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Due to the internal structure of the nucleon, we should expect, in general, that the effective meson nucleon
parameters may change in nuclear medium. We study such changes by using a chiral confining model of the
nucleon. We use density-dependent masses for all mesons except the pion. Within a Dirac-Brueckner analysis,
based on the relativistic covariant structure of ¥l amplitude, we show that the effect of such a density
dependence in th&IN interaction on the saturation properties of nuclear matter, while not large, is quite
significant. Due to the density dependence ofdhgy ., as predicted by the chiral confining model, we find, in
particular, a looping behavior of the binding energy at saturation as a function of the saturation density. A
simple model is described, which exhibits looping and which is shown to be mainly caused by the presence of
a peak in the density dependence of the medium modifldccoupling constant at low density. The effect of
density dependence of the coupling constants and the meson masses tends to improve the resAlesnibr
density of nuclear matter at saturation. From the present study we see that the relationship between binding
energy and saturation density may not be as universal as found in nonrelativistic studies and that more model
dependence is exhibited once medium modifications of the basic nuclear interactions are considered.
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PACS numbgs): 21.65+f, 13.75.Gx, 14.20.Dh

I. INTRODUCTION m,=600 MeV and a vector-isoscalar field» with
m, =783 MeV. Thus the force range is short and the neigh-
Since a nucleon is not a point object, but has structure, iboring nucleons which can alter the internal structure of the
must undergo changes when placed inside a nucleus. Amongteracting nucleons must also be close. Due to the exclusion
other properties, the meson-nucleon coupling constants mayinciple and short-range correlations, the effective density
change. If this happens, it should affect th&l force. These of the polarizing nucleons, denoted &g, is less than half
effects have to be small. Otherwise, traditional nuclear physthe normal nuclear density. It is quite possible that litfe
ics, where one uses free-space two-body force would havexcitations produced by the neighboring nucleons may be
failed badly. But even small changes in tNN force may treated perturbatively. However, an earlier study of this prob-
have a noticeable effect on the properties of nuclear mattetem [2] established that a fairly large number of resonances
The purpose of this paper is to investigate possible changeontribute. The mean-field approach, which generates the
of meson-nucleon coupling constants due to the quark strueigencombination oN and N*’s as the lowest state in the
ture of the nucleon and their ultimate effects on the saturafield due to the neighboring nucleons is a more expeditious
tion properties, such as the densityand the binding energy way of calculating the effect.
— E/A of nuclear matter. Our quantitative studies are based on the following strat-
The NN force in nuclear matter may become density de-egy. We describe the structure of the nucleon with a model
pendent due to a wide variety of reasons. Any time onecalled the chiral confining modéCCM) [3,4]. Specifically,
eliminates some degrees of freedom the resulting effectiveve use the toy4] version of this model. The role of nuclear
interaction becomes density dependent, the Bruedknea-  matter is simulated with baths of external andw fields,
trix being the most widely known example. Another recentthe vacuum values beingo),,= —F,.=—93 MeV and
example is the work of Let al. [1] on the effective inter- (w),,c=0, respectively. The nucleon structure problem is
action to be used in a mean-field calculation which repro-solved in the presence of these bath fields. Then various
duces the results of a Brueckner-Hartree-Fock calculation. properties of the nucleon, including meson-nucleon coupling
The density dependence studied here involves excitationsonstants, are calculated for ranges of values of the two bath
of N* (1=J=1/2 resonancésdegrees of freedorh.Ulti- fields.
mately we are interested in the change of ke force in the The fact that ther and thew fields are, in turn, pro-
medium. In relativistic nuclear physics the most importantduced by the nucleons through field-dependent coupling con-
forces are mediated by a scalar-isoscalar fieldwith stants allows us to obtain density dependences oéthand
the o fields by solving appropriate nonlinear self-
consistency equations. Once this has been done, we can use
The nuclear matter is an isoscalar and isotropic medium. It canthe known field dependences of various properties of the
not change the spin or the isospin of a nucleon. It is also translapnucleon to obtain their density dependences.
tionally invariant. But, as we will see later, it can still produce  We indicate the density-dependent values of various prop-
internal excitations in a nucleon. erties of the nucleon with a star. Thgsyy denotes the free
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spaces NN coupling constant and?, the same quantity a four-dimensional hypercube of sidg they introduced a
in nuclear matter. The latter is always dependenfpomhe  color singlet, Lorentz scalar quantik(x) and a color octet,
nuclear density. We may note that the properties of nucleatorentz vector, coarse grained gluon fieBg:
matter depend principally oOynn, Gaonn: Irnne NN
andf:NN, where Fhe Iast is the _Pauli coupling coefficient. K(x)= "miTr[<e—if§,édy.A(y)>]'
A necessary input is the field dependence of the ex- e—oNc
changed meson masse®Ve use the simple model that the
meson masses are linearly dependent orvtlfield, keeping 1 9 .
the pion mass fixed The coefficient of linear dependence of B,ﬁzz AB%=limi £[<ef'fxffdy‘A(y))].
o and o masses on ther field is chosen to give é €0

N .
m*/m=0.92 at normal nuclear density. Upon integrating out the QCD gluon fields in favor of these

The changes, as found in the CCM, clearly will have ef_new collective variables one obtains the NielsetkBs La-
fect on the properties of nuclear matter. To study this we S S o
rangian in the form of a derivative expansion:

adopt the relativistic many-body approagb—8|. Specifi- 9
cally, we carry out a relativistic Dirac-Brueckner calculation

of the properties of nuclear matter using the one-boson- Lnp=(X)| iK(x) EE— K(x)mg—gB(x) | ¢(x)
exchange model of Reff9]. For the quasipotential version of 2

this model the full Dirac structure of thdN amplitude in K4

free space has been construdi#@]. The resulting so-called - ZwaGa e SR (0]

IA2 representation can be used to determine the saturation
properties of nuclear matt¢B]. Modifying the free space

T matrix to also include Pauli blocking and introducing our
density-dependent meson-nucleon coupling constants, se

The gauge field iB7/K and notBj,. The coarse grained
ﬁjeld tensor is

consistent relativistic Dirac-Brueckner calculations were per- B2 a b re
formed in the manner of Ref8] for a range ofép the ef- Giy=a#?”—ayr"+fab°?” ?” 2)

fective density of the polarizing nucleons.

Our main results are thdf) the effects of the density-
dependent meson nucleon coupling constants, arising out
the quark structure of the nucleons, on the saturation densi
and — E/A at saturation are small but not negligible aiid (K)yac=0 3)
they do tend to improve the results. vae

The next section contains a brief introduction to the chiralthis conjecture, crucial for our model, has been justified
confining model(CCM) and its toy version. Section Ill de- from the lattice gauge point of view by Lest al.[12].
scribes the calculation of nucleon properties as functions of A quark has ever-present interaction with the quark con-
batho and  fields. These results are used in the next secgensate of the vacuum. {K)y,=0, the interaction will ap-

tion to extract density dependences of nucleon propertiegear to be infinitely strong compared to quark kinetic energy
Section V describes the relativistic treatment of nuclear matang a quark cannot exist in that region. It can only reside in

ter using the Dirac-Brueckner approach. The last section prene region whergK),o#0. A color singlet quark system
sents the main results, discussions of these results, and cogan polarize the vacuum and change the valuk ciway

&;om the gluonic term one idgntifies= K* as the color di-
t@ectric function. Nielsen and Bas conjectured that

cluding remarks. from zero, thus dynamically generating thag where the
guarks can stay.
Il. THE CHIRAL CONFINING MODEL The Nielsen-Pkos Lagrangian recognizes the existence

. ) of gluon condensate through the vanishing kg, ... How-

An early attempt at extracting density dependence ofyer the quark condensate is not manifest. Without it one
nucleon properties using CCM is described in REl. The  annot develop an effective Lagrangian which contains the
present paper contains two significant improvements—nysics of the interaction of a quark with the quark conden-
inclusions of the instanton-induced interaction and the pioriaie \We deal with this problem by conjecturing that one can
cloud contributions t@,yn, gpnn, andf ny coupling con-  integrate out the coarse grained gluon fields in favor of me-
stants. The CCM has been described in detaiRind]. Here g4 fields as new collective variablp$ 13,14,
we give a brief review. It is also necessary to introduce, following Nielsen and

The CCM is based on the notion of color dielectric func- pxy g [11], a new color singlet, Lorentz scalar fiejdpro-
tion as introduced by Nielsen andtRes[11]. By consider- portional toK by the equation

ing the average of all possible link operators, starting from
x— € and ending onx with the paths completely contained in K(X)=g,x(x). (4)

Being related tK, a purely gluonic object, thg field is a
2The possible importance of density dependence of meson massazember of the glueball family. Hence, it is a chiral singlet, a
was first stressed by Brown and his collaboraféils fact evident from the first term of the Nielsentkas La-
3Because of charge conjugation symmetry the masses of mesorgrangian given by Eq(1). LargeN,qo analysis shows that it
considered here, cannot depend linearly on The dependence is a hybrid field[4,15]. The result(3) imposes the require-
must be quadratic or of higher even power. ment that
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(X)vac=0. 5 The presence of the factdt with ¢i3dy changes the
field canonically conjugate tay from the usualiy’ to
Retaining minimum powers of fields and their derivativesiK ¢'. As a result the quark term in all Noether's currents
the basic Lagrangian of the CCM has the form carries the factork. The transformationyK g(x) — g(x)
makes the paify andiy' canonical and removes the factor

— |1 — K from all Noether's currents. Two changes occur in
Leem=KX) (X)) 5‘9_ Mg [$(X)+ ¢(X) Lcem- The free quark term no longer has the fadtomwhile
) ) the quark meson interaction acquires the faétérin place
9 AT(X)+iysT At +0,b+7,7 (h+ vshy) of K in the denominator.
X K(X) The mean-field treatment afccy with a variety of rea-

sonable sets of parameters revddld 9,21 that even where
1 the quark density is large the meson fields differ only slightly
XP(X) + Linesor 2 Iux“x=U(x). ®)  from their respective vacuum values. This suggests strongly
that we introduce a simplified version of CCM. The simpli-
fied version, which we call the toy model, consists of fixing

The guantitie , , andg, are the quark-meson cou- . .
q G2 Yo 9y q all meson fields at their vacuum values:

pling constants. The quantityy, is the current quark mass.
Its value is set at 7.5 MeV. It contributes 17 MeV to the (0Yvac= —F
7N o term[4]. Because of its negligible role in the present vac
work we will neither refer to this term nor count it as a S N R _
parameter in our subsequent discussions. However, it is in- {7)vac= (@ )vac= (Pvac= (Ar)vac=0, ®)

cluded in the actual numerical work. _leaving only the quark fields and the field as dynamical
We use the chiral invariant Lagrangian of Lee and Niehy ariaples. The toy model Lagrangian, in terms of the canoni-

[16] for Lyeson The Lagrangian ensures that),..=—F, g quark field, is given below.

and that the mesons have their respective physical masses

T

when calculated at the classidak tree level. The fieldsr — 9.F, 1

and o form a (1/2x1/2) representation of SU2) Lioy= P(X)] i 19 Mg — 00> PX)+ 5 dux*x—U(x).
X SUr(2), while the fieldsp+A,; form (1,0) and (0,1) rep- 9)
resentations.

To complete the definition of ¢y one must specify the Not countmgmq, the toy model has only two parameters,

X potential. Since nothing substantial is known about it, wedF » /gx andm, in the pure mass version and one addi-
try two simple forms: tional parametep(o in the quartic version. Formation of the

bag is even more transparent in the toy model as the con-
) stituent quark mass terrﬂ/,[(ngv)/(gXX)z]lp, becomes in-
pure mass: U(x)=5mx", finite wheny—0.

The unusual form of the quark-meson interaction with the
factor 01‘K2=(g)()()2 in the denominator is of some impor-
tance in the present investigation. In its absence a constant
externalw field will merely shift the energy of the quark
without exciting it to higher states. Thus the nucleon will not
The quartic potential has two minima, the oneyat0 de- be polarized. A constant field will excite the quark. Or-
scribes the vacuum while the othengat x, is an “excited”  thonormality of different eigenstates of the Dirac Hamil-
state, which for simplicity we keep degenerate with thetonian ensures thatd®ru’Tu=0, but not the vanishing of
vacuum. The value of,, the location of the second mini- [d°ru’u. The latter gives the effect of a constant external
mum is set at 40 MeV. The hybrid mass, is set at 1400 o field. The presence of the fac:tog)(()()2 enables a con-
MeV. As we will discuss later, the results of the calculationsstant externaly field to excite the quark and enhances the
depend largely on one particular combination of these paability of a constant externat field to do the same.
rameters and rather weakly on individual ones. Common sense suggests that the confinement mechanism

Any mean-field calculation containing isovector fields re-must play an important role in determining the response of a
quires using states which do not have good isospin symmaiucleon to the fields in nuclear matter. In a brief discussion
try. To accomplish this we use hedgehog spinors and fieldst the end of this section we will illustrate the role. In the
introduced first forr ando fields by Chodos and Thofd7]  CCM confinement manifests itself through the factor
and extended to vector meson fields by Broniowskal. (gXX)2 in the denominator of the quark-meson interaction
[18]. We closely follow the mean-field analysis of Ren term. Because of its importance it is necessary to provide
etal. [19]. some evidence for the presence of such a factor in the inter-

It should be emphasized that the appearancK @f the action Lagrangian. Fortunately, there is a verifiable conse-
denominator of the quark-meson interaction term is at quence of this feature. Gauge invariance ensures that there is
hoc It is obtained by matching th& dependence of the no such modification of the photon-quark interaction. Thus,
four-quark interactions which arise on the one hand fromcontrary to the conjectures of universal couplifi2@] or
Lyp by integrating out theB,, fields and on the other hand current-field identity 23], the isovector couplings of the pho-
from Lccpm by integrating out the meson field4,20,21. ton and thep meson differ by thisk =2 factor. Because of

_ 1
quartic: U(x)= EmXXZ(l—X/Xo)Z- (7)
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this difference, CCM predicts that thenucleon Pauli cou- A - U.Y00 G0 -
pling constantf ,n should differ from the isovector anoma- E=NCJ d3ruT(r){ —ia-V—%l
lous magnetic momenk,_,. The predicted19] value is [gyx(r)]
f,nun/x=1=1.4, instead of 1 predicted by the two conjec- 1 . .

tures. Based on dispersion theoretic analysisridf scatter- +J’ d3f[§[V)((f)]2+ U[X(r)]}

ing data Hdiler and Pietarinef24] had estimated the ratio to

be ~1.75. Our value is within the possible uncertainties of 3 5 5 o

this result[25].4 —ZCJ d°r Z(r)[G*(r)+F<(r)]*, (10

The role of the pion field on baryon properties is never
negligible. In the toy model one takes account of it pertur-where the valence spinou(r) is
batively [3,26] wherever appropriate. In the context of the
present study such corrections are important in the calcula- - G(r)
tions of the coupling constants of mesons of e@parity, u(r)= o rF(r) 4
Jonns 9pnns @ndf yn/2M.

The toy model with perturbative pionic correction gives and{ is a two-component Pauli spinor.
poor results for the masses MfandA and for the nucleon The last line in Eq(10) represents the contribution of the
charge radi{3,26]. McGovernet al. [27] showed that there instanton-induced 't Hooft interaction with a regulating func-
is approximate, but very good scaling behavior in the toytion Z(r) which cufts off the interactiqn at a distance scale of
model. If one chooses the parameters to get the nucleon ma8&5 fm. The details may be found in Ref8,26].
right the values of most other quantities are nearly fixed. Note that the external fields are constant in space and
Thus the bad results for mass and size cannot be improven®- The vacuum value of the field is —F .. Nuclear
simultaneously by varying parameters. One needs a new ifnatter generates field with positive sign thus reducing the

teraction which is short ranged and more attractive betweeff1agnitude of the net. Itis customary to represent the effect

singlet-singlet quark pairs than between triplet-triplet pairs.as a modification of the pion decay constant:

The 'magnetlc one-gluon exchange mtgraclﬁﬁﬁ] fits the o=—F .+ Tpmate= — F~ . (12)

requirement exactly. However, the physics of exchange of a

color octet tower of gluons is already incorporated in mesomhe w in Eq.(10) is the time component of vectar field.

exchanges. We cannot include it again. The static nuclear matter distribution can generate only the
We solve the problem by including the instanton-inducedtime component. However, a nucleon moving with velocity

't Hooft interaction[29,30. In the two flavor case ofi and ; in nuclear matter does see a space component

d quarks, the 't Hooft interaction generates interactions beg,— —;,//T— 2. We ignore the role of this term.

tween quark pairs in flavor antisymmetric state only and the Before we leave this section it is useful to illustrate the
interaction is attractive and zero ranged. So it fits our rerole of the confinement mechanism on the density depen_
quirement without duplicating any mechanism already in-dence of nucleon properties. To do this we generalize
cluded. Using Shuryak’'$31] description of the vacuum as slightly the work of Ref[27] and write the energy functional
an instanton liquid the strength of the 't Hooft interaction canas

be estimated in QCD, but not in CC§8]. So we have to

(11)

. .. e R WF: 1
treat it as a fref-z parameter. We fix !t by fitting thl?—A E:f d3rlnut _ia_V+7’09 U+ —m2X2 _
mass splitting with the 't Hooft interaction together with one- (9" 2 X
pion exchange contributiof8]. (13

The method of calculation with the toy model in the ab-__ . .
y This applies to a system af valence partons;=2 for me-

sence of externay andw has been described in detail in sons anch=3 for baryons. Notice the generalization of the
Ref. [3] and will not be repeated here. The changes due tQ N yons. 9

the presence of external fields are straightforwW&id Going power in the denominator of the second term from 2, as in
. . this paper, tov. Whenv=0 no bag can be formed. Refer-

back toLccu, described by EqeE), we interpreto and wg ence[27] usedv=1, we have shown that= 2. Listed below

as the ?ath fields. The vaguum exp_t?ctatlon values of all othe%{re some of the scaling rules valid for this model which

fields 7, o; (i=1,2,3), p,, and A;, are zero because jllustrate the importance of the confining mechanism on

nuclear matter has good isospin and good parity. The quarkome of the issues of concern here:

field and they field continue to be the only dynamical vari-

ables in the extended toy model Lagrangian. The new energy x F*)U2v+1)

functional of a nucleon in @-w bath is given below. hadrori~ 1 (9+F3) ’

(14

<3v+z>,<4y+2)( my

vli(v+1)
gx)

m’l:adroxmhadronw ( F;/Fw) l/(2v+l)’ (15)
“4In the MIT bag model also the photon and {heneson couple to
the quark in different manner. Brown and Rho had exploited this XN/ Gonn~ (FX/F )~ 12vI2ve ], (16)
feature to explain the value df,yn/« . Dialing the chiral angle
they fitted the value 1.75. Our result is approximately independentn Eq. (14) we have omitted a dimensionless factor which
of parameters because of the scaling property mentioned later. depends orv but not on any other parameter appearing in
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TABLE I. Values of quantities &, b, ¢, d, f, and g for the pure dicate that only the direct coupling of thefield to valence
mass case. The quantities under the column a are the free spag@arks is included "gfrqn)lﬁ- The full coupling constant also
values. includes coupling to the pion field produced by the valence
quarks. Thew and thes fields have odds parity. Hence

Quantity a b c d f 9 their source currents couple to 3 or higher odd powers of the
(9.nn/2M)* 083 172 -078 351 -571 0.13 7 field. Since therw field is weak inside the nucleon, the
95 11.02 110 —160 244 —290 3.22 higher power contributions are not important anq have been
gl 234 314 -5925 334 —21.77 6.99 Omitted in the present calculation. The superscriti§ re-

dundant forg’\y and @,nn/2M)* and have been omitted.
The parts of the meson source current which show the

Eg. (13). Equation(15) shows that whernr=0 and there is coupling to quarks may be read off E@6) describing

no bag formation, the hadron masses are directly proporEccu. We list them below:

tional F% , i.e., they scale witlF% . Also, in this situation,
according to Eq(16), g,nn IS density independent. When (q)_g 1 (20)
v=1 or 2 and a bag is formed, the masses decreas€ as "K(x)’
decreases but much more slowly. The quangfy,, now
varies rapidly withF> . j@0—g Yo (21)
The presence of the field and the 't Hooft interaction “K(x)’
make the scaling rules quantitatively unreliable for baryons.
However, the preceding discussion does illustrate the impor- i Y57,
tant role of the confining mechanism on the response of the ]77 o= 9n K(x) (22
nucleon to the fields present in nuclear matter.
(q M yir[2
lll. FIELD DEPENDENCE OF NUCLEON PROPERTIES J =0, K(x) - (23

We pick values of% in the range 63 to 93 MeV in steps ) ) )
of 6 MeV and values O&) in the range O to 40 MeV in steps The meson-nucleon coupling constants are defined in the
of 8 MeV. For each pair oF* andw we find the spinor and usual way. The expressions listed below areffer0.

the y field which will make the energy functional stationary.

) — 4@
The condition of stationarity yields coupled nonlinear equa- (N(P)[J5P(0)IN(P)) =giin» (24)
tions. Referenc¢3] describes the method of solving these @ .
equations. Once the solutions are obtained we can calculate (N(P)]j " (0)IN(P))=gunn: (29

the desired properties of the nucleon in thev field bath.
We introduce the dimensionless variableandy to de-

scribe, in units oim,,, the bath fieldsr and w: (protor(p)ﬂj(q “)|pr0tor(p)T >_ fa?\l)N' (26)
0—(0)va=Fr— Ffrzxm‘n'i (17
8 (protor(p) 1] f d*r[rx jiB]lprotor(p)T )= pifin.
We fit the results of every physical quanti§y of interest . .
with the quadratic form (proton(p)’ 11} ¥4(0)|protor(p) T )=(p’ —P),9 nn/2M.
(28)

Q(x,y)=a[1+bx+cy+dx?+ fxy+gy?]=aF?(x,y).
(199  The quantityu gy appearing in Eq(27) is the p-magnetic
moment of the nucleon:
The results of our fit are shown in Tables | and Il for the pure
mass and quartic case, respectively. The quartiig the onn= (9Nt T onn)2M. (29
value ofQ in vacuum and=?(x,y) is the quadratic polyno-
mial in square brackets. The three coupling constants of spe- We list below the results from CCM for the contributions

cial interest areg{®¥, g*\n. and @.nw/2M)*. The to the various coupling constants coming from direct cou-

o-nucleon coupling constant carries a superscripttp in-  pling of meson fields to the quarks:

TABLE Il. Values of quantities a, b, ¢, d, f, and g for the quartic (Q)* 3 2 2
case. The quantities under the column a are the free space values. 9oNN= G | Ar[G(r) = F (DK, (30

Quantity a b c d f g

(@-nn2M)* =g, fdsrrG(r)F(r)/K(), (3D
(g.a/2M)* 092 1.62 —049 355 -3.36 0.045 9

9N 1372 074 -093 123 -118 145
(@ - - _
oY 492 1.67 —213 -239 -6.65 1.72 gZNNZSQwJ Br[GAr) +EAOIKYT),  (32)
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TABLE IIl. List of parameters and coefficients. Both the pure
g;‘ﬁ;‘,:gpf d3r[G2(r)+F2(r)]/K?(r), (33)  mass and quartic cases use=650 MeV, m,=783 MeV, m,
=770 MeV, m,=140 MeV, g,un=8.0, g,un=5.0, & nn
=2.45, andm*/m=0.92 at normal nuclear density. The numbers
J d3rrG(r)F(r)/K2(r). (34) in the table are all in pion mass units. The quangity\/2M has
the dimensions of length and is expressed in unitsngjfl. The
field_quantitiesgm,\,N, 9% 9y, andbpesonare dimensionless. The

d d i ki d spi quantity s has the dimensions of mass and is expressed in units of
ependent, coupling Constants_ one must Ksand spinor m_ . The quantitieg’; and{; have dimensions of mass squared and
componentsG and F obtained in the presence of the bath ;.o expressed in units af? .

fields. The stars should be removed for free space values aof

10
M;llq\l)’l\rl = gp?

To obtain density-dependent, or equivalently

the coupling constants obtained wkh G, andF appropri- Quantity pure mass quartic
ate for free space.

The nucleon mass term which appears as a divisor for ~ Jznn/2M 0.8349 0.9241
g.nn and for thep magnetic coupling stands for the experi- 9NN 11.02 13.72
mental value of the mass, i.e., 939 MeV. It is used to define g%y 2.389 4.919
dimensionless coupling constants from the integrals of di- {y 8.049 3.608
mensions of length which appear in E¢31) and(34). Our 9'Qn 2.448 3.048
studies measures the density dependence of the quantities 4y 3.661 2.286
represented by the integrals. M%)N 0.8349 0.9241

A model of hadrons cannot anticipate what effective had- 2 2317 1.787
ronic Lagrangian its results will be used for. Hence, to re- Brreson 0.4769 0.4622

move possible misunderstanding we have stated in(Zg).
the precise definition of the quantity,yn/2M as it appears
in our work. The expression on the left-hand side involvessimple conjecture that the meson masses decrease linearly
the pion source current, usually well-defined in most quarkwith increasingc m,. [5], the o field created by nuclear mat-
based models of the nucleon. It is also well defined in anyter, while keeping the pion mass fixed. Actual numerical
effective hadronic Lagrangian. If the effective Lagrangiancalculation with a CCM-based model of the meson[2]

uses pseudoscalarN coupling the quantity .y is the di-  supports the conjecture. According to E@5) the approxi-
mensionless coupling constant of the theory. If, on the othemate scaling law of McGoverat al.[27] predicts that had-
hand, it uses derivative Coupling thgl’,}NN/ZM is the cou- ron masses decrease with decreasin&i as

pling constant of the theory, having the dimensions of lengthmﬁadroJmhadmn”(FfT/Fw)”S- The QCD sum rules find32]

Note, again, thaM in the denominator of,xn/2M for the  ypovm* /m ,=1—(0.16+0.06)p/po. The last two results
derivative coupling theory is a fixed number by definition, |oq fafi[uherpbredence to the conjecture.

usually 939 MeV._ . We assign the samg dependence to botlr and w
The mesons with eve@ parity o andp also couple to the

masses:
pion cloud, the contributions from which depend essentially
quadratically on ¢ .nn/2M)* . Hence we write M* = M(1—besox) = MA(X). (39)
*  _~(@)* 2
Ionn=onnt £o(Gmnn/ZM)*7, 35 The functiong(x) has been introduced so that the rest of the
£ (@)% 2 discussion is not specific to the simple linear dependence
9onn= Ipnn F g(Tann/2M) ™, (36 Used in the numerical work. The coefficiéiesoyis chosen
. (@)% w2 to givem*/m=0.92 at normal nuclear density. Its values are
MoNN= NN T € (Gann/2M) ™5 (37 listed in Table III.

The parameterg,, {4, and{;, represent the strengths of

the pion cloud contributions. The quantitiés and ¢, have IV. DENSITY DEPENDENCE

the dimensions of mass squared, witijehas the dimensions  The first step in converting the information about field
of mass. We choose reasonable valuegafn, donn: @d  dependence of the coupling constants to density dependence
fonn/2M in free space and use the results of the toy model ing to optain the density dependence of the fietdsandw or

free space fog'Ry, o'fn. ¥y, andg,yw/2M to fix the  equivalentlyx andy, themselves. This is done through the

coefficients,,, ¢4, and{s. These values and the relevant following two basic self-consistency equations:
parameters are listed in either Table Il or in the table cap-

tion. eV

We will see later in Sec. V that the free space meson- X= ng, (39
nucleon coupling constants used here are not exactly the a
same as in the one boson exchange potential used in the .
Dirac-Brueckner calculations. However, the differences are _ Mg (40)
small and are not expected to affect the qualitative purpose y mj,z p:

of this paper.
As stated in the Introduction a necessary input is the fieldvhere the various quantities have been defined by @@s.
dependence of the exchanged meson masses. We use #rel (38).



56 NUCLEAR MATTER STUDIES WITH DENSITY-. .. 503

equate. This question was analyzed in R&f. and it was
found the contributions of higher resonances involving exci-

" tation of a quark from the original9),, spinor states to states
O () nsy, containingn nodes converge very slow®yThe mean-
field approach is an approximate and economical way of
O """"" dealing with the problem.
(a) (O] In Eq. (39 one should use the scalar density. This can be

done only through a full many-body self-consistent calcula-
tion. We simplify our work by using the vector density

This simplifying strategy allows us to factor the problem of
extracting the density dependence of the coupling constants
from the rest of the many-body problem. We estimate the

error to be~(p 2)/4M?=0.05. The strategy is probably jus-

e - tifiable in a preliminary study of the main question studied in
© @ this paper.

The Egs.(39) and(40) may be rewritten as

FIG. 1. (a) Represents the interaction between two Fermi sea
nucleons interacting via & matrix. In (b) a third nucleon excites
one of the interacting nucleons into a resonance state, leaving a hole x={S@DF7(x,y)+Z"F7(x,y)] 2}—2— g , (41
in the Fermi sea. The resonance propagator is shown as an upward (%)
line with a star.(c) is the result of exchange between the third . (@ .
nucleon and the left interacting nucleon. Recall the convention tha\f\’here the combinations™ andX ™ are

a line starting and ending at exactly the same time represents a hole ()
Ii_ne. (_d) repre_sents the exchange between the third nucleon and the E(q)_gUNN po and 37= {U(ngN/ZM)Zp—g. (42)
right interacting nucleon. m,, m;,

The factoré represents the reduction of the effective den-The quantityp, is the normal nuclear density. The quantities
sity of nucleon available to polarize a given interacting pair.=° and 2™ would be thes fields produced by nuclear
The reduction is the combined effect of the exclusion prin-matter due to directr-quark coupling and due to-pion
ciple and short-range correlations among nucleons. An exsloud coupling, respectively, if the coupling constants did
amination of the illustrative Goldstone graphs of Fig. 1 maynot change with density. The y-dependent quantities were
be useful to understand the origin of this factor. defined by Eqs(19) and (38).

Besides the diagrams shown in the figure there are others For future convenience we introduce the dimensionless
obtained by interchanging the roles of the right and the lefeffective densityp:
interacting nucleons. There are also diagrams where a fourth
nucleon excites the interacting nucleons to a resonance state, — P (43)
generating two-resonance—two-hole states. The two reso- Po’
nance states interact and fall back into the hole states. All o )
these are examples of single interaction of the neighborind @ similar manner we write
nucleons with the interacting pair. These may be repeated ”
and summed to generate field effects in a space containing y=0 F (x,y)p_ (44)
the nucleon and =J=1/2 resonance states as degrees of ¢2(X) '
freedom. If resonances were not included the procedure will
generate contributions to the usual average field of a many¥here
body theory where only the nucleon degree of freedom is

counted. The mean field of CCM describes approximately Q0= ngNPo (45)
this multidimensional average field. mi, ’

Inclusion of all exchange diagrams enforces the exclusion
principle, which ensures that only two other nucleons carivould be thew field produced by nuclear matter if the
come close to the two interacting nucleons. The latter ar€oupling constant did not change with density.
mostly within a short distance. This consideration alone We solve the two coupled nonlinear E¢$1) and(44) for
makes ¢=1/2. Repulsive short-range correlations make a range ofp giving us the fields< andy as functions ofp.
even smaller. We expect that<¢<0.5. A full self- Using the results and Eq&l9) we obtain numerical values
consistent many-body treatment should determine this factopf the five couphng constantsgyyn, Gonns (Gann/
But for the present preliminary study we take it to be an2M)*, gpNN, /.LPNN, andm*/m as functions ofp.
unknown parameter confined to the range £<0.5.
There is nothing novel about the notion of the parameter
&. The physics of it must play a crucial role in the calcula- °In the MIT bag model the sum for the effect of the field
tions of three- and four-body cluster terms. diverges logarithmically. The- field has no effect because in this
One may also ask if the role of the isobars could not bemodel it does not couple to valence quarks. This fact underlines
taken into account perturbatively. The answer would surelyfurther the role of the confinement mechanism on the problem un-
be in the affirmative if inclusion of Roper alone was ad-der study.
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1.10 . 1.20 . : . a%p”
PURE MASS PURE MASS 9 (46)
1.08 + g 1.15 | % g - ,
. 1+ BIp"
1.06 - n ] L e | n=1,5
g 06 g 110 g,
g g
1.04 - o B 1.05 + i
. ap”
m /=14
102 | 1 100 —_—=1+— (47)
m
1.00 L 0.95 . © 1+ E Bnm?
0.00 0.25 050  0.00 0.25 0.50 n=15
Eplp, Ep/p,
The coefficientsa,, and B,, for the five coupling constants
110 and the meson mass ratio are obtained by least square fitting
’ N 120 ' and are listed in Tables IV and V.
QUARTIC QUARTIC
" 115 | <
1.05 | ] i) V. DIRAC-BRUECKNER ANALYSIS
” 110 ¢ 8 e
£ 2 Modifications of the meson masses and meson-nucleon
= G % st % i coupling constants by the presence of the nuclear medium as
1.00 discussed in the previous sections will, in general, lead to
1.00 changes in the saturation properties of nuclear matter. This
® problem can be studied within the relativistic Dirac-
0.95 : .
.00 0.5 050 "% 055 050 Brueckner appr(_)ach._To carry out such a study we follow the
Epip, Eolp, approach described in Rd#8]. As dynamical input we use

the relativistic one-boson-exchange model of Ré}. The
NN T matrix satisfies a Bethe-Salpeter equation, which is

* H *
FIG. 2. Plots of glyn/9onn labeled with o, (9, nn2M)*/ formally given by

(9.nn/2M)  labeled with 7, m*/m,g*\/d.wn labeled  with
o, gpnn/9onn labeled withg,, and whyn/(s,nn) labeled with _

f, as functions ofpy/po. Results for bpoth the pure mass and the T=V+VST, (48)
quartic forms forU(y) are presented. All relevant parameters are

listed in Table Il in Sec. III. whereV is theNN interaction ands; is the free two-nucleon

Green function. In this study we use in particular the quasi-
_ potential version of it. The interactiod is assumed to be
We_ remind the reader that we do not use the ab_SOIUtGiven by the exchange of, o, p, ®, &, and7 mesons.
coupling constants from the CCM calculation in the Dirac-,, particular, in the model a derivative pion angmeson
Brueckner treatment of nuclear matter. We use only the rézoupling has been assumed. For our study we choose the
sults for the density dependences of the ratios such &Soupling parameters of interactigk, which gives a reason-
Ionn/Jonn - o able fit to theNN scattering phase shiff83]. To regulate the
These ratios are plotted as functionsgsef £p/pg in Fig. behavior at high momenta, a monopole form factor
2. To make it convenient to use these results in a relativistio\ 2/ (k?— A?) has been introduced at each meson-nucleon
Dirac-Brueckner-Hartree-Fock calculation we represent theertex. A cutoff mass ofA =1150 MeV has been taken. In
density dependences in the form of4g5] rational function:  Table VI the meson parameters of the moAedre listed.

TABLE IV. Coefficients of rational functions defined in Eqgl6) and (47) obtained with pure mass
U(x). Columns 2 through 6 are for the ratios of coupling constants, while the last colummig far. Rows
labeled 1 through 4 are for the numerator polynomial and the remaining rows are for the denominator
polynomial. All parameters relevant to the calculations are listed in Table Il in Sec. Ill.

OonvIonn Tonn/Oonn (Fann2M)*1gnn2M GEnn/Oonn Ao Honn m*/m

1 0.1553 —0.0779 0.1817 0.1491 0.3015 -—0.0877
2 —0.4452 0.2303 —0.4327 —0.2797 —0.7174 0.1535
3 0.4843 —0.2198 0.4802 0.2101 0.7951 —0.1481
4 —0.2853 0.0484 —0.2026 —0.0700 —0.3352 0.0295
5 —2.3792 —1.3216 —2.6652 —2.6050 —2.7329 —2.1338
6 2.8749 0.3065 3.6722 3.1574 3.8297 2.6547
7 —1.7181 1.0527 —2.6344 —1.8743 —2.8004 —1.6752
8 0.6688 —0.6230 1.2151 0.5764 1.2733 0.9508
9 —0.0517 0.1177 —0.1483 —0.0486 —0.1415 —0.1372
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TABLE V. Coefficients of rational functions defined in Eq46) and (47) obtained with quartidJ ().
Columns 2 through 6 are for the ratios of coupling constants, while the last column is*fon. Rows
labeled 1 through 4 are the numerator polynomial and the remaining rows are for the denominator polyno-
mial. All parameters relevant to the calculations are listed in Table Ill in Sec. III.

OonvIonn Tonn/gonn (Fann2M)*1gan2M GEnn/Oonn Ao N m*/m

1 0.0522 —0.0653 0.1928 0.1117 0.3129 —0.0852
2 —0.2078 0.1460 —0.3308 —0.2173 —0.5382 0.1093
3 0.2027 —0.1240 0.2994 0.1304 0.4855 —0.0842
4 —-0.1174 0.0297 —0.1087 —0.0230 —0.1756 0.0140
5 —1.9719 —1.0893 —1.9685 —2.7149 —2.0459 —1.5207
6 2.0516 0.2868 2.2234 3.1836 2.3486 1.4465
7 —1.0666 0.5555 —1.2896 —1.9596 —1.3931 —0.6018
8 0.3575 —0.2999 0.5296 0.5796 0.5573 0.2730
9 —0.0292 0.0451 —0.0640 —0.0663 —0.0601 —0.0200

According to the CCM model the free space meson pafor the Pauli-blocking operatdp an angular averaged ap-
rameters will be modified in the presence of the nuclear meproximation has been made. The resulting relativistic
dium. Within the one-boson-exchange model the mediunG-matrix equations
modifications found in the previous section can be simply
implemented by replacing for each mesenthe coupling G=V+VSq,)S(0,)QG (53)
constantg,ny and the massn in the one-boson-exchange
interactionV by the correspondingyy,\n and m* given by
Egs.(46) and(47). Moreover, the Pauli blocking due to the
medium has to be accounted for in E¢8), leading to the
Bethe-Brueckner-Goldstone equations for @enatrix. This
is done by replacing the Green function in E48):

with g, the momenta of the nucleons in the intermediate
states, are solved in thdN c.m. frame after partial wave
decomposition. This is done within a quasi-potential equa-
tion description using the helicity basis of positive and nega-
tive energy spinor states corresponding to nidss
Relativistic nuclear matter calculations require the knowl-
S(p1)S , 49 ) ) .

S S(PUS(P2)Q 49 edge of the transformation properties of Bematrix under
whereS(p,) are the medium-modified nucleon propagators-orentz transformations. After having determined the relativ-
andQ the Pauli-blocking operator, which projects out in the IStic G matrix in the two-particle c.m. system at a fixed mat-
intermediate states nucleon momenta inside the Fernffr density, we use the IA2 representat|@ to obtain it in
sphere. Introducing the baryonic curré p u, with p be- the nuclear matter frame. This representation gives the com-
ing the density and the unit vectonJ:(l,ﬁ) in the nuclear- plete covariant form of th& matrix in an unambiguous way.

matter frame. due to Lorentz covariance we mav write th To reconstruct it all matrix elements of the amplitude in the
' y 'Sull Dirac space are needed. From this 1A2 representation,

nucleon self-energy contribution in terms of the three invari- . !
antss - neglectmg the vacuum quctl_Jatlon terms, the self-energy can
be readily determined. Taking nucleon 2 to be one of the
S(p)=35-3%.u-3’y.p,, (50) valence nucleons in the Fermi sphere with Fermi momentum
ps, we have

where p, =p—(p-u)u. The medium-modified nucleon

propagator can be approximated near the dressed nucleon d|52
pole as %(p) Trzfp2|<p,(27r)32E§ (p,P2|Glp,p2), (54)
S(p)=[E*yo—py—M*]7* (51 " L ,
where nucleon 2 is in a positive energy state with momentum
with p, and Tr, designates the summation over the spin index of
this nucleon ancEzz\/pzer M*2, Hence the self-energy
M*=(M+Z°)/(1+37), (5  contribution is essentially obtained by taking the diagonal
matrix-elements of th& matrix with one of the nucleons
E*=(po+2°)/(1+3Y), belonging to the filled Fermi sphere while the other one car-
ries a momentunp.
TABLE VI. Meson-nucleon coupling constangs and meson Since the G matrix depends implicitly on theX®s

massesn of the one-boson-exchange model through Eq.(51) the calculations have to be carried out in a

o0 s self-consistent way. In doing so, the self-energy can be de-
pre K termined for a given matter densipy In particular we have
g%4m 142 7.6 110 043 6.8 0.75 3.09 assumed that does not vary significantly within the Fermi

m (MeV) 139 570 783 763 763 960 548 Sphere, so thatits value can be taken at the Fermi momentum
ps. Some studie$6] of the momentum dependence have

T T 1) p’
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been made, indicating that the variations3nare of the 0
order of 10%. Hence this is a reasonable approximation.
The partial wave decomposed integral equations for the
G matrix have been solved using Gaussian quadratures
Typically 24 Gaussian points are sufficient to get an accu-
racy of a few percent. Moreover, six Gaussian points for
each integration variable in E¢54) have been used to de-
termine the self-energies. The self-consistent solutions cai
be found in an iterative way. Adopting a starting value for
theX’s in Eq. (52), Eq. (53) is solved to yield through Eq.
(54) new values for thes’s. Varying subsequently the’s
we then can determine the solutions of E¢s3) and (54)
such that thet’s are the same. Once the self-consistent self-
energy solutions have been found the binding energy of the
ground state can readily be calculated from the energy- | == E=02
momentum tensor as a function of density. For more details
of Dirac-Brueckner calculations we refer to Rg#] and[8]. 20 = G " o 550 025
For the various relativistic one boson interactions we find, p (fm’)
in general, that the system exhibits saturation. As found in
Ref.[8], an exception to this is when one assumes that only |G 3. Plots of nuclear matter binding eneify versus density

the meson masses dropms/m=M*/M [5]. Itis interest- , for the pure mass case f@=0, 0.1, and 0.2. The solid squares
ing to note that in the case we also allow for medium modi-mark the minima of the graphs.

fication of the meson coupling constants as is predicted in
our study of the chiral confining model, saturation does oc-
cur, that is, we find that the binding energy of the ground
state as a function of the matter dengithas a minimum. In
the next section we discuss our results for the saturatio
properties of nuclear matter as predicted for the mediu
modifications of the coupling constants as found in our CCM
model.

E, (MeV)

The results fole/A and density at saturation for the pure
mass and the quartic cases are shown in Figs. 4 and 5. The
alue corresponding t6=0 represent the Amorim and Tjon
| result. From the figures we see that dependence of the
nuclear saturation properties @nis just of the right size to
be of interest in the present study. TRéA vs p curve for
the pure mass case passes through the square representing
experimental data fog€ slightly greater than 0.1. For the
quartic case th&/A vs p curve comes close to the square,
A. Main results but does not enter it. The closest approach occurstfar
IJ'éttle larger than 0.2. The results for the unphysical ragge

VI. RESULTS AND DISCUSSIONS

As we have discussed earlier, the coupling constants a
dependent not directly on the densityf nuclear matter, but
on the effective densitgp seen by an interacting pair in its 5
immediate neighborhood. The Pauli exclusion principle en-
sures thatt<1/2. There is certainly further reduction ¢gf
due to strong repulsion at short distances. Thus the range o 9t .
¢ of interest is Gs£=<0.5. ul 00 ]

We pick a value of¢ and proceed to calculate/A and A .
p at saturation using the Dirac-Brueckner approach described 3r 8
in Sec. V. In the calculations reported here we have used the ’
one boson exchange interactidrspecified in Ref[8]. Dur-
ing each loop of self-consistency iteration we use coupling
constants and meson masses appropriatgyerép/ pg, de- 19k .. 02 4
fined earlier by Eq(43), p being the nuclear density at the il 10 e
particular stage of the iteration. Specifically, we use Egs. i 08 ey i
(46) and (47) with the coefficients of the rational functions B : 04 .
listed in Tables IV and V. For each chosen density @nd
self-consistency is achieved and we have a value for the
nuclear matter binding enerdsy, . T TEEEEE—

In Fig. 3 we show plots of nuclear matter binding energy p (fm”)
Ey, versus density for the pure mass case f6=0, 0.1, and
0.2. These show that the Dirac-Brugckner calculations yield £ 4. Results ofE/A and p at saturation for the pure mass
smooth and stable results as coupling constants and MesgRse for a series of values ofg=1.0, shown with solid circles.
masses are made density dependent. The minimu,of  The square box represents the empirical nuclear matter density and
indicated on the graphs by solid square, is reliably located. Ipinding energy. The values gfappear next to the solid circles. The
gives both the value dE/A and density at saturation for the |ine is for guiding the eye only. The details of calculations are given
given value ofé¢. in Sec. V. Only the range9£<0.5 is of physical interest.

7t o - PUREMASS

E, (MeV)

25 | i
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tains the effect of the density dependencegdf,, calcu-

st ' .- OUAFIKTIC J lated perturbatively using, in addition, the fact that
(p1—P,)2/4<m?, i.e., the average squared relative momen-
s . tum of two Fermi sea nucleons is much smaller than the
square of ther meson mass.
A0k . An inspection of the two graphs in the left column of Fig.
2 .?'0 2 shows that the quadratic form
0 -12F N 4
E \\. 0.1 gy
o ol . | | gonn(P)/9enn(0) =1+ néy| 1— 2y.)" (57)
107, o 02 1
6k 0 03‘3'; i can describe these graphs quite well. The ratio
gonn(p)/aonn(0) peaks atéy=y, and the peak value is
8k ] 1+ ny4/2. The values of the various parameters used in the
illustration are K=280 MeV, g,yn=8.0, m;=630
P I MeV. We consider four sets ofy; and 7,
0.0 0.1 R 02 namely, §., »)=(0.17, 0.1), (0.35, 0.2), (0.7, 0.2), and
p (fm’) (1.0,0.2). The first two describe the ratios

gonn(p)/gsnn(0) for the quartic and the pure mass cases,
FIG. 5. Results of/A andp at saturation for the quartic case respectively, in Fig. 2. The last two are used to illustrate the
for a series of values of ©£<1.0, shown with solid circles. The origin of looping.

square box represents the empirical nuclear matter density and |t js convenient to recast E@55) into the form
binding energy. The values gfappear next to the solid circles. The

dashed line is for guiding the eye only. The details of calculations ) 3po gUNN(O)2
are given in Sec. V. Only the range<g<0.5 is of physical inter- 2[E/IA—=(E/A)o)IKo=(y—1) _y4_Ko -
est. o

X{[donn(p)/Donn(0) 12— 1}.

<é¢<1 are included in the figures to exhibit the curious (59)

looping effect.

_ _ Because of the presence of the third term in Egp) the
B. Discussions saturation density will change. For a given valueéfhis
In order to study the origin of the looping effect we have can be readily determined by minimizing the expression for
systematically switched off the density dependences of th&/A with respect toy=p/po. The resulting plots of the
various coupling constants and meson masses. In so doinghange in the binding energy at the new saturation density vs
we find that the density dependence gify, is the main  p/po are shown in Fig. 6 for the four sets wheféhas been
source of the looping behavior of the saturation values of/aried in the region 6 ¢<0.5. L
E/A andp. Qualitatively such a behavior can be understood Starting from zero density, ag,nn(p) increases wittp,
with a simple model where the essential ingredient of thehe quantityE/A becomes more negative. The saturation
density dependence in the coupling constiix,, is built in ~ Properties reflect this through a combination of increasing
as a small modification of the saturation curve. saturation density and decreasing=/A. Eventually, de-
Assuming that all meson masses and all coupling concréase ofj,nn(p) beyond its peak with increasingand the
stants, excep*yy . are independent gfy, the density de- effect of incompressibility take over and the saturation den-

pendence oE/A can be modeled in the following manner: Sty Stops increasing. If this occurs in the range §<0.5,
we see looping. If the peak af,nn(p) Occurs at a higher

1 ) density, i.e., for a highey,, the saturation density keeps on
E/A=(E/A)o+5Koly—1) increasing and we see no looping #=0.5. In the present
example the critical value of, for »=0.2 appears to be
gonn(0)? ) slightly higher than 0.7. Thus the occurrence of a peak of
Pz L9onn(P)/Gonn(0)]7— 1}, donn(p) at not too high a value of the effective density is
7 needed for looping to occur faf<0.5. The value ofy; is
(59 lower for the quartic case than for the pure mass case. This
explains why the loop turns for the former case at a density
lower than that for the latter.

3
4

where, for convenience, we have introduced the quantity

y=rlpo. (56) C. Concluding remarks

The first two terms describe the density dependence of Due to the internal structure of the nucleon, we should, in
E/A near the saturation point when none of the couplinggeneral, expect that the effective meson nucleon parameters
constants and meson masses is density dependent. The quaray change in nuclear medium. Using a chiral confining
tity Kq is the nuclear incompressibility andE{A), is the  model we have studied the density-dependent changes of the
minimum value ofE/A in this situation. The last term con- meson-nucleon coupling parameters. We have also used a
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Due to the density dependence of t&, as predicted by

the chiral confining model we have found, in particular, a
looping behavior in the nuclear matter binding energy at
saturation density. The looping has essentially also been
verified in a simple model, where it is mainly caused by the
presence of a peak in the density dependence of the medium
modified oN coupling constant at a low density. We should
stress that the effect of the density dependence of the other
quantities are not negligible. However, a qualitative under-
standing of the looping effect can be obtained by paying
attention to the density dependenceggfy alone.

It appears that the density dependence of the coupling
constants and the meson masses produce effects which are
small but interesting. In particular the small effect tends to
improve the results for nuclear matter. From the present
study we see that the relationship between binding energy
and saturation density may not be as universal as found in
nonrelativistic studies and that more model dependence is
exhibited once medium modifications of the basic nuclear
interactions are considered. We hope that these preliminary
results will encourage more detailed investigation of this par-
000 ticular variety of the density dependence of ti#l interac-

090 094 098 102 106 110 1.4 tion.
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