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Dielectric response of a nondegenerate electron gas in semiconductor nanocrystallites

E. van Faassen
Debye Institute, Section Interface Physics, Ornstein Laboratory, Utrecht University, 3508 TA, Utrecht, The Netherlands

~Received 15 July 1998!

We investigate the low-frequency dielectric response of a dilute electron gas in a small spherical semicon-
ductor particle. The flow of the electrons is described by hydrodynamic equations which incorporate the
electrostatic interactions between the electrons in a self-consistent fashion. In the low-frequency regime, the
dielectric loss is small and proportional to the frequency, despite substantial field penetration into the semi-
conductor. The loss remains small even for high doping levels due to effective cancellation between field-
induced drift and diffusion. The model is used to estimate the complex dielectric constant of a system of
weakly conducting nanosized semiconductor particles. The most prominent manifestation of spatial dispersion
is that photoinduced changes in the real and imaginary parts of the dielectric constant are positive and of
comparable magnitude.@S0163-1829~98!05548-9#
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I. INTRODUCTION

The dynamical properties of mobile charge carriers ins
nanostructured semiconductors have been the subject o
tensive research. Many interesting phenomena have b
found to result from the inhomogeneity on a microsco
scale.1–4 Three aspects in particular have attracted attent
First, size quantization effects5–8 discretize and modify
the electronic states when the typical size of the semicond
tor structures becomes of the order of the exciton rad
~;1–5 nm!.9,10

Second, the high surface-to-volume ratio means that
surface plays a crucial role in the dynamics of charge carr
inside the semiconductor. A technologically important e
ample is given by the very high photoelectron quantum yi
found in nanostructured photovoltaic devices.11,12 Third, the
details of the semiconductor topology~such as connectivity!
or the presence of microscopic grain boundaries profoun
affect the macroscopic transport properties of mobile cha
carriers.13,14 It is a wholly classical phenomenon arisin
when the structural dimensions are on the same scale a
inhomogeneity in the electron distribution. A further comp
cation arises from possible quantum size effects on cha
carrier mobility.15

The calculation of dynamical properties such as dielec
response or dynamical screening poses a complicated p
lem caused by the possibility of buildup of charge on inter
surfaces or grain boundaries. Conventionally, the effec
mobile charge carriers on the bulk effective complex diel
tric constant is accounted for by adding an imaginary c
ductivity term to the dielectric constante of the medium in
which the charge carriers move. For a conductive medi
the Drude model for the complex dielectric constanted5ed8
1 i ed9 gives ~cf., e.g., Ref. 16!

ed5eS 11 i
Vp

2t

v~12 ivt!
D . ~1!

Herev is the frequency of the applied field,t is the momen-
tum relaxation time of the Drude electrons, andVp denotes
the plasma frequency inside the medium.
PRB 580163-1829/98/58~23!/15729~7!/$15.00
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The same expression is often applied to the dielec
properties of a dilute~nondegenerate! electron gas in a semi
conducting medium as well. In the regime of low frequenc
(vt!1), this Drude formula predicts that an infinitesim
increase in electron density should induce an increase in
electric loss (ded9.0) as well as a much smaller decrease
dielectric response (ded8,0),

ded852vtded9 ~Drude!.

In contrast, experimental observation of the photodielec
response of doped porous semiconductors shows that the
are of comparable magnitude and both have a positive s

On a more quantitative basis, the Drude formula fails
well: For typical moderately doped semiconductors, cond
tivities are of the order ofs51210 (V s)21. Therefore,
Drude theory predicts that the imaginary part dominates
several orders of magnitude for all submicrowave frequ
cies (v/2p<10 GHz), again in clear conflict with experi
mental findings of low dielectric loss in doped nanocryst
line powders or suspensions. The reason cannot be exce
screening of the electric fields~as in metals! since the typical
Debye screening length is of the order of the crystallite si
This implies substantial penetration of the electric fields in
the conducting core of the crystallite.

We therefore consider the dielectric response of a na
sizedn-doped semiconductor particle. We assume comp
ionization of the donor states, which provide a uniform po
tive space-charge density in which the electrons move.
collective response of the electron gas is described by hy
dynamical flow subjected to an external harmonic field. S
lution of the hydrodynamical equations allows us to det
mine the polarizability and loss factor of the particle, as w
as study the degree of screening on a microscopic sc
Subsequently, the results for a single weakly conduct
nanocrystallite are used to predict the effective complex
electric constant of a powder. Serving as a model for
low-frequency dielectric properties of a porous semicond
tor, we find good estimates of the dielectric loss factor.
15 729 ©1998 The American Physical Society
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15 730 PRB 58E. van FAASSEN
particular, the magnitude and sign of the dielectric respo
find a natural explanation as manifestations of spatial dis
sion.

II. THE HYDRODYNAMICAL MODEL

The calculation of the dielectric loss in an electronic m
terial is considerably more involved than the treatment
electronic polarization. For the electronic polarization, on
the static properties of the ground state need to be consid
under weak perturbation by an external static field. T
ground-state properties of an electron gas suffice here
contrast, the dielectric loss is inseparable from the time
pendence of the external field, and the dynamic respons
the electron gas must be treated in detail. The most deta
and sophisticated theoretical approach is the time-depen
Hartree-Fock~TDHF! method. While conceptually clea
TDHF involves prohibitive computational effort when a
plied to systems with many electrons. To circumvent t
problem, several semiclassical approaches have been
posed which involve only the local electron density as
dynamic variable.

The earliest density method was the Thomas-Fe
theory17 developed for the ground-state properties of a hig
degenerate electron gas in metals. This Thomas-Fermi
malism provided the theoretical basis for the hydrodynam
Bloch model,18 which describes the dynamics of the ele
tronic motion as the flow of a nonviscous compressible flu
The model has been applied to a wide range of proble
involving the degenerate electron liquid in bulk metals a
metal clusters.19–22 The validity of such semiclassical ap
proaches hinges on the neglect of the discreteness of
underlying ionic lattice and the use of the local electron d
sity. The validation of the hydrodynamic approach down
very small (N'100) metallic clusters has recently be
given in Ref. 23.

For applications considering the motion of charge carri
in a semiconductor particle, the hydrodynamic equatio
have to be modified to accommodate a low degree of deg
eracy and account for momentum loss from the electron fl
caused by the effective friction with the semiconductor ba
ground. The internal friction~viscosity! of the electron liquid
is assumed negligible. In the presence of a local electric fi
E, the local velocity fieldv(r ,t) is related to the local pres
surep of the electron gas via the Euler equation

]

]t
v2~v•“ !v52

1

t
v2

1

men
“p2

e

me
E. ~2!

The electron densityn(r ,t) and the velocity field are relate
through the continuity equation

]

]t
n1div~nv!50, ~3!

whereme is the effective electron mass inside the semic
ductor. The momentum relaxation timet accounts for the
momentum loss due to collisions with impurities, lattice im
perfections, or phonons. The second term of the Euler eq
tion accounts for diffusive flow induced by density vari
tions, and the final term accounts for the flow induced by
interaction with the local electric field. The electric field
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the sum of the external field and the internal fields due to
charge density of the electron gas and of the uniform dop
densityn0 ~assuming the donor states to be fully ionized!,

div E52
e

ee0
~n2n0!, ~4!

wheree is the dielectric constant of the semiconductor a
e0 is the permittivity of vacuum.

These equations are supplemented by the equation of
which relates the local pressurep to the local electron den
sity. For nondegenerate semiconductors~low doping den-
sity!, we assume that the local pressure is given by the eq
tion of state for an ideal classical gasp(r ,t)5n(r ,t)kT. For
small perturbing fields and small density deviationsn̂(r )
5n(r )2n0 , the hydrodynamical equations may be linea
ized in n̂ and take the form of a homogeneous damped w
equation,

2
1

Vp
2

]2

]t2
n̂2td

]

]t
n̂5n̂2L2Dn̂, ~5!

where Vp5An0e2/ee0me and L5Aee0kT/n0e2 are the
plasma frequency and Debye screening length, respectiv
The dielectric relaxation time is given bytd5(Vp

2t)21. For
fields with harmonic time dependencee2 ivt, this partial dif-
ferential equation reduces to the Helmholtz equation w
complex Helmholtz lengthz,

n̂2z2Dn̂50, ~6!

z25
L2

12
v2

Vp
2
2 ivtd

. ~7!

In this form, the problem of dielectric response has th
characteristic time scales~field frequencyv, plasma fre-
quencyVp , and dielectric relaxation timetd! and two length
scales~particle size and Debye screening length!. Supple-
mented with proper boundary conditions, the Helmho
equation describes surface plasmons (v,Vp) as well as
bulk plasmons (v.Vp). These collective excitations of th
electron liquid appear damped with the characteristic die
tric relaxation timetd due to momentum relaxation assoc
ated with the hydrodynamic flow. For subgigahertz freque
cies and in a typical moderately doped semiconductor,Vp

@td
21@v.
The hydrodynamic equations may be recast in terms

the electrostatic potentialF i inside the semiconductor par
ticle @cf. Eq. ~4!#,

~12z2D!DF i50. ~8!

Outside of the particle, the potentialFo satisfies the Poisson
equation

DFo50. ~9!

These equations may be solved in closed form after apply
the usual electrostatic boundary conditions at the surfac
the particle~div D50 and continuity of the electrostatic po
tential! appropriate for a dielectric surface, and imposing t
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PRB 58 15 731DIELECTRIC RESPONSE OF A NONDEGENERATE . . .
additional requirement that the flow of electrons be tang
tial at the surface. Withe' denoting the normal vector of th
surface, tangential flow requires that the following relati
holds at the surface:

e'•S 2
kT

me
“n1

en0

me
ED

surface

50. ~10!

For spherical particles, the appropriate solution of
Helmholtz equation is a spherical Bessel function with
complex argument. Solving for the electrostatic poten
outside of the sphere with volumeV ~cf. the Appendix!, the
induced dipole moment is given by

p~v!523e0a~v!VE~v!, ~11!

wherea(v)5a81 ia9 is the complex polarizability of the
particle. From elementary electrostatics, two special ca
are well known:a51 for a highly conducting sphere~com-
plete screening! anda5(e21)/(e12) for a nonconducting
dielectric sphere. For intermediate conductivities, the po
izability is complex, with a positive imaginary part in orde
to comply with causality.

The time-averaged power dissipationW in the particle is
related to the imaginary part of the polarizability as

W5 3
2 e0Vva9E2. ~12!

III. COMPARISON WITH MIE SCATTERING

Within the framework of classical electromagnetic theo
a model for the interaction of a small spherical particle w
electromagnetic radiation was first worked out by Mie.24,25In
this formalism, the solutions of the wave equation do n
account for spatial dispersion inside the scatterer. The s
tering amplitudes are determined by the complex dielec
constants of the scatterer and the surrounding medium
well as the geometrical shape of the scattering particle. T
problem has been worked out for a variety of geometrie26

For a spherical particle with size far smaller than the wa

FIG. 1. Frequency dependence of polarizabilitya8 for several
values of the Debye screening lengthL. The dielectric constant o
the sphere is 10, and the radius is 50 nm.td is the dielectric relax-
ation time. The solid line gives the prediction from Mie theory. T
deviations from the Mie result are manifestations of spatial disp
sion inside the dielectric sphere.
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length of the incoming wave, the polarizability in the M
approximation is given by

aMie5
ed21

ed12
, ~13!

whereed denotes the complex dielectric constant of a Dru
conductor@cf. Eq. ~1!#. Note that the Mie approximation to
the polarizability does not depend on the particle size.
such, it differs from the exact expression which has a s
dependence resulting from spatial dispersion.

Combining with Eq.~12!, we find the absorption of a
single spherical particle in the Mie approximation,

WMie5 3
2 e0Vv Im~aMie!E2. ~14!

The range of validity of the Mie formalism is determine
by the conditions under which the effects of spatial disp
sion may be neglected. For scattering from a sphere w
radiusR, this implies that Mie theory should be reliable fo
uR/zu@1, wherez is the complex Helmholtz length define
in Eq. ~7!. As discussed in the Appendix, our analytical e
pression for the polarizability indeed approaches the Mie
sult in this limit,

lim
R/z→`

a~v!5aMie~v!. ~15!

With a typical screening length in metals~semiconductors!
of 1.0 Å ~10 nm!, the Mie treatment loses validity for particl
sizes below;10 Å ~100 nm!. As soon as the particle siz
approaches the screening length, both real and imagin
parts of the polarizability drop substantially below their M
values.

IV. RESULTS

The above equations permit evaluation of the dielec
response of the mobile charge carriers to an external
monic electric field. In particular, they provide a microscop
picture of the electron density and the electron flow ins
the particle, and give a model for the complex polarizabil
of a weakly conducting spherical particle. All calculation
are for a semiconductor particle with radiusR550 nm, e
510, and placedin vacuo.

Figure 1 shows that the frequency dependence ofa8 is
second order. The real part of the polarizability remains
sentially unchanged up tovtd'0.1. The dependence ofa8
on the ratioR/L of radius and Debye length is mild, an
interpolates smoothly between the two extreme cases
metallic sphere~complete screening anda51! and an iso-
lating dielectric sphere@a5(e21)/(e12)5 3

4 for e510#.
Turning to the dielectric loss factora9 ~cf. Fig. 2!, we note
that dielectric loss is much smaller than the prediction fro
Mie theory as soon as the Debye screening length
proaches the particle size. This behavior is not caused
excessive screening, since substantial penetration of the
trical field into the semiconductor particle can still occu
The reason for low dielectric loss is found in the substan
cancellation between the hydrodynamic forces due to
field and due to the electron density gradient. Phrased ot
wise, there is substantial cancellation between the last
terms in the Euler equation Eq.~2!. In the limit of zero fre-

r-
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15 732 PRB 58E. van FAASSEN
quency, complete cancellation occurs as field-induced d
and density gradient diffusion are equally balanced. The
ance is lost for time-dependent fields as the density va
tions will follow the field with a time lag determined by th
dielectric relaxation timetd . The resulting hydrodynamic
flow is dissipative and leads to a nonzero dielectric loss f
tor a9. We note that the cancellation is caused by a nonz
electron density gradient. As such, it is a direct manifesta
of spatial dispersion and very relevant for situations wh
the particle size is comparable to the length scale for spa
dispersion~Debye screening length!.

Finally, we note that the actual current density carried
the hydrodynamic flow is far smaller than the value expec
from the constitutive equationJ5sE, which lies at the basis
of the Mie calculation. This is illustrated by the failure of th
conventional27,28expression for current-induced power dis
pationWc ,

Wc5 1
2 sE E2~r !dV, ~16!

where the integral is over the volume of the sphere ands is
the conductivity. The electric field distributionE(r ) is
known explicitly from the solution of the wave equation i
side the particle~cf. the Appendix!, and the volume integra
was implemented numerically by a Gaussian integration o

FIG. 3. Power dissipation in a single spherical particle a
function of particle size. The parameters aree510, L510 nm, and
vtd50.1. The curves are scaled withWMie , the power loss in the
Mie approximation. The solid curve gives the exact resultW/WMie

@cf Eq. ~12!#, the dashed curve gives the conventional curre
induced power dissipationWc /WMie from Eq. ~16!.

FIG. 2. Frequency dependence of dielectric lossa9. Curves are
labeled as in Fig. 1.
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the radius of the sphere. A ten-point integration mesh g
adequate numerical accuracy. Figure 3 shows the de
dence of the power dissipation on the radius of the sph
The expression forWc seriously overestimates the pow
dissipation even for very large particles. We note that
particle size has to exceed the Debye screening length
factor of at least 40 before the expression Eq.~16! can be
considered reasonably reliable.

From Fig. 3 we also note that the Mie approximatio
gives far better predictions for the power dissipation: It ho
for particles with radii exceeding some 20 times the Deb
screening length. As the particles get smaller still, the M
approximation seriously overestimates the dissipated pow

V. ESTIMATE OF DIELECTRIC CONSTANT
OF A POWDER

Having calculated the complex polarizability of a sing
weakly conducting sphere, we proceed to estimate the ef
tive dielectric constant of a medium consisting of a colle
tion of such spheres by using the Clausius-Mossotti relat
For this relation to be realistic, we have to assume that the
conductivity of the powder remains zero, i.e., that the v
ume fraction of the weakly conducting material remains b
low the conductivity percolation threshold,29 or that space-
charge regions near the semiconductor surface preven
flow of charge carriers between adjacent spheres. Fo
monodisperse collection of spheres with volume fractionf,
the Clausius-Mossotti expression for the complex dielec
constanteb5eb81 i eb9 of the medium is

eb21

eb12
5 f a~R!. ~17!

As an example, we consider ann-doped GaP crystal with a
doping density of 531017 cm23, which has been made po
rous by anodic etching in the dark.30 In this material the
process of anodic etching elegantly leads to geometr
structures with length scales slightly larger than the Deb
screening length. As such, it provides a suitable sys
where effects from spatial dispersion should be importa
SEM micrographs revealed a morphology with a porosity
25% and a pore wall thicknesses of;100 nm, suggestingf
50.75 andR550 nm. Typical parameters aree510 andL
510 nm. At X-band microwave frequencies we havevtd
'0.1 and (v/Vp)2'1026. By combining our hydrodynamic
electron model with Eq.~17!, we estimate an effective di
electric constant of the porous mediumeb5(e8,e9)
5(7.9,0.42), in reasonable agreement with an experime
estimate of~1062, 0.560.1!.31 Note that, in contrast, the
Drude model for the dielectric constant@cf. Eq. ~1!# predicts
an imaginary part ofed9'100. We conclude that, even fo
fairly high doping densities as used here, the dielectric l
in this porous material remains small as a result of spa
dispersion. Turning the argument around, we also concl
that the dielectric loss cannot be interpreted in terms o
simple Drude model or expressions like Eq.~16! as soon as
spatial dispersion of the dielectric response is significan
means that the conventional interpretation of time-resol
microwave conductivity experiments27,32–34 on nanostruc-
tured semiconductors in terms of charge-carrier concen
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tions is seriously compromised if the screening length
comparable to the typical length scale of the nanostructu

We now address the problem of the relative magnitu
and sign of the real and imaginary parts of the dielec
response to an external light stimulus. We can envisage
possibilities. First, the light pulse might increase the den
of mobile charge carriers, thereby shortening the De
screening length. Our model predicts an increase in botheb8
andeb9 , with

deb8/dL

deb9/dL
'3 – 4.

As such, the predictions from our model are radically diffe
ent from the Drude model, and agree qualitatively with e
perimental observations.

Second, the effect of an intense light pulse may be
increase the volume of the nondepleted region rather t
increase its electron densityn0 . For this case, our mode
again predicts an increase in botheb8 andeb9 with

deb8/dR

deb9/dR
'5 – 6.

We note that both situations involve an increase in the t
number of mobile charge carriers. In contrast, the Mie
proximation ~no spatial dispersion! fails in both cases. We
conclude that the experimentally observed signs and ma
tudes of the dielectric response are clear manifestation
the phenomenon of spatial dispersion in the nanostructu
network.

VI. DISCUSSION

The model sketched is based on four simplifying assum
tions. First, we assume that the use of the electron densi
the sole basic dynamic variable. For static ground-state p
erties this was legitimized by the work of Hohenberg a
Kohn35 and subsequently extended to time-dependent
tems also.17,23 Second, we assume that the pressure term
the hydrodynamical equations may be approximated by
pressure of a classical ideal gas and that the effects f
quantum degeneracy may be neglected. The hydrodyna
approach will fail if the diameter of the semiconductor pa
ticle shrinks to the order of the thermal wavelength of t
mobile electrons and quantum size effects modify the de
calized electron states involved in charge transport. This l
its the validity of our approach to structures larger than s
eral nanometers. Additional quantum effects will arise
high doping densities due to Fermi-Dirac statistics as wel
exchange interactions as soon as the thermal wavelength
proaches the mean distance between electrons. At r
temperature, this implies that the doping density of
semiconductor material should not exceed a value
;1019 donors/cm3. Further deviations from ideality resu
from long-range Coulomb repulsion between electrons.
these interactions are electrostatic in origin, they tend to
small in semiconductors with high dielectric constant as lo
as the doping density remains moderate. The contribut
from exchange and correlation tend to reduce36 the pressure
of the electron gas and effectively renormalize the class
s
.
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Debye screening length to a shorter value. Third, we ass
spherical symmetry for the semiconductor particle and i
tropic charge carrier mobility. Straightforward generalizati
to different shapes~ellipsoids! or anisotropic mobilities leads
to anisotropic polarizability tensors for the particle. The c
culations are numerically more involved but give compara
qualitative results, provided that the Debye length remain
the order of the particle size. Polydispersity in particle s
remains unimportant for low volume fractions. Finally, th
fourth strong assumption was that the semiconductor sur
plays the double role of dielectric interface as well as co
finement boundary for the electrons. This is a highly ide
ized situation rarely encountered in realistic semiconduc
surfaces, where depletion or accumulation layers invo
strongly reduced or enhanced electron densities, res
tively. These regions are characterized by very strong in
nal electric fields.37,38 For the case of depletion, the confin
ment boundary lies well below the semiconductor surfa
and is diffuse rather than well defined. The details of t
boundary are known to affect the frequencies of the plas
resonances in the particle.39 To describe such situations, th
hydrodynamic equations must be linearized around an in
mogeneous unperturbed electron densityn0(r ), which ac-
counts for the charge-density variation in the depletion
accumulation layer. The boundary conditions at the semic
ductor surface should be further modified to account fo
surface charge density due to occupied surface states w
electrons have been trapped and immobilized. These re
ments are conceptually straightforward, but make the alge
too complicated for analytical solution and do not pr
foundly affect the value of the polarizability of the partic
@apart from the fact that the volumeV in Eq. ~11! stands for
the volume of the nondepleted region rather than the volu
of the whole particle#.

In summary, we have computed the linearized se
consistent hydrodynamic response of a dilute electron
inside a small semiconductor particle. It is shown that
effect of conductivity on the static polarizability is ver
small and interpolates smoothly between the response
nonconducting dielectric sphere and a perfectly screened
tallic sphere. Dielectric screening becomes effective only
the Debye screening length is an order of magnitude sma
than the typical diameter of the semiconductor particle. Ev
with substantial penetration of the electrical field into t
semiconductor, the loss remains small at low frequencies
to very effective cancellation between the electron flows
duced by the electric field and by the gradient in the elect
density. For realistic situations and moderate doping lev
the dielectric loss of a dispersion of nanocrystallites o
porous semiconductor network is not a reliable estimate
the conductivity of the material as soon as effects from s
tial dispersion manifest themselves. In the presence of sp
dispersion, an external light stimulus will increase both t
real and imaginary parts of the dielectric constant. The inc
ments will be of comparable magnitude.

APPENDIX: THE COMPLEX POLARIZABILITY
OF A WEAKLY CONDUCTING SPHERE

At low frequencies, the particle size is orders of mag
tude below the wavelength of the electrical fieldE. The field
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15 734 PRB 58E. van FAASSEN
therefore may be considered homogeneous on the sca
the particle. We assume that the electric field is direc
along thez axis. For this case, the electrostatic potential o
side of the sphere has the form~in spherical coordinates!

Fo~r ,u!5S 2Er1
1

4pe0

p

r 2D P1~cosu!,

where the second term is the polarization field caused by
dipole momentp induced in the sphere. In view of rotation
symmetry of the Helmholtz equation, the potential inside
sphere must have a pureP1(cosu) angular dependence a
well, as other spherical harmonics are not necessary to
isfy the boundary conditions. For the radial dependence,
fourth-order Helmholtz differential equation has four ind
pendent solutions, two of which are regular at the origin
the sphere. Taking the linear combination of these two re
lar solutions, the potential inside the sphere has the form

F i~r ,u!5FaBS r

z D1br GP1~cosu!.

The solution of the Helmholtz equationB is defined in terms
of the modified spherical Bessel functions of the first kin

B~z!53zS p

2zD
1/2

I 3/2~z!.

The normalization was chosen such that it reduces to
solution of the Poisson equation in the limit of large Deb
length,

lim
z→`

BS r

z D5r .

The three unknownsa, b, and p are determined from the
three boundary conditions at the surface of the sphere:

~i! F i(R)5F0(R),
~ii ! e(]/]r )F i(R)5(]/]r )F0(R),
~iii ! ]/]r (F i2L2DF i)ur 5R50,

wheree is the~real! dielectric constant of the dielectric back
ground in which the electrons move. The third condition i
poses the physical requirement that the electron flow be
gential at the surface of the sphere.

From straightforward but tedious algebra, the magnitu
of the dipole momentp may be solved in closed form:

p~v!5 4
3 pR33e0aE,
es
of
d
-

e

e

at-
e

f
u-

e

-
n-

e

where the complex polarizabilitya of the sphere is given by

a5

@e2d~e21!#
R

z
B82B

@e2d~e12!#
R

z
B812B

d5S v

Vp
D 2

1 ivtd .

The validity of this analytical expression has been verifi
for three special cases:

~i! For a nonconducting sphere,

lim
L→`

a5
e21

e12
.

~ii ! For a highly conducting~metallic! sphere,

lim
L↓0

a51.

~iii ! The limit of large particles reproduces the result fro
the Mie formalism,

lim
R/z→`

a~v!5
~12d!e1d

~12d!e22d
5

ed~v!21

ed~v!12
,

where ed(v) stands for the dielectric constant of a Drud
conductor@cf. Eq. ~1!#.

It is of interest to consider the static polarizability of th
sphere as well. In the limit of zero frequency, the comp
Helmholtz lengthz approaches the Debye screening leng

lim
v↓0

z5L

and the polarizability becomes real. As a function ofL, the
polarizability a interpolates smoothly between the nonco
ducting and metallic limit,

e21

e12
,a~v50,L !,1.

As a concluding remark, we note that the self-consist
potential inside the sphere is such that the electrical field
neither homogeneous nor directed along thez axis. In this,
the conducting case is characteristically different from
nonconducting dielectric case.
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