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We study supersymmetric vortex solutions in three-dimensional Abelian gauged supergravity. First, we
construct the generdl (1)-gaugedD =3, N=2 supergravity whose scalar sector is an arbitraril&amani-
fold with U(1) isometry. This construction clarifies the connection between local supersymmetry and the
specific forms of some scalar potentials previously found in the literature—in particular, it provides the locally
supersymmetric embedding of the Abelian Chern-Simons Higgs model. We show that the Killing spinor
equations admit rotationally symmetric vortex solutions with asymptotically conical geometry which preserve
half of the supersymmetry.
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I. INTRODUCTION and CH" models, recently constructed [ith8].
The Abelian Higgs model with a Chern-Simons term in
In three space-time dimensions, pure Einstein gravity hathree-dimensional flat Minkowski space and its vortex solu-
no local propagating degrees of freedom and is thus topaions were studied if19,20 (see also the earlier references
logical. The solutions to the field equations are locally flattherein. This model is of some practical interest because of
except at conical singularities at the location of matterits relation to the physics of high temperature superconduct-
sourceg1,2]. Moreover, there is a precise sense in which theors, which violate both thd and P symmetries(like the
theory is solubl¢3—€]. Similar results hold for cosmological Chern-Simons terin and which often exhibit two-
Einstein gravity{ 7], and for the three-dimensional topologi- dimensional spatial structures. In particular, it was found
cal supergravity theorig/$,9]. [19,2Q that the model with a specific sixth-order Higgs po-
A complete classification dii-extended supergravities in tential admits topologically stable vortex solutions which sat-
three dimensions was given in R¢l0]. In particular, the sfy (first orde) self-duality, or Bogomol'nyi-typg21] equa-
geometry of the target manifolds parametrized by the scalaions. This special Higgs potential hasW(1)-symmetric
fields is Kanler for N=2, quaternionic foiN=3,4 and sym- minimum which is degenerate with a symmetry-breaking
metric for N=5,6,8. ForN=9,10,12,16, the theories are one, as a result of which it also admits charged nontopologi-
based on a single supermultiplet and are associated witkal soliton solutiong22]. In Ref.[23], the specific form of
coset spaces with the exceptional isometry groleps Eg, this potential was shown to originate from the unique em-
E;, and Eg, respectively. Recently, a number of maximal bedding of this model into a globally=2 supersymmetric
(N=16) gauged models with a variety of admissible com-theory; the Bogomol'nyi bound may be obtained from the
pact and noncompact gauge groups were constructed Buperalgebra and is saturated by the supersymmetric solu-
[11,17. In these three-dimensional gauged supergravities, gons.
key role is played by the on-shell duality between the gauge In the present paper—as a byproduct of our general
fields and the scalar fields. This is implemented in the Laconstruction—we give a similar explanation for the origin of
grangian by means of a Chern-Simons term for the gaugthe specific eighth-order potential found in the Abelian
fields (rather than the usual Yang-Mills tejnwhich ensures  Chern-Simons Higgs model coupled to gravity. More pre-
that the duality relation is an equation of motion while thecisely, it has been found ifL3—15 that the Einstein equa-
gauge fields do not carry physical degrees of freedom. tions and the matter field equations of this model can be
In this paper we construct the geneki(1)-gauged non- recast into a set of self-duality equations for a specific
linear sigma model coupled thN=2 supergravity in three eighth-order choice of the Higgs potential which reduces to
dimensions, and study supersymmetric vortex solutions ofhe sixth-order potential of the flat space model when the
this theory. As particular examples, we obtain the supersymNewton gravitational coupling constant is set to zero. We
metric embedding of the Abelian Chern-Simons Higgs modekhow that this is the unigue potential which may be embed-
coupled to gravityf13—17 and generalizations of thé P" ded into a locally supersymmetric theory, with the
Bogomol'nyi-type equations descending from the Killing
spinor equations of this underlying supergravity. This in par-
*Also at Institut des Hautes Etudes Scientifiques, Le Bois-Marieficular allows us to address the stability of the vortex solu-
35 route de Chartres, 91440 Bures-sur-Yvette, France. Electronidons studied if13—17.
address: m.abouzeid@ic.ac.uk In the second part of the paper we study supersymmetric
"Electronic address: H.Samtleben@phys.uu.nl vortex solutions of the generdl(1)-gauged supergravity
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with a single complex scalar field. We show that with a ro- Il. U(1)-GAUGED D=3, N=2 SUPERGRAVITY
tationally symmetric ansatz, the Killing spinor equations re-

. . ) . - We start this section by reviewing the Lagrangian and
duce to a set of four first-order differential equations. This y 9 grang

i h | 51 h n . transformations rules for a non-linear sigma model coupled
generalizes the results 5,17, where these equations were to N=2 supergravity. This mainly serves to set our notation

found by the Bogomol'nyi-type arguments mentioned abovepq onventions; the reader is referred 6] for full results

to arbitrary Kdler manifolds. Identifying an integral of mo- 4.4 a detailed discussion. Assuminglafl) isometry of the

tion, we show that after suitable redefinition of coordinatesy ;njer potential, we apply the standard Noether procedure to
these e_quations may f_urther be reduced to a single s_econgbtain the general(1)-gaugedN=2 supergravity. In four
order differential equation. For a given vortex number, it hasdimensions, analogous supergravity theories have been stud-

a unique solution with regular asymptotics, from which alljed in [29-31. We then evaluate the general formulas in
the original fields may be restored. It represents a rotationseveral examples.

ally symmetric, finite energy, topologically stable vortex so-

lution, preserving one-half of the supersymmetry. A. D=3, N=2 supergravity and Kahler geometry
Another motivation for the study of locally supersymmet- . . . .

ric theories in three dimensions and their solutions stems The gravity multiplet of the ungaugdd=2 supergravity

from an observation made by Wittd@d]: in three dimen- in three dimensions consists of a dreibej/¥ and two gravi-

: . tini which w mble into on mplex spi . Th
sions, the cosmological constant of the vacuum can be ex- ch we assemble into one complex spingy c

matter sector is given bp copies of theN=2 scalar mul-
actly zero because of local supersymmetry, yet the spectru

. o . ?iblet, each consisting of two real scalars and fermions.
of excited states may not exhibit the usual Bose-Fermi mass . . — —
ain we use complex notationg(,¢*) and %\ %)

degeneracy because for non-zero energy states the su . . 4
9 y 9y P =1,... ), respectively. The scalar fields parametrize a

. . . . . . a=1,
charges are Qef|ngd n conl_cal space-times. A. reallzat_|on OKéhIer manifold of real dimension 2 characterized by its
this mechanism in theN=2 supersymmetric Abelian —

Maxwell-Higgs model coupled to gauged three-dimensional<@nler potentialk (¢, ¢ ). , o
supergravity was exhibited if25], and studied further e.g., TheN=2 locally supersymmetric Lagrangian is given by
in Refs.[26—28. The Abelian gauged=2 supergravities 1 . . L

and their half supersymmetric vortex solutions constructed in ~ £S5=—eR+ "y, D, —eGuo( b, ) (3, "0

the present paper provide additional examples of this mecha-

nism. As in[25,27), the covariantly constant spinors required +y27ﬂp A +eG _(¢’g)y27ﬂva 9,b°
to define these supersymmetries exist by virtue of a cancel- e rer
lation between the Aharonov-Bohm phase and the phase as- +eGuu (b, D),y ¥\, *, (1)

sociated with the holonomy of the spin connection. However, L

the same mechanism as [85] prevents the existence of up to terms quartic in the fermions. He@, (¢, ¢) denotes

normalizable covariantly constant spinors associated with theghe Kanhler metric GQZ(¢,$)=%£9§K(¢,$)- We use X2

other half of the supersymmetry transformations, and hencaatrices y® for the SO(2,1) Dirac algebra, withy?y®

Bose-Fermi degeneracy is absent in the soliton spectrum. Gf 52°— ¢3¢y, - the charge conjugation matrix ig®. Our

course, it remains to be seen whether a locally supersymmetretric has signature+ +), and ¢°*?>=1. A convenient

ric four-dimensional theory with zero cosmological constantrepresentation isy’=io®, y'=—0¢? and y?=—o'. The

but without the phenomenologically unviable Bose-Fermisign of the Newton gravitational coupling, which in three

degeneracies can be constructed along the lines suggesteoﬂimen_sions is not physically fixed, is taken to be positive.

[24]. The Kéhler covariant derivatives acting on the fermions are
The plan of this paper is as follows. In Sec. Il we con- ——

struct the general(1)-gaugedN=2 supergravity by de- Dutv=(V.=Qad, ¢+ Qudud )¢,

forming the three-dimensional sigma model of REL0], _—

whose target space is an arbitrary @ manifold with DuN=(V,—Qad, "+ Qudd INP+TE 3,6\, (2

U(1) isometry. We show that our results reduce to those of . . . .

[18] when the target spaces are the homogeneous spac\éwsth spin-, SQ(2)—, and Kaler connections

CP" andCH" (and, moreover, include a possible extension 1

by Fayet-lliopoulos termswhile for the complex plane they V,=d,+ ZwuabYab,

give the supersymmetric embedding of the Abelian Chern-

Simons Higgs model coupled to gravity. In Sec. Il we study _ 1 o

the Killing spinor equations of the general model with a Qa(¢,¢)=§aaK(¢,¢),

single complex scalar field and we find that they reduce to a

set of four first-order differential equations. We then show

that they admit a unique solution with the prescritiezju- Qi )= Ea;K(qs,Z), (3)
lar) asymptotics and give some numerical examples. We 2

close with a summary and comments on possible applica- — - —

tions. I's(,)=GC*(b,$)3pG (¢, d).
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Up to cubic terms, the supersymmetry transformations whiclpling to a Chern-Simons gauge potenti&), with Abelian

leave the Lagrangiafil) invariant are given by
e, 2= ey, — ¥y,
81, =D ,e=(V,~Qud,6°+Qud, b e,
Sp*=eN?, (4)
ON“=7,0 ¥,

wheree is a complex spinor.

B. Kahler transformations and isometries

The sigma model geometry of Sec. Il A is clearly invari-

ant under the Kialer transformations

K(¢,¢)—K(¢p,d)+F(¢)+F (),

while the potentialQ,, transforms as

(5)

1
Qu—Qut 5 2aF (). ®)

As in higher dimension$29,30, the Lagrangianl) is in-

variant under these transformations, provided the fermionic

fields simultaneously transform as

p,—expiTF),, A—exp(iTF)\.

()

Moreover, we assume that the'idar potential possesses an

U(1) isometry generated by the vector field

E=1(P9y— ¢ d0);

i.e., £ generates a Kder transformation

)
LK=1(4°0,~ $ T )K=F($)+T(d). (9
The Lagrangian(l) is then invariant under the globbl(1):
op*=iqe”,

Sy,=iqdty,,

SNT=iq(1+ TN,

(10

where the functional parametéis defined in terms of the
Kahler potentialK by Eq. (9). Observe that Eq(9) deter-
mines the holomorphic functiof only up to a constant
imaginary shift

f—f+ic, (11

with ¢ real.

C. The gauged Lagrangian and transformation rules

We proceed to gauge the Abelianidar isometry(10) of
the locally supersymmetric Lagrangidh). As in the maxi-
mally supersymmetric theori¢41,12, this requires the cou-

field strengthF ,,=24;,A,; via

1
L= —2ge""AF,,. (12)

Note that this term is topological and hence does not intro-
duce new propagating degrees of freedom in the gauged
theory. The derivatives in Eq2) are gauge covariantized
according to

D, d"=(3,+igA,) ¢°
D, =[V,~Q.D ,¢*+QaD . +ig(IHA,]Y,

=(V,~ Qud, b+ Qzd, b +igCA,) i, ,
(13

D NP=[V,—Q,d,¢+Qxd,¢*+ig(1+C)A,I\P
+T8 D, ¢\,

where we have defined the reallider invariant function

— 1
C=—Qa¢*~Quep“— 5i(f—1). (14
The latter transforms under the constant shifth as
C—C+c. (15)

As will be seen shortly, this function is intimately related to
the superpotential of the gauged theory. The freedom in pick-
ing a constant in Eq. (15) can then be related to the exis-
tence of the Fayet-lliopoulos term.

As usual, theg-dependent terms introduced above give
rise to extra terms in the supersymmetry variation of @&g.
according to

1 p—
[’D# ’DV] wp:Z Ruvabyabwp+ ZGQ;D[M¢QDV] d) alpp

+igCF ¢, . (16)

In order for these terms to vanish, extra Yukawa-type bilinear

fermionic terms and a scalar potenti‘&(l(¢,$) must be
added:

£Y=—egy,y" B~ e\ NS, +egCy, "\"S,
~NT Y, S0, (17)
LV=edV.
Here, the functional®(¢,$) andV(¢,¢) are real scalars,
while the vector functicilalssa(¢,¢)=S;(¢,¢) and the

tensor functional$,5( ¢, ¢) are complex. Their dependence
on the scalarsp, ¢ will be specified below.
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The supersymmetry variations are likewise modified by

g-dependent contributions:
de =€y, — b, Y,

o, =D, e—gBy,e,
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D. Examples

In this section we consider some special cases of the Abe-
lian gauged Lagrangian constructed in the preceding section.
In particular, this will reproduce and explain the form of the
eighth order potential of the Abelian Chern-Simons Higgs
model coupled to gravity, which was previously derived in
[13-17 by Bogomol'nyi-type arguments. Moreover, we re-

Op“=eN?, (18 produce the gauged theories constructedli@] and their
- generalization by Fayet-lliopoulos terms.
ON“=D ,¢"y"e—gG*“CS;k, In this paper we will mainly be interested in the case
L p=1, i.e. that of a single complex scalar field. Furthermore,
oA,=—2i(ep,—,€)C we will restrict ourselves to Kaer manifolds for which as
_— - defined in Eq(9) is an imaginary constarit=iC,, i.e.K is
T2iG (P Ny e+ d ey, \7). a function ofR=|¢| only. We then use the notations
A straightforward calculation shows that—modulo higher or- o=,
der fermionic terms which presumably remain unchanged as
in the maximal theories dfl1,12—the full Lagrangian,
i e Q=Q1= 1K', (24)

L=LS+LCS+LY+ LY, (19

is invariant under Eq(18) if the functionalsB,S,,S,, sat-
isfy the following set of consistency relations:

9,B=—CS,,
S,=2G,.0°
D 4S,=5S,—T'24S,=0, (20)
S.5=BG,5—S,S5+ CizS,,
while the potential is given by
V=2B2-G*C?S,S,
=2B?—G“*g,BJ_B. (21)

It is easily checked that the systef®0) is consistent. The
general solution to these equations takes the form

B=C2+b,

S,=—230,C=2G2¢°, (22)

Sa5=B G5~ SeS5—2C3,5C,

whereb is an arbitrary constant real parameter.

This completes the construction of a family N&=2 su-
persymmetric gauged Lagrangians parametrized byldeka
manifold and two real numbers and c. In particular, the

constant shifts ofC by ¢ correspond to the presence of a

Fayet-lliopoulos tern30]. Note that according to Eq21)
B=C?+b is the superpotential fov. In the limit g—0, one
recovers the ungauged thedt).

The gauged Lagrangiafl9) is still invariant under gen-
eral Kéhler transformationg5), (7), under which the func-
tional parametef changes as

ff+ip9a,F. (23)

1
= = "+K'
G=Gq3 4R(RK K"),
while for the Yukawa tensors and the potential we find

1
C=-ZRK' +Cy,

2
B=C-"+b, 5

¢

S=Si=5= (RK'+K"), (25)

S=S,1=BG-|S|>*-CC’,

V=2B2-4GR*C2.
Here,K', K", etc. denote the derivatives Kfwith respect to
R:Tq:ie simplest example in this class of models is the com-

plex plane, with Kaler potentialk (R)=R?. The above for-
mulas then reduce to

G=1,
C=—-R%+C,, (26)
Vo=—4R¥(R?— 7%)?
+2(R*=2R*p?+ $5 72,
where we have set
b+C3
C

This precisely reproduces the eighth order potential of the
Abelian Chern-Simons Higgs model coupled to gravity
which was derived in13-17] by requiring the existence of

Bogomol'nyi-type equations. What we have shown here is
that this form of the potential is naturally explained by su-
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persymmetry: it is the unique potentiadepending on two v
arbitrary parameterg and ¢..) which allows the embedding '
into anN=2 locally supersymmetric theoi§L9). In the fol- !
lowing section, we will see in more detail that the '}
Bogomol'nyi-type equations found ifil5] indeed descend '-|
from the supergravity Killing spinor equations. '
For other examples we may consider thenkéa potentials '

]

\

1

1

1

1

\!

V

&
K.(R)= —2In(1+sR2). (27
a

The cases = +1 ande = —1 correspond to the coset spaces _j 3.
S?=SU(2)/U(1) andH?2=SU(1,1)/U(1), respectively; the
constant@ denotes the characteristic curvature of these mani-

¢ ; A FIG. 1. Scalar potential¥, (solid), V, (dotted, V_ (dashedq,
folds. With the particular choice of parameters from Egs.(26), (31): vacua alR=0, R= = 7.

Co=—j, b=0, 29) v = 2R (R )2~ 2a%RE(1+ e ")%)
2a : a®(1+eR)*(1+e7)"

the above formulas reduce to These potentials have Minkowski vacuaRat =+ 7. The par-

ticular choices in Eq(29) correspond top?=e¢. In the fol-
_ 1 lowing, we will mainly be interested in the models with po-
e a2(1+sR2)2’ tgntials given by Eqs(26) and (31). As.an illustration, i_n
Figs. 1 and 2 we depict these potentials for the particular
) values of parametera=1, »=1/4. Their behavior for 0
__& 1-¢R 29 <R<7 is of similar form, exhibiting au(1)-symmetric
° 2a%1+&R?

AdS vacuum atR=0 and symmetry breaking Minkowski

vacua atR= * 7. Their global behavior, however, differs

(1-eR?)2[(1—sR?)2—8a2R?)] drastica_lly WithV+_ b_eing bounc_Je_d Wherea\sq andV_ be_—

V,= , come singular at infinite and finitR, respectively. We will
8a%(1+&R?)* see in the next section that all these potentials support super-

symmetric vortex solutions interpolating betweles0 and
which upon settinggy=4ma* and rescaling the vector field R= 7.

AM—>—sg*1AM precisely reproduces the two models stud-
ied in det_a|l in Ref[18]. For a complete translation between Ill. SUPERSYMMETRIC VORTICES
the notation of{18] and that of the present paper, we note

that the matter fermions differ by rescaling with a vielbein In this section we derive a set of first order differential
living on the Kaler manifold, which forp=1 simply re- equations for rotationally symmetric, supersymmetric field
duces toG; cf. [10] for further details. Likewise, for higher configurations and show that they admit regular vortex solu-

p and for particular choices of the "Kier manifold, Eqs. tions. We restrict ourselves to models with a single scalar
(19—(22) reproduce theC PP and CHP models of Ref[18].

Our general construction, furthermore, yields a straight- v
forward generalization of Eq29) by introducing a Fayet- !

] M [}
1 Yo
lliopoulos term, i.e. leaving, as a free parameter ! i Al :: i
1
| I
2 ' i
7 ' '
= (30) L
" a2(1+en) AL
. -1 e j % 4 R
we find Pl |
1 y
_____ ! 1 e
i LT o | | T
— —_, AN -4t Pid
° a¥(1+&R?)? [
-6
7]2_ R2
= (31) FIG. 2. Scalar potential¥, (solid), V, (dotted, V_ (dashedq,
€ 2 2 2y’
a“(1+eR%)(1+en?)

from Eqgs.(26), (31): global behavior.
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field p=1 and a constant value 6in Eq.(9), i.e. to Kéhler ~ This equation is solved, e.g. by setting
potentials depending on the absolute vdkagonly. It would
be interesting to generalize this construction tdkea poten-
tials with an arbitrary holomorphi€¢=f(¢); however, this

W=-2C,

. R
necessitates a more general ansatz foré@liependence of L

the fields than will be considered here. For the complex sca- R cos h (
I:}Ir ¢S’ vr\;emrgflﬁceatlziggl.owm time independent and rOtatlon'Note that Eq(24) implies the relationgC= —2RG. Utiliz-
y sy ' ing this, the ansatz40) is shown to be compatible with the
d=R(r)ein?, (32)  duality equations(36). Substituting Eq.(40) back into Eq.
(38), the latter equation can be factorized as

P
Wsinhy+ —

| (40)

For the vector fieldA,, we choose the gauge in which . _ _
(2IC—iPyY)(coshy+iy°—sinhyy?)e=0. (41

€0, (42)

Together with the boundary conditions at the origin and at 1
€= cosl‘(i X
n-vortex.
It remains to study the first equation (&7), i.e. the require-

n
Ar=0, A,=P(r)+ g’ Ar=W(r). (33 ltis straightforward to check that the solution to this projec-
tor equation is given by
infinity discussed in detail in Sec. Ill C, Eq32) and (33) +sinr< 1 X) 2
constitute our ansatz for the static and rotationally symmetric 2
For the three-dimensional metric, we take tseationary ~With  (1+i9°)&;=0

and rotationally symmetrjcparametrization

ds?=—dt?+ 2l (r)sinhy(r)dtdg+12(r)d6>+dr?. ment of vanishing transformation of the gravitini, which
(34)  reads explicitly

The Chern-Simons term in the Lagrangian induces the first o - !
order duality equations [V,—Qd,¢+Qd,p+igA,C—gBy,Je=0. (43

eMPF,, = 8ieG($D Kep— D ,ug), (35 For u= 6 this yields

relating the vector and the scalar field. With the an$32z— _ | n.o =\ 1,4
(34), two of these equations take the form dpe= (|gPC+ Z(f ”)6 2I ve

| coshyd, W= —4gGR(P+I sinhyW), 36 1
X 9GRI xW, (39 ~ 5 (1x' ~1"tanhy— 4gBl)y'e, (44)
| coshyd,P=—4gGR(I?W—1 sinhyP),
. ) o ] o where primes now denote derivatives with respect to the ra-
while the third one f=r) is identically satisfied. dial variabler: x'= 4, x, etc. Utilizing the projectior{41) to

eliminate y'¢, this equation can be equivalently written as
A. Killing spinors

—I|"tanhy

L C ! |
2N%o 4SInh(X

> e+

For supersymmetric vortices we seek solutions to the Kill- 5 ¢= —j ( gPC+ =
ing spinor equations

1
— R /+ ! _ 0 .
5uap,=0, SA=0. 37 4gBl)e cothyx(lx' +1'tanhy—4gBIl)y"e

4

The transformation of the matter fermions is given by (45)

The term in y’¢ must vanish separately, which gives an
equation for the metric coefficients, viz.

SN=(D ,¢py"—29Co)e=0, (38
together with the complex conjugate equation. The existence Ix’+1"tanhy=4gBl. (46)
of nontrivial solutions to this equation implies that Substituting this back into Eq45), we find
(29C)2=D,$D ¢, (39) 1 %
which yields Goe= 1| GPCH 5NCo™ 3 coshy | ©
2 which is solved by a separation of variables such that

9,R\? 1 , P
AC2=W2+|—| — Wsinhy + —
gR/  cosHy |

|”=—(2gPC+nCy+2k)coshy, dye=ike, (47)
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wherek is an arbitrary real parameter. The Killing spinor C. Asymptotics of the Bogomol'nyi equations
equation(43) for u=t may be treated similarly. Separating

X Kl > We are mainly interested in topologically stable, finite en-
variables and utilizind46) and the projectiort4l), Eq. (43)

ergy vortex solutions. In particular, we expect the scalar field

reduces to Rto run from the symmetric AdS vacuumrat 0, R=0 into
, a Minkowski vacuum aR= # for r—«. Hence, these solu-
2Bk . : : .
—— T —— je=ik'e (48  tions cannot be continuously deformed into the vacuum so-
C g¢C lution.

. o ] . ) More precisely, around the origin=0 we assume the
which coincides with Eq(40) provided thak’=—2gb and  following asymptotic AdS behavior of the metric
thus determines the time dependence of the spinor. Finally

there remaingw=r, for which Eq.(43) takes the form I=r+0(r), x=mr+0O(r?), (52
1, where the constar in our conventions i$n=4g(C§+ b)
€= X VE and gives the inverse AdS radius of the metric. Regularity of

the scalar and gauge field arouneé-0 then requiregwe
This equation is indeed satisfied by the an%d®, provided assumen>0, g>0)
d,€0=0. Together with Eq(42) and (47), this implies that

the Killing spinor is given by R=Ry"+O(r"1),  p=— E+O(r2”) (53
1 g 1

_ _ 1 1
— alkfa—2ight _ inH — 2
s(t,6r)=e"e cosI’(ZX +Slm-<2X) Y| cor and fixesk=—1/2 in Eq. (51). The constanR,>0 is the
(49 only free parameter in the asymptotics around zero. It will be
_ _ o fixed by demanding regularity of the solution rat-o. For
with a constant spinog, satisfying r—oo we assume the following behavior of the matter fields
i and metric:
(1+iy%)ey=0.
. o . R(r)—7>0, P(r)—0,
The field configurations which solve Eq40), (46), and(47) (54)
preserve half of the space-time supersymmetry; the corre- X
sponding covariantly Killing spinor is given by E¢19). [(r)—l,r, X(f)*}Tw,
B. The Bogomolnyi equations with constantsl,,=1-2nC, defined in Eg. (51, and
To summarize, we have shown that with the an$a®—  y,.=n?/(2gl2). Closer inspection of the differential equa-
(34), the duality and the Killing spinor equations reduce totions (50) shows that demanding regular asymptotics at in-
the following set of first order differential equations: finity leaves one free integration constant which appears in
subleading order iR, cf. Eq.(67). Asymptotically, the met-
9,R=gR| 2 tanhy C— Pl ric (54) describes a locally flat space with deficit angle
| coshy
8=4nwCy, (55)
3rp=4gGR2(COShXC+ta”hXP)' (500 or, more precisely, a particle with makt=2nC, and spin
J=n?/(2g) [1,15,32. A well defined conical geometry at
d,1=(1..—2gPC) coshy, radial infinity requires the upper bound
d,(1 sinhy)=4gBI coshy, n<i (56)
2C,’

where we have defined the constant
for the vortex numben. The values ACy=1 andnCy=1

l.=—2(k+nCy). (51)  correspond to cylindrical and spherical asymptotic geometry,
respectively[1]. Since Eq.(54) requires the functiorB as

Moreover, straightforward (albeit tediouy computation well as the potentiaV/ to vanish at radial infinity, i.eB( )
shows that every solution to E(p0) indeed gives a solution =V(#7)=0, together we find that
to the full set of field equations derived from EJ.9). For
the Abelian Chern-Simons Higgs mod&b), these equations C(R=%)=0, b=0, (57
reduce to the set of differential equations derived 15].
In the next section we shall show that for giventhese which fixes the constantb and C,. Recalling thatC’'=
equations admit a unigue vortex solution with regular—2RG and thatG remains positive to ensure a nondegener-
asymptotics. ate kinetic scalar term, this in particular implies tiazt>0.
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In turn, Eq.(57) already implies thaV¥'(#)=0, i.e. at radial
infinity the scalar field runs into a Minkowski vacuum of the
potential. 3
We seek a solution of the system of differential equations
(50) which interpolates between the proper asymptqf@;,
(53 for r—0 and 54 forr—«, respectively. As we have
seen, there is precisely one free parameter in the asymptoti
expansion around=0. It is a nontrivial problem whether,
by properly choosing this parametp, one may find a set
of functions{R,P,I,x} which obey regular asymptoti¢54)
at radial infinity also. In the remaining part of this section,
we shall show that this is indeed the case.
We start our analysis of the differential equatiofi)
with some observations. Consider the quantity

FIG. 3. Effective potentiaV¢; from Eq. (65) for the potentials

| V, (solid), V. (dotted, V_ (dashed from Eqgs.(26), (31).
Z=P2-4| sinhX(CP— 2—°°)—4IZB. (58 5
9 According to Egs.(52), (54), the new radial variable

From the differential equation$0), one may verify thaZ is (60) has the asymptotic behavior

an integral of motion, i.ed,Z=0, and hence reduces the ~ ey
number of unknown functions to three. We further observe r—-R, %r'= as r—0,
that Eq.(50) imply the following second order equation for (62)

the scalar field: AI:~>|30772C08K(7’)'I' as —o.

d [l coshy dR 5 5 .
ar R ar =8g°C(B—GR*)l coshy. (590 The metric element34) becomes
To analyze the existence of solutions with proper asymp- P 2 ded_Z
totics atr —0 andr—, we introduce the new radial vari- ds’=— (dt-1 sinhxd)*+ (I coshy) 77
able
'I",'El COShXRiZCOEK. (60) with Z:’Flllxei 9, (63)
The system of equation$50) then yields the following The key obseQ/ation for our analysis, however, is the fact
simple radial equation: that, in terms of , the second order differential equati(s9)
_ completely decouples from the metric functions and takes
dinr I 61 the form
or  lcoshy’ (62)
149U NV et
Recall that the bound for a regular asymptotically conical =i Rl TV U=InR, (64)
geometry(56) implies that 0<l,,<1 so that Eq(60) is in- ror r
deed a well-defined coordinate transformation. In contrast, . . _
assuming asymptotically cylindrical geometry corresponds tdVith an effective potential
l..=0, in which case is not a well defined coordinate but oq?
rather a constant. More precisely, in this case B4) may _ 29 scgua-2ke2
be integrated to Vet 2z &€ ¢ (65

[

_ 14K (0)—K(R)
| coshy=(RIRy) e ' The effective potentidV/ i is negative definitéasR>0) and
The first equation of Eq(50) together with Eq.(58) then It vanishes at minus infinity and at=In 5 where it has a
reduces to a decoupled first order differential equatiorRior 0cal maximum sinceéC () =0. For the particular examples
given in Egs(26) and(31), the effective potential is depicted
9,R=R\N2(RIR,) ZneZKR KO 442C?, in Fig. 3. _

Note that the gauge coupling constgmnay be absorbed
which shows that its solutioR necessarily diverges at radial by rescaling . As in the case of nongravitating vortices with
infinity. With the ansat£32)—(34), there are hence no regular Higgs potential[22], Eq. (64) can be approximated by a
solutions with asymptotically cylindrical geometry in these Liouville equation for smalR and by a Bessel equation in
models. This is in agreement with the discussiofili] for ~ the vicinity of the Minkowski vacuum aR= 7. More pre-
the Abelian Higgs model. cisely, we find in agreement with Eq&3), (54) that
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1N,.7-1/2Cy _ouU ) U 2 nz
= +2r°CVegtC| r—=| ——=CJ|.
or ar I

[

~\ 14, ~
r r
R%(ZQCSEK(O)’F)UZCO{(?O> _(,F—
0

I

P=- E (72)

for small R, (66)
All the fields have correct asymptotical behaviép), (53),
with a constant, related toR, above, and that (54), provided the functiorR is the unique solution of Eq.
(64) with proper asymptotics. The original radial variable

R~ 7+¢,Ko may finally be restored by integratingl),

2 ~
é 772C0+(1/2)e—K(77)C/( 77)r. )

_ ~ 1 (v
near R= 7, 67) r(r)=|—err’R2C0e’K(R). (73)
o0 0

whereK, denotes the MacDonald function ang is a con-

stant. Starting either ne&=0 or nearR= 7, the constants

T, andc, are implicitly (and uniquely fixed by requiring 10 summarize, we have shown that the system of diﬁ‘eren'gial

regular asymptotics at the other end. Let us now discuss hofduations(50) may be reduced to a single second order dif-

this comes about in slightly more detail. ferential equatior(64) which, for each vortex number sat-
The form of Eq.(64) allows us to prove the existence of a isfying Eq. (56), admits a unique solution with proper as-

regular solution, which interpolates between the proper asymptotics atr =0 andr— <. From this solution, the original

ymptotics (53) and (54). This may be shown in a manner fields may be restored according to E¢&0)—(72) and they

which is reminiscent of the discussion [ih7]. The point is have the correct asymptotics. This completes the construc-

that the second order differential equati®B4) can be tion of vortex solutions in the gener&l(1)-gauged super-

thought of as describing the damped motion of an auxiliarydravity (19).

fictitious particle in the effective potentidb5). There is a An obstruction to the existence of these vortex solutions

one-parameter family of solutions which, rat 0, start with ::nleay, Zowhevert,) ShOWbUP fozj (_:erttﬁmfcomdpacthl@;r mlam— .
the correct asymptotics, Viz. olds. As has been observed in the four-dimensional case in

[29], global consistency of the Lagrangiaih9) requires the

n . Kahler manifold to be a Hodge manifold, which may imply a

U= l—Iog r+IlogRy+---; (69 guantization of the gravitational constant in units of the sca-
°° lar self-coupling. For the compa@? model (29) for ex-

these solutions are labeled by the param@&grfrom Eq.  &MPle, one finds the restriction

(53). Similarly to the analysis if17], one finds that for small
Ry these solutions run into the local minimum of the effec- 1
tive potential, whereas for large values Rf they go over 2Co=— €, (74)
the hilltop of the potential at) =In ». There is precisely one a

value of Ry for which the motion of this fictitious particle
ends at the local maximuid =In #. This corresponds to the

proper asymptotic€54) of the scalar field at radial infinity. as has been explicitly verified [18]. This quantization con-

. . : dition is obviously incompatible with the boun®6), and

Having solved _Eq.(64) with the proper asymptotics at hence reduces the possible values of the vortex number to
both ends, it remains to restore the other fidled, x} of the n—1 andn=2. corresponding to asvmptotically cvlindrical
model. To this end, we note that the differential equations d soheri I7 P g1to Iy P h g y di d
(50) imply that and spherical geometry, respectively. As has been discusse

above, these solutions do not exist in this model. The ab-
19 ol sence of vortex solutions with asymptotically conical geom-
= — (I sinhy) = — — V. (69)  etry and the scalar fields living on a compact target manifold
r g has already been noted in four dimension$3a].

Using Eq.(64), this equation may be integrated to

D. Examples
2 2 . . .
. _l= N ~2 ~dU Let us illustrate the analysis of Sec. 1lIC by computing
I Slnh)(— |5 —2rVeg— | I—= ) (70 . . i .
29|12 ar some numerical solutions to the specific models presented in

Sec. Il D. Since the Abelian Chern-Simons Higgs model
and one easily verifies that this indeed obeys the correct asoupled to gravity(26) and its vortex solutions have already
ymptotics (52), (54). The remaining metric function is ob- been extensively discussed in the literatiid—17, we will

tained from Eq.60), which gives consider the noncompaktt? model with potentiaV_ given
in Eq. (31), whose vortex solutions have not yet been ana-
| coshy=rR?Cog K(R), (71  lyzed. In fact, this model may be of special interest, since in

the limit g— 0 it reduces to the theory obtained from dimen-
while the gauge field® may be extracted from E¢50) as sional reduction of pure four-dimensional Einstein

085016-9



PHYSICAL REVIEW D 65 085016

L |

FIG. 5. Gauge field- P(r)/n for vortices in theH? model with
n=1,2,...,7,from left to right.
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FIG. 4. Scalar fieldR(r) for vortices in theH? model withn
=1,2,...,7,from left to right.

gravity. It is then tempting to speculate about a possiblenodels to be modified by the higher order fermionic terms.
higher-dimensional geometrical origin of these vortex solu-The models are parametrized by atter manifold and two

tions.
For the particular values=g=1 andz= ; of the param-
eters, the scalar potentisland effective potential/ have

real numberd andc; b shifts the superpotential for the sca-
lar potential[cf. Egs.(21) and(22)], while a nonzero value
of c corresponds to the presence of a Fayet-lliopoulos term.

been depicted in Figs. 1, 2, and 3, respectively. Recall thathe gauged Lagrangiartd9) are residually invariant under
the choice of a strictly positiv€, in this model was essen- general Kaler transformations.
tial for the existence of a Minkowski vacuum and hence for We have evaluated our general formulas for various par-
the existence of the vortex solutions. With these parametergicular examples with a single complex scalar figidand
Eq. (56) yields the upper bound<8 for the vortex number. Kahler potential K=K(|¢|). In the case of the complex
For each 8<n<8, the unique solutiorR(r) to Eq. (64) plane, this reprqduces the glghth order polynomial potential
which has asymptotic&8) aroundr =0 and remains regular (26) .Of the_ Abelian Che_rn-Slmon_s Higgs model coupl_ed 0
~ _ i ) gravity which was previously derived {i13—-17 by requir-
atr=o may be found numerically, by fine-tuning the un- jnq that the dynamics be given by a system of first order
known parameteR, by hand. We should stress, however, gitferential equations. This constitutes a natural explanation
that finding the regular solutions with higher vortex numbersys these earlier results from local= 2 supersymmetry. In
requires considerable numerical accuracy. A nontrivial Chec'barticular, our construction provides the embedding of the
is provided by inserting the solution thus obtained into thezpelian Chern-Simons Higgs model into a supergravity
effective potentia ¢ and numerically integrating the right-  theory, allowing us to directly address the stability of the
hand side(rhs) of Eq. (69), which should result in vortex solutions preserving half of the supersymmetry. In flat
space, the self-dual limit of the Abelian Chern-Simons Higgs
model[22] and its particular sixth order potential have simi-
larly been derived from globall=2 supersymmetry ih23].
Likewise, for the Kaler manifoldsCPP and CHP, our
which is found upon integrating the left-hand side of Eqgs.results reproduce the potentials of the gautyed2 models
(69) and using Eq(54). All our numerical solutions pass this studied in[18], together with their generalization by includ-
check with high precisiofup to 0.005%. The original radial ing a Fayet-lliopoulos term. The presence of this term allows
variabler is finally obtained by numerically integrating Eq. for symmetry-breaking Minkowski vacua of the potentials
(73). The resulting function®(r) for all possible valuesm  and hence for vortex solutions.
=1,2,...,7 of thevortex number have been plotted in Fig. 4, Having constructed the general Abelian gauged?2 su-
the value ofn increasing from left to right. The behavior of pergravity theory, we turned to the construction of rotation-
the (normalized gauge fieldP(r) in these solutions is given ally symmetric vortex solutions preserving one half of the
in Fig. 5. supersymmetry. Utilizing the ansaf22)—(34) for the fields,
the Killing spinor equation$37) were shown to lead to the
system of four first order differential equatio(&0) (which
in particular reduces to the system found 5] in the spe-
We have constructed the general three-dimensionatial case of the Chern-Simons-Higgs mogdet was also
N=2 gauged supergravities with Abelian gauge gral(d) verified that this system solves the full set(eécond order
and Chern-Simons coupling of the vector fields. The superfield equations of the theory. Furthermore, we showed that
symmetric Lagrangian and supersymmetry transformationthis system of equations admits a unique solution in which
rules were determined up to quartic and cubic fermionicthe norm of the scalar fiel® runs from the symmetric AdS
terms, respectively, but we do not expect the structure of theacuum of the potential at=0, R=0 into a symmetry

o0 — o o~ n2
fo Veﬁ[R(r)]rdrz—F, (795

o0

IV. SUMMARY AND OUTLOOK
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breaking Minkowski vacuum at— . This solution repre- tions on the allowed gauge groups by solving the consistency
sents a rotationally symmetric, finite energy, topologicallyconditions imposed by local supersymmetry in this case. One
stable vortex solution. The essential ingredient for provingwould expect such models to admit vortex-type solutions
the existence of this solution was the further reduction of thewith several gauge fields turned ¢ie. non-Abelian vorti-
system(50) to the single second order differential equationceg, which it would be interesting to construct explicitly,
(64). The latter describes the motion offéctitious) particle  perhaps by acting with some suitably adjusted solution gen-
in the effective potential65). Its solution determines the erating transformations on the Abelian solutions constructed
original fields (scalar, gauge field and components of thenere. The possible relevance of vortex solutions in the AdS/
metric) via Eqgs.(70)—(72). CFT correspondence has been addressé84ih We hope to

Our results provide further examples beyond that of Refsyeport on these and related matters in the near future.
[25,26 of the mechanism proposed j@4] for obtaining a

vanishing cosmological constant within a supersymmetric
theory without phenomenologically unacceptable Bose-
Fermi degeneracies. In particular, the solution constructed
here is the first such example within a gauged supergravity We would like to thank JosEdelstein for discussions and
with Abelian Chern-Simons gauge fieldsather than the collaboration in the initial stages of this work. We also thank
usual Maxwell fields The covariantly constant spinors of the Erwin Schrdinger Institute and the organizers of the
our solutions exist by virtue of essentially the same mechaprogram entitled “Mathematical Aspects of String Theory”
nism as that pointed out i25]. for hospitality and support in Vienna during its completion.

Finally, let us mention some directions for further inves- The work of M.A. was supported by the Swiss National Sci-
tigations. We have constructed the general Abelian gaugeence Foundation under grant number 83EU-056178. This
N=2 theory, but of course it would be very interesting to work was supported in part by EU contract HPRN-CT-2000-
obtain non-Abelian gaugings and to identify possible restric00131.
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