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Magnetically stabilized nematic order: Three-dimensional bipartite optical lattices
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We study magnetically stabilized nematic order for spin-one bosons in optical lattices. We show that the
Zeeman field-driven quantum phase transitions between non-nematic Mott states and quantum spin nematic
Mott states in the weak hopping limit are in the universality class of the ferromagixc(S=1/2) spin
model. We further discuss these transitions as condensation of interacting magnons. The developii@nt of O
nematic order when external fields are applied corresponds to condensation of magnons, which bfépks a U
symmetry. Microscopically, this results from a coherent superposition of two non-nematic states at each
individual site. Nematic order and spin-wave excitations around critical points are studied and critical behav-
iors are obtained in a dilute gas approximation. We also find that spin-singlet states are unstable with respect
to quadratic Zeeman effects and Ising nematic order appears in the presence of any finite quadratic Zeeman
coupling. All discussions are carried out for states in three-dimensional bipartite lattices.
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I. INTRODUCTION magnetization per lattice site in this case jumps by a finite

When the dimensionless exchange coupling strength i¥alue at the critical point as a result of condensation; further-
strong enough, Mott states of spinful particles are known tgnore the canted Néel order would not appear in this case.
develop certain spin order. In the opposite limit, guantum! "€ Phase transition would be simply between a fully polar-
fluctuations usually restore the broken symmetry resulting ifZz€d state and a spm-;mgleg state. s
spin-singlet states. This widely accepted belief, however, HOWwever, if interactions between magnons are repulsive,
does not exclude, and furthermore implies certain “hidden,conde.nsatlon ta}(es place contmuoqsly bepause of finite
fluctuating order in the symmetry restored states. The pree#ﬁem'&al potentt|_alst_ for repL_JtIsweE/_ rl]n_teractlngt_ magl;rtwrtﬁ.
isting order appears dynamically at certain time and length us the magnetization per site, which IS proportional to the

e density of magnons varies continuously across the critical
scales and is in general very relevant to the low-energy phys}ioint ;/nd the tgransition is of second orgi/er. In this case, the

LC.S'. F;art!cularly if ?n exéernal' rrr:;o\gne'ué f'eli 's applied, fn&n'resultant state has canted Néel order. For3ha antiferro-
rivial spin (magnetig order might be induced because of the ) yqetic spin chain, numerical results show that the magne-

coupling between magnetic excitations and external fields. Ij; a4 indeed varies continuously and imply that magnons
other words, an external field can stabilize spin order in &5ye repulsive interactiodsin fact, at higher magnetic
parameter regime where order is absent in zero field. fields, external fields do induce canted Néel ordeiSinl

The pOSSible field-induced Ordering Usua”y results fromspin Chainiorﬂy quasi_|ong_range order preva"s in Chains
condensation of magnetic excitations or magnons. The field€ondensation of magnons has also been recently studied in
induced quantum phase transitions between states of diffethree-dimensional frustrated magnése, for instance, Refs.
ent magnetic correlations and possible magnetically stabig and 9.
lized order close to critical points can be investigated by Therefore, to investigate magnetically stabilized order, it
examining magnon excitations in one of the phases involveis important to understand interactions between magnons or
in the phase transitions. magnetic excitations. Generally, microscopic calculations of

A well-known example is th&=1 antiferromagnetic spin magnon interactions are not only very difficult but also prac-
chainl~" The ground state is the spin singlet AKLT state andtically impossible for low-spin systems because of the un-
all spin excitations are fully gapped by the Haldane gap. Arcontrollable approximations involved. However, in the case
applied Zeeman field along the positizelirection, although we are going to examine we do evaluate the interactions
it has zero coupling with the singlet ground state, couples tanicroscopicallyin various situations; therefore we believe
spin excitations, and lowers the energy of excitations in theéhe results about magnetically stabilized quantum spin nem-
S=1,S,=1 branch because of the Zeeman coupling. At criti-atic order and quantum phase transitions recisein this
cal fields, the zero momentum excitation becomes degenesense. We also want to emphasize that magnon condensation
ate with the spin-singlet ground state signifying a quantunwhich interests us in this article occurs in both high dimen-
phase transition. sional and one-dimensionalonfrustrated optical lattices.

The presence and nature of induced canted Néel order ifihe one-dimensional limit will be treated in a separated pa-
this case therefore depewducially on interactions between per.
magnetic excitations in the AKLT phase. One can easily vi- The purpose of this article is to understand the magneti-
sualize that the transition is of first order if the interactions ofcally stabilized nematic order of spin-one bosons in optical
condensed magnons are attractive or absent. Naturally, tHattices. As emphasized above, our starting point will be a
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series of Mott states with no nematic order, some of which In Sec. Il, we review the properties of spin-singlet Mott
also have zero coupling with externéhear Zeeman fields. states and introduce a projected nematic order parameter for
Our main subject is to investigate the development of nemeiscussions on spin partially polarized states. For a given
atic order or spontaneous symmetry breaking intyelane |attice site with two particles, we show that nematic order
when external magnetic fields are applied alongztiirec-  can be established if a spin-singlet state is in a superposition
tion. In particular, we will focus on the nematic order closeith a higher spin statéS=2,S,=2). The relative phase be-

to critical points where our results are actually exact. Furqyeen these two states in the superposition determines the

thermore, the approach we employ here is believed to yield 55y axis of the nematic order parameter, or the orientation
exact _phl\:/sllse boundarleshbetweenknslmatm Tta;es ﬂ”dk” spin-nematic states. In Sec. Ill, we study the general char-
nematic Mott states, a rather remarxable conclusion thanks Werization of nematic order in spin-polarized Mott states;

the powerful mapping developed below. . . i
Spin-correlated Mott states for spin-one bosons have recc Propose a projected nematic order parameter which

cently attracted considerable inter&stt* Theoretical works projects away trivial contributions from spin polarization.

indicate that spin correlations in Mott states depend on three In Sep. .lV’ we truncate the Hilbert space close o cr|t.|cal
dimensionless parametéfsi2The first one is the dimension- magnetic fields and show that the resultant Hamiltonian is an

less exchange coupling(=J.,/EJ) which is defined as the XXZ (S=1/2) pseudospin model in an effective field along
ratio between the exchange interactibg and the bare spin the z dlrect|o_n. We carry out microscopic calculations of all
gap for an individual siteE,. The second parameter is the Parameters in the effective ferromagnetixZ model. These
parity P (even or odgl of the number of particles per site in calculations are done for two particles per site, four particles
Mott states. The last parametBr is the dimensionality of ~per site, and in the largdl (even limit. The quantum rotor
optical latticestwe assume all lattices are biparjite model studied in previous works is employed to facilitate
For D=2,3, it was agued that Mott states for all odé  calculations.
are nematically ordered. In fact irrespective of the exact In Sec. V, close to critical lines and a tricritical point we
number of particles per site in this case, the effective Hamilfurther study the properties of various phases of X¥Z
tonian in the small hopping limity<<1) is equivalent to the model in both the semiclassical approximation and dilute gas
bilinear-biquadratic model fd8=1 spin chaind® For evenP  approximation based on the Holstein-Primakov boson repre-
on the other hand, nematic and spin singlet Mott states arsentation. We analyze the interactions between Holstein-
present for largey and smally limits, respectively. The one- Primakov bosons or magnons. We obtain the exact phase
dimensional physic¢D=1) is dominated by quantum fluc- houndaries for the ferromagnetXZ model by investigat-
tuations. Both dimerized valence bond crystals and nondeing the instability lines of magnon excitations. We also dis-
generate spin-singlet states have been found. As a result gf;ss the relation between condensation of magnons close to
symmetry restoring, the low-energy dynamics in Mott stategyitical lines, the variation of magnetization across critical
IS mapﬂed into the even- and odd-class quantum dimegoints and the appearance of ferromagnetic order.
models: Furthermore, atoms have a tendency to be fraction- |, gec. VI, we investigate, in details, the development of

allzed_ into solltonlcelem_en_taryexcnatm_ns in this I|r_n|t. Su- magnetically stabilized nematic order by examining results
perfluid phases have distinct topological properties and refollowing the mapping to theXXZ model and to the

main to be fully understood. . Holstein-Primakov condensation problem. We notice that re-
Responses of correlated states of spin-one bosons to ex

ternal fields are fascinating. For nematic condensates, th%l'”tS _a'bou.t phase 'b.oundarlles, nematic ordgr, anq spin-wave
responses are continuous. The linear coupling between CoM_elocmes in the critical regime can be obtained in a dilute
densates and weak external fields pins the easy axis ythe gas approximation and therefore, remarkably, are exact. In
plane perpendicular to external fields, an@hematic con- €€ VII, we further study the effect of quadratic Zeeman
dratic coupling, however, pins the nematic easy axis alon@n this subject.

the direction of coupling® For spin singlet condensates, the

magnetization jumps discontinuously as a result of a series of || sp|N SINGLET MOTT STATES. FLUCTUATING

level crossings between sta®S,=S) and[S+2,5,=S+2)  NEMATIC ORDER, AND PROJECTED NEMATIC ORDER
(Ref. 16 (also see general discussions about condensates in

Refs 17 and 1B Responses of Mott states to external Zee- The Hamiltonian for spin-one bosons with antiferromag-
man fields and various transitions have recently been studigtgtic interactions in optical lattices in an external field can be
in a mean-field approach. Mott states can either respond teonveniently expressed‘ds*41?

external fields continuously similar to nematic condensates

R . . . .. — o2 ~2 ~ c
or develop interesting magnetization plateaus similar to H=E S{+E.> b~ i P~ 2 S
charge quantization in a Mott stak®. k k K k
In th|s ar.tlcle, we study r’_nagnencally stabilized nematic _ (l/flallfla“‘ H.c). (1)
order in optical lattices. Particularly we demonstrate the de- (Kl

velopment of nematic order aspulsivelyinteracting mag- + . _

nons in non-nematic Mott states condense. We investigatg®'®Yka(¥ia), @=X,y,z are creatiortannihilatior operators
the induced nematic order associated with the spontaneodier spin-one particles in three different states at &it&,,
breaking of @2) nematic symmetry, the magnetization and =-i eaﬁyzplawkﬁ and p,= ﬂalpka are the spin and number op-
the spin-wave velocity. erators defined for each lattice site. It is easy to verify that
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[Ska» Sc gl =16k €0y Sy Ecs @re “bare” charge and spin gaps b 22>
studied in Ref. 11 angk, is the chemical potential. Finally,
the sum overkl) represents the sum over all neigboring
sites.

In Mott states, the Hamiltonian can be reduced to the
following effective one:

H= Es,% S2- Ek ScH, - Je% [Qup(KQpa(1) + H.cl,

[0,0>

A 1
— g f _= T
Qupll) = Yhathes 35aﬁ¢k7wk7' @ FIG. 1. (Color onling Coherent statef2) at the Bloch sphere

. . . 5 ) of pseudospins. All states except the north pa@e0) and south
Equation(2) is valid whent<E; andEs<Ec. Jo,=t/2Ec IS pole (9=) ones have nonvanishing expectation value of nematic
the exchange interaction. tensor operatof), .

The effective Hamiltonian with zero Zeeman coupling
was obtained in a few previous works; solutions to this

Hamiltonian have been studied in various limits. When the e first consider two particles at one lattice site. The
external field is absent angeJ,,/E, is much less than unity, H1IPert space is spanned by fivefold degenerdte states

the ground state is a spin singlet for an even number of‘nd a spin-sjnglgt state. When an external f_ield is applied
particles per sitgN). The spin-singlet Mot(SSM) ground along thez direction, the fivefold degeneracy is completely

state in this limit is the product of spin singlets at each indi-“ftEd while the T“ax_'ma”y polarized staS=2,S,=2) ap-
vidual site(up to a normalization factgtt3 proaches the spin-singlet ground state. When the level cross-

ing takes place, the spin projection along thelirection

(i N2 jumps by Z. It is obvious that no nematic order is induced
Wssm= 1;[ W vag. 3 in this simple limit and there are no transitions between nem-

atic states and spin-singlet states.

Meanwhile, the spin fully polarize(SFP ground state isthe ~ However, at the level crossing points, one can further

product of on-site maximally polarized states study the properties of coherent superpositiorj0pf0) and
|2, 2 states while the rest of states are highly excited ones at

ero=T1 (t//lx+ it,bl25 N 4 these crossings. Let us introduce a coherent state defined in
SFPT V2NN lvag. 4 the two-state subspace as
o = i 4 ¢ 0 (¢
In SSM states{Q,;(k))=0 as a result of the rotational |Q>:¢osE exp ~ i |T>+sm§ exp| i~ 1);

invariance of the wave function and thus there is no nematic
order. The hidden fluctuating nematic order can be studied by
examining higher moments. FdI=2, one can easily obtain —la= — o\ = 1t
the following results: N=18=25=2) 2\@(%“%) lvag,
(Qurpr (K)Qus(K)) L,
= §6kk’(5a’[35ﬁ'a + 5a’a5,BB’ - 550/[3/ 5&/3) , (5) v

Here the unit vector is defined as Q
which indicate on-site fluctuating nematic order. More ex-=(Sin6cos¢,singsin ¢,cose). One can easily verify that
plicitly, one finds the amplitude of fluctuations of nematic . 0
tensor matrix elements (S,) =2k cog > (8)

([Qaﬁ(k)]z) = §<1 + %5(13)- (6) S, reaches the maximum whei+0 and the minimum when
0=ml2.

To investigate the responses of spin singlet Mott states or Direqt calculations of the _usual nematic order parameter
other non-nematic states, which exhibit certain fluctuatingRas defined as the expectation value of the tensor operator
nematic order, to external fields, it is important to understand,; in Eq. (2) suggest that it have a nontrivial structure in
how nematic order can be induced by external Zeemaihe maximally polarized statesee Fig. 1. Namely, it con-
fields. For this purpose, we focus on the simplest situationtains(a) an antisymmetric tensor as a result of spin polariza-
whereJ,, is zero and treat each site independently. We wouldion and (b) a traceless symmetric part which reflects the
like to demonstrate the following important statement: nem-explicit rotational symmetry breaking by the magnetic field
atic order appears whenever a spin-singlet state and a poldut is not associated with ttgpontaneousematic symmetry
ized state are in a linear superposition. breaking in a plane perpendicular to the polarization.
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To discuss the nematic order in fully or partially polarized induced by external fields. So in this case one has to deal

states, it is therefore essential to introduce a projected nenyith the tensoQ s which has nontrivial elements even with-
i P - X a P
atic order parameteQ,s(a,8=X,Y,2) out nematic order. To distinguish the spontaneous symmetry
P _ B 1 1 2 2 breaking due to the formation of nematic order from explicit
Qup = Qup = (Qup Tl ) g = (Qur g1l oMM (9) symmetry breaking in the presence of polarization, special

Note that in the projected order parameter, the componerfia'€ Needs to be taken of the elements which are induced by
associated with the nematic symmetry breaking remain§PIN polarization. _ _
while the components associated with polarization have been A 9eneral scheme to project out the nematic order param-

projected away. Two tensors we would like to project away€ter (€nsor appears to be possible in a way, similar to what
are defined as was carried out in the previous section. Assume spins are

polarized along directiors (unit vecto). Introducing two

1 0 -i O projection tensors
M,=—=i 0 0].
af \‘" L 1. 5 3 1
0 0O g = Toi€ap,s,llap= "= S Ss~ Z0us)» (14)
V2 V6 3
5 1 -1 00 we again are able to define a projected nematic order param-
= N 0 -1 0]. (10)  eter as in Eq(9).
olY'o o0 2 When the nematic symmetry is broken along the direction

i ) ) o (unit vectoy, in the largeN limit one can easily demon-
One finds that the nematic order only appears inXie  girate thas: w=0 following the algebras in Refs. 15 and 11:

plane perpendicular to the external fields. It is indeedynq, ands always appear to be orthogonal. One can further
straightforward to show that the truncation @fﬁ inthexy  gefine

plane(i.e., elements withw=x,y only) for a coherent state
defined above is m=sX w. (15

1 cos sin
szy:?sinﬁ( . 4 ¢ )
V3 sing —cos¢
Two important features in Eq11l) are worth emghasiz—
ing. First, the two eigenvalues correspond to #in3 and
are proportional to the coherence factor in the linear supe

(12) Thenw, m, ands form an orthogonal triad.

It is possible to verify the validity of the definition for
nematic order parameters given E@8) and (14). For in-
stance, one can consider the following spin partially polar-
jzed nematic states:

position of coherent states. They are nonvanishing only if N

is not zero orsr. Therefore nontrivial nematic order always [(cosén +isin ém) 'PZ]

appears wheffi) and||) two states are in a linear superpo- ) = a vao (16)
sition. JNU '

Secondly, the eigenvector with the maximal eigenvalue
represents the easy axis of nematic order. And the easy axi§e have assumed that and m are orthogonal, i.e.n-m

is fully characterized by the azimuthal angle @f Indeed, =0; & varies from 0 tor. Following the discussions in Refs.
one finds that the easy axis in thg plane is defined as a 2D 15, 11, and 13, states specified in Ef6) with £&=0 form a
unit vector in thexy plane: complete set oN-particle-condensate wave functions. And a
condensate with total spi, S, (S<N) can be expressed in
®= (cos%,sin%). (12) terms of spherical harmonidssysz(n) in this representation.

When £+ 0, a state given above is polarized along a di-
When ¢ varies from 0 to 2, the easy axiso rotates byr  rection perpendicular ta andm. Indeed,

angle in thexy plane. And the nematic order parameter is R
indeed a tensor constructed out of the 2D unit veator (§=Nsinén Xm, s=nxXm. (17

Pry_ 2 . 1 A direct calculation shows that the projected nematic or-
Qup = 3 SN 6| w,wp = 55043 : (13 der parameter can be expressed in terms of three orthogonal
unit vectors(n,m,s),

P
1 1
ll. NEMATIC ORDER PARAMETER FOR SPIN Q—N‘“@ = co¢ gnanﬁ +sir? gmamﬁ + 58485~ 50 (18)

PARTIALLY POLARIZED STATES:

GENERAL CHARACTERIZATION . . .
Note that the projected nematic order parameter is traceless

As we have already seen in the previous section, the comrand fully symmetric® One can further truncate the projected
plication of characterizing nematic order when spins are parmatrix in the(n,m) plane perpendicular teand indeed find
tially polarized comes from the explicit symmetry breaking that
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Qan: N

(cosg 0 ) When the external fields satisfying the condition in Eg.
af 2

(19 (23) are applied and whed,=0, at each individual site the

first excited statéS=2,S,=2) and ground staté5=0,S,=0)
which is diagonal whem, 8 are chosen to be along the axis are nearly degenerate and are far away from other excited
n or m. states. At the point when the field reaches a value so that

The projected nematic order paramet@fs,, Q73" vanish H.= 3E (26)
when spins are fully polarized af=7/2 and the nematic 27 s

matrix has zero eigenvalues. Whér /2, the matrix has level crossing between the the ground state and first excited
nontrivial eigenvalues M/2 cosé. The nematic axis there-  state occurs as mentioned briefly in the previous section.
fore lies along the direction af whené varies from O tor/2  Following the discussions in Sec. Il, if the hopping or the
and along the direction om when from 7/2 to 7. The  exchange energy is set to be precisely zero, then magnetiza-
nematic matrix eigenvalues reach maxima wige® or 7, tion jumps andQf,=0. In this case, nematic order is not
representing spin unpolarized nematic states. induced by external fields.

Obviously, nematic symmetry order can develop along an  As shown in the previous section, for nematic order to be
arbitrary direction in a plane perpendiculargoln fact, an  present, two nearly degenerate states have to be in a linear
O(2) rotation of the orthogonal basis,m) alongs by a¢  superposition. In this sense, it is the exchange process in the
angle, while leavingS) invariant, results in a new nematic Vicinity of level crossing points which eventually naturally

0 -cosé

state with easy axis: leads to nematic order which does not exist in zero fields.
_ This observation leads us to truncate the on-site Hilbert
= COS¢N +singdm (200  space into a two-dimensional one for a pseudospin. The trun-

cated Hilbert space for the whole lattice is then a product of
pseudospin Hilbert spac®, at each sitek,

== sinén + cos¢m (21) Hi=81 08,083 @ 8@ (27)

if £€[0,#7/2], and

if £e[ml2,m].
In terms of the easy axi®, the projected order parameter
can be conveniently expressed as

and the on-site pseudospin Hilbert sp&geconsists of two
states

1=15=25,=2),[1)=[$=0,5,=0). (28)

ngm: N|C°S§|<“’a“’ﬁ_ §5aﬁ>- (22) For two particles per site, the microscopic wave function of
these two states is given in E(Y).
To summarize, we have shown that a projected traceless The dimension of the truncated spaRe is exponentially
nematic tensor order parameter should be introduced to studynall compared with the original ory, i.e.,
nematic ordering in the presence of external fields. Y

It is also independent of the number of particles per site. The
IV. FERROMAGNETIC XXZ MODEL AS THE EFFECTIVE phenomenology for different even numbers of particles per
HAMILTONIAN CLOSE TO CRITICAL POINTS site is therefore identical.
A. Phenomenology The hopping between two nearest neighbors in lattices
introduces exchange interactions between pseudospins. We
Ewill present results of microscopic calculations in the follow-
ing subsection. Here we provide a phenomonology of this

To study the magnetically stabilized nematic order, w
consider a limit when the exchange interactifyy is much
less tharEg. For an even number of particles per site and mmodel. To facilitate discussions, we defilié and|[) to be
the absence of external fields, the ground state is a spiqwo eigenstates of Pauli matr'rx,
singlet Mott state and nematic order is absent. The develop- z
ment of nematic order first occurs when a1 =1, o) ==]]). (30

2H, =~ 6E¢> J,,. (23) Note that these two pseudospins are also eigenstates of the

spin operator:S'Z. Therefore the pseudospin algebra corre-
sponds to the projection of the usual @Jspin algebra in
the truncated pseudospin space. For instance, one can verify

Hio=H1QHp @ Hg® -+ @ Hi® «--. (24) the following mapping:

The on-site Hilbert spacg(, is spanned byN+1)(N+2)/2 #(o,+1) — S, hot — S, ho” — S (31)
states, with spins equal ®©,2,4, ... N; the dimension of the
Hilbert space for the whole lattice is

The Hilbert space for the whole lattice is a direct product
of spin towersH, at each site:

An important and obvious fact is that single-particle hop-
ping conserves the total spin of two sites and its projection
(N+D)(N+2)\V along all directions including the direction. Following Eq.

T0= (f) ' (25) (31), this conservation of spins implies that any induced ex-

change coupling have to as well conserve the pseudospin
where V- is the number of lattice sites. defined alongo, axis in the presence of external Zeeman
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fields. Furthermore, the superexchange due to virtual hop- 1 i
ping between two bosoni€=1/2 pseudospins results in a _5 _5 0
ferromagnetic coupling which is to be further verified by . v v
microscopic calculations. UQugy=] = 1 o | (35)
Based on the above considerations, one concludes that the 3 3

effective Hamiltonian in the truncated space should be 0 0 0

Heﬁ_ + - - +

—% =~ 262, (0y07 + oy07) and

Jex (Kl)

- (B 1>6% Tkl = foh% %k (32 (11Qpal 1= (11Qudl T, (11Qpal 1¥=0.  (36)

Using the Hamiltonian in Eg2) and taking into account

Here €3, B depends on microscopic details of states an(i . . .
should be a function of the number of particles per site an hese matrix elements @), in the truncated |_—h|bert sSpace,
one obtains the results fag, B, and h,. In this particular

71, the ratio betweelk, andE.. h, further depends om (the ) _ _ S
: : case, one findgy=4/3, =0 which implies an (B) symme-
ratio betweenJ,, and E) and the ratio between extemal try when the effective fielch, vanishes(but with a finite

fields H, and Jg,. . .
One can easily recast the Hamiltonian into the followingterz(etem;1 I gr?s ri?]at?]ge;ﬁlZ)ihg"e?g;;?naiﬂrr?én ert?;:;%r;egftgaene_
ferromagneticXXZ model in an effective external field along maanie)l dH 9 P P
N -
the z direction, We believe that the @) symmetry found for two par-
Hyoxr ticles per site _is a_ccidental and can be removed by tak_ing into
T D 0kaOia— B 0v0iz— 0,2 0. (33)  account contributions of order of,=EJ/E. (see Appendix A
0lex (k) (ki) k for detaily. The final result can be summarized in the fol-

Because external magnetic fields are applied along ttie lowing equation:

rection, with the particular choices of eigenstates for the
pseudospin Pauli matrix, in Eq. (30), the Hamiltonian in _ 4<1+Es> ___3E
Eqg. (33) also has an ) invariance in thexy plane. This ' E.+E’
O(2) symmetry represents thg®) nematic symmetry we are
going to examine. The relation between the symmetries of
the pseudospin model and the microscopic model for spin- OE. - 3H. - 8. — ZESJ
one bosons has been addressed in previous sections. s z & TS

In general, the truncation can be applied in the vicinities h,=- ) : (37

" ; : E
of all critical points where level crossings betwef)S, 4.Jex<1+ES

=S and|S+2,S,=S+2) occur,S+2<N. One arrives at the c
same phenomenology as for the level crossing between the
first two states. Of course,, B8, andh, then depend on the
states involved in level crossings and are functionss,06
=0,2,4,...N-2. In the next few subsections we are going Close to level crossing betweéd,0) and|2,2), we find

2. Four particles per site

to calculategy, B, andh,. that
B. Calculations of parameterse,, B, and h, in the XXZ model 11 0
— i
Microscopic calculations o and h, though straightfor- 22
ward are pretty involved. We present results in a few limits. R 11
Detailed calculations can be found in Appendix A. (1Quglh = —i 22 o |1, (38)
1. Two particles per site 0O 0 - 2_2
There is only one level crossing in this case. One can 21
verify that
14 14
1o 5 Vg ©
3 15 5
. 1 UQudD =] [14 _ [14 | (39)
(11Qugl = —i 3 0 1. (34) '"V 15 15
2 0 0 0
0 0 -- .
3 The corresponding parameteqs 3, andh, are
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©715 P76 ¢ 56

Jox 147
(40)

56 351 15<3ES—HZ 5_36) An,

—

The effectiveXXZ model has the desired(®) symmetry in I -

the plane perpendicular to the external field. For four par- =19 1(0,0) B
ticles, level crossing also happens betwé2r? and |4,4)
states. Similar calculations have been carried out and pre-
sented in Appendix A.

I

3. Large-N limit (even N
g ( ) FIG. 2. (Color onling Phases in the ferromagnedc<Z model.

In the largeN limit, one can describe the collective gvaries from -1 to+. Region I, II, and Il represent up-polarized
ground state and excited states in terms of spherical harmop), down-polarized (DP), and ferromagnetic orderedrO)
ics in a quantum rotor representation. So the spin-singlgbhases, respectively. Along the blue life®dB+h,=0), transitions
ground state and polarizeé8=2,S,=2) wave functions are  are continuous while along the red line the transition,
=0,8>0) is a first-order one. Poi@,0) is the Q3) symmetric
1 /15 | . 1 tricritical point of the ferromagnetiXXZ model. Asq goes to zero,
m:Z ZT sir? 0 expli2¢), |l>: \/TT (41) the interactions between magnons are repulsive wBerD and
‘ attractive whern3>0; along the dash ling3=0), magnons are non-
In the quantum rotor representation, the Hamiltonianinteracting. The solutions in the shaded region can be obtained in a

{s15,10,11,13 dilute gas approximation.
— 2
H=E S-H, 2 S, o [Qup(N)Qpa(n) + Hocl, V. PHASE BOUNDARIES OF THE XXZ MODEL
k (kD) AND HOLSTEIN-PRIMAKOV BOSONS
(42) A. Phases ofXXZ model

whereS=-in X d/dn, the spin operator is defined as the an- The general phase diagram in thg,h,) plane can be
gular momentum of the @) quantum rotor. It is a conjugate easily obtained in a mean-field approximation. Later on we

variable to directon, argue that the phase boundaries and solutions obtained in this
. way in some part of the plane are actually exaete Fig. 2
[Sangl =i€apyn,. 43 |n the mean-field approximation, we introduseas a unit
Again the matrix elements @aﬁ are calculated below:  Vector order parameter which defines the orientation of spin
50 0 (o) =2Ss. (47)
<T|Qaﬁ|T>:i 02 0], (44)  HereS=1/2 is thepseudospin.
21 The s dependence of the total energy comes entirely from
00 -4 : .
the terms proportional t@ or h,, that is,
. 1 10 = const - 485’2 - 2h,Ss, (48)
q |Qaﬂ|T> = E i =1 0]. (45) €0dexVT
o o o whered=3 is the dimension of three-dimensional cubic lat-

. A ) ) ) tices.s, varies from —1 and 1. Minimizing the energy with
The matrix elemen®,, vanishes in Eq(44) as an artifact respect tos one obtains mean field solutions for various
of the largeN approximation. One then obtains all param- ground states.

eters for theXXZ effective model Following Eq. (48), when h,>-2dg and h,>0, the
2 39 . 1_5< 3E.~H, i) mean-field solution is
©T15 P79 2T\ 3 147 $=(0,0,1 (49)

(46)  representing a fully polarized state which we call the up-

It is possible to generalize this analysis to level crossing?®l2rized(UP) phase. Whe, <2d andh, <0, the mean-
between high-spin statd$,S) and |S+2,5+2) (S<N-2) ield solution is
and the results are qu_qlitatively t_he sa(ae_e Appendix B s=(0,0,- 1) (50)
In all cases,¢ is positive andgB is negative. In the next
section, we are going to examine the consequences of thiepresenting another fully polarized state which we call the
model. Particularly we investigate the implications on mag-down-polarized DP) phase.
netically stabilized nematic order and physics around critical In addition, when —88>h,>2dg and <0, the mean-
points. field solution is
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) ) ) , model in this limit. Similarly wheng is positive andh, is
$=(sin® cos®,sin® sin®,cosB), cosO = - 248 negative, the DP state is the exact ground state.
When <0 but outside the triangular defined by the two
(51 critical lines 218+h,=0, we are not able to prove rigorously
representing a ferromagnetically order@eD) phase which that eigens_tates in E¢p4) are exact ground states. However,
breaks the in-plane @) symmetry spontaneously. Solutions W€ would like to show that they are locally stable and there-
of different angled are degenerate and the vacuum manifoldforé we argue that they are likely to be the exact ground

is a unit circleSt. © varies from# to 0 whenh, increases ~States. _ _ ,
from 2d to —2d. To carry out this part of discussions, we study the magnon

Three phases are separated by a first order transition lin@xcitation spectrum in UP and DP phases and show that one-
along theh,=0 axis which starts at poin®,0) and ends at Particle magnon excitations are also exact eigenstates; fur-

(=0,0), and two other second order phase transition lises thermore they are fully gapped except along the second order
Fig. 2). These two lines are defined by transition lines. The most straightforward approach to study

these excitations is to use the Holstein-Primakov boson rep-
2dB+h,=0; (52 resentation for theXXZ model.

In the Holstein-Primakov representation, all spin opera-
tors are expressed in terms of Holstein-Primakov bosons

both terminate at point0,0). Finally (0,0) is a tricritical

point.

Along the first order transition line, the UP and DP states ot =(2S-c'o)c, (55)
become degenerate and the ground state bréaks Ising
type of symmetry spontaneously. At the tricritical pai@0), o = CT\fm (56)

the XXZ model is @3) rotation invariant and the ground
state breaks @) symmetry spontaneously. At this point, UP,

— (g ot
DP, and FO states are all degenerate. 0,=2(S-clc). (57)
In UP and DP phases, the microscopic wave functions fot'(c) is the creationannihilation) operator of bosons satis-
ground states are, respectively, fying the usual bosonic commutation relatidesc’]=1 and

the raising and lowering operators are defined as

lay) = 1;[ [T lg)) = 1;[ | Dk

+i =i
U+=—¥UX20, 0'_=—¥UX20. (58)

o =M aicd == D (53

In the Q2) ferromagnetic phase

One can furthermore verify that
[00,05]=12€,5,07, 0 -0=45S+1). (59
|9r) = 1;[ D, The Hamiltonian of theXXZ model then transforms into

H r
® ® XXz = _ 2> \[2S- cleddec V2S¢
[On=cos exp=i®)etsinfly (64 Qe W0
- 2> ch(2s-cle(2s-clc)q

and® is a function ofg, h,, cos®=h,/2dg, |h,|<2d|g|. The ()
solutions in Eq(54) are degenerate in tf& manifold where . +
expi®) lives and represent spontaneoug2@symmetry — 4L+ B2 cogic + 2h, + 451+ B)d]X el

breaking states. (ki) k

By examing the microscopic wave functions of UP and (60)
DP states, we notice that the UP and DP states are nondegem- deriving Eq.(60), we have neglected a constant term
erate exact eigenstates of the pseudospin Operdlor _, .3/ oh Sfor each lattice site. In a semiclassical ap-

;i)“(‘irskzi'sl\ge?gr\:\gg:sé;heJgﬁhﬁ'iﬁ?ﬁ;gﬂ ggotjﬁgtsidgéo';ﬂéh oximation, one indeed recovers the results obtained in the
q : revious section. Agais=1/2.

solutions are exact eigenstates of K¥Z Hamiltonian. In To study the excitation spectrum in regior(dr II), we
the next subsection we are going to show that they are aClfist examine the Hamiltonian in E@60) in a one—pa{rticle

ally exact ground states whehis positive; furthermore we subspace next to the exact eigenstates of@FDP). First

argue that up or DP states are also exact ground states €V&he notices that a UP state is an exact vacuum for Holstein-
when 8 is negative andh,>-2dg3 or h,<2dg. Primakov bosons, that is,

B. UP and DP states as exact ground states cdg) =0,09y) =1g;) (61)

When B, h, are both positive, the UP state presentedfor any latticek.
above is a ground state of both thé3pisotropic term in the One-particle excitations we are interested in live in a sub-
ferromagneticXXZ model and the terms involving, h,. So  space of single Holstein-Primakov boson, that is, in a space
naturally the UP state is the exact ground state ofXX&  spanned by states
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cigp) (62) ne={(cicy <1. (66)

defined at each lattice site Since the total number OperatOI‘ For this reason, one can expand the nonlinear Operatmﬁg of
of Holstein-Primakov bosons commutes with the Hamil-in terms ofn., especially,

tonian
t
e T-_ [ha cc
[N, H]1=0, N.= > cley, (63) V2S-c'c= \25(1—4—S+O(n§)~--> (67)
k
N, is a conserved quantum number. We can then diagonali@r S=1/2. Theresultant many-body Hamiltonian up to the
the Hamiltonian in this one-particle subspace whege 1. second order ofi is
In the subspace, we obtain the following effective Hamil-
tonian: Hyxz + 4dB t T
" D etica-—— 2 Ca ra,Ct-q.Ca,Cay -
HYY, . 0vex ¢ T g1.02.43
=2 €4CqCa> (68)
€0Jex q

The first term is identical tHS},, the exact Hamiltonian
€= 85<d— > COSqaa> + 2h, + 8S08. (64) projected in the one-particle subspace and the second term
describes magnon-magnon interactions. This Hamiltonian is
eapplicable in a dilute limit where Eq66) is satisfied. The
Sign of interaction atj=0 or smallq limit is determined by
B. Wheng is positive, magnon interactions are attractive and

. L . when negative magnon interactions are repulsive.
In particular, it yields a fully gapped magnon spectrum in : -
region I. The gap vanishes only along the second-order tran-h\/\/her:1 magnons are 'dié’B_O)’ al malgnor;sact:é)ndﬁpse
sition line whereB<<0 andh,=+2dg. Especially magnons w Zn the enirgy gap in the spectrum cosr$ ﬁ - This d
are fully gapped along the first-order phase transition Iinéea S t(.) an at rupt'Jump in magnetlzatlorj_w Ich corresponas
B>0 andh,=0. When|h)<-2dg and 8<0, one-particle to the field-driven first-order phase transition from UP to DP
z . Z l

states(or magnon excitationsstart to have lower energies phase at the tricritical poin®,0) (along the dashed lipeln

than the vacuum state. This indicates condensation 0tpis case external fields do not induce nematic order. This is
Holstein-Primakov bosoné which we are turning to consistent with mean-field results discussed in the previous

To conclude we find that DP and UP states are exac ubsection. One can, in principle, generalize this argument to

ground states of th&¥XZ model in regions | and Il. Magnon the case Whe|78<0,a_md arrive at similar cpnclusmns_.
excitations in these phases are fully gapped. Along the mean- When magnons' interaction are repglswe, f_ollowmg Eq
field second-order transition lines, magnons become gaple .8) the chemical potential ‘?f magnons in the dilute gas limit
excitations. Further decreasirty, results in instability of (differing from s of atomg is

magnon excitations. So we believe that the transition lines in
the mean-field theory represent the exact phase boundaries.

whereng is the number of magnons per lattice site. This is

C. Condensation of interacting magnons and emergence similar to weakly interacting gases of bosons in continuum
of ferromagnetic order in the XXZ model limit.22 The chemical potential defined in this way only de-

As discussed in the Introduction, the dynamics of condenpends on intrinsic paramete@which have been evaluated

sation of magnons depends crucially on the interactions b icroscopically and is independent of external Zeeman

tween magnons. To study the region close to critical line miﬂzr;r;?eenergy of the magnon condensate per lattice site
where the condensed particle density should actually be ver&?

a=xy,z

The superscript OP stands for the “one particle” subspac
Equation(64) indicates the dispersion relation of one-particle
states.

== 8ngdB +0(nj), (69)

low, we only take into account two-body interactions and E(no)
apply a dilute gas expansion. The results we derive in this —2 - 2(|h,| + 2dB)ng - 4n§dﬁ. (70)
subsection are valid in the shaded critical regi¢ese Fig. €0dexV/T
2), where Minimizing the energy with respect ta, yields
h,+2dg
|Zlhl <1 (69 o= 2 1+ (71)
‘ 7 2|7 2dg

And ash,+2d3 approaches zero, the results become eXact.

We will present the calculations along the upper transitionwhich is a continuous function d,. ny is much less than one

line defined byh,+2dB=0; the results are then generalized in the critical region where Eq66) is satisfied. At the tran-

to the lower transition lind,—2dB=0. sition point |h,/|=-2dB, the magnon density per lattice site
In the dilute gas limit which interests us, the number ofeither vanishes or is equal to 1, i.8g=0, 1. Furthermore, if

Holstein-Primakov bosons per lattice site is much less thawne extrapolates to the,=0 case, one obtaing=1/2, that

1, i.e., is half magnon per lattice siter,=0 as expected.

184434-9



ZHOU et al. PHYSICAL REVIEW B 70, 184434(2004)

Note that the ground state in this case is not the vacuum o 2S o 00T
of Holstein-Primakov bosons but instead the vacuum defined ~ {[80x(r) = dox(0)]%) = V_[U(QO) — v(qo)I’sir® o
by Bogolubov quasiparticles. The Bogolubov excitations are T
created by the following operators:

2S 5Qo-r
2= u(@)c! + v(a)e, ([3a(1) = 80,(O)) = { Tu(@o) + v(@o)sirf =5,

([804(r)day(0)]) = - VE singg-r. (78

1
UZ(Q):§<1+—q—6 tu )
.

\€§+ 26q,u

Remarkably, the corresponding orientation of pseudo spin
vz(q)z_}<1__5ql), (72) s derived in the dilute gas approximation is precisely the

2 \6(21 + 2¢4 same as the semiclassical results obtained in Sec. V A; close
) ) , , to the critical line, we notice that
whereu is the chemical potential of magnons defined before
and the kinetic enerqu:2|q|2a2 is written in a dimension- cos®@=1-2n, sin®= 2\,'n:_ (79

less unit. The dispersion of quasiparticles is phononiike i . ) T
—vdq| at small energies, taking into account the chemicaln the next section we are going to discuss the implications

potential in Eq.(69), we obtain of th_e_ mapping on correlateq atoms, espe_cially_magnetiqally
stabilized nematic order. Since the semiclassical solutions

Ih,] — turn out to be exact along the critical lines, we would like to

vs=vg\[1+ ﬁ Vg = 4av-dB. (73 pelieve that solutions are also valid in the ferromagnetic or-

dered phase, at least qualitatively and can be extrapolated
This agrees with the semiclassical solutions obtained in Ecdeep into that phase.
(C12) in Appendix C.

These results indicate that the physics in ¥%Z model VI. NEMATIC ORDER AND PHASE BOUNDARIES
close to the second-order critical lines is indeed equivalent to OF MAGNETICALLY STABILIZED NEMATIC
interacting dilute magnons defined by Holstein-Primakov MOTT STATES

bosons. Especially the fact that the emergence of ferromag- _
netic ordering occurs when condensation of magnons takes Let us turn to the problem of Mott states of spin-one
place. As in the usua-number approximation for condensed bosons. Following discussions in Sec. II, one finds that DP

bosons, we approximate states correspond to spin singlet ME&SMI) states and UP
. JE— _ states to spin fully polarized MotSFPM)) states.
Cg=0 = Cg=0= VNoV1 expli®). (74) The FO states breaking the(Z) symmetry represent
Substituting this result into the expressions & o, in Eq.  duantum spin nematic states with easy axis determined by
(57), we obtain z the projection of pseudospin orientatisnin the xy plane.
' R Indeed, for two particles per site the wave function of FO
{(0y) = 2V2SVn, cos®P, states in Eq(54) indicates the following spin correlated Mott
states for spin one bosons:
<0'y>: ZV'TSV"nO sin®d, ® T g2
vau=11 [cos— exp(— iE)—L(wkx r”z,k )
(0 =2S-2nq, (75) k 2\2
o o\t ut
and agains=1/2. o +sin— exp(i—)—lﬂk‘f—wk“ lvag). (80)
Correspondingly, the Bogolubov quasiparticles represent 2 2) V6

the spin wave excitations in (@) ferromagnets. Following . . . .
Eqs.(57) and(72), one can express,, in term of ¥ andy: 0 is a function of 8 andh, as given in Sec. V A,

, V2s t cosgzwl— h, sinQ:\/}+£ (81
Soy(r) = > expliq -r)z\,—v[U(q)—v(0|)](~yq+ Y-g) 2 N2 adg’ 2 N2 adg’
VT

q#0

As h, varies from -2i8 to 2dgB, O varies from 0 to#. And
\'TS ® [0, 27] represents arst manifold for the spontaneous
Soy(r) = 2, expliq 1) ——=[u(a) +v(@](¥{ = 7-q). symmetry breaking solutions.
q+0 2V For cold atoms, our calculations show that in all cag8és
(76)  negative. When magnetic fields are varied, the trajectory in
the B-h, planes(see Fig. 2 moves vertically at a given nega-

Consider a single quasiparticle state tive 8. And as magnons are repulsive, magnetic fields stabi-

lqo) = - vag (77) lize nematic order via the continuous process of condensa-
) do ' . . . .

tion of magnons. So as the magnetic field increases, the
Spin correlations in this single-particle state are phases encountered are spin-singlet Mott states, nematic
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+ 8 Es
H; .= 3Es— —Jey £ 24—J, (85
3 E.
and forN=4, these fields are
N 536 24X 117
H,.=3Es— H?‘Jexi TSJQX. (86)
At the largeN limit, one obtains
. 8 156
H,.=3Es— E\]exi 2—45Jex. (87)

(81) is proportional to the nematic order. Results around upper oMVe have seti=3 in deriving Eqs(85—(87).
lower critical points are obtained in a dilute gas approximation and

are exact. Notice that the nematic order®imeaches the maximum

at zeroh, whereM, is equal tofi.

VII. EFFECTS OF QUADRATIC ZEEMAN COUPLING

In this section, we are going to briefly discuss the effect of
quadratic Zeeman terms which generally are present in

Mott states(partially polarized, and spin fully polarized atomic gase$’!8 This kind of external perturbations only

states. Here we will focus on the nematic state.

conserves the spin projection along the direction of external

The projected nematic order parameter for the constructefields but does not conserve the total spin of the many-body

nematic Mott state is given in Eqll) with ¢=® and 6

o D
w= (cos—,sm—). (82
2 2

The nematic order vanishes along the second order critical
lines |h]=-2dB and reaches maxima when level crossing

takes place in an isolated lattice site, i.e.hgtO.

This spin partially polarized nematic Mott state

(SPPNM) has spin polarization

_ _ 3 _ h,
MZ—<SZ>—ﬁ( 2dﬁ+1). (83)

Spins are fully polarized at one of the critical linésl,

=2#) when h,+2dB8=0 and the spin polarization vanishes .

(M,=0) at the other critical lindn,—2dB=0. In betweenM,

states under consideration and therefore has distinctly differ-
ent effects on spin-singlet Mott states. Namely, such external
fields would induce nematic order at any small but finite
coupling. In other words, spin-singlet Mott states are un-
stable with respect to these perturbations.

To demonstrate this phenomenon, we consider spin-
singlet Mott states in the presence of the following quadratic
Zeeman perturbatiotf:15

- 1
Hp:—HQZEk Qaﬁ(k)<nanﬁ—§5a ) (89)

whereQ,4(K) is the nematic operator defined at the begin-
ning of Sec. ll[Eg. (2)] andn characterizes the orientation of
quadratic Zeeman fields which we choose to be along the
z-direction.Hq; is the strength of the quadratic Zeeman cou-
pling. (This form of perturbation differs slightly from the one
used in Refs. 16 and 15 by a singlet operator which does not
contribute to the quantity we are calculating hgre.

One notices that indeed this quadratic Zeeman term does
not communte with the total spin operator defined at any

individual lattice siteéﬁ; however, it does communte with
the operatolS,,

varies continuously from O to/2and is precisely equal to
f when h, vanishes and the nematic order reaches the - - , _
maximum(zsee Fig. 3. [SKZ’Z Qurp(K') 902012 = 0,
Finally, the phase boundaries for SSMI, SFPMI, and k
SPPNMI can be obtained by substituting the field depen-

dence ofg, h, derived in Sec. IV B into the expression for (89)

critical lines in theXXZ model

o) (5] o

el (84)
Jex Jex Ec

This results in critical fields for varioubl. Especially one
determines the upper and lower critical field;,) between

ékZ: - I% Ezaﬁl//lal//kﬁ'

So what it does is to cause transitions between states with
different on-site spin quantum numbesbut with identical
spin projection along the direction S,,. Thus it does not
lead to transitions between differegt, subspaces. For a spin
singlet Mott state, this perturbation results in transitions be-
tween on-site singlet state§,=0) and nonsinglet states

which nematic order develops for the first time when mag-(S,# 0) in the subspace d§,=0.

netic fields increase from zero.
For N=2, the upper and lower critical fields are

For two particles per site and in the zero hopping limit,
we find that these transitions lead to coherent superposition
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of two states inS,=0 subspacel0.0) state and the microscopic wave functions of ordered states and spin-
wave excitations.
2,00 = ir(&ﬂ;rlﬂ; ~ylyhlvag, a=xyz (90) Finally we find that for a spin-singlet Mott state the fluc-
2\3 tuating nematic order can be stabilized by any small but

finite quadratic Zeeman effects. Namely, the nematic order
ef)arameter varies continuously in the presence of quadratic
Zeeman effects.

For instance, in the first-order perturbation expansion th
ground-state wave function is
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This dependence is very different from the linear-Zeemar°IAR (I.A.).
field dependence of nematic order which exhibits a critical
field below which spin singlet Mott states are stable. As ex- APPENDIX A: EFFECTIVE XXZ MODEL FOR VARIOUS
pected, quadratic Zeeman effects are more effective in stabi- NUMBERS OF PARTICLES PER SITE
lizing spin nematic Mott states. Furthermore, the easy axis of 1. Microscopic Hamiltonian
the induced nematic tensor order parameter is pinned along _
the direction of external fields) and the resultant states are 10 Preak the @) symmetry in theXXZ model for two
Ising nematically ordered instead of(® or O(3) nematic  Particles, we keep higher order termsoEs/E.). The effec-
states discussed before. tive Hamiltonian for spin-one bosons in the Mott state of an
optical lattice in the presence of a magnetic fi€ildl the z
direction can be derived as
VIIl. CONCLUSIONS E . A
H=(Es—6JeX§)E Si-H2 S (A1)
k

To summarize, in this article we have investigated mag- o)

netically stabilized fluctuating spin nematic order. We have
shown that nematic order can develop when two non- £
nematic states at a lattice site are in a linear superposition in - 2JeX<1 + —S>E Qx aﬁél fa

the presence of external fields. When external fields are ap- ¢/ (ki)
plied, even small superexchange coupling could lead to such E o
a linear superposition and nematic order emerges even +2J0 =2, (S + G)?
though no spontaneous symmetry breaking occurs in zero Ecw)
field.
We have also mapped the problem of spin-one bosons +Jexgs2 THLAKNI) + ADNK)]. (A2)

with antiferromagnetic interactions in an external field to the c(kl)

ferromagneticXXZ spin (S=1/2) model. We find that the We have introduced the operators’ :lp’rw and A
field-driven quantum phase transitions belong to the univer= z/;*z/;*z// y —iﬂfl//Tl// . RAAS 7
sality class of the ferromagnet{XZ model(S=1/2). Spon- MPETETE TaTalure

taneous symmetry breaking in tikg plane in this effective 2.N=2 case

ferromagneticXXZ model corresponds to planar nematic or- a I :
dering in the underlying atomic states. In all non-nematic.FOr N=2 we have only the possibility of looking at the

Mott states which interest us, interactions between magnori&ansition between the statet)=[2,2) and||)=(0,0). The
are repulsive. Therefore when the external field reaches %/€vant nonvanishing matrix elements — aréagain
critical one, condensation and thus phase transitions are cofif|Qqsl | )=(11Qusl 1))

tinuous.
We also show that the breaking of thély symmetry in 1 i 0
magnon Bose condensates results in breaking of tt® O 3
nematic symmetry in they plane perpendicular to external - 1
fields. The Bogoliubov quasiparticles of condensates are pre- (T1Qu ) = —i 3 9| (A3)
cisely the spin wave excitations in thgZ) nematic states.
So the nematic order is stabilized when the field exceeds a 0 0 _2
critical one and magnons condense. We have also obtained 3
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1 i Es
\T§ E 0 9Es—3H,~ 8Jex— ZEJGX
- . h,=- = < (A15)
<l|Qaﬁ|T>_ |_/_ _% ol (A4) 4‘]ex<1+Es)
V3 V3 <
0 0O O
3. N=4 case
1 110 For four particles per site, there are two possible transi-
<T|/\/]T>=? -i 1 0], (A5)  tions: [0,00—|2,2)—|4,4). We will consider both transi-
V3 tions. In both cases the correction of ordeg E/E;) turns
0 0O
out to be not particularly interesting.
N a.0,0—[2,2)
<T|Mi>:\T§ - =100, (AB) We define again1)=|2,2) and||)=|0,0). The relevant
0 0 0 nonvanishing matrix elements are
N 1
. 21
(IMD===i -1 0], (A7) .
v - _
0 00 (MRun=| =i 7 0 [ (A16)
(100 0 o -2
(LIMp=3lo 1 0 (A8) 2t
001
N
1 -i o ) 15 V15
(lally=\3{-i -1 0], (A9) Qe =] [14 _ [14 | (AL7)
0O 0 O 15 15
0 0 0
| 1-i0 This gives rise to arXxXZ model with the following param-
(LAIM=+3[ =i 1 0]. (A10)  eters
0O 0 O 56
Using these results we find that the effective Hamiltonian €= 15’ (A18)
turns out to be
4( ES> Es _ 351
H==Joo| L+ =2 0y - 0 + D=, 0la? B=-——., (A19)
“3 Ec/ Wy “Eclay 686
8 2 E )
—|H,= 3B+ —Joy+ ——J z. All 1 536
( 27 9T gex™ g e %‘Tk (AL1) h,= - (3ES—HZ——JeX>. (A20)
€0dex 14
This is the Hamiltonian for th&XXZ model:
H b. |2,2)—>|4,4>
XXZ
- -2 op-01- B2 ofof ~h,2 of  (A12) We defing|1)=|4,4) and|])=|2,2). The relevant nonva-
0%ex (k) kD) k nishing matrix elements are
with 2 .
E 5 2i 0
50:5(1+ES>, (A13) )
¢ (11Qug =] -2 3 o 1. (A21)
3E 4
B=-——=, (A14) o o -2
E.+Eq 3
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12 12 3 i
i =00 — - 0
7 7 10 2
Q=] [12 N ) . i 3
«, i -= = - - 0 . A29
S ; 0 (L1Qapld) > 10 (A29)
3
0 0 0 o o ->
5
11 i 0 The parameters of th&€XZ model in this case are
21
“ 11 12
=l -i == 0 | A2 €©="17 " (A30)
UQadb=| =1 5] (A23) °“5
22
0 0 -—
2 8 A31
B=-1g (A31)
Using this we get again an effective Hamiltonian in the form
of an XXZ model. The parameters are . 124
h,=- <5ES— H,- —Jex> . (A32)
48 €0Jex 25
=, A24
€p 7 ( )
APPENDIX B: EFFECTIVE HAMILTONIAN
FOR LARGE N
a1 7 a2
T 49 € T84’ For largeN, N even, we can study all transitions from
IS, —|S+2,5+2). These states are given by
_ 344 2S+1 (29! o, .
h.=- eoJex<7ES_ H." 29 Jex) ' (A26) 189 =¥sdn) = (- D*\ =, =, )ze'sd’ sin® .
(B1)
4.N=3 case

The hopping term in the Hamiltonian is just equal to

Although in this article we only treat the case with even
numbers of particles per site, the approach developed to ~ 23,3 (N~ N2 (B2)
study the physics close to critical fields can also be applied to (KD
the case with odd numbers of particles per site. For instance,
for three particles per site we have the transition betwee?
[1)=]3,3) and||)=|1,1). The nonvanishing matrix elements oll

Introducing | 7)=|S+2,5+2) and || )=|S,S), we get the
owing nonvanishing matrix elements

are
19+ 15+ 2%°
L, I Tl T = W
- =i 0
2 2
a10.40=] 3 1 , (A27) __7+8+28
B -5 5 0 (L m)A Tl Ly = B3+29(7+29’
0 0 -1
_ (2+9(1+9
. - <T|k<i||(nk'n|)2|l>k|T>|—‘(3+28)(5+28)'
\/j \/j 0
5 V5
R _ 3+ 4S+ 2%
(1Qagl T \/gi ~ g ol (A28) (Ui m)? Dl 1= @292
0 0 0 The effective Hamiltonian turns out to be
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Hor |5 (2+9(1+9
J G (3+29(+29

- 12
o 3+ 2947 +29)7?

B, 8(3+9)(1+29 )2
Jo (3+29%(7+29%/% 7

(oko] + oyor)

oot

- ((ZS+ 3)E -

Jex k

This is clearly anXXZ model with

_ (2+9(1+Y9

= Gr296+25° "9

.\ 12(5 + 29
[(7+29%(6 + 135+ 95+ 25%) ]’

p=-1 (B4)

h,=-

8(3+9)(1+29 )

((2s+ DB~ (5, 27 1 290

€oYex
It is clear thatB is negative for allS and it gets more nega-
tive if we increaseS. For the lowest transition0,0)
—|2,2) this gives the numbers

2
=—, B5
€0 15 (B5)
39
=-—, B6
B="%9 (B6)
h,=- 1 <3E—H—iJ ) (B7)
z~— GoJex S z 14 ex|-

APPENDIX C: THE HOLSTEIN-PRIMAKOV
BOSONS REPRESENTATION

1. Holstein-Primakov bosons in UP or DP phases

The Hamiltonian of theXXZ model is given as

H
X = 04010~ B 010, — 2 0. (C)
€dex () (Kl k

In this subsection, we are interested in regiaisde Fig.
2), where h,+2dB>0. After Fourier transforming and in
terms of Holstein-PrimakayHP) bosons the Hamiltonian
can written as

Hyxz=H@ + H® + H® + O[(&1)6]. (C2)
Here
HO == VTTd(8+ 1) +h,], (3
H? = [4(1+B)d+ 2h,— 4 coiqaa)]cgcq,
q a
(C9

and the fourth order term is

PHYSICAL REVIEW B 70, 184434(2004)

LS ad >
=— Cy.Cq.Cq.Cq.tq.— {exp(=igz,2)

g1 70, 03~d1+0— 03 2a
Jex€o \/TQ1Q2Q3 @

+exp(—igs,a) + exd—i(-q; - 0, + dg),al

+ explig @} - 41+B) 2 ¢} C Ca.Carra,a,
419203

X2 exdi(q; —gs).al.
[e3
Herea is the lattice constant.

Following Eq. (C4), the energy of the quasiparticles is
given by

€=4(1+pd-4 > cogq,a) +2h, (C5)
@=X,y,Z
where the energy gap in the spectrum is given as
A(B,hy) =4pd + 2h,. (C6)

The fourth order term describes interactions between
magnons. Indeed, in the smgdj| limit the Hamiltonian can
approximately be written a@ip to a constant

XXZ d
Hxxz _ t 452 T oAt
—Eecc— C, C, Cq.C _q.. (C7)
a~q~a 0301 +0,=0
Jex€o ” q VA 4105 017042 7937417A2743

When 8> 0 interactions between the magnons are attractive
and whenB<0 interactions are repulsive. To derive these
results, we have used the dilute gas expansion expansion

)
— c'c 1
\'ZS—CTC:<1————(CTC)2+ )

2 8 (€8

2. Holstein-Primakov bosons in ferromagnetically
ordered phase

The most convenient way to study HP bosons in region I
is to introduce the following rotation:

X cosOx’' +sin®z'
y|= y' : (C9
z cosOx’ —sin®z’

In the semiclassical approximation, by minimizing the en-
ergy with respect t@, one obtains the ground-state solution
with cos®=-h,/2dg.

Consider an expansion over this solution. We get the fol-
lowing lowest order terms:

H®@
—X2=3 (4d+ 4dB cog © + 2h, cosO)clc,
€0Jex q

-2 (4+2Bsir? ©) cosq,acic,
q @

-2 BsIf O3 cosg,a(CqCq +Cich).
q «

(C10

When®=0, one recovers the results in Sec. V B.
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Taking into account co® =—h,/2dg in the ferromagnetic This yields the following dispersion:
phase, in the long wave length limit one further simplies the
result to R — h?
@ wq=2V2ay-dB\/1- 4d2,82|q|' (C12

H

LJXZ =2 4(d -2 cosg,a)cicy — 2 (2dBsir? ©)clc,

€

0%ex g “ a Equation(C12) agrees with the results derived in the dilute

—E 4B sir? ®(Cqu+C£C:;)- (C1)) gas approximation in Sec. V C; close to critical lines, one
q

notices that sif® =2yn, and dgsir? © =4d8n,.
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