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We study magnetically stabilized nematic order for spin-one bosons in optical lattices. We show that the
Zeeman field-driven quantum phase transitions between non-nematic Mott states and quantum spin nematic
Mott states in the weak hopping limit are in the universality class of the ferromagneticXXZ sS=1/2d spin
model. We further discuss these transitions as condensation of interacting magnons. The development of O(2)
nematic order when external fields are applied corresponds to condensation of magnons, which breaks a U(1)
symmetry. Microscopically, this results from a coherent superposition of two non-nematic states at each
individual site. Nematic order and spin-wave excitations around critical points are studied and critical behav-
iors are obtained in a dilute gas approximation. We also find that spin-singlet states are unstable with respect
to quadratic Zeeman effects and Ising nematic order appears in the presence of any finite quadratic Zeeman
coupling. All discussions are carried out for states in three-dimensional bipartite lattices.
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I. INTRODUCTION

When the dimensionless exchange coupling strength is
strong enough, Mott states of spinful particles are known to
develop certain spin order. In the opposite limit, quantum
fluctuations usually restore the broken symmetry resulting in
spin-singlet states. This widely accepted belief, however,
does not exclude, and furthermore implies certain “hidden”
fluctuating order in the symmetry restored states. The preex-
isting order appears dynamically at certain time and length
scales and is in general very relevant to the low-energy phys-
ics. Particularly if an external magnetic field is applied, non-
trivial spin (magnetic) order might be induced because of the
coupling between magnetic excitations and external fields. In
other words, an external field can stabilize spin order in a
parameter regime where order is absent in zero field.

The possible field-induced ordering usually results from
condensation of magnetic excitations or magnons. The field-
induced quantum phase transitions between states of differ-
ent magnetic correlations and possible magnetically stabi-
lized order close to critical points can be investigated by
examining magnon excitations in one of the phases involved
in the phase transitions.

A well-known example is theS=1 antiferromagnetic spin
chain.1–7 The ground state is the spin singlet AKLT state and
all spin excitations are fully gapped by the Haldane gap. An
applied Zeeman field along the positivez direction, although
it has zero coupling with the singlet ground state, couples to
spin excitations, and lowers the energy of excitations in the
S=1,Sz=1 branch because of the Zeeman coupling. At criti-
cal fields, the zero momentum excitation becomes degener-
ate with the spin-singlet ground state signifying a quantum
phase transition.

The presence and nature of induced canted Néel order in
this case therefore dependcrucially on interactions between
magnetic excitations in the AKLT phase. One can easily vi-
sualize that the transition is of first order if the interactions of
condensed magnons are attractive or absent. Naturally, the

magnetization per lattice site in this case jumps by a finite
value at the critical point as a result of condensation; further-
more the canted Néel order would not appear in this case.
The phase transition would be simply between a fully polar-
ized state and a spin-singlet state.

However, if interactions between magnons are repulsive,
condensation takes place continuously because of finite
chemical potentials for repulsively interacting magnons.
Thus the magnetization per site, which is proportional to the
density of magnons varies continuously across the critical
point and the transition is of second order. In this case, the
resultant state has canted Néel order. For theS=1 antiferro-
magnetic spin chain, numerical results show that the magne-
tization indeed varies continuously and imply that magnons
have repulsive interactions.7 In fact, at higher magnetic
fields, external fields do induce canted Néel order inS=1
spin chains(only quasi-long-range order prevails in chains).
Condensation of magnons has also been recently studied in
three-dimensional frustrated magnets(see, for instance, Refs.
8 and 9).

Therefore, to investigate magnetically stabilized order, it
is important to understand interactions between magnons or
magnetic excitations. Generally, microscopic calculations of
magnon interactions are not only very difficult but also prac-
tically impossible for low-spin systems because of the un-
controllable approximations involved. However, in the case
we are going to examine we do evaluate the interactions
microscopically in various situations; therefore we believe
the results about magnetically stabilized quantum spin nem-
atic order and quantum phase transitions areprecisein this
sense. We also want to emphasize that magnon condensation
which interests us in this article occurs in both high dimen-
sional and one-dimensionalnonfrustratedoptical lattices.
The one-dimensional limit will be treated in a separated pa-
per.

The purpose of this article is to understand the magneti-
cally stabilized nematic order of spin-one bosons in optical
lattices. As emphasized above, our starting point will be a
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series of Mott states with no nematic order, some of which
also have zero coupling with external(linear) Zeeman fields.
Our main subject is to investigate the development of nem-
atic order or spontaneous symmetry breaking in thexy plane
when external magnetic fields are applied along thez direc-
tion. In particular, we will focus on the nematic order close
to critical points where our results are actually exact. Fur-
thermore, the approach we employ here is believed to yield
exact phase boundaries between nematic states and non-
nematic Mott states, a rather remarkable conclusion thanks to
the powerful mapping developed below.

Spin-correlated Mott states for spin-one bosons have re-
cently attracted considerable interest.10–14 Theoretical works
indicate that spin correlations in Mott states depend on three
dimensionless parameters.11,12The first one is the dimension-
less exchange couplinghs=Jex/Esd which is defined as the
ratio between the exchange interactionJex and the bare spin
gap for an individual siteEs. The second parameter is the
parity P (even or odd) of the number of particles per site in
Mott states. The last parameterD is the dimensionality of
optical lattices(we assume all lattices are bipartite).

For D=2,3, it was argued that Mott states for all oddP
are nematically ordered. In fact irrespective of the exact
number of particles per site in this case, the effective Hamil-
tonian in the small hopping limitsh!1d is equivalent to the
bilinear-biquadratic model forS=1 spin chains.14 For evenP
on the other hand, nematic and spin singlet Mott states are
present for largeh and smallh limits, respectively. The one-
dimensional physicssD=1d is dominated by quantum fluc-
tuations. Both dimerized valence bond crystals and nonde-
generate spin-singlet states have been found. As a result of
symmetry restoring, the low-energy dynamics in Mott states
is mapped into the even- and odd-class quantum dimer
models.11 Furthermore, atoms have a tendency to be fraction-
alized into solitonicelementaryexcitations in this limit. Su-
perfluid phases have distinct topological properties and re-
main to be fully understood.

Responses of correlated states of spin-one bosons to ex-
ternal fields are fascinating. For nematic condensates, the
responses are continuous. The linear coupling between con-
densates and weak external fields pins the easy axis in thexy
plane perpendicular to external fields, and O(3) nematic con-
densates become O(2) ones, or canted nematic states; qua-
dratic coupling, however, pins the nematic easy axis along
the direction of coupling.15 For spin singlet condensates, the
magnetization jumps discontinuously as a result of a series of
level crossings between statesuS,Sz=Sl and uS+2,Sz=S+2l
(Ref. 16) (also see general discussions about condensates in
Refs 17 and 18). Responses of Mott states to external Zee-
man fields and various transitions have recently been studied
in a mean-field approach. Mott states can either respond to
external fields continuously similar to nematic condensates
or develop interesting magnetization plateaus similar to
charge quantization in a Mott state.19

In this article, we study magnetically stabilized nematic
order in optical lattices. Particularly we demonstrate the de-
velopment of nematic order asrepulsivelyinteracting mag-
nons in non-nematic Mott states condense. We investigate
the induced nematic order associated with the spontaneous
breaking of O(2) nematic symmetry, the magnetization and
the spin-wave velocity.

In Sec. II, we review the properties of spin-singlet Mott
states and introduce a projected nematic order parameter for
discussions on spin partially polarized states. For a given
lattice site with two particles, we show that nematic order
can be established if a spin-singlet state is in a superposition
with a higher spin stateuS=2,Sz=2l. The relative phase be-
tween these two states in the superposition determines the
easy axis of the nematic order parameter, or the orientation
of spin-nematic states. In Sec. III, we study the general char-
acterization of nematic order in spin-polarized Mott states;
we propose a projected nematic order parameter which
projects away trivial contributions from spin polarization.

In Sec. IV, we truncate the Hilbert space close to critical
magnetic fields and show that the resultant Hamiltonian is an
XXZ sS=1/2d pseudospin model in an effective field along
the z direction. We carry out microscopic calculations of all
parameters in the effective ferromagneticXXZ model. These
calculations are done for two particles per site, four particles
per site, and in the largeN (even) limit. The quantum rotor
model studied in previous works is employed to facilitate
calculations.

In Sec. V, close to critical lines and a tricritical point we
further study the properties of various phases of theXXZ
model in both the semiclassical approximation and dilute gas
approximation based on the Holstein-Primakov boson repre-
sentation. We analyze the interactions between Holstein-
Primakov bosons or magnons. We obtain the exact phase
boundaries for the ferromagneticXXZ model by investigat-
ing the instability lines of magnon excitations. We also dis-
cuss the relation between condensation of magnons close to
critical lines, the variation of magnetization across critical
points, and the appearance of ferromagnetic order.

In Sec. VI, we investigate, in details, the development of
magnetically stabilized nematic order by examining results
following the mapping to theXXZ model and to the
Holstein-Primakov condensation problem. We notice that re-
sults about phase boundaries, nematic order, and spin-wave
velocities in the critical regime can be obtained in a dilute
gas approximation and therefore, remarkably, are exact. In
Sec. VII, we further study the effect of quadratic Zeeman
coupling. Finally, in Sec. VIII, we conclude our investigation
on this subject.

II. SPIN SINGLET MOTT STATES, FLUCTUATING
NEMATIC ORDER, AND PROJECTED NEMATIC ORDER

The Hamiltonian for spin-one bosons with antiferromag-
netic interactions in optical lattices in an external field can be
conveniently expressed as10–14,19

H = Eso
k

Ŝk
2 + Eco

k

r̂k
2 − m0o

k

r̂k − o
k

ŜkzHz

− to
kkll

scka
† cla + H.c.d. s1d

Herecka
† sckad, a=x,y,z are creation(annihilation) operators

for spin-one particles in three different states at sitek. Ŝka

=−ieabgcka
† ckb and r̂k=cka

† cka are the spin and number op-
erators defined for each lattice site. It is easy to verify that
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fŜka ,Ŝk8bg= idkk8eabgŜkg. Ec,s are “bare” charge and spin gaps
studied in Ref. 11 andm0 is the chemical potential. Finally,
the sum overkkll represents the sum over all neigboring
sites.

In Mott states, the Hamiltonian can be reduced to the
following effective one:

H = Eso
k

Ŝk
2 − o

k

ŜkzHz − Jexo
kkll

fQ̂abskdQ̂basld + H.c.g,

Q̂abskd = cka
† ckb −

1

3
dabckg

† ckg. s2d

Equation(2) is valid whent!Ec andEs!Ec. Jex= t2/2Ec is
the exchange interaction.

The effective Hamiltonian with zero Zeeman coupling
was obtained in a few previous works; solutions to this
Hamiltonian have been studied in various limits. When the
external field is absent andh=Jex/Es is much less than unity,
the ground state is a spin singlet for an even number of
particles per sitesNd. The spin-singlet Mott(SSM) ground
state in this limit is the product of spin singlets at each indi-
vidual site(up to a normalization factor)11,13

CSSM= p
k

scka
† cka

† dN/2

ÎsN + 1d!
uvacl. s3d

Meanwhile, the spin fully polarized(SFP) ground state is the
product of on-site maximally polarized states

CSFP= p
k

sckx
† + icky

† dN

Î2NN!
uvacl. s4d

In SSM states,kQ̂abskdl=0 as a result of the rotational
invariance of the wave function and thus there is no nematic
order. The hidden fluctuating nematic order can be studied by
examining higher moments. ForN=2, one can easily obtain
the following results:

kQ̂a8b8skdQ̂absk8dl

=
2

3
dkk8Sda8bdb8a + da8adbb8 −

2

3
da8b8dabD , s5d

which indicate on-site fluctuating nematic order. More ex-
plicitly, one finds the amplitude of fluctuations of nematic
tensor matrix elements

kfQ̂abskdg2l =
2

3
S1 +

1

3
dabD . s6d

To investigate the responses of spin singlet Mott states or
other non-nematic states, which exhibit certain fluctuating
nematic order, to external fields, it is important to understand
how nematic order can be induced by external Zeeman
fields. For this purpose, we focus on the simplest situation
whereJex is zero and treat each site independently. We would
like to demonstrate the following important statement: nem-
atic order appears whenever a spin-singlet state and a polar-
ized state are in a linear superposition.

We first consider two particles at one lattice site. The
Hilbert space is spanned by fivefold degenerateS=2 states
and a spin-singlet state. When an external field is applied
along thez direction, the fivefold degeneracy is completely
lifted while the maximally polarized stateuS=2,Sz=2l ap-
proaches the spin-singlet ground state. When the level cross-
ing takes place, the spin projection along thez direction
jumps by 2". It is obvious that no nematic order is induced
in this simple limit and there are no transitions between nem-
atic states and spin-singlet states.

However, at the level crossing points, one can further
study the properties of coherent superposition ofu0, 0l and
u2, 2l states while the rest of states are highly excited ones at
these crossings. Let us introduce a coherent state defined in
the two-state subspace as

uVl = cos
u

2
expS− i

f

2
Du↑l + sin

u

2
expSi

f

2
Du↓l;

u↑l = uS= 2,Sz = 2l =
1

2Î2
scx

† + icy
†d2uvacl,

u↓l = uS= 0,Sz = 0l =
1
Î6

ca
†ca

†uvacl. s7d

Here the unit vector is defined as V
=ssinu cosf ,sinu sinf ,cosud. One can easily verify that

kŜzl = 2" cos2
u

2
. s8d

Sz reaches the maximum whenu=0 and the minimum when
u=p /2.

Direct calculations of the usual nematic order parameter
Qab defined as the expectation value of the tensor operator

Q̂ab in Eq. (2) suggest that it have a nontrivial structure in
the maximally polarized state(see Fig. 1). Namely, it con-
tains(a) an antisymmetric tensor as a result of spin polariza-
tion and (b) a traceless symmetric part which reflects the
explicit rotational symmetry breaking by the magnetic field
but is not associated with thespontaneousnematic symmetry
breaking in a plane perpendicular to the polarization.

FIG. 1. (Color online) Coherent statesuVl at the Bloch sphere
of pseudospins. All states except the north polesu=0d and south
pole su=pd ones have nonvanishing expectation value of nematic

tensor operatorQ̂ab.
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To discuss the nematic order in fully or partially polarized
states, it is therefore essential to introduce a projected nem-
atic order parameterQab

P sa ,b=x,y,zd

Qab
P = Qab − sQa8b8Pb8a8

1 dPab
1 − sQa8b8Pb8a8

2 dPab
2 . s9d

Note that in the projected order parameter, the component
associated with the nematic symmetry breaking remains
while the components associated with polarization have been
projected away. Two tensors we would like to project away
are defined as

Pab
1 =

1
Î210 − i 0

i 0 0

0 0 0
2 .

Pab
2 =

1
Î61− 1 0 0

0 − 1 0

0 0 2
2 . s10d

One finds that the nematic order only appears in thexy
plane perpendicular to the external fields. It is indeed
straightforward to show that the truncation ofQab

P in the xy
plane (i.e., elements witha=x,y only) for a coherent state
defined above is

Qab
Pxy=

1
Î3

sinuScosf sinf

sinf − cosf
D . s11d

Two important features in Eq.(11) are worth emphasiz-
ing. First, the two eigenvalues correspond to ±sinu /Î3 and
are proportional to the coherence factor in the linear super-
position of coherent states. They are nonvanishing only ifu
is not zero orp. Therefore nontrivial nematic order always
appears whenu↑l and u↓l two states are in a linear superpo-
sition.

Secondly, the eigenvector with the maximal eigenvalue
represents the easy axis of nematic order. And the easy axis
is fully characterized by the azimuthal angle ofV. Indeed,
one finds that the easy axis in thexy plane is defined as a 2D
unit vector in thexy plane:

v = Scos
f

2
,sin

f

2
D . s12d

Whenf varies from 0 to 2p, the easy axisv rotates byp
angle in thexy plane. And the nematic order parameter is
indeed a tensor constructed out of the 2D unit vectorv

Qab
Pxy=

2
Î3

sinuSvavb −
1

2
dabD . s13d

III. NEMATIC ORDER PARAMETER FOR SPIN
PARTIALLY POLARIZED STATES:
GENERAL CHARACTERIZATION

As we have already seen in the previous section, the com-
plication of characterizing nematic order when spins are par-
tially polarized comes from the explicit symmetry breaking

induced by external fields. So in this case one has to deal

with the tensorQ̂ab which has nontrivial elements even with-
out nematic order. To distinguish the spontaneous symmetry
breaking due to the formation of nematic order from explicit
symmetry breaking in the presence of polarization, special
care needs to be taken of the elements which are induced by
spin polarization.

A general scheme to project out the nematic order param-
eter tensor appears to be possible in a way, similar to what
was carried out in the previous section. Assume spins are
polarized along directions (unit vector). Introducing two
projection tensors

Pab
1 =

1
Î2

ieabgsg,Pab
2 =

3
Î6

Ssa ·sb −
1

3
dabD , s14d

we again are able to define a projected nematic order param-
eter as in Eq.(9).

When the nematic symmetry is broken along the direction
v (unit vector), in the largeN limit one can easily demon-
strate thats·v=0 following the algebras in Refs. 15 and 11;
andv ands always appear to be orthogonal. One can further
define

m = s3 v. s15d

Thenv, m, ands form an orthogonal triad.
It is possible to verify the validity of the definition for

nematic order parameters given Eqs.(9) and (14). For in-
stance, one can consider the following spin partially polar-
ized nematic states:

uCl =
FScos

j

2
n + i sin

j

2
mD

a

ca
†GN

ÎN!
uvacl. s16d

We have assumed thatn and m are orthogonal, i.e.,n ·m
=0; j varies from 0 top. Following the discussions in Refs.
15, 11, and 13, states specified in Eq.(16) with j=0 form a
complete set ofN-particle-condensate wave functions. And a
condensate with total spinS, Sz sSøNd can be expressed in
terms of spherical harmonicsYS,Sz

snd in this representation.
When jÞ0, a state given above is polarized along a di-

rection perpendicular ton andm. Indeed,

kŜl = N sinjn 3 m, s= n 3 m. s17d

A direct calculation shows that the projected nematic or-
der parameter can be expressed in terms of three orthogonal
unit vectorssn ,m ,sd,

Qab
P

N
= cos2

j

2
nanb + sin2 j

2
mamb +

1

2
sasb −

1

2
dab. s18d

Note that the projected nematic order parameter is traceless
and fully symmetric.20 One can further truncate the projected
matrix in thesn ,md plane perpendicular tos and indeed find
that
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Qab
Pnm=

N

2
Scosj 0

0 − cosj
D s19d

which is diagonal whena, b are chosen to be along the axis
n or m.

The projected nematic order parametersQab
P , Qab

Pnm vanish
when spins are fully polarized orj=p /2 and the nematic
matrix has zero eigenvalues. WhenjÞp /2, the matrix has
nontrivial eigenvalues ±N/2 cosj. The nematic axisv there-
fore lies along the direction ofn whenj varies from 0 top /2
and along the direction ofm when from p /2 to p. The
nematic matrix eigenvalues reach maxima whenj=0 or p,
representing spin unpolarized nematic states.

Obviously, nematic symmetry order can develop along an
arbitrary direction in a plane perpendicular tos. In fact, an
O(2) rotation of the orthogonal basissn ,md alongs by a f

angle, while leavingkŜl invariant, results in a new nematic
state with easy axisv:

v = cosfn + sinfm s20d

if jP f0,p /2g, and

v = − sinfn + cosfm s21d

if jP fp /2 ,pg.
In terms of the easy axisv, the projected order parameter

can be conveniently expressed as

Qab
Pnm= NucosjuSvavb −

1

2
dabD . s22d

To summarize, we have shown that a projected traceless
nematic tensor order parameter should be introduced to study
nematic ordering in the presence of external fields.

IV. FERROMAGNETIC XXZ MODEL AS THE EFFECTIVE
HAMILTONIAN CLOSE TO CRITICAL POINTS

A. Phenomenology

To study the magnetically stabilized nematic order, we
consider a limit when the exchange interactionJex is much
less thanEs. For an even number of particles per site and in
the absence of external fields, the ground state is a spin-
singlet Mott state and nematic order is absent. The develop-
ment of nematic order first occurs when

2Hz < 6Es @ Jex. s23d

The Hilbert space for the whole lattice is a direct product
of spin towersHk at each site:

HT0 = H1 ^ H2 ^ H3 ^ ¯ ^ Hk ^ ¯ . s24d

The on-site Hilbert spaceHk is spanned bysN+1dsN+2d /2
states, with spins equal to0,2,4, . . . ,N; the dimension of the
Hilbert space for the whole lattice is

DT0 = S sN + 1dsN + 2d
2

DVT

, s25d

whereVT is the number of lattice sites.

When the external fields satisfying the condition in Eq.
(23) are applied and whenJex=0, at each individual site the
first excited stateuS=2,Sz=2l and ground stateuS=0,Sz=0l
are nearly degenerate and are far away from other excited
states. At the point when the field reaches a value so that

Hz = 3Es, s26d

level crossing between the the ground state and first excited
state occurs as mentioned briefly in the previous section.
Following the discussions in Sec. II, if the hopping or the
exchange energy is set to be precisely zero, then magnetiza-
tion jumps andQab

P =0. In this case, nematic order is not
induced by external fields.

As shown in the previous section, for nematic order to be
present, two nearly degenerate states have to be in a linear
superposition. In this sense, it is the exchange process in the
vicinity of level crossing points which eventually naturally
leads to nematic order which does not exist in zero fields.
This observation leads us to truncate the on-site Hilbert
space into a two-dimensional one for a pseudospin. The trun-
cated Hilbert space for the whole lattice is then a product of
pseudospin Hilbert spaceSk at each sitek,

HTt = S1 ^ S2 ^ S3 ¯ ^ Sk ^ ¯ s27d

and the on-site pseudospin Hilbert spaceSk consists of two
states

u↑l = uS= 2,Sz = 2l,u↓l = uS= 0,Sz = 0l. s28d

For two particles per site, the microscopic wave function of
these two states is given in Eq.(7).

The dimension of the truncated spaceDTt is exponentially
small compared with the original oneDT0, i.e.,

DTt = 2VT ! DT0. s29d

It is also independent of the number of particles per site. The
phenomenology for different even numbers of particles per
site is therefore identical.

The hopping between two nearest neighbors in lattices
introduces exchange interactions between pseudospins. We
will present results of microscopic calculations in the follow-
ing subsection. Here we provide a phenomonology of this
model. To facilitate discussions, we defineu↑l and u↓l to be
two eigenstates of Pauli matrixsz,

szu↑l = u↑l, szu↓l = − u↓l. s30d

Note that these two pseudospins are also eigenstates of the

spin operatorŜz. Therefore the pseudospin algebra corre-
sponds to the projection of the usual SU(2) spin algebra in
the truncated pseudospin space. For instance, one can verify
the following mapping:

"ssz + 1d → Ŝz, "s+ → Ŝ+, "s− → Ŝ−. s31d

An important and obvious fact is that single-particle hop-
ping conserves the total spin of two sites and its projection
along all directions including thez direction. Following Eq.
(31), this conservation of spins implies that any induced ex-
change coupling have to as well conserve the pseudospin
defined alongsz axis in the presence of external Zeeman
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fields. Furthermore, the superexchange due to virtual hop-
ping between two bosonicS=1/2 pseudospins results in a
ferromagnetic coupling which is to be further verified by
microscopic calculations.

Based on the above considerations, one concludes that the
effective Hamiltonian in the truncated space should be

Heff

Jex
= − 2e0o

kkll
ssk

+sl
− + sk

−sl
+d

− sb + 1de0o
kkll

skzslz − e0hzo
k

skz. s32d

Here e0, b depends on microscopic details of states and
should be a function of the number of particles per site and
h1, the ratio betweenEs andEc. hz further depends onh (the
ratio betweenJex and Es) and the ratio between external
fields Hz andJex.

One can easily recast the Hamiltonian into the following
ferromagneticXXZmodel in an effective external field along
the z direction,

HXXZ

e0Jex
= − o

kkll
skasla − bo

kkll
skzslz − hzo

k

skz. s33d

Because external magnetic fields are applied along thez di-
rection, with the particular choices of eigenstates for the
pseudospin Pauli matrixsz in Eq. (30), the Hamiltonian in
Eq. (33) also has an O(2) invariance in thexy plane. This
O(2) symmetry represents the O(2) nematic symmetry we are
going to examine. The relation between the symmetries of
the pseudospin model and the microscopic model for spin-
one bosons has been addressed in previous sections.

In general, the truncation can be applied in the vicinities
of all critical points where level crossings betweenuS,Sz
=Sl and uS+2,Sz=S+2l occur,S+2øN. One arrives at the
same phenomenology as for the level crossing between the
first two states. Of course,e0, b, andhz then depend on the
states involved in level crossings and are functions ofS, S
=0,2,4, . . . ,N−2. In the next few subsections we are going
to calculatee0, b, andhz.

B. Calculations of parameterse0, b, and hz in the XXZ model

Microscopic calculations ofb and hz though straightfor-
ward are pretty involved. We present results in a few limits.
Detailed calculations can be found in Appendix A.

1. Two particles per site

There is only one level crossing in this case. One can
verify that

k↑ uQ̂abu↑l =1
1

3
i 0

− i
1

3
0

0 0 −
2

3

2 , s34d

k↓ uQ̂abu↑l =1
1
Î3

i
Î3

0

i
Î3

−
1
Î3

0

0 0 0
2 , s35d

and

k↓ uQ̂bau↑l = k↑ uQ̂abu↓l†, k↓ uQ̂bau↓l = 0. s36d

Using the Hamiltonian in Eq.(2) and taking into account

these matrix elements ofQ̂ab in the truncated Hilbert space,
one obtains the results fore0, b, and hz. In this particular
case, one findse0=4/3,b=0 which implies an O(3) symme-
try when the effective fieldhz vanishes(but with a finite
external Zeeman fieldHz). It leads to a symmetry higher than
the O(2) one in the original problem in the presence of Zee-
man fieldHz.

We believe that the O(3) symmetry found for two par-
ticles per site is accidental and can be removed by taking into
account contributions of order ofh1=Es/Ec (see Appendix A
for details). The final result can be summarized in the fol-
lowing equation:

e0 =
4

3
S1 +

Es

Ec
D, b = −

3Es

Ec + Es
,

hz = −

9Es − 3Hz − 8Jex − 2
Es

Ec
Jex

4JexS1 +
Es

Ec
D . s37d

2. Four particles per site

Close to level crossing betweenu0,0l and u2,2l, we find
that

k↑ uQ̂abu↑l =1
11

22
i 0

− i
11

22
0

0 0 −
22

21

2 , s38d

k↓ uQ̂abu↑l =1Î14

15
iÎ14

15
0

iÎ14

15
−Î14

15
0

0 0 0
2 . s39d

The corresponding parameterse0, b, andhz are
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e0 =
56

15
, b = −

351

686
, hz = −

15

56
S3Es − Hz

Jex
−

536

147
D .

s40d

The effectiveXXZ model has the desired O(2) symmetry in
the plane perpendicular to the external field. For four par-
ticles, level crossing also happens betweenu2,2l and u4,4l
states. Similar calculations have been carried out and pre-
sented in Appendix A.

3. Large-N limit (even N)

In the large-N limit, one can describe the collective
ground state and excited states in terms of spherical harmon-
ics in a quantum rotor representation. So the spin-singlet
ground state and polarizeduS=2,Sz=2l wave functions are

u↑l =
1

4
Î 15

2p
sin2 u expsi2fd, u↓l =

1
Î4p

. s41d

In the quantum rotor representation, the Hamiltonian
is15,10,11,13

H = Eso
k

Sk
2 − Hzo Sz − Jexo

kkll
fQabsnkdQbasnld + H.c.g,

s42d

whereS=−in3] /]n, the spin operator is defined as the an-
gular momentum of the O(3) quantum rotor. It is a conjugate
variable to directorn,

fSa,nbg = ieabgng. s43d

Again the matrix elements ofQ̂ab are calculated below:

k↑ uQ̂abu↑l =
1

2112 0 0

0 2 0

0 0 − 4
2 , s44d

k↓ uQ̂abu↑l =
1

Î3011 i 0

i − 1 0

0 0 0
2 . s45d

The matrix elementQ̂xy vanishes in Eq.(44) as an artifact
of the large-N approximation. One then obtains all param-
eters for theXXZ effective model

e0 =
2

15
, b = −

39

49
, hz = −

15

2
S3Es − Hz

Jex
−

8

147
D .

s46d

It is possible to generalize this analysis to level crossing
between high-spin statesuS,Sl and uS+2,S+2l sSøN−2d
and the results are qualitatively the same(see Appendix B).
In all cases,e0 is positive andb is negative. In the next
section, we are going to examine the consequences of this
model. Particularly we investigate the implications on mag-
netically stabilized nematic order and physics around critical
points.

V. PHASE BOUNDARIES OF THE XXZ MODEL
AND HOLSTEIN-PRIMAKOV BOSONS

A. Phases ofXXZ model

The general phase diagram in thesb ,hzd plane can be
easily obtained in a mean-field approximation. Later on we
argue that the phase boundaries and solutions obtained in this
way in some part of the plane are actually exact(see Fig. 2).
In the mean-field approximation, we introduces as a unit
vector order parameter which defines the orientation of spin

ksl = 2Ss. s47d

HereS=1/2 is thepseudospin.
Thes dependence of the total energy comes entirely from

the terms proportional tob or hz, that is,

E

e0JexVT
= const − 4dbS2sz

2 − 2hzSsz, s48d

whered=3 is the dimension of three-dimensional cubic lat-
tices.sz varies from −1 and 1. Minimizing the energy with
respect tos one obtains mean field solutions for various
ground states.

Following Eq. (48), when hz.−2db and hz.0, the
mean-field solution is

s= s0,0,1d s49d

representing a fully polarized state which we call the up-
polarized(UP) phase. Whenhz,2db andhz,0, the mean-
field solution is

s= s0,0,− 1d s50d

representing another fully polarized state which we call the
down-polarized(DP) phase.

In addition, when −2db.hz.2db andb,0, the mean-
field solution is

FIG. 2. (Color online) Phases in the ferromagneticXXZ model.
b varies from −1 to+̀ . Region I, II, and III represent up-polarized
(UP), down-polarized (DP), and ferromagnetic ordered(FO)
phases, respectively. Along the blue liness−2db±hz=0d, transitions
are continuous while along the red line the transitionshz

=0,b.0d is a first-order one. Point(0,0) is the Os3d symmetric
tricritical point of the ferromagneticXXZ model. Asq goes to zero,
the interactions between magnons are repulsive whenb,0 and
attractive whenb.0; along the dash linesb=0d, magnons are non-
interacting. The solutions in the shaded region can be obtained in a
dilute gas approximation.
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s= ssinQ cosF,sinQ sinF,cosQd, cosQ = −
hz

2db

s51d

representing a ferromagnetically ordered(FO) phase which
breaks the in-plane O(2) symmetry spontaneously. Solutions
of different angleF are degenerate and the vacuum manifold
is a unit circleS1. Q varies fromp to 0 whenhz increases
from 2db to −2db.

Three phases are separated by a first order transition line
along thehz=0 axis which starts at point(0,0) and ends at
s` ,0d, and two other second order phase transition lines(see
Fig. 2). These two lines are defined by

2db ± hz = 0; s52d

both terminate at point(0,0). Finally (0,0) is a tricritical
point.

Along the first order transition line, the UP and DP states
become degenerate and the ground state breaksZ2 or Ising
type of symmetry spontaneously. At the tricritical point(0,0),
the XXZ model is O(3) rotation invariant and the ground
state breaks O(3) symmetry spontaneously. At this point, UP,
DP, and FO states are all degenerate.

In UP and DP phases, the microscopic wave functions for
ground states are, respectively,

ug↑l = p
k

u↑lk, ug↓l = p
k

u↓lk,

skzu↑lk = u↑lk, skzu↓lk = − u↓lk. s53d

In the O(2) ferromagnetic phase

ugFl = p
k

uVlk,

uVlk = cos
Q

2
exps− iFdu↑lk + sin

Q

2
u↓lk s54d

andQ is a function ofb, hz, cosQ=hz/2db, uhzu,2dubu. The
solutions in Eq.(54) are degenerate in theS1 manifold where
expsiFd lives and represent spontaneous O(2)-symmetry
breaking states.

By examing the microscopic wave functions of UP and
DP states, we notice that the UP and DP states are nondegen-
erate exact eigenstates of the pseudospin operatorSz
=okskz. Meanwhile, the total pseudospin projected along the
z axis is a conserved quantum number. So these UP and DP
solutions are exact eigenstates of theXXZ Hamiltonian. In
the next subsection we are going to show that they are actu-
ally exact ground states whenb is positive; furthermore we
argue that UP or DP states are also exact ground states even
whenb is negative andhz.−2db or hz,2db.

B. UP and DP states as exact ground states

When b, hz are both positive, the UP state presented
above is a ground state of both the O(3) isotropic term in the
ferromagneticXXZ model and the terms involvingb, hz. So
naturally the UP state is the exact ground state of theXXZ

model in this limit. Similarly whenb is positive andhz is
negative, the DP state is the exact ground state.

Whenb,0 but outside the triangular defined by the two
critical lines 2db±hz=0, we are not able to prove rigorously
that eigenstates in Eq.(54) are exact ground states. However,
we would like to show that they are locally stable and there-
fore we argue that they are likely to be the exact ground
states.

To carry out this part of discussions, we study the magnon
excitation spectrum in UP and DP phases and show that one-
particle magnon excitations are also exact eigenstates; fur-
thermore they are fully gapped except along the second order
transition lines. The most straightforward approach to study
these excitations is to use the Holstein-Primakov boson rep-
resentation for theXXZ model.

In the Holstein-Primakov representation, all spin opera-
tors are expressed in terms of Holstein-Primakov bosons

s+ = sÎ2S− c†cdc, s55d

s− = c†Î2S− c†c, s56d

sz = 2sS− c†cd. s57d

c†scd is the creation(annihilation) operator of bosons satis-
fying the usual bosonic commutation relationsfc,c†g=1 and
the raising and lowering operators are defined as

s+ =
sx + isy

2
, s− =

sx − isy

2
. s58d

One can furthermore verify that

fsa,sbg = i2eabgsg, s · s = 4SsS+ 1d. s59d

The Hamiltonian of theXXZ model then transforms into

HXXZ

e0Jex
= − 2o

kkll

Îf2S− ck
†ckgckcl

†Î2S− cl
†cl

− 2o
kkll

ck
†Îs2S− ck

†ckds2S− cl
†cldcl

− 4s1 + bdo
kkll

ck
†ckcl

†cl + 2fhz + 4Ss1 + bddgo
k

ck
†ck.

s60d

In deriving Eq. (60), we have neglected a constant term
−4s1+bdS2−2hzS for each lattice site. In a semiclassical ap-
proximation, one indeed recovers the results obtained in the
previous section. AgainS=1/2.

To study the excitation spectrum in region I(or II), we
first examine the Hamiltonian in Eq.(60) in a one-particle
subspace next to the exact eigenstates of UP(or DP). First
one notices that a UP state is an exact vacuum for Holstein-
Primakov bosons, that is,

ckug↑l = 0,skzug↑l = ug↑l s61d

for any latticek.
One-particle excitations we are interested in live in a sub-

space of single Holstein-Primakov boson, that is, in a space
spanned by states
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ck
†ug↑l s62d

defined at each lattice sitek. Since the total number operator
of Holstein-Primakov bosons commutes with the Hamil-
tonian

fNc,Hg = 0, Nc = o
k

ck
†ck, s63d

Nc is a conserved quantum number. We can then diagonalize
the Hamiltonian in this one-particle subspace whereNc=1.

In the subspace, we obtain the following effective Hamil-
tonian:

HXXZ
OP

e0Jex
= o

q
eqcq

†cq,

eq = 8SSd − o
a=x,y,z

cosqaaD + 2hz + 8Sdb. s64d

The superscript OP stands for the “one particle” subspace.
Equation(64) indicates the dispersion relation of one-particle
states.

In particular, it yields a fully gapped magnon spectrum in
region I. The gap vanishes only along the second-order tran-
sition line whereb,0 andhz= ±2db. Especially magnons
are fully gapped along the first-order phase transition line
b.0 and hz=0. When uhzu,−2db and b,0, one-particle
states(or magnon excitations) start to have lower energies
than the vacuum state. This indicates condensation of
Holstein-Primakov bosons which we are turning to.

To conclude we find that DP and UP states are exact
ground states of theXXZ model in regions I and II. Magnon
excitations in these phases are fully gapped. Along the mean-
field second-order transition lines, magnons become gapless
excitations. Further decreasinghz results in instability of
magnon excitations. So we believe that the transition lines in
the mean-field theory represent the exact phase boundaries.

C. Condensation of interacting magnons and emergence
of ferromagnetic order in the XXZ model

As discussed in the Introduction, the dynamics of conden-
sation of magnons depends crucially on the interactions be-
tween magnons. To study the region close to critical lines
where the condensed particle density should actually be very
low, we only take into account two-body interactions and
apply a dilute gas expansion. The results we derive in this
subsection are valid in the shaded critical regions(see Fig.
2), where

uhz ± 2dbu
uhzu

! 1. s65d

And ashz±2db approaches zero, the results become exact.21

We will present the calculations along the upper transition
line defined byhz+2db=0; the results are then generalized
to the lower transition linehz−2db=0.

In the dilute gas limit which interests us, the number of
Holstein-Primakov bosons per lattice site is much less than
1, i.e.,

nc = kck
†ckl ! 1. s66d

For this reason, one can expand the nonlinear operators ofs±

in terms ofnc, especially,

Î2S− c†c = Î2SS1 −
c†c

4S
+ Osnc

2d ¯ D s67d

for S=1/2. Theresultant many-body Hamiltonian up to the
second order ofnc is

HXXZ

e0Jex
= o

q
eqcq

†cq −
4db

VT
o

q1,q2,q3

cq1+q3

† cq2−q3

† cq1
cq2

. ,

s68d

The first term is identical toHXXZ
OP , the exact Hamiltonian

projected in the one-particle subspace and the second term
describes magnon-magnon interactions. This Hamiltonian is
applicable in a dilute limit where Eq.(66) is satisfied. The
sign of interaction atq=0 or smallq limit is determined by
b. Whenb is positive, magnon interactions are attractive and
when negative magnon interactions are repulsive.

When magnons are idealsb=0d, all magnons condense
when the energy gap in the spectrum closes athz=0. This
leads to an abrupt jump in magnetization which corresponds
to the field-driven first-order phase transition from UP to DP
phase at the tricritical point(0,0) (along the dashed line). In
this case external fields do not induce nematic order. This is
consistent with mean-field results discussed in the previous
subsection. One can, in principle, generalize this argument to
the case whenb,0 and arrive at similar conclusions.

When magnons’ interaction are repulsive, following Eq.
(68) the chemical potential of magnons in the dilute gas limit
(differing from m0 of atoms) is

m = − 8n0db + Osn0
2d, s69d

wheren0 is the number of magnons per lattice site. This is
similar to weakly interacting gases of bosons in continuum
limit.22 The chemical potential defined in this way only de-
pends on intrinsic parametersb which have been evaluated
microscopically and is independent of external Zeeman
fields. The energy of the magnon condensate per lattice site
is therefore

Esn0d
e0JexVT

= 2suhzu + 2dbdn0 − 4n0
2db. s70d

Minimizing the energy with respect ton0 yields

n0 =
1

2
F1 +

uhzu
2db

G s71d

which is a continuous function ofhz. n0 is much less than one
in the critical region where Eq.(66) is satisfied. At the tran-
sition point uhzu=−2db, the magnon density per lattice site
either vanishes or is equal to 1, i.e.,n0=0, 1. Furthermore, if
one extrapolates to thehz=0 case, one obtainsn0=1/2, that
is half magnon per lattice site.sz=0 as expected.
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Note that the ground state in this case is not the vacuum
of Holstein-Primakov bosons but instead the vacuum defined
by Bogolubov quasiparticles. The Bogolubov excitations are
created by the following operators:

gq
† = usqdcq

† + vsqdc−q,

u2sqd =
1

2S1 +
eq + m

Îeq
2 + 2eqm

D ,

v2sqd = −
1

2S1 −
eq + m

Îeq
2 + 2eqm

D , s72d

wherem is the chemical potential of magnons defined before
and the kinetic energyeq=2uqu2a2 is written in a dimension-
less unit. The dispersion of quasiparticles is phononlikevq
=vsuqu at small energies, taking into account the chemical
potential in Eq.(69), we obtain

vs = vs0Î1 +
uhzu
2db

, vs0 = 4aÎ− db. s73d

This agrees with the semiclassical solutions obtained in Eq.
(C12) in Appendix C.

These results indicate that the physics in theXXZ model
close to the second-order critical lines is indeed equivalent to
interacting dilute magnons defined by Holstein-Primakov
bosons. Especially the fact that the emergence of ferromag-
netic ordering occurs when condensation of magnons takes
place. As in the usualc-number approximation for condensed
bosons, we approximate

cq=0
† = cq=0 = În0VT expsiFd. s74d

Substituting this result into the expressions fors±, sz in Eq.
(57), we obtain

ksxl = 2Î2SÎn0 cosF,

ksyl = 2Î2SÎn0 sinF,

kszl = 2S− 2n0, s75d

and againS=1/2.
Correspondingly, the Bogolubov quasiparticles represent

the spin wave excitations in Os2d ferromagnets. Following
Eqs.(57) and(72), one can expresssx,y in term ofg† andg:

dsxsr d = o
qÞ0

expsiq · r d
Î2S

2ÎVT

fusqd − vsqdgsgq
† + g−qd,

dsysr d = o
qÞ0

expsiq · r d
Î2S

2iÎVT

fusqd + vsqdgsgq
† − g−qd.

s76d

Consider a single quasiparticle state

uq0l = gq0

† uvacl. s77d

Spin correlations in this single-particle state are

kfdsxsr d − dsxs0dg2l =
2S

VT
fusq0d − vsq0dg2sin2 q0 · r

2
,

kfdsysr d − dsys0dg2l =
2S

VT
fusq0d + vsq0dg2sin2 q0 · r

2
,

kfdsxsr ddsys0dgl = −
S

VT
sinq0 · r . s78d

Remarkably, the corresponding orientation of pseudo spin
s derived in the dilute gas approximation is precisely the
same as the semiclassical results obtained in Sec. V A; close
to the critical line, we notice that

cosQ = 1 − 2n0, sinQ = 2În0. s79d

In the next section we are going to discuss the implications
of the mapping on correlated atoms, especially magnetically
stabilized nematic order. Since the semiclassical solutions
turn out to be exact along the critical lines, we would like to
believe that solutions are also valid in the ferromagnetic or-
dered phase, at least qualitatively and can be extrapolated
deep into that phase.

VI. NEMATIC ORDER AND PHASE BOUNDARIES
OF MAGNETICALLY STABILIZED NEMATIC

MOTT STATES

Let us turn to the problem of Mott states of spin-one
bosons. Following discussions in Sec. II, one finds that DP
states correspond to spin singlet Mott(SSMI) states and UP
states to spin fully polarized Mott(SFPMI) states.

The FO states breaking the Os2d symmetry represent
quantum spin nematic states with easy axis determined by
the projection of pseudospin orientations in the xy plane.
Indeed, for two particles per site the wave function of FO
states in Eq.(54) indicates the following spin correlated Mott
states for spin one bosons:

CNM = p
k
Fcos

Q

2
expS− i

F

2
D sckx

† + icky
† d2

2Î2

+ sin
Q

2
expSi

F

2
Dcka

† cka
†

Î6
Guvacl. s80d

Q is a function ofb andhz as given in Sec. V A,

cos
Q

2
=Î1

2
−

hz

4db
, sin

Q

2
=Î1

2
+

hz

4db
. s81d

As hz varies from −2db to 2db, Q varies from 0 top. And
FP f0,2pg represents anS1 manifold for the spontaneous
symmetry breaking solutions.

For cold atoms, our calculations show that in all casesb is
negative. When magnetic fields are varied, the trajectory in
theb-hz planes(see Fig. 2) moves vertically at a given nega-
tive b. And as magnons are repulsive, magnetic fields stabi-
lize nematic order via the continuous process of condensa-
tion of magnons. So as the magnetic field increases, the
phases encountered are spin-singlet Mott states, nematic
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Mott states(partially polarized), and spin fully polarized
states. Here we will focus on the nematic state.

The projected nematic order parameter for the constructed
nematic Mott state is given in Eq.(11) with f=F and u
=Q:

Qab
Pxy=

1
Î3
Î1 −

hz
2

4d2b2Svavb −
1

2
dabD ,

v = Scos
F

2
,sin

F

2
D . s82d

The nematic order vanishes along the second order critical
lines uhzu=−2db and reaches maxima when level crossing
takes place in an isolated lattice site, i.e., athz=0.

This spin partially polarized nematic Mott state
(SPPNMI) has spin polarization

Mz = kSzl = "S−
hz

2db
+ 1D . s83d

Spins are fully polarized at one of the critical linessMz

=2"d when hz+2db=0 and the spin polarization vanishes
sMz=0d at the other critical linehz−2db=0. In between,Mz

varies continuously from 0 to 2" and is precisely equal to
" when hz vanishes and the nematic order reaches the
maximum(see Fig. 3).

Finally, the phase boundaries for SSMI, SFPMI, and
SPPNMI can be obtained by substituting the field depen-
dence ofb, hz derived in Sec. IV B into the expression for
critical lines in theXXZ model

hzS Es

Jex
,
Hz

Jex
D ± 2dbSEs

Ec
D = 0. s84d

This results in critical fields for variousN. Especially one
determines the upper and lower critical fieldssHzc

± d between
which nematic order develops for the first time when mag-
netic fields increase from zero.

For N=2, the upper and lower critical fields are

Hzc
± = 3Es −

8

3
Jex ± 24

Es

Ec
Jex s85d

and forN=4, these fields are

Hzc
± = 3Es −

536

147
Jex ±

243 117

245
Jex. s86d

At the large-N limit, one obtains

Hzc
± = 3Es −

8

147
Jex ±

156

245
Jex. s87d

We have setd=3 in deriving Eqs.(85)–(87).

VII. EFFECTS OF QUADRATIC ZEEMAN COUPLING

In this section, we are going to briefly discuss the effect of
quadratic Zeeman terms which generally are present in
atomic gases.17,18 This kind of external perturbations only
conserves the spin projection along the direction of external
fields but does not conserve the total spin of the many-body
states under consideration and therefore has distinctly differ-
ent effects on spin-singlet Mott states. Namely, such external
fields would induce nematic order at any small but finite
coupling. In other words, spin-singlet Mott states are un-
stable with respect to these perturbations.

To demonstrate this phenomenon, we consider spin-
singlet Mott states in the presence of the following quadratic
Zeeman perturbation:16,15

Hp = − HQZo
k

Q̂abskdSnanb −
1

3
dabD , s88d

whereQ̂abskd is the nematic operator defined at the begin-
ning of Sec. II[Eq. (2)] andn characterizes the orientation of
quadratic Zeeman fields which we choose to be along the
z-direction.HQZ is the strength of the quadratic Zeeman cou-
pling. (This form of perturbation differs slightly from the one
used in Refs. 16 and 15 by a singlet operator which does not
contribute to the quantity we are calculating here.)

One notices that indeed this quadratic Zeeman term does
not communte with the total spin operator defined at any

individual lattice siteŜk
2; however, it does communte with

the operatorŜkz

fŜkz,o
k8

Q̂a8b8sk8dda8zdb8zg = 0,

Ŝkz= − io
k

ezabcka
† ckb. s89d

So what it does is to cause transitions between states with
different on-site spin quantum numbersSk but with identical
spin projection along thez direction Skz. Thus it does not
lead to transitions between differentSkz subspaces. For a spin
singlet Mott state, this perturbation results in transitions be-
tween on-site singlet statessSk=0d and nonsinglet states
sSkÞ0d in the subspace ofSkz=0.

For two particles per site and in the zero hopping limit,
we find that these transitions lead to coherent superposition

FIG. 3. (Color online) MagnetizationMz (in units of ") and
sinQ as a function ofh=hz/2db. sinQ defined in Eqs.(51) and
(81) is proportional to the nematic order. Results around upper or
lower critical points are obtained in a dilute gas approximation and
are exact. Notice that the nematic order sinQ reaches the maximum
at zerohz whereMz is equal to".
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of two states inSz=0 subspace:u0.0l state and

u2,0l =
1

2Î3
s3cz

†cz
† − ca

†ca
†duvacl, a = x,y,z. s90d

For instance, in the first-order perturbation expansion the
ground-state wave function is

dC =
Î2HQZ

9Es
o
k

1

2Î3
s3ckz

† ckz
† − ckh

† ckh
† d

^ p
lÞk

1
Î6

clh8
† clh8

† uvacl. s91d

A direct calculation shows that the nematic order is in-
duced continuously as the quadratic coupling is applied

kQ̂abl =
2

3

HQZ

Es
Snanb −

1

3
dabD . s92d

This dependence is very different from the linear-Zeeman
field dependence of nematic order which exhibits a critical
field below which spin singlet Mott states are stable. As ex-
pected, quadratic Zeeman effects are more effective in stabi-
lizing spin nematic Mott states. Furthermore, the easy axis of
the induced nematic tensor order parameter is pinned along
the direction of external fields,n and the resultant states are
Ising nematically ordered instead of Os2d or Os3d nematic
states discussed before.

VIII. CONCLUSIONS

To summarize, in this article we have investigated mag-
netically stabilized fluctuating spin nematic order. We have
shown that nematic order can develop when two non-
nematic states at a lattice site are in a linear superposition in
the presence of external fields. When external fields are ap-
plied, even small superexchange coupling could lead to such
a linear superposition and nematic order emerges even
though no spontaneous symmetry breaking occurs in zero
field.

We have also mapped the problem of spin-one bosons
with antiferromagnetic interactions in an external field to the
ferromagneticXXZ spin sS=1/2d model. We find that the
field-driven quantum phase transitions belong to the univer-
sality class of the ferromagneticXXZ modelsS=1/2d. Spon-
taneous symmetry breaking in thexy plane in this effective
ferromagneticXXZ model corresponds to planar nematic or-
dering in the underlying atomic states. In all non-nematic
Mott states which interest us, interactions between magnons
are repulsive. Therefore when the external field reaches a
critical one, condensation and thus phase transitions are con-
tinuous.

We also show that the breaking of the U(1) symmetry in
magnon Bose condensates results in breaking of the O(2)
nematic symmetry in thexy plane perpendicular to external
fields. The Bogoliubov quasiparticles of condensates are pre-
cisely the spin wave excitations in the O(2) nematic states.
So the nematic order is stabilized when the field exceeds a
critical one and magnons condense. We have also obtained

the microscopic wave functions of ordered states and spin-
wave excitations.

Finally we find that for a spin-singlet Mott state the fluc-
tuating nematic order can be stabilized by any small but
finite quadratic Zeeman effects. Namely, the nematic order
parameter varies continuously in the presence of quadratic
Zeeman effects.
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APPENDIX A: EFFECTIVE XXZ MODEL FOR VARIOUS
NUMBERS OF PARTICLES PER SITE

1. Microscopic Hamiltonian

To break the O(3) symmetry in theXXZ model for two
particles, we keep higher order terms ofosEs/Ecd. The effec-
tive Hamiltonian for spin-one bosons in the Mott state of an
optical lattice in the presence of a magnetic field(in the z
direction) can be derived as

H = SEs − 6Jex
Es

Ec
Do

k

Ŝk
2 − Hzo

k

Ŝk
z sA1d

− 2JexS1 +
Es

Ec
Do

kkll
Q̂k,abQ̂l,ba

+ 2Jex
Es

Ec
o
kkll

sŜk + Ŝld2

+ Jex
Es

Ec
o
kkll

TrfAskdNsld + AsldNskdg. sA2d

We have introduced the operatorsNhj=ch
†cj and Ahj

=ch
†cj

†cbcb−ca
†ca

†chcj.

2. N=2 case

For N=2 we have only the possibility of looking at the
transition between the statesu↑ l= u2,2l and u↓ l= u0,0l. The
relevant nonvanishing matrix elements are(again

k↑uQ̂abu↓ l=k↑uQ̂abu↑ l†)

k↑ uQ̂abu↑l =1
1

3
i 0

− i
1

3
0

0 0 −
2

3

2 , sA3d

ZHOU et al. PHYSICAL REVIEW B 70, 184434(2004)

184434-12



k↓ uQ̂abu↑l =1
1
Î3

i
Î3

0

i
Î3

−
1
Î3

0

0 0 0
2 , sA4d

k↑ uNu↑l =
1
Î31 1 i 0

− i 1 0

0 0 0
2 , sA5d

k↑ uNu↓l =
1
Î31 1 − i 0

− i − 1 0

0 0 0
2 , sA6d

k↓ uNu↑l =
1
Î311 i 0

i − 1 0

0 0 0
2 , sA7d

k↓ uNu↓l =
2

311 0 0

0 1 0

0 0 1
2 . sA8d

k↑ uAu↓l = Î31 1 − i 0

− i − 1 0

0 0 0
2 , sA9d

k↓ uAu↑l = Î31− 1 − i 0

− i 1 0

0 0 0
2 . sA10d

Using these results we find that the effective Hamiltonian
turns out to be

H = − Jex
4

3
S1 +

Es

Ec
Do

kkll
sk · sl + 4Jex

Es

Ec
o
kkll

sk
zsl

z

− SHz − 3Es +
8

3
Jex +

2

3

Es

Ec
JexDo

k

sk
z. sA11d

This is the Hamiltonian for theXXZ model:

HXXZ

e0Jex
= − o

kkll
sk · sl − bo

kkll
sk

zsl
z − hzo

k

sk
z sA12d

with

e0 =
4

3
S1 +

Es

Ec
D , sA13d

b = −
3Es

Ec + Es
, sA14d

hz = −

9Es − 3Hz − 8Jex − 2
Es

Ec
Jex

4JexS1 +
Es

Ec
D . sA15d

3. N=4 case

For four particles per site, there are two possible transi-
tions: u0,0l→ u2,2l→ u4,4l. We will consider both transi-
tions. In both cases the correction of orderJexsEs/Ecd turns
out to be not particularly interesting.

a. z0,0‹\ z2,2‹

We define againu↑ l= u2,2l and u↓ l= u0,0l. The relevant
nonvanishing matrix elements are

k↑ uQ̂abu↑l =1
11

21
i 0

− i
11

21
0

0 0 −
22

21

2 , sA16d

k↓ uQ̂abu↑l =1Î
14

15
Î14

15
i 0

Î14

15
i −Î14

15
0

0 0 0
2 . sA17d

This gives rise to anXXZ model with the following param-
eters

e0 =
56

15
, sA18d

b = −
351

686
, sA19d

hz = −
1

e0Jex
S3Es − Hz −

536

147
JexD . sA20d

b. z2,2‹\ z4,4‹

We defineu↑ l= u4,4l and u↓ l= u2,2l. The relevant nonva-
nishing matrix elements are

k↑ uQ̂abu↑l =1
2

3
2i 0

− 2i
2

3
0

0 0 −
4

3

2 , sA21d
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k↓ uQ̂abu↑l =1Î
12

7
Î12

7
i 0

Î12

7
i −Î12

7
0

0 0 0
2 , sA22d

k↓ uQ̂abu↓l =1
11

21
i 0

− i
11

21
0

0 0 −
22

21

2 . sA23d

Using this we get again an effective Hamiltonian in the form
of an XXZ model. The parameters are

e0 =
48

7
, sA24d

b = −
284

49

1

e0
= −

71

84
, sA25d

hz = −
1

e0Jex
S7Es − Hz −

344

49
JexD . sA26d

4. N=3 case

Although in this article we only treat the case with even
numbers of particles per site, the approach developed to
study the physics close to critical fields can also be applied to
the case with odd numbers of particles per site. For instance,
for three particles per site we have the transition between
u↑ l= u3,3l andu↓ l= u1,1l. The nonvanishing matrix elements
are

k↑ uQ̂abu↑l =1
1

2

3

2
i 0

−
3

2
i

1

2
0

0 0 − 1
2 , sA27d

k↓ uQ̂abu↑l =1Î
3

5
Î3

5
i 0

Î3

5
i −Î3

5
0

0 0 0
2 , sA28d

k↓ uQ̂abu↓l =1
3

10

i

2
0

−
i

2

3

10
0

0 0 −
3

5

2 . sA29d

The parameters of theXXZ model in this case are

e0 =
12

5
, sA30d

b = −
8

15
, sA31d

hz = −
1

e0Jex
S5Es − Hz −

124

25
JexD . sA32d

APPENDIX B: EFFECTIVE HAMILTONIAN
FOR LARGE N

For largeN, N even, we can study all transitions from
uS,Sl→ uS+2,S+2l. These states are given by

uS,Sl = uYSSsndl = s− 1dSÎ2S+ 1

4p

s2Sd!
22SsS! d2eiSf sinS u.

sB1d

The hopping term in the Hamiltonian is just equal to

− 2Jexo
kkll

snk ·nld2. sB2d

Introducing u↑ l= uS+2,S+2l and u↓ l= uS,Sl, we get the
following nonvanishing matrix elements

k↑ ukk↑ ulsnk ·nld2u↑lku↑ll =
19 + 12S+ 2S2

s7 + 2Sd2 ,

k↑ ukk↓ ulsnk ·nld2u↑lku↓ll =
7 + 8S+ 2S2

s3 + 2Sds7 + 2Sd
,

k↑ ukk↓ ulsnk ·nld2u↓lku↑ll =
s2 + Sds1 + Sd

s3 + 2Sds5 + 2Sd
,

k↓ ukk↓ ulsnk ·nld2u↓lku↓ll =
3 + 4S+ 2S2

s3 + 2Sd2 .

The effective Hamiltonian turns out to be
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Heff

Jex
= − o

kkll

s2 + Sds1 + Sd
s3 + 2Sds5 + 2Sd

ssk
xsl

x + sk
ysl

yd

− o
kkll

12

s3 + 2Sd2s7 + 2Sd2sk
zsl

z

− Ss2S+ 3d
Es

Jex
−

Bz

Jex
−

8s3 + Sds1 + 2Sd
s3 + 2Sd2s7 + 2Sd2Do

k

sk
z.

This is clearly anXXZ model with

e0 =
s2 + Sds1 + Sd

s3 + 2Sds5 + 2Sd
, sB3d

b = − 1 +
12s5 + 2Sd

fs7 + 2Sd2s6 + 13S+ 9S2 + 2S3dg
, sB4d

hz = −
1

e0Jex
Ss2S+ 3dEs − Bz −

8s3 + Sds1 + 2Sd
s3 + 2Sd2s7 + 2Sd2JexD .

It is clear thatb is negative for allS and it gets more nega-
tive if we increaseS. For the lowest transitionu0,0l
→ u2,2l this gives the numbers

e0 =
2

15
, sB5d

b = −
39

49
, sB6d

hz = −
1

e0Jex
S3Es − Hz −

8

147
JexD . sB7d

APPENDIX C: THE HOLSTEIN-PRIMAKOV
BOSONS REPRESENTATION

1. Holstein-Primakov bosons in UP or DP phases

The Hamiltonian of theXXZ model is given as

HXXZ

e0Jex
= − o

kkll
skasla − bo

kkll
skzslz − hzo

k

skz. sC1d

In this subsection, we are interested in region I(see Fig.
2), where hz+2db.0. After Fourier transforming and in
terms of Holstein-Primakav(HP) bosons the Hamiltonian
can written as

HXXZ= Hs0d + Hs2d + Hs4d + Ofsĉs†dd6g. sC2d

Here

Hs0d = − VTfdsb + 1d + hzg, sC3d

Hs2d = o
q
F4s1 + bdd + 2hz − 4o

a

cossqaadGcq
†cq,

sC4d

and the fourth order term is

Hs4d

Jexe0
=

1

VT
o

q1q2q3

cq1

† cq2

† cq3
cq1+q2−q3o

a

hexps− iq2aad

+ exps− iq3aad + expf− is− q1 − q2 + q3daag

+ expsiq1aadj − 4s1 + bd o
q1q2q3

cq1

† cq2

† cq3
cq1+q2−q3

3o
a

expfisq1 − q3daag.

Herea is the lattice constant.
Following Eq. (C4), the energy of the quasiparticles is

given by

eq = 4s1 + bdd − 4 o
a=x,y,z

cossqaad + 2hz, sC5d

where the energy gap in the spectrum is given as

Dsb,hzd = 4bd + 2hz. sC6d

The fourth order term describes interactions between
magnons. Indeed, in the smalluqu limit the Hamiltonian can
approximately be written as(up to a constant)

HXXZ

Jexe0
= o

k
eqcq

†cq −
4db

VT
o

q1q2q3

cq1

† cq2

† cq3
cq1+q2−q3

. sC7d

Whenb.0 interactions between the magnons are attractive
and whenb,0 interactions are repulsive. To derive these
results, we have used the dilute gas expansion expansion

Î2S− c†c = S1 −
c†c

2
−

1

8
sc†cd2 + ¯ D . sC8d

2. Holstein-Primakov bosons in ferromagnetically
ordered phase

The most convenient way to study HP bosons in region III
is to introduce the following rotation:

1x

y

z
2 = 1cosQx8 + sinQz8

y8

cosQx8 − sinQz8
2 . sC9d

In the semiclassical approximation, by minimizing the en-
ergy with respect toQ, one obtains the ground-state solution
with cosQ=−hz/2db.

Consider an expansion over this solution. We get the fol-
lowing lowest order terms:

HXXZ
s2d

e0Jex
= o

q
s4d + 4db cos2 Q + 2hz cosQdcq

†cq

− o
q

s4 + 2b sin2 Qdo
a

cosqaacq
†cq

− o
q

b sin2 Qo
a

cosqaascqcq + cq
†cq

†d.

sC10d

WhenQ=0, one recovers the results in Sec. V B.

MAGNETICALLY STABILIZED NEMATIC ORDER:… PHYSICAL REVIEW B 70, 184434(2004)

184434-15



Taking into account cosQ=−hz/2db in the ferromagnetic
phase, in the long wave length limit one further simplies the
result to

HXXZ
s2d

e0Jex
= o

q
4sd − o

a

cosqaadcq
†cq − o

q
s2db sin2 Qdcq

†cq

− o
q

db sin2 Qscqcq + cq
†cq

†d. sC11d

This yields the following dispersion:

vq = 2Î2aÎ− dbÎ1 −
hz

2

4d2b2uqu. sC12d

Equation(C12) agrees with the results derived in the dilute
gas approximation in Sec. V C; close to critical lines, one
notices that sinQ=2În0 anddbsin2 Q=4dbn0.
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