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Scalar and vector interactions, with the scalar interaction coupled to a composite spin-1/2 system so as to
cause a shift of its mass, are shown to obey a low-energy theorem which guarantees that the second order
interaction is the same as for a point Dirac particle, in which case the second-order interaction conwes from
graphs. Off-shell and contact interactions appropriate to the composite system cancel and this is verified in a
model of a composite fermion. The low-energy theorem and its generalizations provide a justification for the
use of the Dirac equation as it has been used in relativistic nuclear scattering and mean field theories.

PACS numbds): 24.10.Jv, 24.85:p

I. INTRODUCTION contributions should be suppressed by compositeness of the
nucleon, even at zero momentum trangfet,12. A nonper-

In a recent paperl], a low-energy theorem has been for- turbative analysi§13] has produced the same conclusion in a
mulated for the scalar and vector interactions of a compositéimple 11 dimensional theory. However, it has been argued
spin-1/2 system. For a scalar interaction corresponding to #at the same effects as are obtained from use of the Dirac
pure shift of the mass, the theorem shows that the secon@guation for nucleons may be understandable in terms of
order interaction with the composite system is the same aduarkz graphs14]. Arguments based on Lorentz invariance
for a Dirac particle interacting with an equivalent scalar po-SUPPOrt the validity of the-graph contributions for a com-
tential. Including a vector interaction with only a time com- POSite system because they follow from a simple shift of the
ponent does not change the result. This theorem, which hold8@ss- The low-energy theorem clarifies this latter point of
in the limit of zero momentum transfer, provides definite VIEW- _ .
conditions under which it is valid to treat a composite par- N Sec. I, the general basis for the low-energy theorem is
ticle, such as a nucleon, as a Dirac particle. stateq b_ased upon considerations of Lorentz invariance. Em-

Birse [2] has considered a more general combination oph_asus is placed upon the case of.a scalar interaction that
scalar and vector interactions and has shown from Lorentghifts the mass and a vector interaction that shifts the energy.
invariance that, in addition to the model independent contri-1 '€ balance of the analysis presented in this paper provides
bution to the second-order interaction discussed in this papelffSight into the general result for a solvable model of a com-
there may be another scalar contribution that depends dpCSite system. Details that were omitted in the earlier work
polarization of the composite system. That scalar term i$1] are provided and the previous analysis is clarified and
model dependent and will be considered in another peger extended to mcqrporate a suitable vector mtergctlon. I_n S.ec.

The use of the Dirac equation in nuclear physics has beeH' the solvable field-theory model of a composite fermion is
a subject of interest and debate in recent years. One of if§troduced and the second order response to an external vec-
outstanding successes is in elastic scattering of protons g9 field is studied. It is shown how to arrive at the low-
nuclei[4,5]. Quite large scalar and vector interactions, which€nergy theorem for this case. In Sec. IV the scalar interaction
almost cancel one another, characterize the proton-nucledigat generates a pure shift of the mass is developed and iden-
interaction. Solving the Dirac equation with an attractive scallli€S appropriate to the scalar interaction for the composite
lar potential and a repulsive vector one, each of magnitudéerm'on model are derived. Several distinct contributions to

about 300 MeV, produces a good description of spin obsenthe second-order inte_raction with the a co_mbination of scglgr
ables at intermediate energigs-10. and vector external fields are calculated in Sec._V, and it is
The new physics obtained by use of the Dirac equation, agemqnstrated how ca_mcellatlons take place which produce
opposed to use of the Safiager equation, lies in the the _S|mple result. provm_ied by the low-energy 'theor'em. Con-
z-graph contributions. These are largest at zero momenturdusions and a discussion of the results are given in Sec. VI.
transfer and they decrease at higher momentum transfer. The
significance of thez-graph contributions for a composite
nucleon has been debated in the literature for a decade. Be-
cause they are difficult to understand from the point of view Consider the case of a scalar interactinthat corre-
of perturbative QCD, it has been argued that thgraph  sponds to a pure shift of the mass and a time component of a

1. CONSEQUENCES OF LORENTZ INVARIANCE
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vector interactionV that shifts the energy. The form of the let any other parameters with dimensions be scaled accord-
classical Hamiltonian determined by Lorentz invariance is, ingly, i.e., a parameter with dimension 1/mass be scaled by
1/x. Similarly scale all parameters generated by renormaliz-
H=V+\(M+8)*+p?, (2.1)  ing the theory. The bound state mass will be shifted to
. AM. Choosen=1+ S/M to produce the desired shift of the
where the vector and scalar potentials are taken to be spgynd state madd —M +S. The required scalar coupling is

tially uniform. Expanding inS to second order yields, obtained by expanding the scaled Lagrangian ahett in
M p? powers ofS/M, and to first order one obtaing— _%—pS,
H=e+V+ —S+ 2_332+ - (2.2  wherep will be called the scale-breaking charge. The cou-
€ €

pling term,pS, defines the interaction which shifts the mass.

. In general, the scale-breaking chargeijs proportional to
wheree= JM?+p?. If S, M, ande are noncommuting op- ¢ divergence of the dilatation curregnt of the system. This
erators, care must be taken to maintain Hermiticity in devel-may be seen from the following argument. A dilatation of all
oping this expansion. The momentum dependent repulsivg, g jinates by the factor 1, taken together with a scaling
potential term in Eq(2.2) provides the main relativistic ef- as described above of all pérameters with dimensions by the
fect in protqn scattering by nuclei at interm'ediate en'ergies'.factor)\, leaves the action invariant, i.efd*x  does not

One obtains the same_results from the Dirac equation W'ﬂ(l,hange. Thus the scaling of dimensionful parameters has the
scalar and vector potentials. The energy expression may l??pposite effect of a dilatation. The system is not invariant in
reduced to the form, general under a dilatation and the change of the Lagrangian
is proportional to the divergence of the dilatation current,

Eg=(e+ 7" "+ 7 ), 2.3 o \ : .
y=(e pai) ¥ 23 s, Which in turn is proportional to the scale-breaking
where charge as follows,
N M 3,8,=—Mp. (2.6
7Htt=V+—8 (2.9
€ Addition of a term— Sp to the Lagrangian is equivalent to a
and dilatation of coordinates by (£S/M) %, or a mass scaling
by 1+S/M. This argument is based on the classical La-
p2S? p?S? grangian but it holds also at the quantum level provided that
Y= = +... ) anomalous contributions, which are generated by renormal-
T e eVt (Mias] 28 T 9 J y

izing the theory, are included in the scale-breaking charge.
Point (ii) follows from coupling the system to an external
d through the time-component of the total momentum. In
ractice, it often is sufficient to couple to the time-
component of a conserved vector current. The low-energy
Feorem follows by poinfiii) for a general composite sys-

is thez-graph contribution. To second order it is the same aﬁ‘iel
in Eq. (2.2.

The low-energy theorem considered here is the followin
statement. In the presence of a constant, scalar interacti

which causes a mazsszshB;l th_e energy of a particle contains tem. Thus the repulsive term that is associated &ifjnaphs
the repulsive ternpS-/2e® without any dependence on the : S ) : :
for a Dirac particle is guaranteed. This term is model inde-

composite structure of the particle. The constant interaction . .
o e o pendent in the sense that the second-order term is equal to
implies the low-energy limit, i.e., the limit of zero energy-

momentum transfer. In this limit, a composite fermion maythe square of the first-order termM(e)S, times the kine-

i 2 2
be treated as a Dirac particle interacting with an equivalenpa\silcealnzavstgjfn/t(g;M d(gt.aile d proof of the low-eneray theo-
scalar potential. It should be noted that at nonvanishing mofem for vector interactions P ay
mentum transfer this no longer holds in general. The inclu- '

sion of a suitable vector interaction provides a shift of the

energy and this corresponds to the case of interest in nucled¥- INTERACTIONS WITH EXTERNAL VECTOR FIELDS

physics. This paper provides a full account of thg demonstra- |, this section we will give a general discussion of how a

tion of t_he low-energy theorem based on a simple mOde!:omposite system propagates in free space, and of how this

Lagrangian. , ropagation is modified by the presence of an external vector
The proof of the low-energy theorem rests on three simpleo4 \which shifts the energy.

points. (i) For any composite system, it is possible to define ¢, ngjger a composite, spin-1/2 particle with total momen-

a scalar interaction which produces a pure shift of the masg,,, p which has a bound state of mas In the neighbor-

(it) Similarly, it is possible in general to define a vector in- 4 of the bound state pole. we mav assume the propagator
teraction which produces a pure shift of the enef@y The ;1 aq the general form pole, y propag

energy of the composite system is then restricted by Lorentz

invariance to take the form of E.1) and the expansion of T=0G(p)Q+.2, (3.2
the energy contains the momentum-dependent repulsive term
of Eq. (2.2). where() and.7 are dependent on the total momentum and

Point (i) may be proved by an explicit construction, as the internal variables of the composite system but are regular
follows. Consider a Lagrangia#’ that supports a composite- at p?=M?. The bound state pole resides in the factor
particle bound state of mad4. Let parameters with dimen-
sions of mass of the Lagrangian be scaled by a factand G(p)=1/[1-pA(p?) —B(p?)], (3.2
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XYY YT 1
\~~"/ Naant” Meae” Sae? \~-" Sl 6+ M 1/2
u(p)= 7P, (3.8
FIG. 1. Diagrammatic representation of the propagator in the 2e e+M

bubble model.

which obeys the normalization condition(p)u(p)=M/e.

where A and B are scalar invariants, depending only on 10 calculate the propagation of the composite system in
p2. This ansatz incorporates the fact that the bound state pofd? €xternal vector field which shifts the energy, one may
is not dependent on the internal coordinates and that fevaluate the propagator
should involve a standard representation of the Lorentz 1
group for spin-1/2. Gy(p)= ————r,

A concrete example of the assumed structure is obtained 1-2(p—-V)
from the following model Lagrangian,

(3.9

where the shiffp—V in the argument of is shorthand for
the shift (°—V,p). If the external field is weak, one may

— 1 — 7 X . , ) -
L=g(id —m)y+ 5[0V¢ﬂ”¢—ﬂz¢2]—g¢f¢¢2—~WA , expand this propagator in a Taylor’s series, giving
(3.3 aG(p) 1 °G(p)
Gu(P)=G(p) = 5 =Vt 5 — o Vi
where %, consists of cutoff terms sufficient to remove di- 0 0 (3.10

vergences of the bubble graphs we consider, i.e.,
where the derivatives can be written

1 —
=000 Pa—A2BR]—gygei . (3.4 J9G(p)
2 ——=—G(p)A%p.p)G(p),
Po
The quantum propagator for the composite spin-1/2 system 122G
with four-momentump is given by the sequence of bubble - 9°G(p) =G(p)A%p,p)G(p)A°(p,p)G(p)
graphs as indicated in Fig. 1 and it is written as, 2 dpg ’ ’

1
+5G(p)CM(p.OG(p), (3.1)

G(p)= (3.9

1
1-3%(p)’
with vertex functionA® and contact ternC®° defined by
where X (p) is related to the self-energy. In the “bubble

model,” the self-energys is the contribution of a single A0 _dx(p)
bubble graph and it can in general be expressed in terms of (p.p)=-— JPo
the interactions between the constituents of the composite 0 o o )
particle. Its general form is restricted by Lorentz invariance =Ao+(p"—€) Ao+ (p"—€)7],
to be
C¥p,0)= 72 e A(p°—e) (3.12
S(p)=A(p>)p+B(p?) (3.6 e 0 ' ‘
with two scalar functions andB. The quantities\§, §A4, andC3° are all evaluated at the on

For either the assumed general form of Bj1) or for the  Shell point wherep®=¢, so that Eq.(3.12 expresses the
bubble model propagator of E.5), the presence of a spin- Vertex function and contact term as a power series in
1/2 bound state of ma$d means that there is a pole @(p) p°— e. Explicit expressions for these quantities in terms of
at p: M. Thus the propagator can be expanded aroun@e scalar function# andB and their derivatives, evaluated
p2=M?2, giving on shell are given in the Appendix.

The propagation of the particle in the external field can
also be described by an effective interaction appropriate to a

1 F(p)F_(p) Schralinger description for the propagation of the composite
G(p) =2z gy +0G(P) | = —o—— +9(P) particle. The resolvent of the effective Sctinger equation
is
=Go(p)+59(p), 3.7
~ Z,)
where explicit expressions for the renormalization constant Gv(p)= p’—e—7«(p) R, 3.13

Z,, and the terms5G and 6g, which are nonsingular as

p’—e, are worked out in the Appendix, and where the renormalization consta@,, the effective inter-
I'(p)=(Z,)Y2u(p), with u(p) the positive energy Dirac action,7(p), and the remainder functioR, are functions
spinor for an elementary fermion of makk of the external field/ but independent gf° (they are evalu-
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To carry out stefi), expand the propagat¢8.13 to sec-

ated atp®= €). The functionR describes the propagation of
ond order inV?, giving:

excited states with invariant masses greater tian
For apoint particle, the discussion in Sec. Il shows that,

to orderV3, 74(p)=V; there is no effective interaction of &u(p)= Z,  Z;74p) N Z,74p) iR
order V2. The low-energy theorem tells us that this is also v(p)= pP—e  (p°—e)2  (p°—e)° T
true for acompositeparticle. To prove this, we will firsti) (3.19

express the effective interactiofig(p) in terms of the vertex
function A°(p,p) and the contact terr€®(p,0), and then
(i) show that7’y(p)=V.

Substituting the expansioit8.7) and(3.12) into (3.10 gives
a similar expansion fo6y(p):

1
Gy=Gg+ 89+ V[GoAIGo+ 6gASGy+ GoA g+ (p°— €)GodA oGol+ V2| GoASGoA G+ EGocg"eo

+ 8gAIGoAIGo+ GoAJSGA G+ GoASGoAI8g+ (p°— €)[ GodA 0GoA G+ GoAIGdA oGol + 0

+(p°~e), (3.19

where all terms of ordeM?® are neglected, and the terms <]/‘S:V(E\8F)[1—V(F_5AOF+Uyoﬁgl\gu-l-aj\gﬁgyou)]
involving 6g and X do not affect the result to be proved.
Projecting out the positive energy part of E@.15 and

1 _
2 (0] (] 0 0
equating powers g’ e to similar powers in the expansion +V EFCOOF“L(L”’ 6g9Aou)(I'Aol’)

of G , _ _ _
v(P) +(TAJT)(UA§SgyPu) + TASSgAIT
— ~ T TAO TAO /T s
In the Appendix we show that
. - 7 (o) o
permits us to determing; and 7y(p): FAngl,
' = = 0 AO 4 TAO S0 — — 2 2
Z,=Z,[1+VI8A I +V(uy?SgAJu+uA$sg7y°u)] TCO = —ToA I = M_EZ& l\/Fl)Ze(l_Z)’ (3.20

+V2X,
where ¢ andZ are given by Egs(A4) and (A6). Hence a
number of terms cancel in E€3.19, and it reduces to

7 TAO 1 27 ~0!
Z57's=ZVTAGT + 52,V rcdr 1 _
7=V — EFC8°F+FA859A8F . (320

l+V(
+Z,VH(uy°8gASu) (TAST) + (TAJ)
Note that the first-order term ivi'g is simplyV, as expected.
We wish to emphasize that the second-order tevf), in-
volves a matrix element obg, the differenceof the full
propagator,G and the positive energy propagat@r, as
defined in Eq(3.7). Evaluation of this matrix element in the
Appendix gives

X (UA3597°u) +TAYSgA ST + (TSA T ) (TAJD)
+(TAST)(TSA L)},

2,72=27,V3(TAII")2. (3.17)
0 0 1| 2e p?
FAoégAOF: E W§+ m(l—Z) , (3.22

Hence, to first order

and thus th&/? term is zerojndependent of the details of the

(25)"1=(Z5) 1= V(T 8A (T + Uy 5gAJu

+UAJ8g7°u) ]+ A(V?), (3.18

and it follows that the second of Eq&.17) gives

structure of the bound stat®ote that the third of the Egs.
(3.17 is also consistent with”'s=V.

This analysis establishes in a straightforward way the fac-
tors which enter the calculation of the second-order interac-
tion and Eq.(3.14 illustrates an important point. The two
potential terms in Eq(3.14 may be combined and each
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expanded up to second order in powers of the external intesimple model. The vertex function corresponding to insertion
action strengttV. Omitting extraneous factors, the potential of the chargep, in the limit whereq=p’—p—0, is

terms in the expansion @, are,
Y AS(p,p)=D,3(p), (4.9

e e (7)) o
]/S (p)+7/s (p)+W+”‘, (323) where
. mid wud gad A I
which shows that the seco_nd-ozrder termsGip contain the D=Mam™™M o Mg VTS (4.5
true second-order interaction’?) that is irreducible with

respect to intermediate propagations of the formror example, thert/ M)y term in the charge generates a
(p°— €)1, plus the iterated first-order interaction evaluatedyertex insertion in the fermion propagator withb(p),
using the on-mass-shell verted). The term involving which is the same result as is obtained from
(721 (p°— €) must be subtracted from the result of ex- (m/M)a3/dm. Similarly, the 2@/M)#? term generates a
pandingGy in order to isolate the irreducible potential. In vertex insertion in the scalar meson propagator, which is
Sec. V we will use this fact in a slightly different demonstra- equivalent to f/M)J2/du, and so on.

tion of the low energy theorem. The self-energy?., is dimensionless, and hence invariant
To generalize the analysis we now develop a suitable sca/vhen all parameters with the dimensions of mass are scaled,
lar interaction. e,

_ -1
IV. SCALAR INTERACTION CORRESPONDING 2(mu,ALg,P,) =2(AmAu,NANT7g,Ap,). (4.6

TO A PURE MASS SHIFT This invariance provides a series of identities that simplify

Construction of a scalar interaction that generates a purl€ analysis. It may be restated as a power serias-, the
shift of the mass of the composite system provides an illusf{i'St féw terms of which are,

tration of the general arguments of Sec. Il. In the bubble D 1

model, the scalar interaction is determined by scaling all pa- S=3+(A—1) D,+ £ I3+ -(A—1)?
rameters in the Lagrangian with dimensions of mass to new M dp, 2
valuesm—Am, u—\u, g—\ g, and similarly scaling all p, ¢ p, 9

cutoff masses associated with, , such that the bound state D,+ £ (Dp - S+ (4
massM is scaled toxM. Choosingh=1+S/M produces M p, M dp,

the desired shift of the mass and it implies that the Lagrang
ian, which includes interactions of the scalar fi8ldhas the
form (to first order inS)

The derivativesD ,+ p,/M d/dp, provide an equivalent
form of d/d\. From uniqueness of a power series, it follows
that the coefficient of each power af—1 vanishes. The

Y S pS (4.1) vanishing of the coefficient o —1 provides the first iden-
=l LD 0 . tity’
The scale-breaking charge associated with the mass scaling P
in the bubble model is __Pu 7
D, M 2p (4.8
— — M
=(mM/M)gh+2(uIM) p?— (gIM 2—2(AIM) @3
p=( )l'/“f (u/M) 7= (gIM) i/ ¢ ( 193 and the vanishing of the coefficient of € 1)? provides the
+(g/M) P . (4.2  second,
The last two terms are necessitated by the cutoff and they DS — Py 9 Py, 9 s 4.9
correspond to anomalous contributions in a renormalizable P~ M dp, M ap,”" '

theory.

A suitable vector interaction for the bubble model is
added to arrive at M /quim
L L= pS— YV 4.3 — OO0 5 OOOD
o7 L

The vertex functions and contact terms associated with this
vector interaction are those already defined in Sec. Ill. It is

(@) (b)
straightforward to see fron¥ that the effect of this vector
. S . . q q L
interaction is to shift the time-component of momentum of
the constituent fermion. It follows th&(p) —=(p), where

p=(p°—V,p) and thus the propagator pole is pt=M?2,
corresponding top®=e+V. In the previous section we
showed that there was no contribution to the second-order (© (d)
interaction from such a vector coupling.
The Ward identity for the scalar vertex follows from ex-  FIG. 2. Diagramatic representation of the three contributions to
amination of the lowest order Feynman diagrams in OuIEq. (5.6).
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where we have used E¢4.8) to eliminate cross terms in-  CSY(p,q)=S2CSp,q) +2SVCS(p,q) + V2C?(p,q).

volving 2(p,/M)d/dp,D . (5.
Equation (4.8) together with Eq.(4.4) provides a Ward

identity for the scalar vertex of the form

2

The C% contact term forg=0 is given in Eq.(3.12. For

D, @ b scalar interactions, the contact ter@°° corresponds to
As(p,p)=—V”§—2(p)=—m2’(p). (410 two insertions of p. If we write D, in the form
Pu D,==i(m;/M)a/dm;, where{m;}={m,u,A,g" '}, then at

This is a direct consequence of a Ward identity for the diver—q=0 the contact term is given by

gence of the dilatation currefil5] and the particular low-
energy theorem we consider depends on it. Note that the
arguments may be applied to the general propagator of Eq.

(3.1) and Ward identities of the form of Eq&t.8) and (4.9) cS{p0=S > mim; 93 (p)
hold generally. : ¥ T M2 ampom;’
We now have the necessary equipment to derive the
second-order interaction potential for an arbitrary linear _ ( D2 &)E(p) 5.3
combination of scalar plus vector fields. This is done in the P M ' '
next section.
V. CALCULATION OF SECOND-ORDER INTERACTION The second partial derivatives in this expression that involve

the fermion massm correspond to two insertions of

In Sec. Il we calculated the effective first- and second—(m/M)wl/I the first generating a vertex function connected
order interaction potentials for a vector interaction by exam-, '
L . : .to two fermion propagators. The secofidm generates ver-
ining the response function of the composite system. In th'?ex insertions in each of the two fermion propacators. The
section we will calculate the effective second-order interac- S , | propagators.
tion potential for an arbitrary linear combination of vector Other terms inD;—D,/M generate in a similar fashion all
and scalar fields using an approach based on the Feynm#p rest of the required contributions. . .
diagrams of the bubble model introduced in Sec. Ill. While The scalar contact terms may be rewritten using the iden-
the details of this calculation are somewhat different fromtities of Egs.(4.8) and(4.9), as follows,
those worked out in Sec. Ill, the two methods are similar and
give identical results in the limit of zero momentum transfer.

The Feynman diagrams provide the extension to finite mo-

mentum transfer. Comparison of the two methods gives s P, 9 P, @ P, 92(p)

added insight into the physics. C*p,0)= M ap, M apVE(IO)JF M2 ap
Feynman graph analysis requires the calculation of all . a

“Compton” scattering graphs which include absorption and 2p _, ,

emission of either a vector field or a scalar fieldS. The =22 (P+2"(p). (5.9

“strong” interactions, which depend on the coupling strength
g, are summed to all orders by summing all bubble graphs of

the type shown in Fig. 2. There are three elementary types q;\/hen p=M, S'=3! andS"=3!. There are also cross
- W ~ <0 ~<o0-

bubbles: the self-energies(p), the vertex graphs Volvi q . . -~
ASV(p,p+Qq) which describe the absorption of a field quantat‘hag::3 ;r:\éo ving onep and one vector insertion. Far=0

(eitherS or V) with four-momentung, and “contact” inter-
actionsCSY(p,q) which describe the absorption and emis-
sion of anS or V quanta fromwithin a single bubbleFor
derivation of the low-energy theorem it is sufficient to limit

ourselves to forward scattering in which the initial and final COS(p,0)= 9 Pu JZ(p)

bound state four-momenta are bgthand the incoming and ' dpo M ap,

outgoing field quanta both have four-momentathe same 0 0 0 0
restriction will apply to the contact tern@S". The summa- _ 7’_2,( )+ p_z,,( )+2 ;b_y_ p_) B'(p?)
tion of the self-energy bubble grapi¥$(p) generates the M P M P M M P
bound state, as already described in Sec. lll. (5.5

The vertex which describes the absorption of either a sca-
lar or a vector quanta has the form

where the last term will not contribute to the matrix element
ASMp,p+q)=SAS(p,p+q)+VA°(p,p+q). (5.1) of interest. The contact term in which the order of the scalar
and vector insertions is switched yields the same result.
When q=0, the vertex functionAS(p,p) is given in Eq. In terms of the elementary bubbles defined above, the
(4.10, and the functionA°(p,p) in Eq. (3.12. Similarily,  effective second-order interaction, derived from the graphs
the contact ternCSY has the form shown in Fig. 2, can be written:
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1—
73 (p)=lim 72 (p,q) = ST(P{AZ(p.p+a)G(p+ ) A% (p+a,p) +A%M(p,p~a)G(p—~a)A%(p—a,p)

gq—0
SV 7MW (p o ! Dy
+C (P (p)—| 7 (p.p+a) o7 (pta.p)|, (5.6
€1t 0 —€pig
|
where the external momentum is chosen to be on the mass 7D (p,p+q) =T (p)ASMp,p+qT(p+q). (5.7

shell, i.e.,p?=M?2. This is important: the low-energy theo-
rem pertains to the on-mass-shell amplitude that arises in
physical scattering process. The first term in the curly brace
is the direct pole term, Fig. (8), the second term with
g— —q is the crossed pole term, Fig(l#, and the third,
contactlike term, Fig.@&) describes processes involving scat-
tering from the constituents within a single self-energy
bubble. The appropriate subtraction of the iteration of the 7P=7P+ 7R 7R+ 7E. (5.8
first-order interaction is based on matrix elements between

on-mass-shell states, i.ep+q denotes the four-vector The first term involves on-mass-shell matrix elements of the
(€p+q.P+0) where e,,,=[(p+0q)2+M?]¥2 The first- vertices, the pole part of the propagator and the subtraction
order interaction7{V), is terms as follows,

The low-energy limitg— 0 must be taken with care, as dis-
Sussed below.

The contributions of Eq(5.6) will be divided into four
parts as follows:

1— — z S
72 ()= [im = 2 -
77(p) (I‘@ozf(p){AS"(p,pm)p+d_MAS"(p+q,p)+(q q))F(p)

— lim
q—0

7 (p.pta) g 7Y(p+a,p)|. (5.9
q

[T
The second term involves propagation in excited states of the system, for which thg-ifitgives

7@(p)=T(p){AS(p,p)Z25G(p) AS(p,p)}T(p). (5.10

The third term involves an expansion of the vertices about the on-mass-shell momenta, which is necessary because of the
singularity of the denominator af— 0

73(p)=1lm (p+q—(p+q)) 1F_(p) iASV(p P o =575CG(P+A)ASUp+a,p)
SA no ap’ ) p'=p+q ,

q—0 Jz

SVin mt J SV, 7
+A (p,p+Q)G(p+q)WA (PPl =prg+(@——0q)  T'(p). (5.11

7

Finally, the fourth term involves the contact terms, for which  Now evaluateZ’;. The subtraction removes the contribu-
the limit g—0 poses no problem, tion from positive-energy intermediate states of the propaga-
tor which follows from using,

7P(p)= %F_(p)CSV(p,O)F(p). (5.12 Z,  T(p+l(p+q) I'(p+q)I)(p+q)
p+d—M  p’+a°—epiq PO+t epiqg
5.1
Using Eqs.(3.12, (5.4), and (5.5 we find immediately (514
where
7@(p)=— 2| s+ &v)hl—f)—(iﬂ—vH F(p)=2Za(=p), .19
€

s andv (—p) is a negative-energy Dirac spinor defined in the
ﬂ p—(l—Z) (5.13 Appendix. The positive-energy intermediate state contribu-
M/ 2€ ' ' tion is the only singular part of the expression and once it is
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cancelled, there is no difficulty taking the lingt-0. More- 7@ (p)=T(p)(SAS(p,p)+VA°(p,p))L(p)
over, this limit does not depend on whettggt—0 first or

0 first. Thus7{?) becomes, — d
A ? XT(p) g (SA*(p.p) + VAP, )L ().

7P (p)=T(p)A>(p,p) (5.20
« r(p)re(p) ASY(p,p)T(p) where the derivative with respect fiy combines terms cor-
2e ' ' responding to action of the derivative first on the left argu-

ment and then on the right argument &FY(p,p). The re-

(5.16 quired matrix elements are:
This is the composite particle-graph contribution. The cal- _ M €
culation proceeds as in the Appendix. Because factogsiof I'(p)(SAS(p,p)+ VA (p,p)I'(p)= —( S+ MV) ,
ASY become factors ok when the Dirac equation is used, € (5.21
i.e., pI'(p)=MTI'(p), we obtain '

_ [d 1
—— AS - (1—
F_(p)ASV(p,p)ﬂ>(p)=U(p)(S+&v F(p)(dpoA (p,p))F(p) (28, (522

and
A R ) (-p)
Y owm) PP — (d oy L2 p? (1-2)
. b (p) dpg PP == wmé Ve ™M |-
=— — —7) |— 5.2
S+Vv( Z)} e (5.23
(5.17) The result for the contribution from off-shell vertices is
' therefore
Two factors ofZ3”? from the wave functions" and I'(*), 1 c By
cancel with a factor-2.; from the vertex function. The re- 7Rp)= < S+ MV)[S{I—Z&)—<V)
sult is
p2
€ 2 2 X 2§+—2(1—Z)) . (5.29
:7/<ZZ>(p>=(s+ MV(l—Z)) 23 (618 )

Substantial cancellations between the contact terms, the off-

The purely vector part of this result was already obtained irnell vertex corrections, the off-shell propagation, and the

the Appendix. Note that the-graph contribution for a purely 2-9raph contributions are apparent. .
scalar interaction is that expected from the Dirac equation, Combining the four parts produces the following result
but the contribution from the vector interaction is not. The °F the second-order interaction,

z-graph contribution of the vector interaction is model de- 2g2
pendent because it depends on the fadfor The limit 7@ (p,p)= P . (5.25
Z—1 corresponds to a point particle and in this limit, the 2e

vectorz-graph contribution vanishes, as expected. In general , )

the z-graph contribution for the composite fermion does not'A,‘Ithc",Jgh the various parts have model-dependent contribu-

yield the same contribution that is obtained for a Dirac parions involving £ or Z—1, these all cancel in the end. The

ticle interacting with equivalent scalar and vector potentialsSimple result that is guaranteed by the low-energy theorem
Using the expression of EGA7), it is a straightforward ©Merges and the second-order interaction is the same as is

matter to evaluate the contribution of the off-shell propaga&XPected from the Dirac equation with equivalent scalar and
tion. The result is vector potentials, or more simply, from a mass shift in the

relativistic expression for the energy. There is no suppression
of this effect by compositeness at zero momentum transfer.

e \%¢ eV\? p? : . -
72 (p)=| s+ —V) ——Z(Z—l)(—) _ If there is only a scalar interaction, the result may be
°e M) e M) 2¢ stated as follows
(5.19
232 SZ pZSZ
In order to evaluate the contribution from off-shell verti- 7?'(p,0,p)= 28 T lEt e 1m29]=55
ces, note thatp+q—(p+q)], has only a time component (5.26

and it has the fornp®+ qo—ep+q. This factor cancels the

corresponding denominator of the propagator’s positiveThe contributions to Eq5.26 arise as follows: thg? term
energy pole term, thus producing a finite result, and all othefrom the composite particle graphs,é from the off-shell
terms vanish in the limig— 0. This observation and some propagation 6G(p), ¢é—1 from the contact terms, and
algebra reduces the required calculation to the form, (1—2¢) from the off-shell expansion of the vertex functions.
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Cancellations render the overall result independent of thanalysis of this paper has been restricted togheO limit

factor £. This result was given in Ref1]. for a scalar interaction that provides a linear shift of the
mass. The bubble model Feynman graphs may be evaluated
VI. CONCLUSIONS AND DISCUSSION numerically for finiteq. The results are model dependent and

_ . they are not pursued in this paper. The general expectation
The low-energy theorem establishes an equivalence bédor the q dependence is that each of the contributions dis-
tween second-order scattering of a composite spin-1/2 sygussed in Sec. V has smoothdependence. The cancella-
tem by scalar plus vector interactions of arbitrary strengthions which produce the low-energy theorem change slowly
and the second-order scattering of a Dirac particle by similawith ¢ over a ranggy<R ™%, whereR is a typical dimension
potentials. The basic result is guaranteed by Lorentz invariof the composite system. Similar behavior is expected for a
ance. It takes a very simple and model-independent form fofiucleon. It suggests that the Dirac equation may be used for
the special case of a scalar interaction that shifts the masgteractions which vary slowly over the size of a nucleon,

linearly, i.e.,M—M +S. Birse[2] has discussed more gen- such as those in nuclear scattering or mean fields.
eral scalar and vector interactions and has shown that the

momentum-dependent term of E§.25 is accompanied by ACKNOWLEDGMENTS
a model-dependent scalar term when the interaction causes a

nonlinear shift of the mass with respect to the scalar strengt% This work was initiated at a joint CEBAF/INT workshop,

S. A similar analysis as the one given here based on th eptember 17-26, 1993. Support by the U.S. Department of

Lagrangian of Eq(3.3) can provide a demonstration of that —¢'9Y under Grants No. DE-FG02-93ER-407€2J.W)
result as well. Birse’s generalization is important because thgnd No. DE-AC05-84ER4015F.L.G) is gratefully ac-
scalar interaction that gives rise to a linear mass shift ma nowledged.
not be applicable to the interactions of a nucleon. Neverthe-
less, there is a low-energy theorem for an arbitrary scalar
interaction that shows that the momentum-dependent term of
Eq.(5.25 is always present. Thus the main contribution that In this appendix we find the quantiti&,, 89, A°, and
arises fromz graphs when a nucleon is treated as a DiracC? introduced in Sec. Ill, and evaluate the matrix elements
particle in nuclear scattering and mean-field analyses is given in Egs.(3.20 and(3.22.
simple consequence of Lorentz invariance and scalar inter- We begin with the expansion of the propagator given in
actions. It is not suppressed by compositeness of the nucledfy. (3.5). To obtain the results given in E¢3.7) we ratio-
in the low-energy limit. nalize the propagator, and expand the scalar functoasad

In order to emphasize the model independent result, th8 in a power series in the parame@— M?:

APPENDIX: MATRIX ELEMENTS
FOR VECTOR INTERACTIONS

G(p)= A(p?)p+1-B(p?) _ 1—Bo+Agp+(p°—M?)(Agh—Bg) + [ (p*~ M?)?] (A1)
[1-B(p*)*=A%(p*)p*  [1-Bo]*—AM?—(p*~M?)co—(p*—M?)%cy + [ (p°— M?)*]’
|
where the constants, andc, are is a wave function normalization constant. Nonelementary
S ) ) propagation due to excited states of invariant masses greater
Co=2[1—Bo]Bo+Aj+2M“AoAg, thanM gives rise to the additional terdG(p) and g [de-
c1=[1—-Bo]Bg— (Bg)*+M?[AgAg+(Ag)]+2A0A,, ;‘L]nged in Eq.(3.7)] which are nonsingular ai,— €. Introduc-
(A2)
with Ag=A(M?), Aj=dA(p?)/dp?| 2_m2, Aj=d?A(p?)/ E,,_dzz(;é)
d?p?| p2_ w2, and similarly forBy, By, andBg. If the propa- ST A
gator is to have gositive energy pole atp?=M?, then p=p
1-By=MA,, and the propagator reduces to =4M2(AM +Bp) +2(AjM +B()+4MA, (A5)
+p Ag 0 Cy
G(p)=Z; WJFA—OD—A—O—(MJFNC—O and two constants
+(p?—M?), (A3)
AM=B; ¢\ M_ _,
where E=M Y _20_0 = ?ZZE . Z=—Z5A0,
-1 ’ ’ ’ dz(}é) (A6)
—(Z3) " =Ap+2M[MAy+ Bo]zzo:d—p|p=m ,

(A4)  we find



53 SCALAR AND VECTOR INTERACTIONS OF A COMPOSITE ... 869

p+M 1-Z\p—M M2 o-p
v(p)=( P , (A8)
26 1
v(—p)v(—p) and the two constants andZ depend on the internal struc-
69=2, —po Te +6G(p)|. (A7) ture of the composite bound state and are the only constants

one needs in order to discuss the various contributions to the
second-order interaction.

Next we obtain the expansions given in E§.12. The
Herev(—p) is a negative-energy Dirac spinor defined by vertex function is

)Y
A%(p,p)=- =—{7°Ao+2p°(Agp+Bg) + (P>~ M?)[y°As+2p°(AGp+By) 11+ L (PP —M?)?].  (A9)

HenceAg and §A defined in Eq(3.12 are
—AG= Ao+ 2e(Ajp+Bg),  — BAo=4ey?As+2(Agh+Bg) +4€X(AGh+ B (A10)

wherep=(¢,p) andA}, etc. are the derivatives of the scalar self-energy functions which we encountered before. The contact
term is

COO= 224 0 OA/ ’ ! _ 2
—— =4p%y°PAs+2(Agh+Bg) +4(p°)A(AGH+BE) + (p®—M?). (A11)

HenceCY’
CP0=4eyOA)+2(Ayp+BY) +4eX(ALp+BY). (A12)
We see immediately that
— AT =Z,u(p)[Y° Ao+ 26(AgM + B Ju(p) =1,

—T'8A I =T'CYT = Z,u(p)[4eyPA)+ 2(AjM + BY) + 4€2(ApM + BS) Ju(p)

2M 2p2 2¢ p?
=25 4eAs+ — (AGM+Bg) + AM e(AGM +BY) | = 3+ 2536~ - Za(AgM +Bg) = Tz é+ 1o (1-2).

(A13)

Finally, we evaluate the matrix element 6§. This consists of two terms. The first is tlkegraph contribution of the
composite system, which requires the matrix elements

u(p)Agu(—p)=v(—p)AgU(p)=20-p(AgM +By). (A14)

Hence thez-graph contribution becomes, pS— e,

u(p)Agu(—p)v(—p)Agu(p) 2 2
= poie iZZ(AOM""BO)ZZ i

2MZe

(z-graph =23 (1-2)2. (A15)

Note that this depends on the valueAfas discussed in Sec. V. TI#& term gives

s M (1-Z\p—M
(Z,6G)=Z5u(p)[ Y’ Ao+ 2e(AM +Bg)] M2§ 27 | 2Mm2

}[70A0+ 2e(AgM +Bg) Ju(p)
€ p?
= Wf'i‘ mZ(l—Z), (A16)

where we used the identities
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2p?

U(p)Y°(M=p)y°u(p)=u(p)(M+p—2e¥*)u(p)=——,

u(p)y°(M+p)y°u(p)=u(p)(M —p+2ey°)u(p) =2e.

Combining(A15) and (A16) gives Eq.(3.22):

(z-graph +(Z,6G)= %&L m(l—Z).

(A17)

2
i (A18)
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