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In a recent paper@Phys. Rev. C49, 2142~1994!#, Haberzettl presented clusterN-body equations for arbi-
trarily large systems of nucleons and mesons. Application to the three-nucleon system is claimed to yield a new
kind of three-nucleon force. We demonstrate that these three-nucleon equations contain double counting.

PACS number~s!: 21.30.Fe, 21.451v, 21.60.Gx, 24.10.Jv
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Recently, Haberzettl proposed a relativistic formalism f
the nuclearN-body problem that is based on the descriptio
of clusters rather than of individual particles@1,2#. In Ref.
@2#, this formalism, which he calls relativistic cluster dynam
ics ~RCD!, is illustrated by several examples, among the
the three-nucleon system with explicit pion andD degrees of
freedom in addition to the usual nucleonic ones. It is claim
that the RCD description yields, among others, a certain o
pion exchange three-nucleon force that has not been inclu
in any three-nucleon calculation so far@2,3#. In this Com-
ment, we evaluate the RCD graphs of this one-pion excha
three-nucleon force using the ‘‘RCD rules’’ for the calcula
tion of cluster graphs as they are specified in the Appendix
@2#. We may compare it to a graph that results from th
iteration of the so-called nucleon-exchange diagram wh
describes three-nucleon scattering solely in terms of the tw
nucleon interaction. We find that the contributions of th
one-pion exchange three-nucleon force are identical to
part of the iterated nucleon-exchange diagram that is due
the pionic component of the two-nucleon interaction. As

FIG. 1. Lippmann-Schwinger–type equation for three-bod
scattering. In all figures, solid lines are nucleons, dashed lines
pions. Open semicircles are two-nucleon form factors, hashed se
circles are pion production and absorption vertices.
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consequence, including the one-pion exchange three-nuc
force amounts to double counting.

The basic equation of RCD is an effective two-bo
Lippmann-Schwinger equation of the form

Tsr5Usr1(
t
UstG0

tTtr, ~1!

whereT is the total scattering amplitude for the transitio
from a two-cluster partitionr to a two-cluster partitions;
G0

t describes the free propagation of two clusters, cor
sponding to the partitiont, that do not interact with each
other but are internally fully interacting. The driving termU
contains all diagrams that are irreducible with respect
G0

t . Figure 1 displays Eq.~1! in graphical form together with
the three diagrams ofU that we will focus on.

To demonstrate most clearly the double counting in th
equations, let us consider the lowest order connected fi
theoretical Feynman graph shown in Fig. 2. As a Feynm
diagram, it sums all possible time orderings of pion e
changes, in particular also all processes where at least
pions are exchanged in overlapping time intervals. With
the RCD approach two classes of contributions can be id
tified with this Feynman graph. The diagramsB1 andB2 in

y
are
mi- FIG. 2. Lowest-order connected pion exchange Feynman gr
contribution to the three-nucleont-matrix.
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the driving force in Fig. 1 belong to one type, whereas the
is also a contribution from iterating the Lippmann-Schwing
equation once.

Let us first consider the class of diagrams as occurring
the driving force in Fig. 1. In particular, we confine ourself t
re
er

in
o

the graphsB1 andB2 , which have been argued in Refs.@2,3#
as leading to the new three-nucleon force contributions.
diagramB1 of Fig. 1 is evaluated following the RCD rules of
Ref. @2#, we get~ignoring the three-momentum dependenc
and phase-space factors!
atter
that
B1}
i

2pE dk0@gf~k01e2e8,E2e8!#†tb8~k01e2e82Eb81 i0!@ f db,b8~e2e8,k01e2e8!#†tb~k02Eb1 i0!

3ta~E2e2k02Ea1 i0!td~e2e82vd1 i0! f dg8,g~e2e8,e!gi~k0 ,E2e!, ~2!

where t and t are the nucleon and pion RCD propagators,g and f the two-nucleon and pion-nucleon vertex functions~or
‘‘form factors’’ in the terminology of separable interactions!, andEa andvd are the on-shell energies of the nucleona and the
pion d, respectively. Similarly, diagramB2 yields

B2}
i

2pE dk0@gf~k01e2e8,E2e8!#†tb8~k01e2e82Eb81 i0!@ f dg,g8~e82e,e8!#†tb~k02Eb1 i0!

3ta~E2e2k02Ea1 i0!td~e82e2vd1 i0! f db8,b~e82e,k0!gi~k0 ,E2e!. ~3!

The precise meaning of the occurring energy variables and cluster indices is defined in Fig. 3. Since energy~and momentum!
is conserved at each vertex, it is sufficient to label the form factors by two arguments only, the choice of which is just a m
of taste. We choose our notation such that it is easy to follow the ‘‘flow of energy’’ through the diagrams along the path
includes the pion line. While thepNN vertices carry subscripts for all connecting clusters, we characterize theNN form
factors only as initial (i ) and final (f ). Assuming pointlike pion-nucleon vertices, we get

B11B2}
i

2p
Du f u2E dk0@gf~k01e2e8,E2e8!#†tb8~k01e2e82Eb81 i0!tb~k02Eb1 i0!

3ta~E2e2k02Ea1 i0!gi~k0 ,E2e!, ~4!
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whereD is the pion propagator,

D5td~e2e82vd1 i0!1td~e82e2vd1 i0!. ~5!

In order to establish the relation with the Feynman graph
Fig. 2, we note that the two-nucleon form factorsgi andgf
are directly related to the one-meson exchange gra
through the separable expansion of the two-nucleont matrix.
In view of this, Eq.~4! can readily be identified as corre
sponding to the Feynman graph of Fig. 2, with only t
positive energy states kept in the nucleon propagators
pointlike pion-nucleon vertices taken.

We now turn to the other class of diagrams as obtain
from iterating the integral equation. If we iterate diagramA

FIG. 3. Energy and cluster variables for the evaluation of d
gramsB1 andB2 of Fig. 1.
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of Fig. 1 once, we get the diagram depicted in Fig. 4. Part o
the iterated graph is a full two-nucleont matrix that can be
determined at the hierarchically lower two-body level. It is
an essential feature of the RCD strategy to build up cluste
amplitudes at theN-body level from those of the
(N-1!–body level in a consistent fashion. The kernel of the
two-nucleon cluster equations from which the two-nucleon
t-matrix is calculated is shown in Fig. 17 of Ref.@2#. At this
point we are only interested in the one-pion exchange con
tributions to the two-nucleon interaction. The two-nucleon
t-matrix, as illustrated in Fig. 5, consists of single pion-
exchange processes plus all iterations~for this discussion,
any other contributions than those of pions are irrelevant an
not considered for simplicity!.

If we keep only the lowest-order pion-exchange contribu
tion to the two-nucleont-matrix, the iterated one-nucleon
exchange contribution reduces to the graphs of Fig. 6. W
may note that the only difference between the two diagram

ia-
FIG. 4. Iterated one-nucleon exchange graphA of Fig. 1.
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of Fig. 6 and diagramsB1 and B2 of Fig. 1 consists in a
different arrangement of the pion production and absorpti
vertices, respectively. At first sight, this suggests that diffe
ent physical processes are involved. However, the clus
diagrams of RCD should not be confused with diagrams
ordinary time-ordered perturbation theory, nor with Feynm
diagrams. They are ‘‘time’’ -ordered in the sense that vertic
can ‘‘open’’ or ‘‘close’’ as one follows the lines representin
clusters in a given diagram~from right to left, according to
the convention of Ref.@2#!. In other terms, a cluster can
break up into two new clusters, and two clusters can comb
to a single one, respectively. Since the two processes are
equivalent, the vertices induce an ordering that resemble
‘‘time’’ ordering. This is different in a Feynman diagram
where a vertex describes absorption and emission simu
neously. The rules of RCD as given in the Appendix of Re
@2# assign vertex functions and propagators to each diagra
their energy and momentum dependence is completely de
mined by energy and momentum conservation at each v
tex. It is therefore irrelevant whether, e.g., the pion produ
tion vertex of diagramB1 is drawn on the right or left side of
the two-nucleon form factorgi . Hence, the expressions fo
the graphs of Fig. 6 are exactly the same as the ones
B1 andB2 of Fig. 1, namely Eqs.~2!–~4!. Of course, since

FIG. 5. Lowest-order pionic contributions to the two-nucleo
t-matrix.
on
r-
ter
of
an
es
g

ine
not
s a

lta-
f.
m;
ter-
er-
c-

r
for

we are dealing with the same expressions as forB1 and
B2 , it follows immediately that identifying the two-nucleon
vertex functions through Fig. 5 as corresponding to the on
pion exchange between the two nucleons leads again to
Feynman graph of Fig. 2 with only the positive energy par
of the nucleon propagators kept.

Hence, the Feynman graph contribution of Fig. 2
counted twice in the RCD equations. Unlike in a nonrelati
istic theory, iterating the two-nucleon interaction automa
cally includes all time orderings of particle exchanges, a
time-overlapping processes need not be added by hand. F
the above considerations it is obvious, that the RCD equ
tions contain in general double counting of a certain class
field-theoretical graphs. The basic reason for this doub
counting is that the structure of the vertex functions is
principle dependent on the underlying interaction. As a r
sult, certain contributions from the field-theoretical graph
will appear at different places in the RCD approach, leadi
to double counting of graphs.
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FIG. 6. Lowest-order pionic contributions to the iterated on
nucleon exchange term of Fig. 4.
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