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In a recent papelPhys. Rev. (49, 2142(1994], Haberzettl presented clustrbody equations for arbi-
trarily large systems of nucleons and mesons. Application to the three-nucleon system is claimed to yield a new
kind of three-nucleon force. We demonstrate that these three-nucleon equations contain double counting.

PACS numbds): 21.30.Fe, 21.45v, 21.60.Gx, 24.10.Jv

Recently, Haberzettl proposed a relativistic formalism forconsequence, including the one-pion exchange three-nucleon
the nucleaN-body problem that is based on the descriptionforce amounts to double counting.
of clusters rather than of individual particlgs,2]. In Ref. The basic equation of RCD is an effective two-body
[2], this formalism, which he calls relativistic cluster dynam- Lippmann-Schwinger equation of the form
ics (RCD), is illustrated by several examples, among them
the three-nucleon system with explicit pion ahdiegrees of
freedom in addition to the usual nucleonic ones. It is claimed ToP=U"+ 3, UTGIT™, 1)
that the RCD description yields, among others, a certain one- 7
pion exchange three-nucleon force that has not been included
in any three-nucleon calculation so fi#,3]. In this Com- whereT is the total scattering amplitude for the transition
ment, we evaluate the RCD graphs of this one-pion exchangigom a two-cluster partitiorp to a two-cluster partitioru;
three-nucleon force using the “RCD rules” for the calcula- G; describes the free propagation of two clusters, corre-
tion of cluster graphs as they are specified in the Appendix o§ponding to the partitiom, that do not interact with each
[2]. We may compare it to a graph that results from theother but are internally fully interacting. The driving tetin
iteration of the so-called nucleon-exchange diagram whicleontains all diagrams that are irreducible with respect to
describes three-nucleon scattering solely in terms of the twos (. Figure 1 displays Eq1) in graphical form together with
nucleon interaction. We find that the contributions of thethe three diagrams d that we will focus on.
one-pion exchange three-nucleon force are identical to the To demonstrate most clearly the double counting in these
part of the iterated nucleon-exchange diagram that is due tequations, let us consider the lowest order connected field-
the pionic component of the two-nucleon interaction. As atheoretical Feynman graph shown in Fig. 2. As a Feynman
diagram, it sums all possible time orderings of pion ex-
changes, in particular also all processes where at least two

L@_ = |UL + pions are exchanged in overlapping time intervals. Within

the RCD approach two classes of contributions can be iden-
_. = G_:E + f—"' + “\5! +oaes
A B, B,

tified with this Feynman graph. The diagrafdg and B, in

FIG. 1. Lippmann-Schwinger—type equation for three-body
scattering. In all figures, solid lines are nucleons, dashed lines are
pions. Open semicircles are two-nucleon form factors, hashed semi- FIG. 2. Lowest-order connected pion exchange Feynman graph
circles are pion production and absorption vertices. contribution to the three-nucledrmatrix.
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the driving force in Fig. 1 belong to one type, whereas therehe graph$; andB,, which have been argued in Reffg,3]

is also a contribution from iterating the Lippmann-Schwingeras leading to the new three-nucleon force contributions. If

equation once. diagramB; of Fig. 1 is evaluated following the RCD rules of
Let us first consider the class of diagrams as occurring ifRef. [2], we get(ignoring the three-momentum dependence

the driving force in Fig. 1. In particular, we confine ourself to and phase-space factprs

i . .
BlOC Ef dko[gf(ko+ e— e,,E_e,)]Ttﬁ/(ko"‘ e_e’ - E'31+I0)[f5'3”3/(e—e',k0+ e— e,)]TtB(kO_ Eﬂ+|0)

Xt (E—e—ko—E,+i0)75(e—e —ws;+i0)f,, [(e—e’,e)gi(ky,E—e), 2

wheret and r are the nucleon and pion RCD propagatgrsand f the two-nucleon and pion-nucleon vertex functiqos
“form factors” in the terminology of separable interactionandg, andw s are the on-shell energies of the nuclesand the
pion &, respectively. Similarly, diagrarB, yields

i . o ,
B, %J dko[gs(kote—e’,E—e")]"tg (kote—e —Egz +i0)[fs, (e —e.e)] ts(kg—Eg+i0)

Xta(E_e_ ko_ Ea+i0)7'5(e'—e—w5+i0)f55rﬁ(e’—e,ko)gi(kO,E—e). (3)

The precise meaning of the occurring energy variables and cluster indices is defined in Fig. 3. Sincéagmaengymentum

is conserved at each vertex, it is sufficient to label the form factors by two arguments only, the choice of which is just a matter
of taste. We choose our notation such that it is easy to follow the “flow of energy” through the diagrams along the path that
includes the pion line. While therNN vertices carry subscripts for all connecting clusters, we characterizl khéorm

factors only as initial ) and final ). Assuming pointlike pion-nucleon vertices, we get

i : :

Xt (E—e—ko—E,+i0)gi(ky,E—e), (4)

whereA is the pion propagator, of Fig. 1 once, we get the diagram depicted in Fig. 4. Part of
the iterated graph is a full two-nuclearmatrix that can be
A=75e—€ —ws;+i0)+75€ —e-w;+i0). (5  determined at the hierarchically lower two-body level. It is
, , i an essential feature of the RCD strategy to build up cluster
In order to establish the relation with the Feynman graph OBmpIitudes at theN-body level from those of the
Fig. 2, we note that the two-nucleon form fact@isandgs  (N-1)-body level in a consistent fashion. The kernel of the
are directly related to the one-meson exchange graph§o-nucleon cluster equations from which the two-nucleon
through the separable expansion of the two-nuctematrix.  {_matrix is calculated is shown in Fig. 17 of RE2]. At this
In view of this, Eq.(4) can readily be identified as corre- oint we are only interested in the one-pion exchange con-
sponding to the Feynman graph of Fig. 2, with only theyjhytions to the two-nucleon interaction. The two-nucleon
positive energy states kept in the nucleon propagators andmatrix, as illustrated in Fig. 5, consists of single pion-
pointlike pion-nucleon vertices taken. _ exchange processes plus all iteratiqfar this discussion,
We now turn to the other class of diagrams as obtainegny other contributions than those of pions are irrelevant and
from iterating the integral equation. If we iterate diagrAm ot considered for simplicity
If we keep only the lowest-order pion-exchange contribu-
tion to the two-nucleort-matrix, the iterated one-nucleon
e ’v_e Q" Y.e exchange contribution reduces to the graphs of Fig. 6. We
. N may note that the only difference between the two diagrams

B,e—eL/' + \\E,e'-e
. N
B kred g “B.x, Bk +e—;'\ B,k
E-¢' Ee E-e o Ke " . Ee
ao,E-ek, o ,E-ek,

FIG. 3. Energy and cluster variables for the evaluation of dia-
gramsB; andB, of Fig. 1. FIG. 4. lterated one-nucleon exchange grapbf Fig. 1.
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FIG. 5. Lowest-order pionic contributions to the two-nucleon

t-matrix. FIG. 6. Lowest-order pionic contributions to the iterated one-
nucleon exchange term of Fig. 4.

of Fig. 6 and diagram®, and B, of Fig. 1 consists in a

different arrangement of the pion production and absorptio ,, it follows immediately that identifying the two-nucleon

vertices, respectively. At first sight, this suggests that differ- : : :
ent physical processes are involved. However, the cluste grtex functions through Fig. 5 as corresponding to the one-

diagrams of RCD should not be confused with diagrams oﬁ':nn;X;:acgehbggvg?enztcvim %Inliﬁleeogssiiﬁlaed:naegram tgrttge
ordinary time-ordered perturbation theory, nor with Feynman y grap 9. y P ayp

diagrams. They are “time” -ordered in the sense that verticesOf ﬁgnréléd?ﬁg plzrgprellggr?rs :<aepr':. contribution of Fig. 2 is
can “open” or “close” as one follows the lines representing ’ y grap 9-

clusters in a given diagrartirom right to left, according to f:opnted twige in the RCD equations. Unlike in_a nonrelati\{-
the convention of Ref[2]). In other terms’ a cluster can istic theory, iterating the two-nucleon interaction automati-

break up into two new clusters, and two clusters can combinE;IIy includes all time orderings of particle exchanges, and

e are dealing with the same expressions asHegrand

to a single one, respectively. Since the two processes are n lpe-overlapplng processes need not be added by hand. From

equivalent, the vertices induce an ordering that resembles Eoisgg\r:?aﬁoi?]&d:r:z:gndsoﬁbllse ?:tz)\tljlr?tLljrsl tgfa; tcheertgﬁlglz:siugg
“time” ordering. This is different in a Feynman diagram 9 9

where a vertex describes absorption and emission simulta('—eld'theoret'cal graphs. The basic reason for this double

neously. The rules of RCD as given in the Appendix of Ref counting is that the structure of the vertex functions is in

; . . rinciple dependent on the underlying interaction. As a re-
[2] assign vertex functions and propagators to each dlagranﬁ)mt’ certain contributions from the field-theoretical graphs

their energy and momentum dependence is completely detet. . . )
mined byggnergy and momenttrj)m conservation Zt ea)c/h ve vill appear at different places in the RCD approach, leading

tex. It is therefore irrelevant whether, e.g., the pion produc—0 double counting of graphs.

tion vertex of diagranB, is drawn on the right or left side of Support by the U.S. Department of Energy under Grant
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