̃ 0

r̃
D 1/ł `

2S r̃

r̃ 0
D 1/l `G21/2C0

for small R, ~66!

with a constantr̃ 0 related toR0 above, and that

R'h1c1K0S 2g

l `
h2C01(1/2)e2K(h)C8~h! r̃ D

near R5h, ~67!

whereK0 denotes the MacDonald function andc1 is a con-
stant. Starting either nearR50 or nearR5h, the constants
r̃ 0 and c1 are implicitly ~and uniquely! fixed by requiring
regular asymptotics at the other end. Let us now discuss
this comes about in slightly more detail.

The form of Eq.~64! allows us to prove the existence of
regular solution, which interpolates between the proper
ymptotics ~53! and ~54!. This may be shown in a manne
which is reminiscent of the discussion in@17#. The point is
that the second order differential equation~64! can be
thought of as describing the damped motion of an auxili
fictitious particle in the effective potential~65!. There is a
one-parameter family of solutions which, atr̃ 50, start with
the correct asymptotics, viz.

U5
n

l `
log r̃ 1 logR01•••; ~68!

these solutions are labeled by the parameterR0 from Eq.
~53!. Similarly to the analysis in@17#, one finds that for smal
R0 these solutions run into the local minimum of the effe
tive potential, whereas for large values ofR0 they go over
the hilltop of the potential atU5 ln h. There is precisely one
value of R0 for which the motion of this fictitious particle
ends at the local maximumU5 ln h. This corresponds to the
proper asymptotics~54! of the scalar field at radial infinity.

Having solved Eq.~64! with the proper asymptotics a
both ends, it remains to restore the other fields$P,l ,x% of the
model. To this end, we note that the differential equatio
~50! imply that

1

r̃

]

] r̃
~ l sinhx!52

2l `

g
Veff . ~69!

Using Eq.~64!, this equation may be integrated to

l sinhx5
l `

2g Fn2

l `
2

22r̃ 2Veff2S r̃
]U

] r̃
D 2G , ~70!

and one easily verifies that this indeed obeys the correc
ymptotics ~52!, ~54!. The remaining metric function is ob
tained from Eq.~60!, which gives

l coshx5 r̃ R2C0e2K(R), ~71!

while the gauge fieldP may be extracted from Eq.~50! as
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P52
l `

g F r̃
]U

] r̃
12r̃ 2CVeff1CS r̃

]U

] r̃
D 2

2
n2

l `
2

CG . ~72!

All the fields have correct asymptotical behavior~52!, ~53!,
~54!, provided the functionR is the unique solution of Eq
~64! with proper asymptotics. The original radial variabler
may finally be restored by integrating~61!,

r ~ r̃ !5
1

l `
E

0

r̃
d r̃8R2C0e2K(R). ~73!

To summarize, we have shown that the system of differen
equations~50! may be reduced to a single second order d
ferential equation~64! which, for each vortex numbern sat-
isfying Eq. ~56!, admits a unique solution with proper a
ymptotics atr 50 andr→`. From this solution, the origina
fields may be restored according to Eqs.~70!–~72! and they
have the correct asymptotics. This completes the const
tion of vortex solutions in the generalU(1)-gauged super-
gravity ~19!.

An obstruction to the existence of these vortex solutio
may, however, show up for certain compact Ka¨hler mani-
folds. As has been observed in the four-dimensional cas
@29#, global consistency of the Lagrangian~19! requires the
Kähler manifold to be a Hodge manifold, which may imply
quantization of the gravitational constant in units of the s
lar self-coupling. For the compactS2 model ~29! for ex-
ample, one finds the restriction

2C05
1

a2
PZ, ~74!

as has been explicitly verified in@18#. This quantization con-
dition is obviously incompatible with the bound~56!, and
hence reduces the possible values of the vortex numbe
n51 andn52, corresponding to asymptotically cylindrica
and spherical geometry, respectively. As has been discu
above, these solutions do not exist in this model. The
sence of vortex solutions with asymptotically conical geo
etry and the scalar fields living on a compact target manif
has already been noted in four dimensions in@33#.

D. Examples

Let us illustrate the analysis of Sec. III C by computin
some numerical solutions to the specific models presente
Sec. II D. Since the Abelian Chern-Simons Higgs mod
coupled to gravity~26! and its vortex solutions have alread
been extensively discussed in the literature@13–17#, we will
consider the noncompactH2 model with potentialV2 given
in Eq. ~31!, whose vortex solutions have not yet been an
lyzed. In fact, this model may be of special interest, since
the limit g→0 it reduces to the theory obtained from dime
sional reduction of pure four-dimensional Einste
6-9
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gravity. It is then tempting to speculate about a possi
higher-dimensional geometrical origin of these vortex so
tions.

For the particular valuesa5g51 andh5 1
4 of the param-

eters, the scalar potentialV and effective potentialVeff have
been depicted in Figs. 1, 2, and 3, respectively. Recall
the choice of a strictly positiveC0 in this model was essen
tial for the existence of a Minkowski vacuum and hence
the existence of the vortex solutions. With these parame
Eq. ~56! yields the upper boundn,8 for the vortex number.
For each 0,n,8, the unique solutionR( r̃ ) to Eq. ~64!

which has asymptotics~68! aroundr̃ 50 and remains regula
at r̃ 5` may be found numerically, by fine-tuning the u
known parameterR0 by hand. We should stress, howeve
that finding the regular solutions with higher vortex numb
requires considerable numerical accuracy. A nontrivial ch
is provided by inserting the solution thus obtained into
effective potentialVeff and numerically integrating the right
hand side~rhs! of Eq. ~69!, which should result in

E
0

`

Veff@R~ r̃ !# r̃ d r̃52
n2

4l `
2

, ~75!

which is found upon integrating the left-hand side of Eq
~69! and using Eq.~54!. All our numerical solutions pass thi
check with high precision~up to 0.005%!. The original radial
variabler is finally obtained by numerically integrating Eq
~73!. The resulting functionsR(r ) for all possible valuesn
51,2, . . . ,7 of thevortex number have been plotted in Fig.
the value ofn increasing from left to right. The behavior o
the ~normalized! gauge fieldP(r ) in these solutions is given
in Fig. 5.

IV. SUMMARY AND OUTLOOK

We have constructed the general three-dimensio
N52 gauged supergravities with Abelian gauge groupU(1)
and Chern-Simons coupling of the vector fields. The sup
symmetric Lagrangian and supersymmetry transformati
rules were determined up to quartic and cubic fermio
terms, respectively, but we do not expect the structure of

FIG. 4. Scalar fieldR(r ) for vortices in theH2 model with n
51,2, . . . ,7,from left to right.
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models to be modified by the higher order fermionic term
The models are parametrized by a Ka¨hler manifold and two
real numbersb andc; b shifts the superpotential for the sca
lar potential@cf. Eqs.~21! and ~22!#, while a nonzero value
of c corresponds to the presence of a Fayet-Iliopoulos te
The gauged Lagrangians~19! are residually invariant unde
general Ka¨hler transformations.

We have evaluated our general formulas for various p
ticular examples with a single complex scalar fieldf and
Kähler potential K5K(ufu). In the case of the complex
plane, this reproduces the eighth order polynomial poten
~26! of the Abelian Chern-Simons Higgs model coupled
gravity which was previously derived in@13–17# by requir-
ing that the dynamics be given by a system of first ord
differential equations. This constitutes a natural explanat
of these earlier results from localN52 supersymmetry. In
particular, our construction provides the embedding of
abelian Chern-Simons Higgs model into a supergrav
theory, allowing us to directly address the stability of t
vortex solutions preserving half of the supersymmetry. In
space, the self-dual limit of the Abelian Chern-Simons Hig
model@22# and its particular sixth order potential have sim
larly been derived from globalN52 supersymmetry in@23#.

Likewise, for the Ka¨hler manifoldsCPp and CHp, our
results reproduce the potentials of the gaugedN52 models
studied in@18#, together with their generalization by includ
ing a Fayet-Iliopoulos term. The presence of this term allo
for symmetry-breaking Minkowski vacua of the potentia
and hence for vortex solutions.

Having constructed the general Abelian gaugedN52 su-
pergravity theory, we turned to the construction of rotatio
ally symmetric vortex solutions preserving one half of t
supersymmetry. Utilizing the ansatz~32!–~34! for the fields,
the Killing spinor equations~37! were shown to lead to the
system of four first order differential equations~50! ~which
in particular reduces to the system found in@15# in the spe-
cial case of the Chern-Simons-Higgs model!; it was also
verified that this system solves the full set of~second order!
field equations of the theory. Furthermore, we showed t
this system of equations admits a unique solution in wh
the norm of the scalar fieldR runs from the symmetric AdS
vacuum of the potential atr 50, R50 into a symmetry

FIG. 5. Gauge field2P(r )/n for vortices in theH2 model with
n51,2, . . . ,7,from left to right.
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breaking Minkowski vacuum atr→`. This solution repre-
sents a rotationally symmetric, finite energy, topologica
stable vortex solution. The essential ingredient for prov
the existence of this solution was the further reduction of
system~50! to the single second order differential equati
~64!. The latter describes the motion of a~fictitious! particle
in the effective potential~65!. Its solution determines the
original fields ~scalar, gauge field and components of t
metric! via Eqs.~70!–~72!.

Our results provide further examples beyond that of Re
@25,26# of the mechanism proposed in@24# for obtaining a
vanishing cosmological constant within a supersymme
theory without phenomenologically unacceptable Bo
Fermi degeneracies. In particular, the solution construc
here is the first such example within a gauged supergra
with Abelian Chern-Simons gauge fields~rather than the
usual Maxwell fields!. The covariantly constant spinors o
our solutions exist by virtue of essentially the same mec
nism as that pointed out in@25#.

Finally, let us mention some directions for further inve
tigations. We have constructed the general Abelian gau
N52 theory, but of course it would be very interesting
obtain non-Abelian gaugings and to identify possible rest
it

s.
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tions on the allowed gauge groups by solving the consiste
conditions imposed by local supersymmetry in this case. O
would expect such models to admit vortex-type solutio
with several gauge fields turned on~i.e. non-Abelian vorti-
ces!, which it would be interesting to construct explicitly
perhaps by acting with some suitably adjusted solution g
erating transformations on the Abelian solutions construc
here. The possible relevance of vortex solutions in the A
CFT correspondence has been addressed in@34#. We hope to
report on these and related matters in the near future.
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