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Nuclear matter studies with density-dependent meson-nucleon coupling constants
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Due to the internal structure of the nucleon, we should expect, in general, that the effective meson nucleon
parameters may change in nuclear medium. We study such changes by using a chiral confining model of the
nucleon. We use density-dependent masses for all mesons except the pion. Within a Dirac-Brueckner analysis,
based on the relativistic covariant structure of theNN amplitude, we show that the effect of such a density
dependence in theNN interaction on the saturation properties of nuclear matter, while not large, is quite
significant. Due to the density dependence of thegsNN , as predicted by the chiral confining model, we find, in
particular, a looping behavior of the binding energy at saturation as a function of the saturation density. A
simple model is described, which exhibits looping and which is shown to be mainly caused by the presence of
a peak in the density dependence of the medium modifiedsN coupling constant at low density. The effect of
density dependence of the coupling constants and the meson masses tends to improve the results forE/A and
density of nuclear matter at saturation. From the present study we see that the relationship between binding
energy and saturation density may not be as universal as found in nonrelativistic studies and that more model
dependence is exhibited once medium modifications of the basic nuclear interactions are considered.
@S0556-2813~97!00506-2#

PACS number~s!: 21.65.1f, 13.75.Gx, 14.20.Dh
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I. INTRODUCTION

Since a nucleon is not a point object, but has structure
must undergo changes when placed inside a nucleus. Am
other properties, the meson-nucleon coupling constants
change. If this happens, it should affect theNN force. These
effects have to be small. Otherwise, traditional nuclear ph
ics, where one uses free-space two-body force would h
failed badly. But even small changes in theNN force may
have a noticeable effect on the properties of nuclear ma
The purpose of this paper is to investigate possible chan
of meson-nucleon coupling constants due to the quark st
ture of the nucleon and their ultimate effects on the satu
tion properties, such as the densityr0 and the binding energy
2E/A of nuclear matter.

TheNN force in nuclear matter may become density d
pendent due to a wide variety of reasons. Any time o
eliminates some degrees of freedom the resulting effec
interaction becomes density dependent, the BruecknerG ma-
trix being the most widely known example. Another rece
example is the work of Liet al. @1# on the effective inter-
action to be used in a mean-field calculation which rep
duces the results of a Brueckner-Hartree-Fock calculatio

The density dependence studied here involves excitat
of N* (I5J51/2 resonances! degrees of freedom.1 Ulti-
mately we are interested in the change of theNN force in the
medium. In relativistic nuclear physics the most importa
forces are mediated by a scalar-isoscalar fields with

1The nuclear matter is an isoscalar and isotropic medium. It c
not change the spin or the isospin of a nucleon. It is also tran
tionally invariant. But, as we will see later, it can still produc
internal excitations in a nucleon.
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ms.600 MeV and a vector-isoscalar fieldv with
mv5783 MeV. Thus the force range is short and the neig
boring nucleons which can alter the internal structure of
interacting nucleons must also be close. Due to the exclu
principle and short-range correlations, the effective den
of the polarizing nucleons, denoted asjr, is less than half
the normal nuclear density. It is quite possible that theN*
excitations produced by the neighboring nucleons may
treated perturbatively. However, an earlier study of this pr
lem @2# established that a fairly large number of resonan
contribute. The mean-field approach, which generates
eigencombination ofN andN* ’s as the lowest state in th
field due to the neighboring nucleons is a more expediti
way of calculating the effect.

Our quantitative studies are based on the following st
egy. We describe the structure of the nucleon with a mo
called the chiral confining model~CCM! @3,4#. Specifically,
we use the toy@4# version of this model. The role of nuclea
matter is simulated with baths of externals andv fields,
the vacuum values beinĝs&vac52Fp5293 MeV and
^v&vac50, respectively. The nucleon structure problem
solved in the presence of these bath fields. Then vari
properties of the nucleon, including meson-nucleon coupl
constants, are calculated for ranges of values of the two b
fields.

The fact that thes and thev fields are, in turn, pro-
duced by the nucleons through field-dependent coupling c
stants allows us to obtain density dependences of thes and
the v fields by solving appropriate nonlinear sel
consistency equations. Once this has been done, we can
the known field dependences of various properties of
nucleon to obtain their density dependences.

We indicate the density-dependent values of various pr
erties of the nucleon with a star. ThusgsNN denotes the free
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498 56M. K. BANERJEE AND J. A. TJON
spaces NN coupling constant andgsNN* the same quantity
in nuclear matter. The latter is always dependent onr, the
nuclear density. We may note that the properties of nuc
matter depend principally ongsNN* , gvNN* , gpNN* , grNN* ,
and f rNN* , where the last is ther Pauli coupling coefficient.

A necessary input is the field dependence of the
changed meson masses.2 We use the simple model that th
meson masses are linearly dependent on thes field, keeping
the pion mass fixed.3 The coefficient of linear dependence
s and v masses on thes field is chosen to give
m* /m50.92 at normal nuclear density.

The changes, as found in the CCM, clearly will have
fect on the properties of nuclear matter. To study this
adopt the relativistic many-body approach@6–8#. Specifi-
cally, we carry out a relativistic Dirac-Brueckner calculatio
of the properties of nuclear matter using the one-bos
exchange model of Ref.@9#. For the quasipotential version o
this model the full Dirac structure of theNN amplitude in
free space has been constructed@10#. The resulting so-called
IA2 representation can be used to determine the satura
properties of nuclear matter@8#. Modifying the free space
T matrix to also include Pauli blocking and introducing o
density-dependent meson-nucleon coupling constants,
consistent relativistic Dirac-Brueckner calculations were p
formed in the manner of Ref.@8# for a range ofjr the ef-
fective density of the polarizing nucleons.

Our main results are that~i! the effects of the density
dependent meson nucleon coupling constants, arising ou
the quark structure of the nucleons, on the saturation den
and2E/A at saturation are small but not negligible and~ii !
they do tend to improve the results.

The next section contains a brief introduction to the ch
confining model~CCM! and its toy version. Section III de
scribes the calculation of nucleon properties as function
baths andv fields. These results are used in the next s
tion to extract density dependences of nucleon proper
Section V describes the relativistic treatment of nuclear m
ter using the Dirac-Brueckner approach. The last section
sents the main results, discussions of these results, and
cluding remarks.

II. THE CHIRAL CONFINING MODEL

An early attempt at extracting density dependence
nucleon properties using CCM is described in Ref.@2#. The
present paper contains two significant improvement
inclusions of the instanton-induced interaction and the p
cloud contributions togsNN , grNN , and f rNN coupling con-
stants. The CCM has been described in detail in@2–4#. Here
we give a brief review.

The CCM is based on the notion of color dielectric fun
tion as introduced by Nielsen and Pa`tkos @11#. By consider-
ing the average of all possible link operators, starting fr
x2e and ending onx with the paths completely contained

2The possible importance of density dependence of meson ma
was first stressed by Brown and his collaborators@5#.
3Because of charge conjugation symmetry the masses of me

considered here, cannot depend linearly onv. The dependence
must be quadratic or of higher even power.
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a four-dimensional hypercube of sideL, they introduced a
color singlet, Lorentz scalar quantityK(x) and a color octet,
Lorentz vector, coarse grained gluon fieldBm

a :

K~x!5 lim
e→0

1

Nc
Tr@^e2 i*x2e

x dy•A~y!&#,

Bm5
1

2(a laBm
a5 lim

e→0
i

]

]e
@^e2 i*x2e

x dy•A~y!&#.

Upon integrating out the QCD gluon fields in favor of the
new collective variables one obtains the Nielsen-Pa`tkos La-
grangian in the form of a derivative expansion:

LNP5c̄~x!F iK ~x!
1

2
]”J2K~x!mq2gB” ~x!Gc~x!

2
K4

4
Gmn
a Ga mn1•••. ~1!

The gauge field isBm
a /K and notBm

a . The coarse grained
field tensor is

Gmn
a 5]m

Bn
a

K
2]n

Bm
a

K
1 f abc

Bm
b

K

Bn
c

K
. ~2!

From the gluonic term one identifiese5K4 as the color di-
electric function. Nielsen and Pa`tkos conjectured that

^K&vac50. ~3!

This conjecture, crucial for our model, has been justifi
from the lattice gauge point of view by Leeet al. @12#.

A quark has ever-present interaction with the quark c
densate of the vacuum. If^K&vac50, the interaction will ap-
pear to be infinitely strong compared to quark kinetic ene
and a quark cannot exist in that region. It can only reside
the region wherêK&vacÞ0. A color singlet quark system
can polarize the vacuum and change the value ofK away
from zero, thus dynamically generating thebag where the
quarks can stay.

The Nielsen-Pa`tkos Lagrangian recognizes the existen
of gluon condensate through the vanishing of^K&vac. How-
ever, the quark condensate is not manifest. Without it o
cannot develop an effective Lagrangian which contains
physics of the interaction of a quark with the quark conde
sate. We deal with this problem by conjecturing that one c
integrate out the coarse grained gluon fields in favor of m
son fields as new collective variables@4,13,14#.

It is also necessary to introduce, following Nielsen a
Pàtkos @11#, a new color singlet, Lorentz scalar fieldx pro-
portional toK by the equation

K~x!5gxx~x!. ~4!

Being related toK, a purely gluonic object, thex field is a
member of the glueball family. Hence, it is a chiral singlet
fact evident from the first term of the Nielsen-Pa`tkos La-
grangian given by Eq.~1!. LargeNcolor analysis shows that i
is a hybrid field@4,15#. The result~3! imposes the require
ment that
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56 499NUCLEAR MATTER STUDIES WITH DENSITY- . . .
^x&vac50. ~5!

Retaining minimum powers of fields and their derivativ
the basic Lagrangian of the CCM has the form

LCCM5K~x!c̄~x!F i 12]”J2mqGc~x!1c̄~x!

3
gp$s~x!1 ig5tW•p” pW %1gvv” 1grtW•~r”1g5A”W 1!

K~x!

3c~x!1Lmeson1
1

2
]mx]mx2U~x!. ~6!

The quantitiesgp , gv , and gr are the quark-meson cou
pling constants. The quantitymq is the current quark mass
Its value is set at 7.5 MeV. It contributes 17 MeV to th
pN s term @4#. Because of its negligible role in the prese
work we will neither refer to this term nor count it as
parameter in our subsequent discussions. However, it is
cluded in the actual numerical work.

We use the chiral invariant Lagrangian of Lee and N
@16# for Lmeson. The Lagrangian ensures that^s&vac52Fp

and that the mesons have their respective physical ma
when calculated at the classical~or tree! level. The fieldsp
and s form a (1/231/2) representation of SUL(2)
3SUR(2), while the fieldsrW 6AW 1 form (1,0) and (0,1) rep-
resentations.

To complete the definition ofLCCM one must specify the
x potential. Since nothing substantial is known about it,
try two simple forms:

pure mass: U~x!5
1

2
mxx2,

quartic: U~x!5
1

2
mxx2~12x/x0!

2. ~7!

The quartic potential has two minima, the one atx50 de-
scribes the vacuum while the other atx5x0 is an ‘‘excited’’
state, which for simplicity we keep degenerate with t
vacuum. The value ofx0, the location of the second mini
mum is set at 40 MeV. The hybrid massmx is set at 1400
MeV. As we will discuss later, the results of the calculatio
depend largely on one particular combination of these
rameters and rather weakly on individual ones.

Any mean-field calculation containing isovector fields r
quires using states which do not have good isospin sym
try. To accomplish this we use hedgehog spinors and fie
introduced first forp ands fields by Chodos and Thorn@17#
and extended to vector meson fields by Broniowskiet al.
@18#. We closely follow the mean-field analysis of Re
et al. @19#.

It should be emphasized that the appearance ofK in the
denominator of the quark-meson interaction term is notad
hoc. It is obtained by matching theK dependence of the
four-quark interactions which arise on the one hand fr
LNP by integrating out theBm fields and on the other han
from LCCM by integrating out the meson fields@4,20,21#.
t
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The presence of the factorK with c̄ i 12]”Jc changes the
field canonically conjugate toc from the usual ic† to
iKc†. As a result the quark term in all Noether’s curren
carries the factorK. The transformationAKc(x)→c(x)
makes the pairc and ic† canonical and removes the facto
K from all Noether’s currents. Two changes occur
LCCM. The free quark term no longer has the factorK, while
the quark meson interaction acquires the factorK2 in place
of K in the denominator.

The mean-field treatment ofLCCM with a variety of rea-
sonable sets of parameters reveals@4,19,21# that even where
the quark density is large the meson fields differ only sligh
from their respective vacuum values. This suggests stron
that we introduce a simplified version of CCM. The simp
fied version, which we call the toy model, consists of fixin
all meson fields at their vacuum values:

^s&vac52Fp ,

^pW &vac5^v&vac5^rW &vac5^AW 1&vac50, ~8!

leaving only the quark fields and thex field as dynamical
variables. The toy model Lagrangian, in terms of the cano
cal quark field, is given below.

Ltoy5c̄~x!F i 12]”J2mq2
gpFp

~gxx!2Gc~x!1
1

2
]mx]mx2U~x!.

~9!

Not countingmq , the toy model has only two parameter
gpFp /gx

2 andmx in the pure mass version and one ad
tional parameterx0 in the quartic version. Formation of th
bag is even more transparent in the toy model as the c
stituent quark mass term,c̄@(gpFp)/(gxx)2#c, becomes in-
finite whenx→0.

The unusual form of the quark-meson interaction with t
factor ofK25(gxx)2 in the denominator is of some impor
tance in the present investigation. In its absence a cons
externalv field will merely shift the energy of the quar
without exciting it to higher states. Thus the nucleon will n
be polarized. A constants field will excite the quark. Or-
thonormality of different eigenstates of the Dirac Ham
tonian ensures that*d3ru8†u50, but not the vanishing of
*d3rū8u. The latter gives the effect of a constant extern
s field. The presence of the factor (gxx)2 enables a con-
stant externalv field to excite the quark and enhances t
ability of a constant externals field to do the same.

Common sense suggests that the confinement mecha
must play an important role in determining the response o
nucleon to the fields in nuclear matter. In a brief discuss
at the end of this section we will illustrate the role. In th
CCM confinement manifests itself through the fact
(gxx)2 in the denominator of the quark-meson interacti
term. Because of its importance it is necessary to prov
some evidence for the presence of such a factor in the in
action Lagrangian. Fortunately, there is a verifiable con
quence of this feature. Gauge invariance ensures that the
no such modification of the photon-quark interaction. Th
contrary to the conjectures of universal coupling@22# or
current-field identity@23#, the isovector couplings of the pho
ton and ther meson differ by thisK22 factor. Because of
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500 56M. K. BANERJEE AND J. A. TJON
this difference, CCM predicts that ther-nucleon Pauli cou-
pling constantf rNN should differ from the isovector anoma
lous magnetic momentk I51. The predicted@19# value is
f rNN /k I5151.4, instead of 1 predicted by the two conje
tures. Based on dispersion theoretic analysis ofpN scatter-
ing data Ho¨hler and Pietarinen@24# had estimated the ratio t
be;1.75. Our value is within the possible uncertainties
this result@25#.4

The role of the pion field on baryon properties is nev
negligible. In the toy model one takes account of it pert
batively @3,26# wherever appropriate. In the context of th
present study such corrections are important in the calc
tions of the coupling constants of mesons of evenG parity,
gsNN , grNN , and f rNN/2M .

The toy model with perturbative pionic correction giv
poor results for the masses ofN andD and for the nucleon
charge radii@3,26#. McGovernet al. @27# showed that there
is approximate, but very good scaling behavior in the
model. If one chooses the parameters to get the nucleon m
right the values of most other quantities are nearly fix
Thus the bad results for mass and size cannot be impro
simultaneously by varying parameters. One needs a new
teraction which is short ranged and more attractive betw
singlet-singlet quark pairs than between triplet-triplet pa
The magnetic one-gluon exchange interaction@28# fits the
requirement exactly. However, the physics of exchange
color octet tower of gluons is already incorporated in mes
exchanges. We cannot include it again.

We solve the problem by including the instanton-induc
’t Hooft interaction@29,30#. In the two flavor case ofu and
d quarks, the ’t Hooft interaction generates interactions
tween quark pairs in flavor antisymmetric state only and
interaction is attractive and zero ranged. So it fits our
quirement without duplicating any mechanism already
cluded. Using Shuryak’s@31# description of the vacuum a
an instanton liquid the strength of the ’t Hooft interaction c
be estimated in QCD, but not in CCM@3#. So we have to
treat it as a free parameter. We fix it by fitting theN2D
mass splitting with the ’t Hooft interaction together with on
pion exchange contribution@3#.

The method of calculation with the toy model in the a
sence of externals andv has been described in detail
Ref. @3# and will not be repeated here. The changes due
the presence of external fields are straightforward@2#. Going
back toLCCM, described by Eq.~6!, we interprets andv0

as the bath fields. The vacuum expectation values of all o

fields pW , v i ( i51,2,3), rW m , and AW 1m are zero becaus
nuclear matter has good isospin and good parity. The qu
field and thex field continue to be the only dynamical var
ables in the extended toy model Lagrangian. The new ene
functional of a nucleon in as-v bath is given below.

4In the MIT bag model also the photon and ther meson couple to
the quark in different manner. Brown and Rho had exploited t
feature to explain the value off rNN /k I51. Dialing the chiral angle
they fitted the value 1.75. Our result is approximately independ
of parameters because of the scaling property mentioned later
f
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E5NcE d3ru†~rW !F2 iaW •¹W 2
gpg0s2gvv

@gxx~rW !#2
Gu~rW !

1E d3r F12 @¹W x~rW !#21U@x~rW !#G
22CsE d3rZ~r !@G2~r !1F2~r !#2, ~10!

where the valence spinor,u(rW) is

u~rW !5S G~r !

isW • r̂ F~r !
D z, ~11!

andz is a two-component Pauli spinor.
The last line in Eq.~10! represents the contribution of th

instanton-induced ’t Hooft interaction with a regulating fun
tion Z(r ) which cuts off the interaction at a distance scale
0.25 fm. The details may be found in Refs.@3,26#.

Note that the external fields are constant in space
time. The vacuum value of thes field is 2Fp . Nuclear
matter generatess field with positive sign thus reducing th
magnitude of the nets. It is customary to represent the effe
as a modification of the pion decay constant:

s52Fp1snmatter52Fp* . ~12!

Thev in Eq. ~10! is the time component of vectorv field.
The static nuclear matter distribution can generate only
time component. However, a nucleon moving with veloc

vW in nuclear matter does see a space compon
vW 52vW v/A12v2. We ignore the role of this term.

Before we leave this section it is useful to illustrate t
role of the confinement mechanism on the density dep
dence of nucleon properties. To do this we genera
slightly the work of Ref.@27# and write the energy functiona
as

E5E d3r Fnu†H 2 iaW •¹W 1
g0gpFp*

~gxx!n J u1
1

2
mx
2x2G .

~13!

This applies to a system ofn valence partons,n52 for me-
sons andn53 for baryons. Notice the generalization of th
power in the denominator of the second term from 2, as
this paper, ton. Whenn50 no bag can be formed. Refe
ence@27# usedn51, we have shown thatn52. Listed below
are some of the scaling rules valid for this model whi
illustrate the importance of the confining mechanism
some of the issues of concern here:

mhadron* ;n~3n12!/~4n12!Smx

gx
D n/~n11!

~gpFp* !1/~2n11!,

~14!

mhadron* /mhadron;~Fp* /Fp!1/~2n11!, ~15!

gsNN* /gsNN;~Fp* /Fp!2[2n/~2n11!] . ~16!

In Eq. ~14! we have omitted a dimensionless factor whi
depends onn but not on any other parameter appearing

s

nt
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56 501NUCLEAR MATTER STUDIES WITH DENSITY- . . .
Eq. ~13!. Equation~15! shows that whenn50 and there is
no bag formation, the hadron masses are directly prop
tional Fp* , i.e., they scale withFp* . Also, in this situation,
according to Eq.~16!, gsNN is density independent. Whe
n51 or 2 and a bag is formed, the masses decrease aFp*
decreases but much more slowly. The quantitygsNN* now
varies rapidly withFp* .

The presence of thev field and the ’t Hooft interaction
make the scaling rules quantitatively unreliable for baryo
However, the preceding discussion does illustrate the imp
tant role of the confining mechanism on the response of
nucleon to the fields present in nuclear matter.

III. FIELD DEPENDENCE OF NUCLEON PROPERTIES

We pick values ofFp* in the range 63 to 93 MeV in step
of 6 MeV and values ofv in the range 0 to 40 MeV in step
of 8 MeV. For each pair ofFp* andv we find the spinor and
thex field which will make the energy functional stationar
The condition of stationarity yields coupled nonlinear equ
tions. Reference@3# describes the method of solving the
equations. Once the solutions are obtained we can calcu
the desired properties of the nucleon in thes-v field bath.

We introduce the dimensionless variablesx andy to de-
scribe, in units ofmp , the bath fieldss andv:

s2^s&vac5Fp2Fp*5xmp , ~17!

v5ymp . ~18!

We fit the results of every physical quantityQ of interest
with the quadratic form

Q~x,y!5a@11bx1cy1dx21 f xy1gy2#5aFQ~x,y!.
~19!

The results of our fit are shown in Tables I and II for the pu
mass and quartic case, respectively. The quantitya is the
value ofQ in vacuum andFQ(x,y) is the quadratic polyno-
mial in square brackets. The three coupling constants of
cial interest aregsNN

(q)* , gvNN* , and (gpNN/2M )* . The
s-nucleon coupling constant carries a superscript (q) to in-

TABLE I. Values of quantities a, b, c, d, f, and g for the pu
mass case. The quantities under the column a are the free s
values.

Quantity a b c d f g

(gpNN/2M )* 0.83 1.72 20.78 3.51 25.71 0.13
gvNN* 11.02 1.10 21.60 2.44 22.90 3.22

gsNN
(q)* 2.34 3.14 25.25 3.34 221.77 6.99

TABLE II. Values of quantities a, b, c, d, f, and g for the quar
case. The quantities under the column a are the free space va

Quantity a b c d f g

(gpNN/2M )* 0.92 1.62 20.49 3.55 23.36 0.045
gvNN* 13.72 0.74 20.93 1.23 21.18 1.45

gsNN
(q)* 4.92 1.67 22.13 22.39 26.65 1.72
r-

.
r-
e

-

te

e

e-

dicate that only the direct coupling of thes field to valence
quarks is included ingsNN

(q)* . The full coupling constant also
includes coupling to the pion field produced by the valen
quarks. Thev and thep fields have oddG parity. Hence
their source currents couple to 3 or higher odd powers of
p field. Since thep field is weak inside the nucleon, th
higher power contributions are not important and have b
omitted in the present calculation. The superscript (q) is re-
dundant forgvNN* and (gpNN/2M )* and have been omitted

The parts of the meson source current which show
coupling to quarks may be read off Eq.~6! describing
LCCM. We list them below:

j s
~q!5gp

1

K~x!
, ~20!

j v
~q!5gv

g0

K~x!
, ~21!

j p,a
~q! 5gp

ig5ta

K~x!
, ~22!

j r,a
~q,m!5gr

gmta/2

K~x!
. ~23!

The meson-nucleon coupling constants are defined in
usual way. The expressions listed below are forpW→0.

^N~pW !u j s
~q!~0!uN~pW !&5gsNN

~q! , ~24!

^N~pW !u j v
~q!~0!uN~pW !&5gvNN , ~25!

^proton~pW !↑u j r,3~q,m!uproton~pW !↑ &5
1

2
grNN

~q! , ~26!

^proton~pW !↑u
1

2E d3rW@rW3 jWr,3
~q!#uproton~pW !↑ &5mrNN

~q! ,

~27!

^proton~pW !8↑u j p,3~q! ~0!uproton~pW !↑ &5~pW 82pW !zgpNN/2M .
~28!

The quantitymrNN appearing in Eq.~27! is the r-magnetic
moment of the nucleon:

mrNN5~grNN1 f rNN!/2M . ~29!

We list below the results from CCM for the contribution
to the various coupling constants coming from direct co
pling of meson fields to the quarks:

gsNN
~q!*5gpE d3r @G2~r !2F2~r !#/K2~r !, ~30!

~gpNN/2M !*5gp

10

9 E d3rrG ~r !F~r !/K2~r !, ~31!

gvNN* 53gvE d3r @G2~r !1F2~r !#/K2~r !, ~32!

ace
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grNN
~q!*5grE d3r @G2~r !1F2~r !#/K2~r !, ~33!

mrNN
~q!*5gr

10

9 E d3rrG ~r !F~r !/K2~r !. ~34!

To obtain density-dependent, or equivalently fie
dependent, coupling constants one must useK and spinor
componentsG and F obtained in the presence of the ba
fields. The stars should be removed for free space value
the coupling constants obtained withK, G, andF appropri-
ate for free space.

The nucleon mass term which appears as a divisor
gpNN and for ther magnetic coupling stands for the expe
mental value of the mass, i.e., 939 MeV. It is used to defi
dimensionless coupling constants from the integrals of
mensions of length which appear in Eqs.~31! and ~34!. Our
studies measures the density dependence of the quan
represented by the integrals.

A model of hadrons cannot anticipate what effective h
ronic Lagrangian its results will be used for. Hence, to
move possible misunderstanding we have stated in Eq.~28!
the precise definition of the quantitygpNN/2M as it appears
in our work. The expression on the left-hand side involv
the pion source current, usually well-defined in most qua
based models of the nucleon. It is also well defined in a
effective hadronic Lagrangian. If the effective Lagrangi
uses pseudoscalarpN coupling the quantitygpNN is the di-
mensionless coupling constant of the theory. If, on the ot
hand, it uses derivative coupling thengpNN/2M is the cou-
pling constant of the theory, having the dimensions of leng
Note, again, thatM in the denominator ofgpNN/2M for the
derivative coupling theory is a fixed number by definitio
usually 939 MeV.

The mesons with evenG paritys andr also couple to the
pion cloud, the contributions from which depend essentia
quadratically on (gpNN/2M )* . Hence we write

gsNN* 5gsNN
~q!*1zs~gpNN/2M !* 2, ~35!

grNN* 5grNN
~q!*1zg~gpNN/2M !* 2, ~36!

mrNN* 5mrNN
~q!*1z f~gpNN/2M !* 2. ~37!

The parameterszs , zg , andz f , represent the strengths o
the pion cloud contributions. The quantitieszs andzg have
the dimensions of mass squared, whilez f has the dimensions
of mass. We choose reasonable values ofgsNN , grNN , and
f rNN/2M in free space and use the results of the toy mode
free space forgsNN

(q) , grNN
(q) , mrNN

(q) , andgpNN/2M to fix the
coefficientszs , zg , andz f . These values and the releva
parameters are listed in either Table III or in the table c
tion.

We will see later in Sec. V that the free space mes
nucleon coupling constants used here are not exactly
same as in the one boson exchange potential used in
Dirac-Brueckner calculations. However, the differences
small and are not expected to affect the qualitative purp
of this paper.

As stated in the Introduction a necessary input is the fi
dependence of the exchanged meson masses. We us
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simple conjecture that the meson masses decrease lin
with increasingx mp @5#, thes field created by nuclear mat
ter, while keeping the pion mass fixed. Actual numeric
calculation with a CCM-based model of thev meson@2#
supports the conjecture. According to Eq.~15! the approxi-
mate scaling law of McGovernet al. @27# predicts that had-
ron masses decrease with decreasingFp* as
mhadron* /mhadron;(Fp* /Fp)

1/5. The QCD sum rules find@32#
thatmr,v* /mr,v512(0.1660.06)r/r0. The last two results
lend further credence to the conjecture.

We assign the samex dependence to boths and v
masses:

m*5m~12bmesonx!5mf~x!. ~38!

The functionf(x) has been introduced so that the rest of t
discussion is not specific to the simple linear depende
used in the numerical work. The coefficientbmesonis chosen
to givem* /m50.92 at normal nuclear density. Its values a
listed in Table III.

IV. DENSITY DEPENDENCE

The first step in converting the information about fie
dependence of the coupling constants to density depend
is to obtain the density dependence of the fieldss andv or
equivalentlyx and y, themselves. This is done through th
following two basic self-consistency equations:

x5
gsNN*

ms*
2 jr, ~39!

y5
gvNN*

mv*
2 jr, ~40!

where the various quantities have been defined by Eqs.~19!
and ~38!.

TABLE III. List of parameters and coefficients. Both the pu
mass and quartic cases usems5650 MeV,mv5783 MeV,mr

5770 MeV, mp5140 MeV, gsNN58.0, grNN55.0, mrNN

52.45, andm* /m50.92 at normal nuclear density. The numbe
in the table are all in pion mass units. The quantitygpNN/2M has
the dimensions of length and is expressed in units ofmp

21 . The
quantitiesgvNN , gsNN

(q) , grNN
(q) , andbmesonare dimensionless. The

quantityz f has the dimensions of mass and is expressed in unit
mp . The quantitieszg andz f have dimensions of mass squared a
are expressed in units ofmp

2 .

Quantity pure mass quartic

gpNN/2M 0.8349 0.9241
gvNN 11.02 13.72
gsNN
(q) 2.389 4.919

zs 8.049 3.608
grNN
(q) 2.448 3.048

zg 3.661 2.286
mrNN
(q) 0.8349 0.9241

z f 2.317 1.787
bmeson 0.4769 0.4622
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56 503NUCLEAR MATTER STUDIES WITH DENSITY- . . .
The factorj represents the reduction of the effective de
sity of nucleon available to polarize a given interacting pa
The reduction is the combined effect of the exclusion pr
ciple and short-range correlations among nucleons. An
amination of the illustrative Goldstone graphs of Fig. 1 m
be useful to understand the origin of this factor.

Besides the diagrams shown in the figure there are ot
obtained by interchanging the roles of the right and the
interacting nucleons. There are also diagrams where a fo
nucleon excites the interacting nucleons to a resonance s
generating two-resonance–two-hole states. The two r
nance states interact and fall back into the hole states.
these are examples of single interaction of the neighbo
nucleons with the interacting pair. These may be repea
and summed to generate field effects in a space contai
the nucleon andI5J51/2 resonance states as degrees
freedom. If resonances were not included the procedure
generate contributions to the usual average field of a ma
body theory where only the nucleon degree of freedom
counted. The mean field of CCM describes approximat
this multidimensional average field.

Inclusion of all exchange diagrams enforces the exclus
principle, which ensures that only two other nucleons c
come close to the two interacting nucleons. The latter
mostly within a short distance. This consideration alo
makesj51/2. Repulsive short-range correlations makej
even smaller. We expect that 0<j<0.5. A full self-
consistent many-body treatment should determine this fac
But for the present preliminary study we take it to be
unknown parameter confined to the range 0<j<0.5.

There is nothing novel about the notion of the parame
j. The physics of it must play a crucial role in the calcu
tions of three- and four-body cluster terms.

One may also ask if the role of the isobars could not
taken into account perturbatively. The answer would sur
be in the affirmative if inclusion of Roper alone was a

FIG. 1. ~a! Represents the interaction between two Fermi
nucleons interacting via aG matrix. In ~b! a third nucleon excites
one of the interacting nucleons into a resonance state, leaving a
in the Fermi sea. The resonance propagator is shown as an up
line with a star.~c! is the result of exchange between the th
nucleon and the left interacting nucleon. Recall the convention
a line starting and ending at exactly the same time represents a
line. ~d! represents the exchange between the third nucleon an
right interacting nucleon.
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equate. This question was analyzed in Ref.@2# and it was
found the contributions of higher resonances involving ex
tation of a quark from the original 0s1/2 spinor states to state
ns1/2 containingn nodes converge very slowly.5 The mean-
field approach is an approximate and economical way
dealing with the problem.

In Eq. ~39! one should use the scalar density. This can
done only through a full many-body self-consistent calcu
tion. We simplify our work by using the vector densityr.
This simplifying strategy allows us to factor the problem
extracting the density dependence of the coupling const
from the rest of the many-body problem. We estimate
error to be;^pW 2&/4M2.0.05. The strategy is probably jus
tifiable in a preliminary study of the main question studied
this paper.

The Eqs.~39! and ~40! may be rewritten as

x5$S~q!Fs~x,y!1Sp@Fp~x,y!#2%
1

f2~x!
j

r

r0
, ~41!

where the combinationsS (q) andSp are

S~q!5
gsNN

~q!

ms
2 r0 and Sp5zs~gpNN/2M !2

r0
ms
2 . ~42!

The quantityr0 is the normal nuclear density. The quantiti
Ss and Sp would be thes fields produced by nuclea
matter due to directs-quark coupling and due tos-pion
cloud coupling, respectively, if the coupling constants d
not change with density. Thex,y-dependent quantities wer
defined by Eqs.~19! and ~38!.

For future convenience we introduce the dimensionl
effective densityr̄:

r̄5j
r

r0
. ~43!

In a similar manner we write

y5V
Fv~x,y!

f2~x!
r̄, ~44!

where

V5
gvNN

mv
2 r0 , ~45!

would be thev field produced by nuclear matter if th
coupling constant did not change with density.

We solve the two coupled nonlinear Eqs.~41! and~44! for
a range ofr̄ giving us the fieldsx andy as functions ofr̄.
Using the results and Eqs.~19! we obtain numerical values
of the five coupling constantsgsNN* , gvNN* , (gpNN/
2M )* , grNN* , mrNN* , andm* /m as functions ofr̄.

5In the MIT bag model the sum for the effect of thev field
diverges logarithmically. Thes field has no effect because in th
model it does not couple to valence quarks. This fact underli
further the role of the confinement mechanism on the problem
der study.
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504 56M. K. BANERJEE AND J. A. TJON
We remind the reader that we do not use the abso
coupling constants from the CCM calculation in the Dira
Brueckner treatment of nuclear matter. We use only the
sults for the density dependences of the ratios such
gsNN* /gsNN .

These ratios are plotted as functions ofr̄5jr/r0 in Fig.
2. To make it convenient to use these results in a relativi
Dirac-Brueckner-Hartree-Fock calculation we represent
density dependences in the form of a@4,5# rational function:

FIG. 2. Plots of gsNN* /gsNN labeled with s, (gpNN/2M )* /
(gpNN/2M ) labeled with p, m* /m,gvNN* /gvNN labeled with
v, grNN* /grNN labeled withgr , and mrNN* /(mrNN) labeled with
f r as functions ofjrN /r0. Results for both the pure mass and th
quartic forms forU(x) are presented. All relevant parameters a
listed in Table III in Sec. III.
te
-
e-
as

ic
e

g*

g
511

(
l 51,4

a l
g r̄ l

11 (
n51,5

bn
gr̄n

, ~46!

m*

m
511

(
l 51,4

a l
mr̄ l

11 (
n51,5

bn
mr̄n

. ~47!

The coefficientsa l andbn for the five coupling constant
and the meson mass ratio are obtained by least square fi
and are listed in Tables IV and V.

V. DIRAC-BRUECKNER ANALYSIS

Modifications of the meson masses and meson-nuc
coupling constants by the presence of the nuclear mediu
discussed in the previous sections will, in general, lead
changes in the saturation properties of nuclear matter.
problem can be studied within the relativistic Dira
Brueckner approach. To carry out such a study we follow
approach described in Ref.@8#. As dynamical input we use
the relativistic one-boson-exchange model of Ref.@9#. The
NN T matrix satisfies a Bethe-Salpeter equation, which
formally given by

T5V1VS2T, ~48!

whereV is theNN interaction andS2 is the free two-nucleon
Green function. In this study we use in particular the qua
potential version of it. The interactionV is assumed to be
given by the exchange ofp, s, r, v, d, andh mesons.
In particular, in the model a derivative pion andh meson
coupling has been assumed. For our study we choose
coupling parameters of interactionA, which gives a reason
able fit to theNN scattering phase shifts@33#. To regulate the
behavior at high momenta, a monopole form fac
L2/(k22L2) has been introduced at each meson-nucl
vertex. A cutoff mass ofL51150 MeV has been taken. I
Table VI the meson parameters of the modelA are listed.
inator
TABLE IV. Coefficients of rational functions defined in Eqs.~46! and ~47! obtained with pure mass
U(x). Columns 2 through 6 are for the ratios of coupling constants, while the last column is form* /m. Rows
labeled 1 through 4 are for the numerator polynomial and the remaining rows are for the denom
polynomial. All parameters relevant to the calculations are listed in Table III in Sec. III.

gsNN* /gsNN gvNN* /gvNN (gpNN/2M )* /gpNN/2M grNN* /grNN mrNN* /mrNN m* /m

1 0.1553 20.0779 0.1817 0.1491 0.3015 20.0877
2 20.4452 0.2303 20.4327 20.2797 20.7174 0.1535
3 0.4843 20.2198 0.4802 0.2101 0.7951 20.1481
4 20.2853 0.0484 20.2026 20.0700 20.3352 0.0295
5 22.3792 21.3216 22.6652 22.6050 22.7329 22.1338
6 2.8749 0.3065 3.6722 3.1574 3.8297 2.6547
7 21.7181 1.0527 22.6344 21.8743 22.8004 21.6752
8 0.6688 20.6230 1.2151 0.5764 1.2733 0.9508
9 20.0517 0.1177 20.1483 20.0486 20.1415 20.1372
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TABLE V. Coefficients of rational functions defined in Eqs.~46! and ~47! obtained with quarticU(x).
Columns 2 through 6 are for the ratios of coupling constants, while the last column is form* /m. Rows
labeled 1 through 4 are the numerator polynomial and the remaining rows are for the denominator p
mial. All parameters relevant to the calculations are listed in Table III in Sec. III.

gsNN* /gsNN gvNN* /gvNN (gpNN/2M )* /gpNN/2M grNN* /grNN mrNN* /mrNN m* /m

1 0.0522 20.0653 0.1928 0.1117 0.3129 20.0852
2 20.2078 0.1460 20.3308 20.2173 20.5382 0.1093
3 0.2027 20.1240 0.2994 0.1304 0.4855 20.0842
4 20.1174 0.0297 20.1087 20.0230 20.1756 0.0140
5 21.9719 21.0893 21.9685 22.7149 22.0459 21.5207
6 2.0516 0.2868 2.2234 3.1836 2.3486 1.4465
7 21.0666 0.5555 21.2896 21.9596 21.3931 20.6018
8 0.3575 20.2999 0.5296 0.5796 0.5573 0.2730
9 20.0292 0.0451 20.0640 20.0663 20.0601 20.0200
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According to the CCM model the free space meson
rameters will be modified in the presence of the nuclear m
dium. Within the one-boson-exchange model the medi
modifications found in the previous section can be sim
implemented by replacing for each mesonf the coupling
constantgfNN and the massm in the one-boson-exchang
interactionV by the correspondinggmNN* andm* given by
Eqs.~46! and ~47!. Moreover, the Pauli blocking due to th
medium has to be accounted for in Eq.~48!, leading to the
Bethe-Brueckner-Goldstone equations for theG matrix. This
is done by replacing the Green function in Eq.~48!:

S2→S~p1!S~p2!Q, ~49!

whereS(pn) are the medium-modified nucleon propagato
andQ the Pauli-blocking operator, which projects out in t
intermediate states nucleon momenta inside the Fe
sphere. Introducing the baryonic currentB5r u, with r be-
ing the density andu the unit vectoru5(1,0W ) in the nuclear-
matter frame, due to Lorentz covariance we may write
nucleon self-energy contribution in terms of the three inva
antsSa:

S~p!5Ss2S0g.u2Svg•p' , ~50!

where p'5p2(p•u)u. The medium-modified nucleon
propagator can be approximated near the dressed nuc
pole as

S~p!5@E* g02pW gW 2M* #21 ~51!

with

M*5~M1Ss!/~11Sv!,
~52!

E*5~p01S0!/~11Sv!.

TABLE VI. Meson-nucleon coupling constantsg and meson
massesm of the one-boson-exchange modelA.

p s v rv r t/rv d h

g2/4p 14.2 7.6 11.0 0.43 6.8 0.75 3.09
m ~MeV! 139 570 783 763 763 960 548
-
-

y

s

i

e
-

on

For the Pauli-blocking operatorQ an angular averaged ap
proximation has been made. The resulting relativis
G-matrix equations

G5V1VS~q1!S~q2!QG ~53!

with qn the momenta of the nucleons in the intermedia
states, are solved in theNN c.m. frame after partial wave
decomposition. This is done within a quasi-potential eq
tion description using the helicity basis of positive and ne
tive energy spinor states corresponding to massM* .

Relativistic nuclear matter calculations require the know
edge of the transformation properties of theG matrix under
Lorentz transformations. After having determined the relat
istic G matrix in the two-particle c.m. system at a fixed ma
ter density, we use the IA2 representation@8# to obtain it in
the nuclear matter frame. This representation gives the c
plete covariant form of theG matrix in an unambiguous way
To reconstruct it all matrix elements of the amplitude in t
full Dirac space are needed. From this IA2 representat
neglecting the vacuum fluctuation terms, the self-energy
be readily determined. Taking nucleon 2 to be one of
valence nucleons in the Fermi sphere with Fermi momen
pf , we have

S~p!52Tr2E
up2u,pf

dpW 2
~2p!32E2*

^p,p2uGup,p2&, ~54!

where nucleon 2 is in a positive energy state with moment
p2 and Tr2 designates the summation over the spin index
this nucleon andE2*5Ap221M* 2. Hence the self-energy
contribution is essentially obtained by taking the diago
matrix-elements of theG matrix with one of the nucleons
belonging to the filled Fermi sphere while the other one c
ries a momentump.

Since theG matrix depends implicitly on theSa’s
through Eq.~51! the calculations have to be carried out in
self-consistent way. In doing so, the self-energy can be
termined for a given matter densityr. In particular we have
assumed thatS does not vary significantly within the Ferm
sphere, so that its value can be taken at the Fermi momen
pf . Some studies@6# of the momentum dependence ha
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506 56M. K. BANERJEE AND J. A. TJON
been made, indicating that the variations inS are of the
order of 10%. Hence this is a reasonable approximation.

The partial wave decomposed integral equations for
G matrix have been solved using Gaussian quadratu
Typically 24 Gaussian points are sufficient to get an ac
racy of a few percent. Moreover, six Gaussian points
each integration variable in Eq.~54! have been used to de
termine the self-energies. The self-consistent solutions
be found in an iterative way. Adopting a starting value f
theS ’s in Eq. ~52!, Eq. ~53! is solved to yield through Eq
~54! new values for theS ’s. Varying subsequently theS ’s
we then can determine the solutions of Eqs.~53! and ~54!
such that theS ’s are the same. Once the self-consistent s
energy solutions have been found the binding energy of
ground state can readily be calculated from the ener
momentum tensor as a function of density. For more det
of Dirac-Brueckner calculations we refer to Refs.@6# and@8#.

For the various relativistic one boson interactions we fi
in general, that the system exhibits saturation. As found
Ref. @8#, an exception to this is when one assumes that o
the meson masses drop asm* /m5M* /M @5#. It is interest-
ing to note that in the case we also allow for medium mo
fication of the meson coupling constants as is predicted
our study of the chiral confining model, saturation does
cur, that is, we find that the binding energy of the grou
state as a function of the matter densityr has a minimum. In
the next section we discuss our results for the satura
properties of nuclear matter as predicted for the med
modifications of the coupling constants as found in our CC
model.

VI. RESULTS AND DISCUSSIONS

A. Main results

As we have discussed earlier, the coupling constants
dependent not directly on the densityr of nuclear matter, but
on the effective densityjr seen by an interacting pair in it
immediate neighborhood. The Pauli exclusion principle
sures thatj,1/2. There is certainly further reduction ofj
due to strong repulsion at short distances. Thus the rang
j of interest is 0<j<0.5.

We pick a value ofj and proceed to calculateE/A and
r at saturation using the Dirac-Brueckner approach descr
in Sec. V. In the calculations reported here we have used
one boson exchange interactionA specified in Ref.@8#. Dur-
ing each loop of self-consistency iteration we use coupl
constants and meson masses appropriate forr̄N5jr/r0, de-
fined earlier by Eq.~43!, r being the nuclear density at th
particular stage of the iteration. Specifically, we use E
~46! and ~47! with the coefficients of the rational function
listed in Tables IV and V. For each chosen density andj
self-consistency is achieved and we have a value for
nuclear matter binding energyEb .

In Fig. 3 we show plots of nuclear matter binding ener
Eb versus densityr for the pure mass case forj50, 0.1, and
0.2. These show that the Dirac-Brueckner calculations y
smooth and stable results as coupling constants and m
masses are made density dependent. The minimum ofEb ,
indicated on the graphs by solid square, is reliably located
gives both the value ofE/A and density at saturation for th
given value ofj.
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The results forE/A and density at saturation for the pu
mass and the quartic cases are shown in Figs. 4 and 5.
value corresponding toj50 represent the Amorim and Tjo
@8# result. From the figures we see that dependence of
nuclear saturation properties onj is just of the right size to
be of interest in the present study. TheE/A vs r curve for
the pure mass case passes through the square repres
experimental data forj slightly greater than 0.1. For th
quartic case theE/A vs r curve comes close to the squar
but does not enter it. The closest approach occurs forj a
little larger than 0.2. The results for the unphysical rang12

FIG. 3. Plots of nuclear matter binding energyEb versus density
r for the pure mass case forj50, 0.1, and 0.2. The solid square
mark the minima of the graphs.

FIG. 4. Results ofE/A and r at saturation for the pure mas
case for a series of values of 0<j<1.0, shown with solid circles.
The square box represents the empirical nuclear matter density
binding energy. The values ofj appear next to the solid circles. Th
line is for guiding the eye only. The details of calculations are giv
in Sec. V. Only the range 0<j<0.5 is of physical interest.
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56 507NUCLEAR MATTER STUDIES WITH DENSITY- . . .
,j<1 are included in the figures to exhibit the curio
looping effect.

B. Discussions

In order to study the origin of the looping effect we ha
systematically switched off the density dependences of
various coupling constants and meson masses. In so d
we find that the density dependence ofgsNN* is the main
source of the looping behavior of the saturation values
E/A andr. Qualitatively such a behavior can be understo
with a simple model where the essential ingredient of
density dependence in the coupling constantgsNN* is built in
as a small modification of the saturation curve.

Assuming that all meson masses and all coupling c
stants, exceptgsNN* , are independent ofrN , the density de-
pendence ofE/A can be modeled in the following manner

E/A5~E/A!01
1

2
K0~y21!2

2
3

4
r
gsNN~0!2

ms
2 $@gsNN~r!/gsNN~0!#221%,

~55!

where, for convenience, we have introduced the quantity

y5r/r0 . ~56!

The first two terms describe the density dependence
E/A near the saturation point when none of the coupl
constants and meson masses is density dependent. The
tity K0 is the nuclear incompressibility and (E/A)0 is the
minimum value ofE/A in this situation. The last term con

FIG. 5. Results ofE/A andr at saturation for the quartic cas
for a series of values of 0<j<1.0, shown with solid circles. The
square box represents the empirical nuclear matter density
binding energy. The values ofj appear next to the solid circles. Th
dashed line is for guiding the eye only. The details of calculati
are given in Sec. V. Only the range 0<j<0.5 is of physical inter-
est.
e
g,

f
d
e

-

of
g
an-

tains the effect of the density dependence ofgsNN* , calcu-
lated perturbatively using, in addition, the fact th

(pW 12pW 2)
2/4!ms

2 , i.e., the average squared relative mome
tum of two Fermi sea nucleons is much smaller than
square of thes meson mass.

An inspection of the two graphs in the left column of Fi
2 shows that the quadratic form

gsNN~r!/gsNN~0!511hjyS 12
jy

2y1
D , ~57!

can describe these graphs quite well. The ra
gsNN(r)/gsNN(0) peaks atjy5y1 and the peak value is
11hy1/2. The values of the various parameters used in
illustration are K5280 MeV, gsNN58.0, ms5630
MeV. We consider four sets of y1 and h,
namely, (y1 , h)5(0.17, 0.1), (0.35, 0.2), (0.7, 0.2), an
(1.0, 0.2). The first two describe the ratio
gsNN(r)/gsNN(0) for the quartic and the pure mass cas
respectively, in Fig. 2. The last two are used to illustrate
origin of looping.

It is convenient to recast Eq.~55! into the form

2@E/A2~E/A!0#/K05~y21!22y
3r0
4K0

gsNN~0!2

ms
2

3$@gsNN~r!/gsNN~0!#221%.

~58!

Because of the presence of the third term in Eq.~55! the
saturation density will change. For a given value ofj this
can be readily determined by minimizing the expression
E/A with respect toy5r/r0. The resulting plots of the
change in the binding energy at the new saturation densit
r/r0 are shown in Fig. 6 for the four sets wherej has been
varied in the region 0<j<0.5.

Starting from zero density, asgsNN(r) increases withr̄,
the quantityE/A becomes more negative. The saturati
properties reflect this through a combination of increas
saturation densityr and decreasingE/A. Eventually, de-
crease ofgsNN(r) beyond its peak with increasingr̄ and the
effect of incompressibility take over and the saturation d
sity stops increasing. If this occurs in the range 0<j<0.5,
we see looping. If the peak ofgsNN(r) occurs at a higher
density, i.e., for a highery1, the saturation density keeps o
increasing and we see no looping forj<0.5. In the present
example the critical value ofy1 for h50.2 appears to be
slightly higher than 0.7. Thus the occurrence of a peak
gsNN(r) at not too high a value of the effective density
needed for looping to occur forj<0.5. The value ofy1 is
lower for the quartic case than for the pure mass case. T
explains why the loop turns for the former case at a den
lower than that for the latter.

C. Concluding remarks

Due to the internal structure of the nucleon, we should
general, expect that the effective meson nucleon parame
may change in nuclear medium. Using a chiral confini
model we have studied the density-dependent changes o
meson-nucleon coupling parameters. We have also us
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simple, but justifiable, ansatz for the density dependence
s and v masses. Using the framework of a Dirac
Brueckner analysis we have found that their effect on t
saturation properties of nuclear matter can be significa

FIG. 6. Plots of 2D(E/A)/~280 MeV! vs the saturation density
r/r0 for K05280 MeV and (y1 ,h)5(0.17, 0.1),~0.35, 0.2!, ~0.7,
0.2!, and~1.0, 0.2!.
ys

n

of

e
t.

Due to the density dependence of thegsNN* as predicted by
the chiral confining model we have found, in particular,
looping behavior in the nuclear matter binding energy
saturation density. The looping has essentially also b
verified in a simple model, where it is mainly caused by t
presence of a peak in the density dependence of the med
modifiedsN coupling constant at a low density. We shou
stress that the effect of the density dependence of the o
quantities are not negligible. However, a qualitative und
standing of the looping effect can be obtained by pay
attention to the density dependence ofgsNN alone.

It appears that the density dependence of the coup
constants and the meson masses produce effects whic
small but interesting. In particular the small effect tends
improve the results for nuclear matter. From the pres
study we see that the relationship between binding ene
and saturation density may not be as universal as foun
nonrelativistic studies and that more model dependenc
exhibited once medium modifications of the basic nucl
interactions are considered. We hope that these prelimin
results will encourage more detailed investigation of this p
ticular variety of the density dependence of theNN interac-
tion.
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