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Dielectric response of a nondegenerate electron gas in semiconductor nanocrystallites
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We investigate the low-frequency dielectric response of a dilute electron gas in a small spherical semicon-
ductor particle. The flow of the electrons is described by hydrodynamic equations which incorporate the
electrostatic interactions between the electrons in a self-consistent fashion. In the low-frequency regime, the
dielectric loss is small and proportional to the frequency, despite substantial field penetration into the semi-
conductor. The loss remains small even for high doping levels due to effective cancellation between field-
induced drift and diffusion. The model is used to estimate the complex dielectric constant of a system of
weakly conducting nanosized semiconductor particles. The most prominent manifestation of spatial dispersion
is that photoinduced changes in the real and imaginary parts of the dielectric constant are positive and of
comparable magnitud¢S0163-18208)05548-9

I. INTRODUCTION The same expression is often applied to the dielectric
properties of a diluténondegenerajeelectron gas in a semi-

The dynamical properties of mobile charge carriers insideconducting medium as well. In the regime of low frequencies
nanostructured semiconductors have been the subject of ifw7<1), this Drude formula predicts that an infinitesimal
tensive research. Many interesting phenomena have bedémcrease in electron density should induce an increase in di-
found to result from the inhomogeneity on a microscopicelectric loss §e;>0) as well as a much smaller decrease in
scalel™ Three aspects in particular have attracted attentiondielectric responsede;<0),
First, size quantization effect® discretize and modify
the electronic states when the typical size of the semiconduc-
tor structures becomes of the order of the exciton radius Sey=—wrde} (Drude.
(~1-5 nm.>1°

Second, the high surface-to-volume ratio means that the
surface plays a crucial role in the dynamics of charge carriertn contrast, experimental observation of the photodielectric
inside the semiconductor. A technologically important ex-response of doped porous semiconductors shows that the two
ample is given by the very high photoelectron quantum yieldare of comparable magnitude and both have a positive sign.
found in nanostructured photovoltaic devi¢é$? Third, the On a more quantitative basis, the Drude formula fails as
details of the semiconductor topologsuch as connectivily  well: For typical moderately doped semiconductors, conduc-
or the presence of microscopic grain boundaries profoundlyivities are of the order olr=1—10 (2 s) *. Therefore,
affect the macroscopic transport properties of mobile charg®rude theory predicts that the imaginary part dominates by
carrierst®!* It is a wholly classical phenomenon arising several orders of magnitude for all submicrowave frequen-
when the structural dimensions are on the same scale as tbrs (w/27<10 GHz), again in clear conflict with experi-
inhomogeneity in the electron distribution. A further compli- mental findings of low dielectric loss in doped nanocrystal-
cation arises from possible quantum size effects on charggne powders or suspensions. The reason cannot be excessive
carrier mobility® screening of the electric fieldas in metalssince the typical

The calculation of dynamical properties such as dielectridebye screening length is of the order of the crystallite size.
response or dynamical screening poses a complicated protphis implies substantial penetration of the electric fields into
lem caused by the possibility of buildup of charge on internalthe conducting core of the crystallite.
surfaces or grain boundaries. Conventionally, the effect of Wwe therefore consider the dielectric response of a nano-
mobile charge carriers on the bulk effective complex dielecsizedn-doped semiconductor particle. We assume complete
tric constant is accounted for by adding an imaginary conionization of the donor states, which provide a uniform posi-
ductivity term to the dielectric constawtof the medium in  tive space-charge density in which the electrons move. The
which the charge carriers move. For a conductive mediumgollective response of the electron gas is described by hydro-
the Drude model for the complex dielectric constagt€e;  dynamical flow subjected to an external harmonic field. So-

+i€y gives(cf., e.g., Ref. 1B lution of the hydrodynamical equations allows us to deter-
mine the polarizability and loss factor of the particle, as well

] Qgr as study the degree of screening on a microscopic scale.

€g=€| 1+1 w(l-iwn) oY) Subsequently, the results for a single weakly conducting

nanocrystallite are used to predict the effective complex di-
Herew is the frequency of the applied fieldjs the momen- electric constant of a powder. Serving as a model for the
tum relaxation time of the Drude electrons, ailg denotes low-frequency dielectric properties of a porous semiconduc-
the plasma frequency inside the medium. tor, we find good estimates of the dielectric loss factor. In
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particular, the magnitude and sign of the dielectric responsthe sum of the external field and the internal fields due to the
find a natural explanation as manifestations of spatial dispercharge density of the electron gas and of the uniform doping
sion. densityn, (assuming the donor states to be fully ioniged

Il. THE HYDRODYNAMICAL MODEL div E= — — (n—ny) @
€€p

The calculation of the dielectric loss in an electronic ma-
terial is Considerab|y more involved than the treatment OﬂNheree is the dielectric constant of the semiconductor and
electronic polarization. For the electronic polarization, only€o is the permittivity of vacuum.
the static properties of the ground state need to be considered These equations are supplemented by the equation of state
under weak perturbation by an external static field. Thewhich relates the local pressupeto the local electron den-
ground-state properties of an electron gas suffice here. Igity. For nondegenerate semiconductdisv doping den-
contrast, the dielectric loss is inseparable from the time desity), we assume that the local pressure is given by the equa-
pendence of the external field, and the dynamic response &pPn of state for an ideal classical gpér,t)=n(r,t)kT. For
the electron gas must be treated in detail. The most detailegmall perturbing fields and small density deviationg)
and sophisticated theoretical approach is the time-dependertn(r) —no, the hydrodynamical equations may be linear-
Hartree-Fock (TDHF) method. While conceptually clear, ized inf and take the form of a homogeneous damped wave
TDHF involves prohibitive computational effort when ap- equation,
plied to systems with many electrons. To circumvent this
problem, several semiclassical approaches have been pro- 1 Jd o
posed which involve only the local electron density as a 02 a2 =74 ¢ h=A-L"AR, ®)
dynamic variable. P

The_earliest density method was the Thomas-Fermwhere (1,= Jnge’eegm, and L= \eekT/nge? are the
theory*’ developed for the ground-state properties of a highlyplasma frequency and Debye screening length, respectively.
degenerate electron gas in metals. This Thomas-Fermi foiFhe dielectric relaxation time is given by,z(QgT)*l. For
malism provided the theoretical basis for the hydrodynamicafields with harmonic time dependenee'®!, this partial dif-
Bloch model;® which describes the dynamics of the elec-ferential equation reduces to the Helmholtz equation with
tronic motion as the flow of a nonviscous compressible fluid complex Helmholtz lengti,
The model has been applied to a wide range of problems

involving the degenerate electron liquid in bulk metals and A—{2AR=0, (6)
metal clusters®—22 The validity of such semiclassical ap-

proaches hinges on the neglect of the discreteness of the ) L?

underlying ionic lattice and the use of the local electron den- ¢ :wz—' ™
sity. The validation of the hydrodynamic approach down to 1- —-lwg

very small (N=100) metallic clusters has recently been Q5

glvggrlg Rﬁza%i?c,).ns considering the motion of charge carriersIn this form, the problem of dielectric response has three
. PP erng arg .~ characteristic time scaleffield frequencyw, plasma fre-
in a semiconductor particle, the hydrodynamic equations

have to be modified to accommodate a low degree of degerg-uenCyQp ,_and o_IleIectrlc relaxation t'meﬁ) and two length

scales(particle size and Debye screening lengtBupple-

eracy and account for momentum loss from the electron flow . "

X - . . mented with proper boundary conditions, the Helmholtz

caused by the effective friction with the semiconductor back—e uation describes surface plasmons<((2.) as well as
ground. The internal frictiofiviscosity) of the electron liquid q P P

is assumed negligible. In the presence of a local electric fielaje Ilglétfci?lsl?]zir]dsf>ga\pr)d;r2ezz ﬂfiﬁ\e/ecﬁ;f;;t;gifgfgé .
E, the local velocity fieldv(r,t) is related to the local pres- d PP P

; . tric relaxation timery due to momentum relaxation associ-
surep of the electron gas via the Euler equation ated with the hydroéijynamic flow. For subgigahertz frequen-
e cies and in a typical moderately doped semicondudtyy,
Vp- —E. 2 s>
€ The hydrodynamic equations may be recast in terms of
The electron density(r,t) and the velocity field are related the electrostatic potentiab; inside the semiconductor par-

1
mgh

d _~ 1
ﬁv (v-V)v= ;v

through the continuity equation ticle [cf. Eq. (4)],
d , (1-PA)Ad;=0. ®
— n+div(nv)=0, 3 . ) ) - .
ot Outside of the particle, the potentidl, satisfies the Poisson
equation

wherem, is the effective electron mass inside the semicon-
ductor. The momentum relaxation timeaccounts for the AD.=0. 9)
momentum loss due to collisions with impurities, lattice im- ©

perfections, or phonons. The second term of the Euler equd-hese equations may be solved in closed form after applying
tion accounts for diffusive flow induced by density varia- the usual electrostatic boundary conditions at the surface of
tions, and the final term accounts for the flow induced by thehe particle(div D=0 and continuity of the electrostatic po-
interaction with the local electric field. The electric field is tentia) appropriate for a dielectric surface, and imposing the
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length of the incoming wave, the polarizability in the Mie

1.00 approximation is given by
5 _e? 13
0.90 AMie= ¢ T (13
S » whereey denotes the complex dielectric constant of a Drude
g 50 o ] conductor[cf. Eq. (1)]. Note that the Mie approximation to
O80F E the polarizability does not depend on the particle size. As
i ] such, it differs from the exact expression which has a size
h ] dependence resulting from spatial dispersion.
0.70t : 1 Combining with Eq.(12), we find the absorption of a
0.0 0.5 10 single spherical particle in the Mie approximation,
WTy
Wiie= 3 €0V IM(aye) E*. (14

FIG. 1. Frequency dependence of polarizability for several . . . . .
values of the Debye screening lendthThe dielectric constant of The range of validity of the Mie formalism is determined
the sphere is 10, and the radius is 50 nis the dielectric relax-  PY the conditions under which the effects of spatial disper-
ation time. The solid line gives the prediction from Mie theory. The SION May be neglected. For scattering from a sphere with
deviations from the Mie result are manifestations of spatial disperf@diusR, this implies that Mie theory should be reliable for
sion inside the dielectric sphere. |R/¢|>1, where( is the complex Helmholtz length defined

in Eq. (7). As discussed in the Appendix, our analytical ex-
additional requirement that the flow of electrons be tangenpression for the polarizability indeed approaches the Mie re-
tial at the surface. Witle, denoting the normal vector of the sult in this limit,
surface, tangential flow requires that the following relation

holds at the surface: RJme a(0) = ayje(w). (15
kT v eng ~0 0 With a typical screening length in metalsemiconductops
€\ me n+ me E - (100 1.0 A(10 nm), the Mie treatment loses validity for particle

surface sizes below~10 A (100 nm). As soon as the particle size

For spherical particles, the appropriate solution of theapproaches the screening length, both real and imaginary
Helmholtz equation is a spherical Bessel function with aparts of the polarizability drop substantially below their Mie
complex argument. Solving for the electrostatic potentiaivalues.

outside of the sphere with volumé (cf. the Appendiy, the

induced dipole moment is given by IV. RESULTS

p(w)=—3epa(w)VE(w), (11) The above equatio_ns permit eval_uation of the dielectric
response of the mobile charge carriers to an external har-

wherea(w)=a’'+ia" is the complex polarizability of the monic electric field. In particular, they provide a microscopic
particle. From elementary electrostatics, two special casggicture of the electron density and the electron flow inside
are well known:a=1 for a highly conducting sphefgom-  the particle, and give a model for the complex polarizability
plete screeninganda=(e—1)/(e+2) for a nonconducting of a weakly conducting spherical particle. All calculations
dielectric sphere. For intermediate conductivities, the polarare for a semiconductor particle with radi&&=50 nm, e
izability is complex, with a positive imaginary part in order =10, and placedh vacua

to comply with causality. Figure 1 shows that the frequency dependence'ofs
The time-averaged power dissipatigin the particle is second order. The real part of the polarizability remains es-
related to the imaginary part of the polarizability as sentially unchanged up t@74~0.1. The dependence of
on the ratioR/L of radius and Debye length is mild, and
W=2eVoaE2. (120  interpolates smoothly between the two extreme cases of a
metallic sphergcomplete screening and=1) and an iso-
1. COMPARISON WITH MIE SCATTERING lating dielectric spherga=(e—1)/(e+2)=2 for e=10].

Turning to the dielectric loss factar” (cf. Fig. 2), we note

Within the framework of classical electromagnetic theory,that dielectric loss is much smaller than the prediction from
a model for the interaction of a small spherical particle withMie theory as soon as the Debye screening length ap-
electromagnetic radiation was first worked out by ¥fié°In proaches the particle size. This behavior is not caused by
this formalism, the solutions of the wave equation do notexcessive screening, since substantial penetration of the elec-
account for spatial dispersion inside the scatterer. The scatrical field into the semiconductor particle can still occur.
tering amplitudes are determined by the complex dielectricThe reason for low dielectric loss is found in the substantial
constants of the scatterer and the surrounding medium, a=ncellation between the hydrodynamic forces due to the
well as the geometrical shape of the scattering particle. Thifield and due to the electron density gradient. Phrased other-
problem has been worked out for a variety of geomeffies. wise, there is substantial cancellation between the last two
For a spherical particle with size far smaller than the waveterms in the Euler equation E¢R). In the limit of zero fre-
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0.2 ' ] the radius of the sphere. A ten-point integration mesh gave
I ] adequate numerical accuracy. Figure 3 shows the depen-

] dence of the power dissipation on the radius of the sphere.
WIE ] The expression foWV, seriously overestimates the power

[ : dissipation even for very large particles. We note that the

Ty 0.1 1o . particle size has to exceed the Debye screening length by a

i emmTTTTTTT ] factor of at least 40 before the expression ELp) can be

-7 0 nm. ] considered reasonably reliable.

N P ] From Fig. 3 we also note that the Mie approximation

LS ] gives far better predictions for the power dissipation: It holds

00V B S . for particles with radii exceeding some 20 times the Debye

0.0 0.5 10 screening length. As the particles get smaller still, the Mie
approximation seriously overestimates the dissipated power.

FIG. 2. Frequency dependence of dielectric lads Curves are V. ESTIMATE OF DIELECTRIC CONSTANT
labeled as in Fig. 1. OF A POWDER

quency, complete cancellation occurs as field-induced drift Having calculated the complex polarizability of a single
and density gradient diffusion are equally balanced. The balveakly conducting sphere, we proceed to estimate the effec-

ance is lost for time-dependent fields as the density variave dielectric constant of a medium consisting of a collec-

tions will follow the field with a time lag determined by the tion of such spheres by using the Clausius-Mossotti relation.

dielectric relaxation timery. The resulting hydrodynamic For this relation to be realistic, we have to assume that the dc

flow is dissipative and leads to a nonzero dielectric loss faceonductivity of the powder remains zero, i.e., that the vol-

tor . We note that the cancellation is caused by a nonzerdMe fraction of the weakly conducting material remains be-

electron density gradient. As such, it is a direct manifestatiofoW the conductivity percolation threshofdor that space-

of spatial dispersion and very relevant for situations wheré&harge regions near the semiconductor surface prevent the

the particle size is comparable to the length scale for spatid[oW Of charge carriers between adjacent spheres. For a

dispersion(Debye screening length monodisperse collection of spheres with volume fracfion
Finally, we note that the actual current density carried b);he Clausius-Mossotti expression for the complex dielectric

RNt N
the hydrodynamic flow is far smaller than the value expecte@onstante, = e, +iep, of the medium is
from the constitutive equatiod= o E, which lies at the basis

of the Mie calculation. This is illustrated by the failure of the ep—1 ~fa(R) 17)
conventional’?expression for current-induced power dissi- et2
pation W,

As an example, we consider awrdoped GaP crystal with a
. ) doping density of 5 10'” cm 3, which has been made po-
Wc—iaf EZ(NdV, (16 rous by anodic etching in the dafk.In this material the
process of anodic etching elegantly leads to geometrical
where the integral is over the volume of the sphere @ansl  structures with length scales slightly larger than the Debye
the conductivity. The electric field distributioE(r) is  screening length. As such, it provides a suitable system
known explicitly from the solution of the wave equation in- where effects from spatial dispersion should be important.
side the particlécf. the Appendix, and the volume integral SEM micrographs revealed a morphology with a porosity of
was implemented numerically by a Gaussian integration ovep5% and a pore wall thicknesses-6f.00 nm, suggesting
=0.75 andR=50 nm. Typical parameters aee=10 andL

of ' ‘ =10 nm. At X-band microwave frequencies we hawey
4 E ~0.1 and @/Q,)?~10"®. By combining our hydrodynamic
; ] electron model with Eq(17), we estimate an effective di-
3 E electric constant of the porous mediura,=(€’,€")
= e =(7.9,0.42), in reasonable agreement with an experimental
2E T 3 estimate of(10+2, 0.5+0.1).3! Note that, in contrast, the
1k o Drude model for the dielectric constdmf. Eq. (1)] predicts
. an imaginary part ofej~100. We conclude that, even for
' ‘ ' fairly high doping densities as used here, the dielectric loss
0 10 20 30 40

R L in_ this porous m_aterial remains small as a result of spatial

dispersion. Turning the argument around, we also conclude

FIG. 3. Power dissipation in a single spherical particle as athat the dielectric loss cannot be interpreted in terms of a
function of particle size. The parameters are10,L=10 nm, and  Simple Drude model or expressions like Efj6) as soon as

w7y=0.1. The curves are scaled wil,., the power loss in the Spatial diSperSion of the dielectric response is Significant. It

Mie approximation. The solid curve gives the exact re¥ulv,;, ~ Means that the conventional interpretation of time-resolved
[cf Eq. (12)], the dashed curve gives the conventional current-microwave conductivity experimerifs®>~34 on nanostruc-

induced power dissipatioW, /Wy, from Eq. (16). tured semiconductors in terms of charge-carrier concentra-
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tions is seriously compromised if the screening length isDebye screening length to a shorter value. Third, we assume
comparable to the typical length scale of the nanostructurespherical symmetry for the semiconductor particle and iso-
We now address the problem of the relative magnituderopic charge carrier mobility. Straightforward generalization
and sign of the real and imaginary parts of the dielectricto different shapegellipsoidg or anisotropic mobilities leads
response to an external light stimulus. We can envisage twto anisotropic polarizability tensors for the particle. The cal-
possibilities. First, the light pulse might increase the densityculations are numerically more involved but give comparable
of mobile charge carriers, thereby shortening the Debyeualitative results, provided that the Debye length remains of
screening length. Our model predicts an increase in bpth the order of the particle size. Polydispersity in particle size

and e, with remains unimportant for low volume fractions. Finally, the
fourth strong assumption was that the semiconductor surface

Sepl L plays the double role of dielectric interface as well as con-

. ~3-4. finement boundary for the electrons. This is a highly ideal-

Sepl 5L ized situation rarely encountered in realistic semiconductor

As such, the predictions from our model are radically differ-Surfaces, where depletion or accumulation layers involve

ent from the Drude model, and agree qualitatively with ex-Strongly reduced or enhanced electron densities, respec-

perimental observations. tively. Th_ese_\ reg|§)nss are characterized by_very strong inter-
Second, the effect of an intense light pulse may be tdhal electric fields’ 38 For the case of depletion, the confine-

increase the volume of the nondepleted region rather thafi€nt boundary lies well below the semiconductor surface
increase its electron density,. For this case, our model and is diffuse rather than well defined. The details of the

; ; - : no boundary are known to affect the frequencies of the plasma
again predicts an increase in bath and €], with ; . : L
gamnp b resonances in the particle To describe such situations, the

Sel hydrodynamic equations must be linearized around an inho-
~5—6. mogeneous unperturbed electron densiggr), which ac-
Sepl SR counts for the charge-density variation in the depletion or

o . . . ccumulation layer. The boundary conditions at the semicon-
We note that both situations involve an increase in the tma@uctor surface should be further modified to account for a
numper t.Of TOb'Ie cthalr%g carn%rr?r. _Iln porétr?ﬁt, the M{i/ aPsurface charge density due to occupied surface states where
proximation(no spatal dispersigniails in both cases. We = g1o04rns have been trapped and immobilized. These refine-

EOC?CIUdf ttr:'at dtihlla et>:E:)err|mentr§;1IIy o?serlvecri z:grr‘]?f antd timr?gn nents are conceptually straightforward, but make the algebra
udes of the dielectric response are clear maniiestations g, complicated for analytical solution and do not pro-

the phenomenon of spatial dispersion in the nanostructure, undly affect the value of the polarizability of the particle

network. [apart from the fact that the voluméin Eq. (11) stands for
the volume of the nondepleted region rather than the volume
VI. DISCUSSION of the whole particlg

The model sketched is based on four simplifying assump- In_ sumr?]a{jy, dwe he_lve computedf th((aj_llinearlized seli-
tions. First, we assume that the use of the electron density Fsor,‘;'Stent y" ro ynamgz response IO a ,'Utﬁ e ectlr]on %as
the sole basic dynamic variable. For static ground-state proghS'dé @ small semiconductor particle. It is shown that the

erties this was legitimized by the work of Hohenberg andeffect of c_onductivity on the static polarizability is very
Kohr®® and subsequently extended to time-dependent Syé_mall and interpolates smoothly between the response of a
onconducting dielectric sphere and a perfectly screened me-

tems alsd”? Second, we assume that the pressure term iff°" , . . _ _
the hydrodynamical equations may be approximated by th llic sphere. D|eI(_actr|c screening becomes effe_ctlve only if
e Debye screening length is an order of magnitude smaller

pressure of a classical ideal gas and that the effects fro . . . )
quantum degeneracy may be neglected. The hydrodynamF an the typical diameter of the semiconductor particle. Even

approach will fail if the diameter of the semiconductor par_with_substantial penetration _of the electrical field int_o the
ticle shrinks to the order of the thermal wavelength of theSemiconductor, the loss remains small at low frequencies due
mobile electrons and quantum size effects modify the delol® VerY effective cancellation between the electron flows in-
calized electron states involved in charge transport. This "mguceq by the eleptr_lc f'.eld a}nd by the gradient in thg electron
its the validity of our approach to structures larger than sevdensity. For realistic situations and moderate doping levels,
eral nanometers. Additional quantum effects will arise atthe dielectric loss of a dispersion of nanocrystallites or a

high doping densities due to Fermi-Dirac statistics as well aforous semiconductor network is not a reliable estimate of

exchange interactions as soon as the thermal wavelength ajp conductivity of the material as soon as effects from spa-
proaches the mean distance between electrons. At roo | dispersion manifest themselves. In the presence of spatial

temperature, this implies that the doping density of thed|spersion, an external light stimulus will increase both the

semiconductor material should not exceed a value 0feal and imaginary parts of the dielectric constant. The incre-
~10' donors/cr. Further deviations from ideality result MeNts will be of comparable magnitude.

from long-range Coulomb repulsion between electrons. As

these interactions are electrostatic in origin, they tend to be  A\ppeENDIX: THE COMPLEX POLARIZABILITY

small in ser_niconduc_tors With_ high dielectric constant as Ic_Jng OF A WEAKLY CONDUCTING SPHERE
as the doping density remains moderate. The contributions
from exchange and correlation tend to rediithe pressure At low frequencies, the particle size is orders of magni-

of the electron gas and effectively renormalize the classicaiude below the wavelength of the electrical fi@dThe field
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therefore may be considered homogeneous on the scale where the complex polarizability of the sphere is given by
the particle. We assume that the electric field is directed

along thez axis. For this case, the electrostatic potential out- [e—d(e—1)] E B'—B

side of the sphere has the foriin spherical coordinates 4

a= R
1 p [e—6(e+2)] = B'+2B
fI)Jr,G)—(—EHmr—Z) P,(cos6), 4
2
where the second term is the polarization field caused by the 5= i) tiwry.
dipole momenp induced in the sphere. In view of rotational Qp

symmetry of the Helmholtz equation, the potential inside therhe validity of this analytical expression has been verified
sphere must have a puf(cos6) angular dependence as for three special cases:

well, as other spherical harmonics are not necessary to sat- (j) For a nonconducting sphere,
isfy the boundary conditions. For the radial dependence, the

fourth-order Helmholtz differential equation has four inde- . e—1

pendent solutions, two of which are regular at the origin of Ll'mx =i
the sphere. Taking the linear combination of these two regu- -

lar solutions, the potential inside the sphere has the form (i) For a highly conductingmetallio sphere,

r ; _
®(r,0)=|aB Z +br|P,(cos6). ILIT) a=1
The solution of the Helmholtz equatidis defined in terms (iii) The limit of large particles reproduces the result from
of the modified spherical Bessel functions of the first kind, the Mie formalism,
| 112 i ~ (1-0)e+td  e(ow)—1
B(Z):3§(Z 13/2(2). Rllng a(w)= (1-8)e—26 e4(w)+2’

The normalization was chosen such that it reduces to th@here e4(w) stands for the dielectric constant of a Drude
solution of the Poisson equation in the limit of large Debyeconductor{cf. Eq. (1)].

length, It is of interest to consider the static polarizability of the
sphere as well. In the limit of zero frequency, the complex
lim B [) =r. Helmholtz length{ approaches the Debye screening length
= N6 lim ¢=L
The three unknowns, b, and p are determined from the ®l0
thre_e boundary conditions at the surface of the sphere: g the polarizability becomes real. As a functionLofthe
(i) ©i(R)=Do(R), polarizability « interpolates smoothly between the noncon-
(i) e(alar)®;(R)=(alar)®o(R), ducting and metallic limit,
(iii) o/ gr (®;—L2AD,})|,_g=0,
wheree is the(real) dielectric constant of the dielectric back- e-1
ground in which the electrons move. The third condition im- P a(o=0L)<L.
poses the physical requirement that the electron flow be tan-
gential at the surface of the sphere. As a concluding remark, we note that the self-consistent
From straightforward but tedious algebra, the magnitudd®otential inside the sphere is such that the electrical field is
of the dipole momenp may be solved in closed form: neither homogeneous nor directed along zreis. In this,
the conducting case is characteristically different from the
p(w)=%mR33€yaE, nonconducting dielectric case.
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