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Effects of relativity in proton-proton bremsstrahlung
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We investigate the influence of negative-energy states in proton-proton bremsstrahlung in a fully relativistic
framework using thel matrix of Fleischer and Tjon. The contribution from negative-energy states in the
single-scattering diagrams is shown to be large, indicating that relativistic effects are important. The rescatter-
ing contribution compensates some of the effect, which is shown to be a consequence of a low-energy theorem.
The net effect of negative-energy states nevertheless is of the order of 20% at higher energies. We investigate
retardation effects in the nucleon-nucle@N) interaction by means of a one-pion exchange model, which
gives effects of the order of 15% at the pion-production threshold. We furthermore modify tieriirix to
incorporate some of these effects, and find that on the level of single-scattering contributions they are of the
order of 10%. We show predictions at incoming proton enérigy=190 MeV, where high accuracy measure-
ments are being done at KVI, and conclude that even at these relatively low energies off-shell effects in the NN
interaction and contributions from negative-energy states clearly sho{80p56-28187)00811-X]

PACS numbds): 13.75.Cs, 21.45:v, 24.10.Jv, 25.20.Lj

I. INTRODUCTION calculations that include these intermediate states. We show

Proton-proton bremsstrahlung is one of the simplest pro'ghat the partial cancellation of the contributions of negative-

cesses involving the half off-shell nucleon-nucledN) in- energy states f“’f‘"‘ th? single-scattering diagrams by thos_e
from the rescattering diagram can be understood on the basis

teract.|on._ Since .pr(.)ton_s are equally charged particles f the low-energy theorem for proton-proton bremsstrahlung.
electric-dipole radiation is suppressed and higher-order e This strong suppression of the effect of negative-energy
fects play an important role. Thus it is possible to get infor_states is in sharp contrast with the case of Compton scatter-
mation on the NN force not easily obtained from other pro-; b ) mp o
ing, where negative-energy states give the major contribution

23321?% :rtohtgp ;ﬁ;ostg:_eggehr:rfsgachl:lrjrr;gmshanseggsesa?d(:g'rogﬁl?_the full matrix element. We discuss the influence of retar-
9 9 ' y Y5tion in the NN interaction, and show that this gives rise to

rent conservation in the proton-neutron case, are suppress fects of the order of 10% in the cross section calculated in
Therefore other higher-order effects, such as the Contributionnpulse approximation at pion production threshold

from intermediate\’s [ 1] or negative-energy stat@gair cur- A comparison to the existing data just below the pion-

rents, can become important. In this paper we will concen-y.oquction threshold =280 MeV) from the TRIUMF
trate on the influence of relativistic effects such as the role opyperiment[5] is made in Sec. V, where we furthermore
negative-energy states. . ~ present our predictions &t,,=500 MeV and for the kine-

A relativistic model is used that includes these states in gnatics as is being carried out at Ki8] at T;,,=190 MeV. It
dynamical way. We find that including negative-energyis shown that the effects increase with the energy, as is to be
states gives substantial effects in both the cross section argkpected, but that even for the data at the relatively low

the analyzing power. As compared to recent work by Ederénergy of 190 MeV relativistic effects are important. Finally
and Gar|[2] who use a Hamiltonian formalism, and of de jn Sec. VI some Conc|uding remarks are made.

Jong and Nakayamg3] who used the NNT matrix of a

relativistic spectator modg#], the relativistic contributions

are in gen_eral four_ld.to be more enhanced, especially in the II. NN INTERACTION

cross-section predictions. The effects are of the order of 20%

in the cross section for forward and backward photon angles In this section we will briefly summarize the field-

and small proton angles at energies close to the piontheoretical Bethe-SalpetéBS) equation for the two-proton

production thresholdi.e., large photon momenta interacting system and the quasipotential approximation to it.
The outline of the article is as follows. First we will The nuclear interaction is based on a one-boson exchange

present the relativistic framework in which the NN interac- (OBE) model with only nucleonic and mesonic degrees of

tion is generated, and in Sec. lll we will describe how thisfreedom.

interaction can be applied to describe the bremsstrahlung Within the relativistic field theory two particle scattering

process. In Sec. IV we discuss the importance of negatives described by the scatterin§ matrix. This T matrix

energy states in the present framework, and compare to oth&{p,p’;P) is a solution of the inhomogeneous BS equation,
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T(p,p';P)=V(p,p’ A®
(p.p";P)=V(p,p’) F(p)= s, ®
p

at each meson-nucleon vertex, withbeing the cutoff mass.
(1) In this OBE model the cutoff masses are taken to be the same

for all mesons.
where S,(p,P)=S1(p,P)S®(p,P) and SO are the free In principle, the full field-theoretical Bethe-Salpeter equa-
one-particle propagators of the two nucleons with relativetion can be solvefil0]. However, the calculations are highly
momentump and total momentun®. In our case the NN nontrivial and in practice usually a quasipotential approxima-
interactionV(p,p’) is assumed to be given by the one-bosontion is made. In the quasipotential framework the two-
exchange model of Fleischer and Tjf8,9]. In this OBE particle propagator is replaced by one where the relative en-
model the interaction is described by the exchange ofrgy variable is restricted in such a way that properties like

o d%
—IJ WV(D,k)Sz(k,P)T(k,P',P),

™ p, w, 7, €(or o) and 5 mesons. two-particle unitarity and relativistic covariance are main-
The contributions from the isovector mesonsp, ands  tained. Several approximations have been studied in the lit-
to the interaction are given by erature (for a review see Ref[11]). Here we choose the

approximation in which the two nucleons are treated in a
o)l @ symmetrical way, the Blankenbecler-Sugar-Logunov-
Va(k,p)= 4M2(7’5(k $)' AL (k=p) Tavkhelidze(BSLT) approximation[12]. The scalar part of

the two-nucleon propagator,
X (ys(k—p) P71 75,

2

1

iql G0: 2 2 ’ (7)
V(k p):_igvz |g (l)(k p),u Aa/o’(k p) —P+p —M2+i6 Ep_p —M2+i6
P ’ 2™ 2 2
ig , is replaced by the dispersion relation
s | o
G3°'= 105 bisao), ®

Vs(k,p)=—ig5A s(k—p) ;- 72, () e

which are, respectively, of the pseudovector, vector, and scavheres is the total invariant energy=P> and the disconti-
lar type. Thew, €, and » mesons give the isoscalar contribu- Nuity of G, is taken to be

tions to the interaction, which are of the form 2

H _ + _ 2
V,(k,p)=—ig2y DA (k—p)y2, Disa(Go) =imd M }

V(k,p)=—ig?A (k—p), X 5" ©)

2
V,(k,p)=—i %(ys(k— p)PA (k= p)(ys(k—p)?, The functionf can be arbitrary, apart from that it has to be
3 free of singularities in thg physpal region and is qonstrglned
( by f(/s,\'s)=1. The definition in the form of a dispersion
which are of the vector, scalar, and pseudovector type, rd€lation guarantees th@5°" has the same discontinuity as
spectively. The bracketed numbers in both defining equaGo. Consequently two-particle unitarity is preserved. Thus

tions denote the nucleon on which the matn%sando- we assume ImpIICItIy that inelastic processes, which are, in
act. The propagatorﬁﬂ for the pseudOSca|dm- and 7’) and prInC|p|e included in the full BS equat|0n for energ|es be-
scalar(s and €) mesons is yond the pion-production threshold, are not important and

can be neglected.
We may now use the freedom 6fto regulate the two-

A(p)= m2=p?’ (4 nucleon propagator for large momenta. Choosing
whereas the propagatd*” for the vector mesong, o is f(\5,\5) = 2\s’ (10)
given by \/_ +s’
p¥p 1 we get in the center-of-mass frame of the two-particle system
AR(p)= ( g+ —r) e (5) J P Y
GBSLT ;5( ) (11)
with m the mass of the meson. Ep—E (Ep+ E)? Po),

With the OBE exchange as defined in E(&.and(3) the
integrations in the BS equation do not converge. To ensurashere E=3P, and Ep= Jp?+M?2. Then the full two-
the correct behavior for high momenta a phenomenologicahucleon propagator, including the spinor structure, is given
cutoff is introduced of the monopole form, by
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TABLE I. The coupling parameters for the various fits. Rit q q
corresponds to the parameters used in F&f. In all fits we have 1 Toms 5 1 Iy s
g2/Am=14.2, gVl4m?=0.43, g)/gY=6.8, g3/4m=110, and sP+p P’4p” P+p :P7+p
%/4m=3.09, while the cutoff mass i&4?=1.5M2.
i P ) T T

Fit g:/4m gslam

A 7.34 0.33 Ip_ pr o Lp. 1ps

B 260 075 2P 2-p oF-p 2k -p

c 7.30 0.55 (a) (b)

q
1 /1 M1 @ 1 1 1 1

S3°H(p,P) = o (§P+p+M SP+p+M G5t P+p sP+k ;P-q+k SP’+p’

= %[(a E)AP+(E-E)AY] <T> <T>

X[(E+Ep)A@+(E—Ep)A?]GEST P-p Pk Pp’
(c)

FIG. 1. The diagrams taken into account in the present calcula-
_ tion. Diagrams(a) and (b) are the single-scattering contributions,
where the projection Operatoﬁs(i') are defined in Appendix the sum of which is the impulse approximatigA ). Diagram(c) is
A. In particular, with this choice we get for the two-nucleon the rescattering contribution.
propagator in the positive energy spinor states

1
=§(Ep—E)5(po)§1)(p,P)§2)(p,P), (12

considered almost phase equivalent and are up to 300 MeV

1 1 . .
__ in reasonable agreement with the Arndt phases.
Se+ 2E,—E’ 13
Using Eq.(12) for the two-nucleon propagator, the inte- Ill. THE BREMSSTRAHLUNG AMPLITUDE

gration over the relative energy, in the inhomogeneous BS . : :
equation can be performed, and the BSLT equation is ob- The_ dy”?‘m'cs of _the bremsstrahl_ung_process is contained
tained, in the invariant matrixMy;=e#(f|J,,|i) with ¢* the photon
polarization vector. If thél matrix is properly antisymme-
o o 1 trized, the nuclear curred, is given by
T(p,p";P)=V(p,p")+ @3

(f13,liy=(p".P"|T(p".B:P")SY(®,P)T(a)|p.P)

3L\/(A ) <BSLT [, )
- +<1H2>—if ——=(p",P'|[T(p’ k';P")SY
wherep, p’, andk are the relative four-momenta p’, and (2m)
k under the restriction that in the c.m. system of the nucleons
the energy component is zenmy=0, py=0, andk,=0.

The BSLT equation can be solved in a partial-wave basis
[13], yielding a number of coupled-channel equations, thaiffhe sum of the first two terms will be referred to as the
involve essentially a coupled set of one-dimensional integraimpulse approximationIA). The corresponding diagrams
equations due to the quasipotential approximation. Asideéire shown in Figs.(® and 1b). The last term is referred to
from the physical+,+) positive-energy states, also combi- as the rescattering contribution, corresponding to the dia-
nations involving negative-energy states ocfiuf,—), and  gram in Fig. 1c). Using the antisymmetry of the protons the
even and odd combinations ¢f,—) and (—,+)]. The T  diagram where the photon is emitted by intermediate particle
matrix has been fitted to the experimental phase shifts o can be rewritten as a diagram where the photon is emitted
Arndt et al. [14] by varying the meson-nucleon coupling by particle 1, and if theT matrix is antisymmetrized the
constants. Fits have been made both with and without interantisymmetrized sum of all rescattering diagrams can be
mediate negative-energy states for energies up to 200 Me\shown to be given by the diagram with antisymmetrided
Starting from the found fit with the full Dirac structure in- matrices with emission from particle 1 only. The momenta in
cluded, we simply have only varied the coupling constant€Eq. (15) are defined through conservation of four momentum
g. andg, to obtain a fit for the case of the absence of inter-at the NNy vertex and of total momentum, so that=p
mediate negative states. The sets of the coupling parameters;q andP’=P—3q.
for the different fits are given in Table | and the correspond- In Eq. (15) the electro-magnetie.m) vertexI',, is taken
ing caption. The resulting phase shifts for both fits can bdo be the on-shell form

x(k',P)I'P(q)S,(k,P)T(k,p;P)]|p,P). (15
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0 W2 i) i 2 (i) mation made in solving thd matrix. We have used the
I(@=e Fr(a9)y, — 5y F2'(a90,,9"), (16 equal-time framework, where it is assumed that the NN in-
teraction does not depend on the relative energy of the two

thus ignoring a possible dependence of the form factors ofjucleons in its center-of-mass system. Then the integration
the off-shell mass of the intermediate proton. The on-shelpver the relative energl, can be done analytically, since

form factors are given by the integrand is of the form

Fi(a%) =F(a?) +F(a®) 5 =FR(@) +F(a). (17

. dko . .
For proton-proton bremsstrahlung with real photays-0, |8)=f ZS(')(ko,k—q;E')Tﬂ)(Q)Sz(ko,k;E),
and the NNy vertex reduces to
(22)
ry(@=e y“)—i—"a“)qV), (18)
. oo2M e whereE’ = E— w with w the energy of the photon. A contour

h is the ch dis th | " integration overk, can be carried out, resulting in three
wheree IS he charge ana IS the ahomalous magnetic Mo- oy \which are given by the residues at the poles where one

I ton. h | vest 1 wh d Bf the intermediate nucleon is on-shell. The poles of the two-
nucleons are proton, hencg always givest 1 when sand- .00 propagatds,(k,P) are at

wiched between isospin states. With this choice of the ver-
tex, the nuclear current as defined in Etp) is conserved in
the Bethe-Salpeter formalism, provided that the kernel is lo-

a__ i C_E— I
cal [V(k,p)=V(k—p)]. Details of the proof are given in kKo=E+B—ie, ke=E-Ectis,

Appendix B.
Due to the presence of the photon in the final state, in b ) g )
general the NNT matrix is needed in different Lorentz ko=—E+Ex—ie, kog=—E—-Eytie, (23

frames. Usually the NN interaction is determined in the
center-of-mass(c.m) system of the nucleon pair. If we
choose the c.m. system of the initial protons to calculate thand the poles of the one-particle propagadd?(k’,P’) are
amplitude, theT matrix for the diagrams involving the NN at
interaction after emission of the photon is obtained through
the Lorentz structure of th& matrix f
e . . .
T(p'.piP)=A(L)T(L L7 p; L7 P)A " H(L). e
(19

Here A=AMA ) s the spinor transformation for the boost
L from the calculation frame to the c.m. frame of the NN
interaction. Choosing the direction to be defined by the
photon momentum, the boost is given by

If we choose to close the contour in the upper half-plane, we
get contributions from polkg, k4, andkg. The first of these
corresponds to the spectator model, where particle 2 is on its
mass shell. The remaining three-dimensional integration has
\/m 00 -— \/7] to be dor_1e_ nu_merically. An analysis of the pole structure of
the remaining integrand shows that there are two poles in the

= 0 10 0 (20) spatial momentunk, both arising from the spectator term.
m 0 0 1 0o |’ These poles correspond to the situation where either before
or after emission of the photon the two protons are on-shell.
~Jn 0 0 1ty P b

In Appendik C a detailed discussion of these poles is given.

where 7=a/M, and 1+ = (2E—q)/M,. E is the to-
tal energy of the initial protons in their c.m. frame and we
have defined an effective “proton-proton mass¥i,

=2 /E(E_q) The Corresponding One_partic'e Spinor trans- As mentioned the interesting dynamiCS of the bremsstrah-
formation operator is lung process is contained in the amplitul¥y;, which is

invariant under Lorentz boost. However, to compare to ex-

Physical observables

SE_qtM periment physical observables have to be calculated, and
A(L)= /M 1— 0 s 9 (21)  since these are not necessarily invariant under Lorentz trans-
2Mpp 2E—-q+ My, formations, a particular reference frame has to be chosen.

Measurements are done with a fixed target and a beam of
with 1 the identity matrix. In all calculations presented below definite energyf,,. Thus the incoming proton defines a par-
the boosts are taken into account. ticular axis, which we take to be ttzedirection. There is still

For the rescattering contribution an integration over thean arbitrariness in the definition of the plane, which we
four-momentunk has to be performed. Again we would like take to be defined by the direction of the photon. Then labo-
to make a quasipotential reduction to simplify the integra-ratory frame is defined such that the four momenta of the
tion. Such a reduction must be consistent with the approxiparticles are
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FIG. 2. The cross section and amplitude squared as a function of the photordarigter,,,=280 MeV, #,=12°, andd,=12.4°. The
IA shows a large difference between a calculation including negative-energy &tatd®d ling and without(dashed-dotted line of the
order of 50%. If we include the rescattering contribution in the calculation, the difference between a calculatigaliitie) and without
(dotted ling negative-energy states is smaller, though still appreciabl20). This is most readily seen in the figure where we show the
invariant-amplitude squared.

with do'! the differential cross section for incoming proton 1
with spin in the+y direction anddo! the differential cross
section for incoming proton 1 with spin they direction.

PI=(Tiapt M, 0,0p15p),
plZL: (mv 01010)1

The ppy amplitude constructed with thE matrix that is
found from the Bethe-Salpeter equation, or the BSLT ap-
proximation to that equation, contains negative-energy states
in a dynamical way. Since the intermediate nucleon in the

In most experiments so far the energy of the incoming protoremsstrahlung process is off-shell, these negative-energy
is fixed, and in this case there are only five independen$tates in principal should be included. As we have argued in

variables due to energy and momentum conservation. Her@ recent papei15], the effects of including these intermedi-
we choose these to be the angles of the outgoing protond{€ states are of the same order of magnitude as contributions
01,¢1.,02,¢,, and the angle of the photo,,. from the A and meson-exchange currents. Furthermore the

With this choice of dependent and independent variablegnergy transfer in the NN interaction is nonzero, giving rise

the cross section in the lab system is given by to retardation effects. . .
We will first discuss the influence of negative-energy

states using an equal-time approximation for the NN interac-
tion, thus effectively ignoring the retardation effects. The
lowest-order approximation is to include only the contribu-
tions from negative-energy states in the single-scattering dia-

p5>*=(E;,p;Sind,cosp,, p5sing,sing, , pscoshs),

g*=(q,sing,,0,co9.). (25)

d°c m®p1°py°q S

d0.d0,d6,  pE[Ej2w(27)°N,

IM¢il2, (26)

Njkg

where i L
gram. We will show that for an accurate description of the
P! bremsstrahlung amplitude it is essential also to include the
Na= =7 (sinf,c0s),,cOoSp, — COH,SiNG.,) contributions arising from the rescattering contributions. As

_Ei

4

P2 . .
+ —%( siné,,cost, — cos,sing,Cosp,)

E>

+ %(sinelcosazco&;sl— cosf4Sink,cosp,), (27)

andE_impIies averaging over initial spins; and summing
over final spinsk;. For real bremsstrahlung=q and all
factorsg/w are equal to 1 in Eqg26)—(28). The analyzing

power is then defined as

A _da’T—dO'l
Y dol+do!

(28)

a second point we will address the importance of the retar-
dation effects in the NN interaction.

A. The contribution from negative-energy states

Both the single-scattering and rescattering diagrams con-
tain contributions from negative-energy states. In a calcula-
tion including only positive-energy states the contributions
from the rescattering diagram are of the order of 20%. There-
fore it seems reasonable to expect that the impulse approxi-
mation gives the main contribution from negative-energy
states. In the left panel of Fig. 2 we show the cross section
for the bremsstrahlung process at incoming proton energy
Tiab=280 MeV and fixed outgoing proton angl@s=12°,
0,=12.4° as a function of photon angtg, using only the
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FIG. 3. The square of the ppamplitude as a function of the
photon momentuny for fixed center-of-mass angles=36°, 6, FIG. 4. Invariant-amplitude squared for fixef],,=140 MeV
=69° andd,=124°. The photon momentum was varied by varying and photon angl®@,=170°. The left panel shows the Born result,
the energy of the incoming protof,,,. Shown are the amplitudes the right panel shows a calculation with the box diagram. In the
including the rescattering contribution witfull line) and without ~ Born case there is no noticeable difference between a calculation
(dotted ling negative-energy states coupling to the photon. Alsoincluding negative-energy state contributioffsll line, 1A +/—)
shown are the amplitudes calculated with only the single-scatterinand without(dotted line, IA +). In the case of the external box
contributions with(dashed ling and without(dashed-dotted line  diagrams the difference between a calculation including negative-
negative-energy states coupling to the photon. energy state contribution@ull line, IA +/—) and without(dotted

line, IA +) is large and in lowest order independentcpfOnly if

single-scattering diagrams. The full line is a calculation in-ywe include the internal diagranfeespectively dashed line, IA/—
cluding both positive- and negative-energy states, while th@nd dashed-dotted line, I1A) the negative-energy state contribu-
dashed line is the result if we include only positive-energytions cancel.
states. The intermediate negative-energy states give a large
contribution over the entire range of photon angles, which isvhereas the right panel is a blowup of the high momentum
more clearly seen when plotting the square of the amplitudeegion. For the IA the negative-energy states give a consid-
(i.e., the cross section without phase-space facts we erable contribution over the whole momentum range,
have done in the right panel of Fig. 2. At this kinematics thewhereas for the full calculation the contributions from
cross section is dominated strongly @ninterestingphase- negative-energy states in the rescattering diagrams tend to
space characteristics. cancel those from the single-scattering diagrams, effectively

If we include the rescattering contributions, the net influ-giving only a sizable contribution in the high momentum
ence of negative-energy states is reduced. This is also showagion.
in Fig. 2, where the dashed line is a calculation including As is well known, the dominant contributions to Compton
only intermediate positive-energy states, and the dashedcattering at low photon momenta are solely from the Z
dotted line is the result for the full calculation, including also graphg16]. In this connection the cancellation in the brems-
the contributions from negative-energy states. We see thatrahlung case between the contributions of negative-energy
there is a large cancellation between the contributions otates from the rescattering diagram and those from the
negative-energy states from the single-scattering and thsingle-scattering diagrams at first seems rather puzzling,
rescattering diagrams. The net result is that the contributiosince the rescattering diagram does not contribute in the low-
of negative-energy states is in general smaller, but overall asst order of the strong-coupling constgAt Hence a cancel-
effect of the order of 20% remains. Confining ourself to thelation of Z graphs should already take place in this order in
only positive-energy state contributions, it is interesting tothe single-scattering contributions. Let us replace the NN
note that the single-scattering contribution is close to the fullmatrix by the OBE kernel in the bremsstrahlung calculation.
calculation, except again at the extreme photon anglesihe calculated results for the single-scattering diagram in
where the(positive-energy rescattering contributes signifi- this approximation is shown in the left panel in Fig. 4, where
cantly. the invariant-amplitude squared is plotted as a function of the

The negative-energy states are essentially of relativistiphoton momentung. To obtain this dependence the proton
origin, and therefore one would expect that the effects deanglesg,= 6, have to be varied simultaneously. From this
pend strongly on the energies of the protons and the photofigure we see that in contrast to the Compton scattering case
To illustrate this dependence on the photon momerquin  the negative-energy states here indeed lead to vanishing con-
Fig. 3 we show the square of the amplitude as a function ofribution at low photon momentum, while the effects are of
the photon momentum for fixed proton angles and varyinghe order of 20% at the higher photon momenta, similarly as
incoming proton energy,,- We compare a calculation in  found in the full calculation.
the 1A with negative-energy statéthe full line) and without Considering the diagrams one order higher in the strong-
negative-energy statgshe dashed line and a calculation coupling constant(the box diagramswe may explicitly
including the rescattering contribution, again witthe  verify that the internal radiation diagram is essential to
dashed-dotted lineand without(the dotted ling negative-  achieve cancellation of the large Z-graph contribution of the
energy states. In the left panel we show the behavior over thsingle-scattering diagram. This is shown in the right panel in
photon momentum range from 10 MeVto 200 MeVE, Fig. 4: the sum of the diagrams where the photon couples to
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the external proton give a large contribution of negative- . — 1 1

energy states, whereas the addition of the diagram where the M ,=(p’,P")V|p’,p— >4:P—359
photon couples to the internal proton kills most of the effect.

The observed cancellation is a consequence of the low- AY(p+q) L
energy theorem for bremsstrahlufig’]. This theorem states Xﬁﬂ "y(p,P)
that for low photon momentéas compared to the internal P mPra
excitation energy of the nucleon, the mass of the pitime _ —-p,+ Epﬁl)?’o
NN-bremsstrahlung amplitude can be expanded as =y(p’,P)V(p’,p;P) 22 (p,P)
P
A +0(q), (30
MM=E+B+Cq+ O(9?) (29

=y@®)L @) (ip— ' p’

as is demonstrated in detail in Appendix D. The constants wh_e(;;a 11/;(,p,P? —_(uz) 1(2?+ p?u (2P .p)' . and w'(p P
andB only depend on the static properties of the nucleon, its= U (3P’ +p")u*’(zP’ —p’) are the initial and final states
charge and magnetic moment, and the on-shell NN interador the spin3 particles, withu andu free Dirac spinors. Thus
tion, whereas the consta@tand the other higher-order terms negative-energy states at lowest order contribute to the con-
can contain off-shell contributions. stant B, and since we are only interested in the model-

Derivatives of theT matrix in the on-shell direction con- independent terms the remainiggdependence in E¢30)
tribute to the constanB. The contributions from negative- has been ignored. We furthermore used that the projection
energy states are contained in these derivatives. This i@perator acting on an on-shell spinor gives
clearly seen in a description with only positive-energy states,
where they are replaced by contact terms. As is the case in E.yo+y-p—M
Compton scatterin§l8], these terms may contribute signifi- A_(p)y,u(p)= Lyﬂu(p)
cantly in the low-energy limit. In order to see whetliand if 2E,
so, how the low-energy theorem for bremsstrahlung indeed

oo . . 2E —2pigi,t —m—2E
implies that negative-energy states only contribute to the _ “EpY0.~ “Piliy VulP pY0)

terms of orderg and higher in the expansion in the photon 2E,

momentum, we first consider the case of bremsstrahlung X u(p)

from a spinj particle with initial momentum;P+p and

final momentum; P’ +p’ interacting through an interaction —P.tEpYoYu

V with a second spig- particle with momentaP—p and =— g um, (3D

$P’—p’. First consider the case that the second particle is P

uncharged. Conservation of total momentum giWs=P

— 10, whereas momentum conservation at the photon vertesincep,, = (E,,—p). The emission from the photon after the
givesp’ =p—3q. The leading-order contribution in the ex- interactionV gives rise to a similar ternML, and to first
pansion from intermediate negative-energy states due to therder the contributions from negative-energy statedlis

emission of the photon prior to the interacti¥his =M'#+ ML,
_ —p, FE y My _ —p! +ELy Dy
M,=¢(p’,P")| V(p',p;P) —= Zgzo | (p,P)+y(p’ P —F ZEpz“ =-V(p’,p;P) | ¥(p,P)+O(q)
p o'
1 — ’ ’ ’ (1) . (1) pl,i+pﬂ_ ’ ’ ’
=g Y(P.POIV(P".PiP), o v, 19(p.P) = —z— (p",P)V(p".piP) ¢(p,P) + O(q), (32
P P

where 1E,, =1/E,+ O(q) and the interchange af, andy,  order inqg), while for a vector interaction a finite contribution
can be done since the zeroth componentM is zero, remains. The propagator of a vector meson with momentum
which is most easily seen from E1) with po=E,. Thus  k and massny is

it is clear that for a system of two nonidentical sgipar-

ticles the contributions from intermediate negative-energy

states in general do not vanish. For example, in the case that A ——q + kﬂkvA(k) (33)

the interactionV is given by a one-boson exchange with ald G 2my ’

scalar, pseudovector, and vector particles, the first term in

Eq. (32) vanishes for the scalar and pseudovector paines

last of which reduces to a simple pseudoscalar in the lowestith A(K) is the scalar part of the meson propagator. The




2952 G. H. MARTINUS, O. SCHOLTEN, AND J. A. TJION 56

term proportional t, vanishes for on-shell states for par- — S " b’ +d+M
ticle 2, since this gives a ter, ;— p=M,—M—2=0, so M,=ed(p".p")|| 7'~ 5 %V “2pq O
what remains is of the form
V_ 1 D vV o (1).(1) _TM—+M _i_K "I DD T
M= (p",POIVY, 75 v, 1¢(p.P) 0 2pq | 7% oM Twd w (P)To
=y(p",POLYVAK) Y2, 707, 1(p,P) <0 _
— " +ToD}(p) | ¢(P.B) +(12) + O(q), (36)
:l//(p P )(ZgVO’yM_ng,U,’YO) A(k)y lp(pap)

- ¢(p p’ )2(7’# 2 _ %1)7# )A(K) ¢(p,P). (34)  Where with the exchange of the indices of particles 1 and 2
also the momenta in the propagators and projection operators
The situation is very similar to the case of Compton scatterare replaced by those of particle 2, and we have defined a
ing [18,19. There the vector particle is a real photon and thedifferential operator
coupling to particle 2 as well as the propaga(®®) are ab-

sent, and in fact the results obtained above can be used if the NG q’ J J
i i u(P)= o7 JpE” (37)
coupling to the second particle and the propagator of the p q ap’  Ip*
vector particle are left out. Hence the contribution from
negative energy states in Compton scattering is The basic ingredient in the calculation of the amplitude is the

u(p). (39

sum of all terms contributing to the pole tednin Eq. (29),
Mcomp“’”—u( ) 5 5 the _e>_<t_erna| d_iagrams where a photon is emitt_eq by one of
P 9,0Yu™ 29w Y0 the initial- or final-state protons. In our case this is the sum
, of all single-scattering contributions. The resulting amplitude
B IO,H' Pu violates current conservation, and the tesfdp, has to be
Ep Yo introduced in the differential operator to ensure that the cur-
rent is conserved. As a result derivatives of thenatrix in
The pole term in the low-energy expansion is absent and thghe off-shell direction vanish. The added term effectively is a
first term in Eq.(35), corresponding to Eq34), gives the  combination of the rescattering contribution and contact
low-energy limit for forward Compton scatteririthe Thom-  term, where the photon couples to the NN interaction di-
son limit). rectly. Since the relativistic calculation can be shown to con-
For the case of two identical, charged, spiparticles the  serve the current if negative-energy states are inclided
emission of the photon by particle 1 again gives 2.  pendix B the only contribution in this case is the
However, particle 2 gives rise to a similar contribution. Thusrescattering diagram.
for the sum of contributions from both particles the second For the differential operator as defined in E7) the
term in Eq.(32) vanishes in lowest order igp, which is most  contributions from negative-energy states to the amplitude
readily seen in the c.m. system where the spatial momenta efancel. This can be seen by writing tfiematrix in Eq.(36)
particles 1 and 2 are equal in size but opposite. Again for theis a sum of positive- and negative-energy contributions
first term the contributions from scalar and pseudovector me-
sons vanish, but furthermore the contribution from the vector TP P, ¥)=YA T +yA_T". (38
meson is zero, since a similar term as in B3p) arises from
emission from particle 2, except that the first and second’he differential operator then either acts on fhematrix,
term are interchanged. Since they have opposite sign, thehich for the negative-energy states gives no contribution
result is that for a one-boson exchange with scalar(sinceu, yo,A_=0), or on the projection operators. Con-
pseudovector, and vector mesons the contribution fronsider the contribution where the proton is emitted from the
negative-energy states vanishes. Aside from the cancellatidinal proton 1. The contribution that arose from expanding
between emission from initial and final states of a chargedhe off-shell T matrix around the on-shell point is propor-
particle, apparent from the commutator in E8QR), there isa tional to
cancellation between emission from particle 1 and particle 2,

which is clearly a result of the Pauli symmetry of the two LIvA- 1 J1E’ , ,
spin< particles. 4" = 54" 7 YoE'A_+ 574 7
So far we have focused on a one-boson interaction. The
conclusion with respect to the nonvanishing contributions in X[p"—m+(E"—po) vol 7o
the case of one charged particle also holds for a general
interaction, since there is no additional constraint that would — ap YoA 1 (q_ ﬂy )y
cause the contributions to vanish. For the case of two iden- T 2E YT 2R E70) 7O
tical spin4 particles the derivation of the low-energy theo- (39)

rem is given in Appendix D. If we write the NN interaction

as a function of the Lorentz invariangg?, pf and a param- and the first term in this expression does not give a contri-
eter v which for emission from the initial proton 1 is defined bution, since the projection operator acts on the external
asv=(p;—q)-p,.+p;-Ps and similar for the emission from spinor u(p'), which gives zero. From Eq39) it follows

the other legs, the result is that the amplitude in the lowimmediately that the contribution added to enforce current
energy limit is given by conservation gives a similar expression, and the net contri-
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(98]

bution from the differential operator acting on the negative- 7

—
T

The other contributions from intermediate negative-energy
states arise from the term with in the propagator and are
proportional to

energy state projection operator is = | —— this work
s s
= ]
: N Pu oy 9 9 )P M ol
D;L(p )')/()A—(p )_(p/qq (7p,V (9p/'u> 2E’ Yo g 2 [
_ p;’tq Yo Cb>
‘(p'-q “) 2E" 40 &
G
g
=

o

0 60 120 180
WD) 75— oA (p') yldeg ]
M2 r, -
Pu-d FIG. 5. The cross section calculated with thenatrix with only
4(p'—M) positive-energy states, but retaining the small components of the

nucleon spinor, as compared to calculations using a potential

= mm Yo
H model, including relativistic spin corrections. The differences be-

o [97P'7(— Yo7, +20,0) — Md] tween theT-matrix calculation and the nonrelativistic calculations
= u(p’)yﬂ 2E' (o' 0 are of the same order as those between the nonrelativistic calcula-
(P.-9) tions themselves.
=u(p))| - F’M Yo (41) in agreement with nonrelativistic potential-model calcula-
P p’-q Yu| 5g7 tions that include relativistic spin corrections. The compari-

son should be done with this type of calculation, since we
where in the last line we have used that(p)(p+M)= use the full four-component spinor, and the small compo-
ZpMu_+(p). Comparing the expressions in E¢40) and(41) nents are kept. In Fig. 5 we illustrate this by comparing our
it is clear that the contributions from negative-energy statesesults with the Bonn PQ@ matrix calculation[20] and a
cancel in the low-energy limit. calculation using the Nijmegen potential Bf,=280 MeV,

The result that negative-energy contributions to thed,=12°, §,=12.4°. The full line is our result when includ-
bremsstrahlung amplitude vanish for a general NN interacing only positive energy in the single-scattering and rescat-
tion is clearly due to the inclusion of the second term in thetering contributions, and the result differs only little from the
differential operatoD , . It implies that the bremsstrahlung calculations using the Bonfthe dotted ling or Nijmegen
process can be described in terms of positive-energy statéghe dashed lineinteractions. For this particular kinematics
only, provided that additional counter terms are includedwe see some deviations, in particular at forward and back-
such that current conservation is satisfied. Part of these ternvgard photon angles. These differences are due to a somewhat
are the rescattering contribution, while part of these are condifferent on-shell behavior of thematrices.
tact terms. The contact terms are an effective way of includ- The large contribution from the negative-energy states in
ing the contributions from negative-energy states, and irthe impulse approximation has also been reported by de Jong
principle contribute to the nonsingular term in the expansiorand Nakayam43], who used a matrix generated from the
of the amplitudg the constanB in Eq. (29)]. We again can Gross equatiofi4]. However, if we compare the results in-
compare to the case of Compton scattering, where in a catluding rescattering contributions, we see in particular for
culation with only positive-energy states a photon-photonthe cross section that the contributions of negative-energy
nucleon term has to be included to find the correct low-states is substantially enhanced in our calculation. On the
energy limit. other hand, for the analyzing power the effects of negative-

In the case of proton-proton bremsstrahlung the currenénergy states are rather similar. The main difference in the
calculated from the single-scattering and rescattering diatwo calculations is the type of quasipotential reduction that is
grams is conserved when both positive- and negative-energysed. Assuming that retardation effects in the positive- and
states are included. Thus the addition of the second term inegative-energy states behave similar, we can approximate
the differential operatoD,, corresponds to the inclusion of their calculation by including only the spectator contribution
the rescattering contribution in a full calculation, and no con-to the rescattering diagram. The result is that for the cross
tact terms are necessary. Furthermore, we have seen that fection the net contribution from negative-energy states is
the OBE interaction the negative-energy states do not correduced whereas for the analyzing power the contribution is
tribute, and therefore the contact terms corresponding tsomewhat enhanced, thus giving a result that is similar to
negative-energy states in a calculation including onlythat reported by de Jong and Nakayama. Concluding we can
positive-energy states, which are in general necessary to satay that the contributions from the nonspectator terms are
isfy current conservation, are zero for this particular processessential to give a full description at higher momenta. The
Hence for proton-proton bremsstrahlung negative-energguppression of the cross section due to the inclusion of inter-
states do not contribute in the low-energy limit. mediate negative-energy states is of the same order of mag-

If we compare our results with other calculations we seenitude as the effects reported by Eden and Gati], al-
that the calculations including only positive-energy states ar¢hough they find considerably higher values for the absolute
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1.2 ] interaction, the effects are of the same order as those found
b — PV 1 for the pseudovector coupling, as can also be seen in Fig. 6,
N PS where the dashed line is the fraction of the cross section
o Ll 7] calculated with the OBE kernel in the equal-time approxima-

P — OBE tion to the cross section calculated with the exact OBE ker-
bB Lok nel. The effects are mainly due to the pion and the veetor
=) - meson.
g To see whether these retardation effects also can be sub-
S 09 stantial in theT matrix calculations, we have constructed a
é [ modified equal-time approximation by iterating one full one-

i boson exchange,

0.8 ' '
0 60 120 180
6, [deg.] 4

d*k N
met '’ n-PY— \/OBE/ ; OBE/ v/
FIG. 6. The effect of the equal-time approximation in the brems- T t(p PiPI=VEPRLP) If (277)4\/ (p.k)
strahlung process af|,,=280 MeV, 6,=12° and 0,=12.4°.
Shown is the fraction of the cross section calculated using the
equal-time approximation to a full calculation, for the one-pion ex-
change with a pseudoscalar coupliffigll line) and a pseudovector
coupling(dotted ling and the OBE kerneldashed ling From case  in the c.m. system of the incoming nucleon pair, where the
of the pseudoscalar NiNcoupling it is clear that retardation effects relative energy of the incoming nucleopg=0, andk is
in the meson propagator are small. restricted through the BSLT approximatiofi"is the modi-
fied equal-timeT matrix, wheread®'is the T matrix calcu-
value of the cross section. This may be primarily due to thdated with the equal-time approximation. Note that the fwo
positive-energy contribution, for which case their predictionmatrices are on-shell equivalent. The relative energy of the
differs substantially from ours and the nonrelativistic modelfinal nucleon pair is calculated by assuming that particle 2 is

x SZ8LT(k,P)Te\(k,p; P), 43

calculations. on-shell, so thap,=E, —E,. In Fig. 7 we show a calcula-
tion of the cross sectiofieft pane) and square of the ampli-
B. Retardation effects in the NN interaction tude (right panel in the impulse approximation at the same

kinematics as in the OPE calculation. The full line is the

In the calculation of the bremsstrahlung amplitude we usgegit ysing the modified equal-tirfematrix, the dotted line
the equal-time or instantaneous framework. In this frameig the result when we us&®. The retardation effects are

work it is assumed that thematrices can be evaluated at the somewhat lower than in the case of the OPE, but as these

point where the relative energy of the protdagis zero in - gnergies and angles still appreciable, of the order of 10%.
the center-of-mass system of the interaction. To investigate |"tha construction of thie, dependence it is assumed that
the effects of retardation in the NN interaction we may f'rStonIy one of the particles is on the mass shell. Furthermore

look at a simple one-pion exchang®PE) model without  yho"q| k, dependence in the meson propagator is retained.
form factors, where the Ni vertex was either assumed t0 gjnce this dependence will give rise to spurious pgHls

be given by a pseudovectdk{s) or pseudoscalarys) COU-  his formalism cannot be applied without modification to the
pling. The nuclear current for emission from particle the  regcattering contribution. However, the main interest is the
equal-time approximation is given by effect of retardation in the meson propagator, which may be
N~ 4 : expected to cancel out in the integration over the three mo-
3, =VOPRK M S(p’ + %q'P,)Fu)(q”kéC”‘:O mepntum in the rescattering loop. Igurthermore we have seen
0 0 ~OPE 1.cm that the effect is at most on the order of 10%, and thus the
+I,(q)S"(p—q,P)V "k )|k3m=0' (42) calculation restricting the use on the modified equal-time ap-
proximation to the impulse approximation may be assumed

whereV is the one-pion exchange boosted from the centerl0 give a reasonable estimate of the size of these effects.

of-mass system of the interaction to the lab frame ki
andk’“™ are the four momenta of the pion in the c.m. frame.
In Fig. 6 we show the cross section calculated with the
equal-time approximation divided by the result of the calcu- In all calculations presented in the previous sections the
lation using the exact one-pion exchange, just below the pioboost from the center-of-mass system of the NN interaction
production threshold,T,,=280 MeV, and small proton to the calculation frame were taken into account. This was
angles9,=12°, §,=12.4°. For the pseudoscalar coupling done by boosting the NN interaction through the transforma-
the result is close to 1 at all photon angles, so that we cation (20). The effects of this boost are of ordgfM, and
conclude that retardation effects in the meson propagator afgecome sizable at higher energies. For example, at the kine-
small. For the pseudovector coupling we see larger deviamatics of the TRIUMF experiment chosen to maximize the
tions, up to 15%, so that it is clear that retardation effects irff-shell effects(T,,,=280 MeV, 6,=12°, 6,=12.4° the

the nucleon-nucleon meson coupling can be considerable. Hoost effects are of the order of 5%. This is in agreement
we use the one-boson exchange kernel instead of the OR#ith the effects reported by Eden and GEj.

C. Boost effects



EFFECTS OF RELATIVITY IN PROTON-PROTN. .. 2955

W
T

)
—
|

—_
— T T T T

L. 00 b————

do/dQ 2, 0., [pb/strad]

[
120

<

120 180 0 180

0, [deg.]

(=]
o))
=]

6, [deg.]

FIG. 7. The result for the modified equal-time approximation compared for a calculation in the impulse approximation just below the
pion-production thresholdr,,,=280 MeV, 6,=12°, §,=12.4° as a function of the photon angle. The left(right) panel shows the cross
section(amplitude squared The full line is the result using the modified equal-tifienatrix and the dotted line is the result using the
equal-time approximation. Retardation effects are at most 15% for forward and backward photon angles, but generally of the order of 10%.

V. COMPARISON TO EXPERIMENT The inclusion of negative-energy states tends to reduce
. o the cross section for this kinematics. Since the calculation

Using the relativistic NN forc_e ; We have (_:alculated with only positive-energy states is in accordance with previ-
bremsstrahlung for the TRIUMFS] kinematics. In Fig. 8 our ¢ nonrelativistic calculations, the discrepancy between the
predictions are shown together with the experimental datgheoretical predictions and the data remains and is even
The upper plots show the cross section at proton angles somewhat enhanced. Estimaf@®,23 have been given for
=12°, 0,=12.4° (left) and 6,=28°, 6,=12.4° (right) for  the contributions from meson-exchange currents. These were
the cross section, while the lower plots are the results for theound to be small in the kinematical regions under consider-
analyzing power ab;=14°, 6,=12.4° (left) and #;=28°,  ation. Thus including these contributions would not explain
0,=12.4° (right). The theoretical predictions for the com- the difference between theory and the TRIUMF experiment.
plete calculation including both positive- and negative- In Fig. 9 we show the predictions for, respectively, the
energy states are given by the solid lines, while the dottedross section and the analyzing powefgt=500 MeV as a
line is a calculation including only positive-energy states. Allfunction of the photon angle, witld;=6,=10°. The solid
calculations include boost effects. Retardation effects in thédotted curve is the result for the full calculation withvith-

NN interaction are ignored. As discussed above, includindu) negative-energy states included, while the dashed
these may increase the calculated cross section by about 10#ashed-dotteccurve is the result for the 1A calculation with

for forward and backward angles. The data do not includéwithout) negative-energy states. Note that for the impulse
the normalization factor 2/3. approximation the inclusion of negative-energy states en-

hances the predicted cross section by a factor of 2 as com-
pared to the result without negative-energy states, hugely
overestimating the net effect of negative-energy states. Fur-
thermore, for the full calculation the effects are of the order
of 25—-30%, but extend over a larger region of phase space,
and in general are more pronounced than the effects found at
Ta6=280 MeV. Similar large effects are seen in the analyz-
ing power. On the basis of the low-energy theorem one
would expect the effects of negative-energy states to be lin-
ear in the photon momentum as compared to the leading-
} order positive-energy state contribution. This is clearly not

o w =
|
=Y
)
L
—
Iy
=
k=

dofdQu S0, [ub/st” rad]

| ] 0
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the case, since the photon energyTa},=500 MeV is ap-
proximately twice as large as at 280 MeV. However, from
the fact that negative-energy states contribute significantly
already afT,,=280 MeV we can conclude that at these en-
ergies the low-energy theorem no longer is valid and the
expansion of the invariant matrix elements breaks down.

In Fig. 10 we show the predictions for the cross section
and analyzing power for the KVI[6] kinematics, with

FIG. 8. Comparison of the calculated cross seciimp) and
Tap=190 MeV incoming proton energy. A comparison is

analyzing power (botton) to the experimental data from the
TRIUMF experiment(with E,,=280 Me\). Two different kine- made with the soft-photon calculations of RET]. If we
matical situations are shown, left; =12°(14°), §,=12.4°, right: ~ compare our calculation with only positive-energy states in-
6,=28°, 6,=12.4°. The full line is a calculation including cluded (the dotted ling to the low-energy calculatiofthe
negative-energy states, the dotted line is with only intermediatelashed ling we see that at low proton angles, where the
positive-energy states. photon momentum is large, the predictions differ substan-
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FIG. 9. The cross sectiofeft) and analyzing powefright) at T|,,=500 MeV with 6, = 6,=10° as a function of the photon angle. The
solid line is the full calculation, the dotted line is a calculation with only positive-energy states, whereas the dashed-dotted and dashed lines
are the result using the IA, respectively, with and without negative-energy states included. For the cross section the effects of negative-
energy states are of the order of 25—-30 % in the full calculations. The effects in the analyzing power are clearly larger than for the calculation
at T|,,=280 MeV. The photon momentum is of the order of 125—-200 MeV/

tially. This indicates that the higher-order terms in the expanstates(the dotted curvg we see that the effects of negative-
sion of the matrix elements give a significant contribution.energy states on both the cross section and the analyzing
At larger proton angles the predictions converge as expectegower is very small, except for small proton angles. How-
since there the photon momentum is smaller. The differencesver, the accuracy of the KVI experiment may be such that
are even more clear in the analyzing power, a feature alreadyre effects predicted at smallest proton angleg=(6,
noted in the discussion of the theoretical predictions for the=8°) are significant.

TRIUMF experiment. Since the higher-order terms in the It should be noted that although the relativistic OBE in-
low-energy expansion are important, we have calculated th&eraction parameters used in our study have not been ob-
effects of negative-energy state contributions at this energytained through a2 fit [8,9,13 to the NN data, the resulting
The solid line gives the result of this calculation, and if we phase shifts are in reasonable agreement with experiment. In

compare to the calculation including only positive-energythis connection we expect that a more refined relativistic in-

(%]

teraction might change the absolute predictions somewhat,
but that qualitatively the conclusions about the changes due

E to negative-energy states and retardation effects as studied in

2, this paper will remain the same. An indication of the influ-

f, ‘ ence of modifyingT may be obtained using the parameters

S R from fit C [8]. The results differ by at most 10% in the

% kinematical situation under consideration for the calculation

0 where only positive-energy states coupling to the photon

_ | | were taken into account. The relative magnitude of the ef-

B 04 7 fects of negative-energy states remains unchanged.

2 02F .

2 o “

- < 0.0 / — N

¢ 2L/ . \ VI. CONCLUSIONS

g % NG

s 04 F0=8%,6,16° T~ We have presented the results of a study of the effects of

negative-energy states in the proton-proton bremsstrahlung

) 0.4 [ ' ' ] process. The effects on the level of the impulse approxima-

= o2 b E tion are found to be appreciable. The rescattering contribu-

S 2F -1 . . .

e I N = tion tends to cancel much of the effect which can be under-

< P < 0.0 ~— — .

&L ] — stood on the basis of the low-energy theorem for proton-

g F V2 E B proton bremsstrahlung. This is in contrast with the case of

S 0 . | 04 F0=16° 6=16" ] Compton scattering where the Z graphs play an essential
0 600 " ]120 180 0 600 " ]120 180 role. The cancellation of the effects of negative-energy states

. [deg. ), [deg.

was shown to result from the antisymmetry of the proton-
proton initial and final state. Nevertheless, at higher photon

FIG. 10. The cross sectiorieft) and analyzing powergight)
at the kinematics of the KVI experiment, whelEg,,=190 MeV) at ~ momenta effects of the order of 20% were found from these

various proton angles as a function of the photon adgleThe full ~ Z-graph contributions. This leads to noticeable effects only
line is the calculation including negative-energy states, the dottedt very particular kinematics fdf,,=190 MeV, whereas for
line has only intermediate positive-energy states, the dashed line B00 MeV the effects show up clearly in the entire kinemati-
the soft-photon approximation calculation of REf]. cal regime.
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We furthermore investigated the retardation effects in the Using these spinors we can define operatoks
NN interaction by means of a simple one-pion exchange=3, u{”(p)u{”(p),
model, and found that these can be appreciabl@&. ratrix
was constructed to incorporate some of these effects in the
single-scattering contribution. Effects on the observables T. P
were found to be of the order of 10%. It would be interesting Ep+M E,+M
to also estimate these retardation effects in the rescattering A= 2E p-o p
diagram. Since the corrections are rather limited in size, this P
may be done by carrying out a lowest-order expansion of the
NN T matrix in the relative energy variable. EpYo—P ¥+ M
We have also made a study of the limits of validity of the —a
soft-photon approximation by Lioet al., which should work P
well at low photon energies. We find in particular that at
photon energies of the order of 100 MeV that there is a p? p-o
S|gn|f|cgnt breakdown pf that approxw_natlorj. Qomparmg the E+M | (E,+m)? 1, E+M
predictions of the considered model with existing experimen- =P " P P
tal data, we find that the discrepancies between the nonrela- 2E, —po
tivistic theoretical predictions and the TRIUMF experiment E,+M
cannot be attributed to the relativistic corrections. This is in
accordance with other theoretical estimates. Clearly new and _ Epyotp-y—M (Ad)
more accurate experiments are called for to settle this issue. 2E, '

_2'2
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APPENDIX A: DEFINITION OF SPINORS
+M=(pot+EpA +(po—Ep)A_(p), (A5
The spinors used throughout the article are chosen accord- P (Pot Ep)A+(P)+(Po~Ep)A-(P) (A0)

ing to the convention of Kubif24]
and therefore

1
A (p) A_(p)
+ _ =
u)\(p)_N(p) E2:\_F')v| g)\(al(ﬁ)i S(p) pO_Ep+|6+p0+Ep_|E (A6)
L =p J
T —o\ ] APPENDIX B: CURRENT CONSERVATION
Uy (P)=N(p)| Ex+M [£,(6,¢), (A1) In this appendix we will prove that the nuclear current as
|1 defined in Eq.(15) is conserved. For ease of notation we

introduce the continuum two-nucleon scattering state,

whereN(p) = V(Ep,+M)/2E,. These spinors satisfy the fol- .
lowing normalization condition: W (k,p;P)=[(2m)*6*(p— k) —iSy(k,P)T(k,p;P)]|p,P).

, (BD)
u (PIUY, (P)= 8,1 S (A2)

The free nucleon pailp,P) with relative momentunp and
total momentunP is given by the antisymmetric combina-
tion of two free Dirac spinors. From this scattering state an
“amputated” scattering state can be defined,

which differs from the Bjorken and DreJR5] normalization

constraint in the sense that usuallys chosen orthogonal to
u. A consequence of this particular choice is that we now
have

d(k,p;P)=[S; 1(k,P)(2m)*8*(p—K)—iT(k,p;P)]|p,P).
2 W(PIUR(p)=»° (A3) B2

\,p

instead of the identity. Thus whenever we substitute a full set Substitution of this amputated scattering state in the
of states for the identity, an additiona? has to be included. Bethe-Salpeter equation gives
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T(p,p’;P)|p’",P)=i[#(p,p',P)—S; *(p,P)(2m)*8*(p' —p)|p’,P)]

=V<p.p')|p’.P>—i(2'Ty1fd“kV<p,k>sz<k,P>[¢<p,p',P>—s;1<k,P)<2w>4a4(p'—p)]lp',P>
d*k

:f WV(p,k)Sz(k,P)w(k,p’:P)- &9

The initial and final states are on the mass shell, and conse- d4k —
quently in the first line in Eq(B3) the second term can be f 2 d(p’ k") Sy(k,P)p(k,p;P)
eliminated usingS, *(p’,P)|p’,P)=0. Thus the scattering

state satisfies a homogeneous Bethe-Salpeter equation, dk a“ | |
| :J (2m)* J ZayF $(PIPISA1LPIVILK)
—i
é(p,p ;P):(ZW)Afd4kV(pyk)SZ(k,P)¢(k,p;P)_ S Pk ), o
(B4)

whereas substitution fap in the second term gives
The e.m. current operator is assumed to be given by

d*k —
. . i ——z ¢(p' K ;P)S,(K",P")¥(Kk,p)
Iy ()= F(a")7,~ 5, F4 (@700 (B9) | @
d%k a4 —
with e.m. nucleon form factors - @a° f 2 d(p’ K" ;P)Sy(k",P")V(K,I)
FO(0)=F3(q?)+Fy(g?) 7y (B6) X é(1,p:P). (B11)

In our particular case the photon is regf=0, and theq  Applying the transformatiork—k+ 1q in the second term

dependence disappears from E§6). The current for emis-  and renaming to k' in the first term and to k in the second
sion from particlei then is found from substituting the scat- term, the result can be written as

tering state(B2) in Eq. (15), which gives

—ie —
i d*k — i : W= fd“kf d*k’ ¢(p’ ,k';P")Sy(K' P’
3= [ s HB KPSV PO (@S0 P) RNFEOL LRI
X ¢(k,p;P), (B7) x| V[ k' k— g)FgD—Fgl)v k’+g,k”
whereP’'=P—1q, k' =k— 3q for emission from particle 1 X Sy(k,P) (K, p: P). (B12)

andk’=k+ 3q for emission from particle 2. The contribu-

tion with emission of the photon without strong interaction is|n general the commutator & andF does not vanish, even
absent, since the term that would arise from the sandwiching the interactionV is local, V(p,k)=V(p—k), due to a pos-
of the photon vertex with the in- and outgoing states vansiple isospin dependence. In that case an extra contribution
ishes, and Eqs(B7) and (15) are indeed equivalent. The has to be included which is proportional to the commentator
Ward identity for the photon vertex is of V with FVr5. For the present NN interaction with the
Do — apOr ) Lrer o o one-boson kernel that contains the isovector mesang,
q-I'(q)=eF’[SY (k',P")=S" (k,P)]. (B8  and s with isospin structurer?). #2), the additional contri-

. . I ion is proportional
In the following we will concentrate on the contributions due bution is proportional to

to emission from particle 1; the derivation for emission from [7D. 742 7D],=2i (#Vx #2)),,
particle 2 is identical, except for this relative sign. The con-
tr_action of the nuclear current with the photon momentum is [#D. 42 727],= —2i(#Vx £?),. (B13)
given by
e If the final and initial states, as well as all intermediate states,
q-JV= —ieJ —— ¢(p'7k',p)s(1)(k',p’)|:g_1) consist _p_urely of protons, the commutators vanlsh and thus
(2m) the additional terms needed for current conservation are ab-
S(l)*l r pry_ (1)t . sent. . .
X[ (k",P") =S (k,P)]Sy(k,P) &(k,p;P). In this proof we have made use of the fact that in the
(B9)  expression for the current and in the Bethe-Salpeter equa-
__ tions the same propagator structure is used. In practical cal-
The homogeneous BS equati@¥) can be substituted fap ~ culations the BSLT approximation was used for thena-
in the first term of the previous equation trix, while in the integration over the relative enerfgy in
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Eq. (B7) the equal-time approximation was made. Thusfhe BSLT 1 5
matrices were assumed not to depend on the relative energy (P,P)=5(Ep— E)8(po)S™(p,P)S?(p,P)
in the c.m. system of the protons. Ignoring boost effects this

implies that in Egs(B10) and (B11) the propagators that APKAPK)  ADPKAPD (k)
arise from substituting the homogeneous BS equation are to - 2(E—E)  2(E+E)
be replaced by BSLT propagators, and instead of(B¢2)
we get ~ AV KA P (k) . AVKAP (k) E—
2(Ex+E) 2(Ex+E) E(+E’
3 g4 (B16)
qg-JW=e f d ks ¢ k4 %5 (p' K';P) . . . I
(2m)° (27) Therefore, if we retain only the positive-energy contributions
1 in both the expression for the current and in the evaluation of
XSESLT(k',p')VBSLT< K' —k+ 54 S,(k,P) the T matrix, the current is conserved.
d*k’  d3k APPENDIX C: DETAILS OF THE INTEGRATION

X BSLT k P ef f
o kPP 2m?* (2m)3 In the discussion of the rescattering diagram it was seen

that in the equal-time approximation the integration over the

“UBSLT, ’ ’ ’ ’
X == (p KPS (KPY) zeroth component of the relative internal momentkroan
1 be done analytically. The resulting amplitude contains three
xVBS'-T( k' —k+=q|SST(k,P) terms, from each of the internal nucleons being on-shell. The
2 remaining integral over the the relative three momenkuis
X $BSLT(K,p: P), (B14) calculated numerically. However, some of the terms have

poles due to a second internal nucleon being on-shell. In this
appendix we discuss how these poles were evaluated. The
: basic assumption in the following is that these poles are suf-
BSLT BSLT BSLT
W:rirjéb o : atorag?]\d/ oneagiégi Sf:::}iﬁ'nvglia;guﬁwr%of|C|entIy far apart to be treated independently, which in the
P propag actual calculations turned out to be the case. A convenient
menta restricted according to the BSLT prescription that th%home is to have the photon momentum define zltirec-

relative energy is zero in the c.m. system of the nucleons. i, “since then the poles only appear in the integration over
In the equal-time approximation the integration over the, ;4

relative energy remains. The only dependence on this vari- \yhen hoth nucleons are on-shell before emission of the
able is in the full propagatds,, and writing the propagators pnoton a pole occurs whe—E, =0, i.e.,k=p. In this case

in terms of the projection operatofsf. Eq. (A6)] the inte-  the integration ovew and ¢ is straightforward, and the re-
gration over the contour closed in the upper half-plane givesnaining integration is of the form

for the first term in Eq(B14)

I= fﬁdkf k ! C1
- ) A0 E e (Y
fﬁ s, (kP

iﬂ'rs2 ' with E,= Vk?+ M?Z. If the pole is in the intervala,B), this
can be rewritten in terms of a principal value integral plus a
Ko AD(k) AP (k) residue at the pole. In the principal value integral the value
= 3g im \Etko_Eptie + Etkot Ep_ie of the function at the pole can be subtracted. Then the inte-

gral Z can be written as
AP(k) AP (k)
X — + . f(K)(Ex+E)—2f(p)E
E—kO—Ek"FIE E—k0+Ek—IE =P | dk kz_pz +2Ef(p)7) de

_AP0AP ) AT 0AP )
B Ex,—E Ex+tE

(B15) tiat(p) %. (C2)

. o . ) The first integral can be calculated numerically, since it is
since contributions are picked up from the term witff’ at completely regular on the interval,8. The second term in

ko=E—E, and from the term witA®) atk,=—E—E,.  Eq.(C2) can be evaluated analytically,
The state where particle 1 haspin + and particle 2 has-

(the +— statg is absent since this has no poles in the upper

half-plane, whereas the + state is absent due to a cancel- Iz:ZEf(D)Pf dkiz—52
lation between the contributions from the first and second

pole. A similar expression is found for the second term in :f(p)E f dk( 1

Eq. (B14). The BSLT propagator is given by Bl ©3

1
k—p k+p/°
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The first integral yields f(X))(2E—q—E+ /Eﬁ+q2—2kqxp)
Res=
_ p-o dk s dk 2kq
lim f k—+f k_
slolJa —P p+s K—P _ f(xp)(ZE_q_Ek) (C11)

kq
=lim[In|k—p|% °+In[k—pl|Z, ;]

310 where we have used that the pole occurs when(E@) is
5(B— _ satisfied, so When/E2k+ q°— 2kqx,=2E—q—E. For pur-
(B—p) B—p : ! ke T o
5 =In (C9 pose of numerical accuracy again a subtraction is applied in
(p=a) p-a the principal value integral, and defining the nonsingular part
of the integrand a8i(x) = (x—x,) f(x)/g(x) the result is

=lim In

and the second gives

1 h(x 1 h(x)—h(x 1-x
|imUp§—dk +fﬁ s f dxx(x) :J dx%”(xp)'” Trx.
-1 - -1 -
50l Ja k+p p+6 k+p p p p
+imh(x). (C12

=lim[In[k+p|%~°+In[k+p|f, ;]
50 The result of the integral oveé can have logarithmic

poles ink. These occur at the values bffor which

(2p—90)(p+B)

(p+a)(2p+9)

B+p
pt+a

=lim In
510

. (CH

2E—q— Vk*+m?— Jk?+m?+q?+2kq=0, (C13

The final result forZ, is given by the subtraction of Eqs. that is, whenevex,==1 since then the argument of the
(C4) and(C5), logarithm in Eq.(C12) is zero. The solutions of EqC13

are
E ((B=—pP)(p+a)
L=ty '”((pw)(p—a) ’ (o . [EP-m-Eq
=4+ — +
Ky *5 (2E—Qq) E?_Eq +q|. (C19
which reduces to zero fax| 0 andB—c. However, in case
of a general intervala,B) this term does not vanish. A double pole can occur wheB>—m?—Eq=0, but in ac-

The other possible pole occurs when both nucleons in theual calculations this turned out not to be a problem. In the
integral are on-shell after the photon is emitted, that is whemeighborhood of the pole the integrand behaves as

2E—q—Ey—Ey_o=0, (C7) L= fp(K)In|k—Kp |+, (K), (C19

with B, q= VE—2kgx andx=cosf. Solving Eq.(C7) for  wheref (k) andf,(k) are regular functions if. For such
x one finds functions a simple Gaussian integration is not possible, and
instead logarithmic Gaussian integration can be used, based
_ EW(2E—-q)—2E(E—0q) (cg  on the fact that

1 n
If X, lays in the interval —1,1] a pole in the integration over f f(x)ln(x)=2 f(X)wp(x;) +E(n), (C19
0 occurs, and the integrand can be written as a quotient of 0 =1
two functionsf andg such thatf(x) is regular andy(x) has
a single pole ak=x,. Then the integration ovet is

SN (ORI E RN (CON
Jldx—)—Pfldxg(x)er-r

g(x

wherew,(x;) are logarithmic Gaussian integration weights
for pointsx;, andE(n) is the error made by restricting the
summation ton terms. Thus one has to rewrite the integral
. overk as an integration with boundaries 0 and 1. Sufficiently
X=Xy far from the pole the logarithmic behavior of the integrand
(C9  can be ignored. Therefore the logarithmic integration can be
restricted to an intervala,k,] for k<k, or [k,,a] for k
ikp with a chosen such that the other pole#ther the other
l1ogarithmic pole or the one from the=E,) are outside the
integration interval, and the integrand can be written as

f(x)
(X—Xp) M

To find the residue numerically it is useful to rewrtein
such a way that the pole structure becomes apparent by m
tiplying both numerator and denominator witle2 q—E,

— Ek—q ,

p

a— kp

g(x)=2E—q— Ex— VEZ+q°—2kgx le=fp(k)In

X—X
_p P 1 =F,(k(2))In(2) +F,(k(2)) (C17)
q2E—q—Ek+ VEZ+q?—2kgx’ (C10 "

—fo(k)In[b—kp|+ f, (k)

with z=[(k—kp)/(a—k,)| €[0,1]. The functionsF,(k(z))
so that the residue is andF,(k(z)) are regular on the integration interval, and the
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integration over the first term can be done using &L6), ot —
whereas the integration over the second term can be dord, =u(p’)
analytically.

i K

b Hg+m
’Y/,L+ﬁo-,ul/q T on .~y

2p’-q
XT(MZ,m?,vo+qp’)—T(M%,M?Z,vo—qgp)

e

APPENDIX D: LOW-ENERGY THEOREM
FOR PROTON-PROTON BREMSSTRAHLUNG X p+d+m
We will derive the low-energy theorem for bremsstrah- 2p-q
lung of two spin3 particles in correspondence with the origi-
nal work of Low [17]. Consider the contributions in which
particle 1 emits the photon; the extension to emission from
both particle 1 and 2 is straightforward. The initial particle The T matrices can be expanded around the on-shell value,
has four momenturp, the final particle has four momentum \,pich up to first order gives the on-shell valudg
p’ and the photon has four momentumThe spectator par- =T(m?,m?,v,) and derivatives in the argumerM;fZ, Miz’

ticle has moment@ andp’. There are three principal vari- and v (which in the rest will be denoted b¥;, T,, andTs,
ables on which thd matrix depends. Here we choose themrespectively

to be the invariant madé? of the initial particle, the invari-
ant massM? of the final particle, and a third parameter T(MZ,m2, 1) =To+2p’-qTy+ 0P Ts,
=p,-p+p,-p’ where p,=p—q, p,=p’ or p,=p, p,
=p’'+q. Then the following relations hold:

X

ik
w%oﬂyq”) u(p). (o)

T(m*M?,»)=To—2p-qT;—qpTs.

M?=(p—q)?~m?~2p-q, Mf=(p’'+q)?>~m?+2p’-q,
' ! Theo,, term can be evaluated with the on-shell propagator,
and definevy=p-p+p’-p’. The matrix element for the and up to terms of second order in the photon momentum the

emission from external lines is thus current is given by
M 6T iex L pi+m - p+m iex , L el ' T
w —euP)| | v~ 50w 207q 0 Togpq | Y S Tl u(p)+eu(p’ )y, (p'+m)Ty
— ) ap’ ap —
+T(p+m)y,Ju(p)+eup’)| v (p'+m) stvLTsﬁ(lerm)m u(p)+eu(p’)

To see whether the nuclear current is conserved if onlyvhich in general is nonzero. The tef,, ; with the deriva-
external diagrams are included, one can contract the curretite in the on-shell directio 5 is given by
in Eq. (D2) with the photon four momentum*. The terms
with o,,q" andg are trivially zero, since the photon is real
(q?=0). The term with no derivativel! , ; gives also zero,

!

prm o

9“M, s=eq“u(p’)

— p'+m p+m +T4(qp ;(H—_m
_ ' _ ap) Y [U(P)
0*M .= €0U(D")| 7, 55 To~ Tog g Y U(P) (AP) g Y
’ . _ 2p, ~ 2p
_[2pa__2pq =eu’[ b (T, T ey
=eup ){mTo—Tom u(p)=0, (D3 q‘u(p’) 2pr.q(qp) 3 3(qp)2p~q (p)
=g“[eu(p’) (B, +P.) Tu(p)]. (D5)

where we used thatp(+ m)y,u(p)=2p,u(p) and equiva-

lently for u(p’). The sumM,, ;, of the terms with deriva- It is clear that in general the current is not conserved due to

tives in the off-shell directionT; andT,, gives the terms with derivatives of th€ matrix, unless additional
terms are included,

0“M , o= eq“u(p )y, (p'+m) T+ To(p+m)y,]u(p) it _ , _ o~
o M, =—eup)[2p,T1+2p,To+(p,+pL)Ta]u(p),
=2eq“u(p’)(p,T1+T2p,)u(p), (D4) (D6)
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!

p
,/L To—T M
2p'-q © %2p.q

ter inclusion of these internal diagrams only the derivative in Muzef(p’)
the on-shell direction remains. It can be rewritten in terms of
the momenta of particle 1 only, usiﬁz av/ap; . Thus we
can define a differential operatf26],

These terms can be interpreted as internal contributions. Af- {

i Kk V[()’-i-m p+m ik

+5mouwd mTo—Tomﬁ%yq u(p)
., |9 P, 9 J
DuP)=| 5P P o= 0" 55— s
g p'-q # "#) v p'-qt ap’" dp't — o el A
(D7) +eu(p’) 2p’~qT° T°2p-q u(p)
With this operator the conserved current for bremsstrahlung — , <
can be written as +eu(p’)[D,(p)T+TD,(p)Ju(p)+O(q). (DY)
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