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We study Berry’s connection potentials of many-body ground states of spin-one bosons with antiferromag-
netic interactions in adiabatically varying magnetic fields. We find that Berry’s connection potentials are
generally determined by, instead of usual singular monopoles, linearly positioned monosegments each of which
carries one unit of topological charge; in the absence of a magnetic field gradient this distribution of mono-
segments becomes a linear chain of monopoles. Consequently, Berry’s phases consist of a series of step
functions of magnetic fields; a magnetic field gradient causes rounding of these step functions. We also
calculate Berry’s connection fields, profiles of monosegments, and show that the total topological charge is
conserved in a parameter space.
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I. INTRODUCTION

In the presence of time-dependent periodical potentials
Vstd=Vst+Td with a periodT, an eigenstate of the instanta-
neous Hamiltonian acquires a geometric phase known as the
Berry’s phase.1 The Berry’s phase is a global characterization
of an eigenvector when it is transported in a Hilbert space.
For a period ofT during which an eigenstateCfVstdg evolves
adiabatically, the Berry’s phase is simply
FB=−Ime0

T kCu]tuCldt. From the point of view of fiber
bundles, the Berry’s phase can be considered as the ho-
lonomy of a Hermitian fiber bundle; its base space corre-
sponds to a parameter space and a fiber is an eigenstate
which defines a mapping from the parameter space to the
Hilbert space. This point of view was illustrated in Ref. 2.
Berry’s phases have been observed in a variety of experi-
ments such as nuclear magnetic resonance(NMR) and rota-
tion of light polarization in optical fibers, etc.3–6

In condensed matter systems where there are large num-
bers of particles interacting with each other one way or the
other, the subject of Berry’s phases, or more general geomet-
ric phases becomes more fascinating and intriguing. There
are at least two interesting aspects of this subject:(i) the
effect of geometric phases on correlations and(ii ) the effect
of correlations on Berry’s phases.

The first issue was addressed on quite a few different
occasions. The best known result perhaps is the geometric
phases’ effect on spin correlations. As pointed out a while
ago for antiferromagnets, a Berry’s phase distinguishes inte-
ger and half-integer spin chains, or even-integer, odd-integer
and half-integer spin square lattices and results in different
ground states and excitations.7–9 The other examples perhaps
are the possible geometric phases’ effects on statistical trans-
mutation and fractionalization in spin correlated
systems.10–13In mesoscopic magnetic systems effects of Ber-
ry’s phases on collective quantum tunneling were
investigated;14–19 quantum interferences of Berry’s phases
were observed in molecular magnets.20

In this paper we are going to address the second aspect,
correlations’ effect on Berry’s phases. We study Berry’s con-

nection potentials(one-form), Berry’s connection fields
(two-form), and topological charge densities for ground
states of spin-one bosons with antiferromagnetic interactions.
In a parameter space

hXaj, a = 1,2,...,M , s1d

the connection potentialAa, two-form connection fieldsFab,
and topological charge and current densitiessr ,Jd are de-
fined as

AashXcj;Cd =
i

2
HKCU ] C

] Xa
UL −KU ] C

] Xa
UCLJ ,

FabshXcj;Cd = iHKU ] C

] Xa
U ] C

] Xb
L −KU ] C

] Xb
U ] C

] Xa
LJ ,

4pr = 1
2eabc]aFbc, 4pJa = ]bFab. s2d

Consider Berry’s connection potentials, two-form connec-
tion fields and topological charges whenN spin-one bosons
are in a magnetic fieldB=sBx,By,Bzd. For ground states of
N-noninteracting spin-one bosons, one easily confirms that
the two-form connection fields are monopole-like due to an
N-fold magnetic monopole at the point ofB=0 in the param-
eter space ofhBaj, a=1,2,3 orx,y,z. And the topological
current is zero. That is

ba =
1

2
eabcFbc = QsBd

Ba

uBu3
, QsBd = N,

r = QsBddsBd, J = 0. s3d

We should emphasize here that the topological charge is lo-
calized at the originB=0 in the parameter space. Note that
the Berry’s two-form fieldb is a function of external mag-
netic fieldsB.

For N spin-one bosons with antiferromagnetic interac-
tions, we are going to show that the profile of topological
charge density is a linear chain of monopoles. In the pres-
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ence of a field gradient, we also find nonsingular monoseg-
ments where topological charges distribute smoothly along
certain direction and topological current flows. And the den-
sity profile is a linear chain of monosegments. Details of
topological charge density profile depend on the even-odd
parity of N, magnetic field gradient and spin relaxation.

The plan of this paper is as follows. In Sec. II, we intro-
duce the system which interests us and describe the algebras
needed for this investigation. In Sec. III, we calculate the
Berry’s connection fields ofN interacting spin-one bosons in
a uniform magnetic field. We show that antiferromagnetic
interactions in general expel the topological charges outward
from the origin and result in a linear chain distribution of
monopoles in the parameter space. In Sec. IV, we study the
effects of the spin nonconserving process; we calculate the
monosegment profile in the presence of a magnetic field gra-
dient. In addition, we address the Landau-Zener effect.

In both Secs. III and IV, we show that Berry’s phases are
suppressed because of antiferromagnetic interactions and as
functions of magnetic field consist of a series of step-like
functions. Furthermore, the shape of steps is determined by a
magnetic field gradient. We note that in the absence of inter-
actions, the many-body Berry’s phase is simply the sum of
each individual spin-one bosons and does not depend on
magnetic fields.

In Sec. IV we outline an alternative description of inter-
acting spin-one bosons using quantum rotor models. In the
effective representation, we show that the problem of inter-
acting spin-one bosons in a magnetic field gradient is equiva-
lent to a quantum rotor coupled to a quadrupole field.

II. THE MICROSCOPIC HAMILTONIAN

We consider spin-one bosons in an optical trap in the
dilute limit defined byn a3!1 wherea is the s-wave scat-
tering length andn the density. The Hamiltonian is given as

H =E drH "2

2m
= ĉa

†sr d · = ĉasr d + Usr dĉa
†sr dĉasr d

+ g B · ĉa
†sr dSab ĉbsr d +

c0

2
ĉa

†sr dĉa8
† sr dĉa8sr dĉasr d

+
c2

2
ĉa

†sr dĉa8
† sr dSab ·Sa8b8ĉb8sr dĉbsr dJ . s4d

Interactions between atoms are approximated by spin-
dependent contact interactions.

In a single mode approximation, the creation and annihi-
lation operators are defined as

ĉa
†sr d = ĉa

† x0
psr d, s5d

a=m=0, ±1.x0sr d is the lowest orbital mode andu1,ml is a
spin-one state withSz=m; Sab are three matrices

Sx =
1
Î210 1 0

1 0 1

0 1 0
2 , Sy =

1
Î210 − i 0

i 0 − i

0 i 0
2 ,

Sz = 11 0 0

0 0 0

0 0 − 1
2 . s6d

The dilute limit of spin-one bosons with antiferromag-
netic interactions was studied in a few experiments in Refs.
21 and 22 and also theoretically investigated in various
works.23–26 A geometric-description-based nonperturbative
approach to strong-coupling limits was proposed in Refs. 27
and 28. In optical lattices, correlated Mott states of spin-one
bosons were studied in a series of recent papers;29–32 spin
nematic, spin singlet and dimerized-valence-bond crystals
were found for high dimensional and low dimensional opti-
cal lattices. Unconventional spin disordered condensates in
homogeneous limits were proposed in various papers;28,33

many properties of spin singlet condensates were further ex-
plored in low dimensional optical lattices.34 In fast rotating
traps, correlated quantum liquids of spin-one bosons were
also investigated.35,36

It is convenient to introduce the following creation-
annihilation operators:

ĉx
† =

1
Î2

sĉ−1
† − ĉ1

†d, s7ad

ĉy
† =

i
Î2

sĉ−1
† + ĉ1

†d, s7bd

ĉz
† = ĉ0

†. s7cd

In this representation total spin operators are defined as

Ŝa = ĉb
†Sbg

a ĉg, Sbg
a = − ieabg; s8d

ĉa
†, ĉa (from now on,a=x,y,z) are usual bosonic operators

obeying the following commutation relations:

fĉa,ĉbg = fĉa
†,ĉb

†g = 0,fĉa,ĉb
†g = dab. s9d

Using these results, the Hamiltonian can be written in the
following form:

H = se0 − g0 − 2g2dN̂ + g0 N̂2 + g2 Ŝtot
2 + gB · Ŝtot s10d

with

g0 =
c0

2
E dr ux0sr du4

g2 =
c2

2
E dr ux0sr du4. s11d

In terms of singlet pair creation operatorsÂ:

Â†u0l =
1
Î6

s− 2ĉ−1
† ĉ1

† + ĉ0
†ĉ0

†du0l, s12d

the total spin operator can also be written as
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Ŝtot
2 = N̂sN̂ + 1d − 6Â†Â, s13d

with N̂=ĉa
†ĉa the number operator. Consequently, we re-

write the Hamiltonian as

H = se0 − g0 − g2dN̂ + sg0 + g2dN̂2 − 6 g2sÂ†Âd + gB · Ŝtot.

s14d

A. Spectrum

The Hamiltonian commutes with the number operator,

square of the total spin operatorŜtot
2 , and operatorÂ†Â.

Eigenstates of the Hamiltonian are simultaneous eigenstates

of the number operatorN̂ and operatorÂ†Â. If uN,Nsl is a
state with atotal number ofN particles andNs pairs of sin-
glets, then we have

Ŝtot
2 uN,Nsl = sN − 2NsdsN − 2Ns + 1duN,Nsl s15d

or S=N−2Ns.
For N particles in a magnetic fieldB along thez axis, the

spin Hamiltonian is

H = g2Ŝtot
2 + gB · Ŝtot. s16d

Obviously, an external magnetic field along thez axis splits
the 2S+1-fold degeneracy of states with given spinS andSz

remains to be a good quantum number. The energy of an
eigen stateuS,Sz=ml is

ES,m = g2 SsS+ 1d + g B m. s17d

The lowest energy state for a given spinS is uS,−Sl. The low
energy spectrum at different magnetic fields can be found in
Fig. 1.

B. Level crossings

1. N odd

Levels uS1,m1l and uS2,m2l cross at

B =
g2

g

S2sS2 + 1d − S1sS1 + 1d
m1 − m2

. s18d

For the following values of magnetic fields

Bk =
g2

g
s4k + 5d s19d

with k=0,1,2, . . . ,MN whereMN=sN−3d /2 for odd N, we
have level crossings in ground states.

2. N even

For an evenN, the level crossings in the ground state take
place at

Bk =
g2

g
s4k + 3d, s20d

with k=0,1,2, . . . ,MN whereMN=sN−2d /2 for evenN.

III. MONOPOLES AND BERRY’S CONNECTION FIELDS
OF N INTERACTING SPIN-ONE BOSONS IN

HOMOGENEOUS MAGNETIC FIELDS

A. Local connection fields and topological charge densities

The microscopic many-body state ofuS,Sz=−Sl is given
as

uS,Sz = − Sl = Csĉ−1
† dSÂsN−Sd/2u0l.

HereÂ is the singlet creation operator defined before;C is a
normalization factor

C = 6sN−Sd/4 1

ÎfSN − S

2
,SD s21d

with

fsM,Sd = S! M ! 2M s2M + 2S+ 1d ! !

s2S+ 1d ! !
. s22d

In a spherical coordinate system, we denote a magnetic
field B, of magnitudeB pointing in the direction ofn
=scosf sin u ,sin f sin u ,cosud as

B = sB,u,fd. s23d

For a magnetic fieldB pointing atn direction, ground states

ugl = CSsBd,−SsBdsnd s24d

are statesuS,Sz=−S;nl with the z axis defined along then
direction. The corresponding many-body wave functions are

FIG. 1. Energy spectrum as a function of magnetic field.Es,m is
given in units ofg2, B in units ofg2 g−1. (a) is for an oddN and(b)
is for an evenN.
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CSsBd,−SsBdsnd = CF− i sin2Su

2D e−if ĉ+1
† +

i
Î2

sinu ĉ0
†

− i cos2Su

2
Deifĉ−1

† GS

Â†sN−Sd/2u0l. s25d

And finally S is a function ofB, the magnitude of external
magnetic fields. As shown in Fig. 1:

S= S0sNd + 2 o
k=0,1,2...

MN

QsuBu − Bkd. s26d

S0sNd is zero for an evenN but is unity for an oddN.
For these correlated ground states, Berry’s connection po-

tentials in spherical coordinatessB,u ,fd can be defined as

AsBd = − ImkCS,−Ssndu
]

] B
uCS,−SsndleB

−
1

B
ImkCS,−Ssndu

]

] u
uCS,−Ssndleu

−
1

B sin u
ImkCS,−Ssndu

]

] f
uCS,−Ssndlef. s27d

A direct calculation ofA yields desired results

A = −
cosu

sin u

QsuBud
uBu

ef;

QsuBud = q0sNd + 2 o
k=0,1,2...

MN

QsuBu − Bkd. s28d

q0sNd=1 for an odd number of particles andq0sNd=0 for an
even number of particles. The two-form connection fields are

b = QsuBud
1

uBu2
eB +

1

B

] QsuBud
] B

cosu

sin u
eu. s29d

It is worth emphasizing that the radial component ofb
fields can be attributed to multiple shells, each of which car-
ries exactly two units of charges and is located atB=Bk.
Indeed, if one defines 4prB= ¹ ·sb ·eBdeB, one obtains

rB = q0sNddsBd +
1

2p
o

k=0,1,2...

MN

dsB − Bkd
1

B2 , s30d

which indicates an isotropic topological charge distribution
of a series of shells atB=Bk.

The topological charge due to theu component ofb fields
on the other hand consists of two contributions:(a) an iso-
tropic charge distribution of spherical shells exactly identical
to −rB given earlier; and(b) linearly distributed monopoles
located atB= ±Bkez each of which also carries one unit
charge. As a result, the total amount of topological charge
due to theu component vanishes identically on each shell;
however, theu component deforms the isotropic distribution
on each shell completely.

Finally, the total topological charge and current densities
are

r = q0dsBd +
1

2p sin uuBu2 o
k=0,1,...

MN

dsuBu − Bkd

3fdsu − pd + dsudg,

J =
1

4puBu
]2QsuBud

] B2 cotsudef. s31d

Compared with noninteracting systems, we find the fol-
lowing three new features in Berry’s connection fields and
topological charges.

(i) Following Eqs.(29) and (31), we find that the total
topological charge within thekth shell bounded by an outer
surfaceB1=Bk+h and an inner surfaceB2=Bk−h, where
Bk+1−Bk@h is a conserved integer independent ofB and
index k. Indeed

1

4p
R

S1

B ·eBdS−
1

4p
R

S2

B ·eBdS= 2. s32d

Here the integration is over two surfacesS1,2 of B=B1,2.
Therefore, each shell defined earlier still carries over all

two units of topological charges. If we introduce the total
charge of a surface with radiusB as

ssBd = 2pE rsB,udB2 sin u du, s33d

we find

ssBd = q0sNddsBd + 2 o
k=0,1,...

MN

dsuBu − Bkd. s34d

At last, topological currents on each shell circulate around
the z axis.

As shown in the introduction, for noninteracting spin-one
bosons, the topological charge is located at the center of the
parameter space. Following Eqs.(31) and (34) it is evident
that antiferromagnetic interactions between spin-one bosons
lead to expulsion of topological charges from the originB
=0. As a result, topological charges distribute on different
shells with radiusBk, k=0,1, ... ,MN; each shell carries two
units of charges.

However, following Eq.(31), one also confirms that the
total topological chargeQT is conserved;QT is exactly the
number of particles in the many-body state, independent of
interaction strength. That is

QT =E rsBddB = N. s35d

One can easily show that the solutions in Eqs.(34) and(35)
are independent of the specific class of ground state wave
functions chosen for this investigation, though the results in
Eq. (31) do depend on choices of wave functions.

(ii ) Furthermore, on each shell the distribution ofb fields
breaks the rotational symmetry, unlike in noninteracting
cases; consequently the charge distribution on each shell is
highly anisotropic. The expulsion of topological charges for
the particular set of states studied here is along thez axis
only. One can verify that in the case of homogeneous mag-
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netic fields two units of charges on thekth shell are located
at u=0,p, B=Bk points; that is, all charges on each shell are
carried by two monopoles located at the northern and south-
ern poles of shells. So the density profile is a chain of mono-
poles located atB= ±Bkez, k+0,1, . . . ,MN.

This structure, however, is not generic. As we will show
in the next section in the presence of a field gradient, charges
on each shell are carried by smooth structures of monoseg-
ments instead of monopoles.

(iii ) On each shell ofB=Bk, k=0,1,2, ... ,MN as shown in
Fig. 2, theb field has a new component along theu direction.
This is due to the level crossing or more precisely presence
of different spin states in exact ground states. The new com-
ponent represents a Berry’s phase when a closed path in the
parameter space crossesB=Bk surfaces. We will come back
to this point in the next subsection.

B. Berry’s phases I: Rotating fields

When a magnetic fieldB with a given magnitude rotates
around thez axis, a correlated state of spin-one atoms
evolves along a pathC shown in Fig. 3(a). During each
period the state acquires a many-body Berry’s phase.
Consider a rotating magnetic fieldBstd=B nstd with nstd

=fcosfstdsin u ,sin fstdsin u ,cosug; u is a constant andf
=2pVt is time dependent.

Previous results on connection fields indicate that Berry’s
phases of many-body states

FBsCd =R
C

A ·dB s36d

depend on the magnitude of magnetic fields. Following cal-
culations in Appendix C:

FB = − 2p cosu QsBd. s37d

As shown in Eq.(37), at a given magnetic field which is
much smaller thanBMN

, the Berry’s phase is always strongly
suppressed because of antiferromagnetic correlations. We
summarize our results in Fig. 4.

The nonanalytical behavior of Berry’s phases in rotating
fields is consistent with an anisotropic distribution of mono-
poles discussed in the last section. Consider two infinitesimal
pathsC1,2 centered at and also oriented along thez axis.C1 is
slightly above −Bkez and C2 slightly below. The Berry’s
phases evaluated in this way are singular at points −Bkez and
experience a jump

FIG. 2. Schematic of topologi-
cal field and charge distribution in
the parameter spacesBx,By,Bzd.
In (a) we show the topological
field and charge distribution for
N-noninteracting spin-one bosons.
In (b) and (c) we show the field
and charge distribution for an odd
and even number of spin-one
bosons with antiferromagnetic in-
teractions respectively; chains of
monopoles are shown here explic-
itly. The b fields only have radial
component except on shells ofB
=Bk, k=0,1,2, ... ,MN. Note that
monopoles in(b) and (c) are also
distributed on a series of shells
with radius B=Bk; and for the
even case, there are no monopoles
at the origin of the parameter
space.
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FBsC2d − FBsC1d = 4p. s38d

Thus, the step-function plotted in Fig. 4 indeed implies that
the surface bounded by pathC1 andC2 enclose a monopole
at B=−Bkez. One can apply similar argument atB=Bkez and
arrive at the same conclusions.

C. Berry’s phases II: Modulating fields

For noninteracting cases,b fields only haveeB compo-
nents. If a path completely lies in a plane parallel toeB, a
quantum state does not acquire a Berry’s phase because the
topological flux threading the path should be zero for an
obvious reason.

One of the interesting aspects of Eq.(29) is that there is a
u component inb fields because of antiferromagnetic inter-
actions. This yields a new possibility to study Berry’s phases
which is uniquely associated with interacting particles. Con-
sider a path that lies in a plane ofu=u0 and is bounded by

B = B1,2, f = f1,2. s39d

as shown in Fig. 3(b).
Following Eq.(29), one obtains

fB = − cosu0sf2 − f1dfQsB2d − QsB1dg. s40d

This Berry’s phase is nonzero only whenB=B1,2 surfaces are
at two sides ofB=Bk surfaces. ForBk+1.B2.Bk.B1.Bk−1
and u0=3p /4, fB=sf1−f2dÎ2. The Berry’s phase for
modulating fields of this kind vanishes identically for nonin-
teracting particles.

Discussions on geometrical phases are valid when slow
spin relaxation is allowed so that the system can always
reach true ground states in different magnetic fields within
practically relevant time intervals. Furthermore, we also as-
sume that the quantum symmetry restoring time is much
shorter than measurement time; the issue of symmetry restor-
ing of condensates of spin-one bosons was addressed in
some detail in Ref. 34.

IV. MONOSEGMENTS AND BERRY’S PHASES OF N
INTERACTING SPIN-ONE BOSONS IN

INHOMOGENEOUS MAGNETIC FIELDS

A. Spin conservation and magnetic field gradient

In a homogeneous magnetic field, because of total spin
conservation there is no mixing between states with different
spins. However, a gradient in magnetic fields, as we will see
does not conserve total spin and does mix states with differ-
ent spins. This results in “level repulsion” when two spin
states approach each other.

To show that an inhomogeneous magnetic field violates
the conservation of total spin, we consider the commutator

fH ,Ŝtot
2 g with H given by

H = g2 Ŝtot
2 + gE dx Bsxd · ĉa

†Sabĉb,

Sbg
a = − iebg

a . s41d

One easily verifies that

FE dx Bsxd · ĉa
†Sabĉb,Ŝtot

2 G
=− s2idFE dx Bsxd 3 ĉb

†Sbb8ĉbG
3FE dy ĉa

†sydSaa8ĉa8sydG
− 2E dxĉa

†sxdBsxd ·Sab ĉbsxd. s42d

This commutator only vanishes in a homogeneous magnetic

FIG. 3. Paths in a parameter space.(a) A path corresponding to
a rotating field;(b) a path for a modulating field discussed in this
subsection; the path is inu=u0 surface.

FIG. 4. A Berry’s phase for a rotating field withu=3p /4 and
variousB; B is given ing2g−1. N is taken to be an odd number.
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field but is nonzero when a field gradient is present(see Ap-
pendix B).

B. Mixing of many-body states with different total spins

For spatially varying magnetic fieldsBsxd, we define cre-

ation and annihilation operatorsĉa8, ĉa8
† in a local triad where

the local magnetic field points at thez direction; the local
field operators can be obtained by the following spin rota-
tion:

ĉa8sxd = Uabsxdĉbsxd, s43d

with Uabsxd given by

Uabsxd = expfi usxd ·Sabg. s44d

The Zeeman splitting in terms of spin-rotated operators is

HZeeman= gE dx Bsxdĉa8
†Sab

z ĉb8,Sab
z = − ieab

z , s45d

with Bsxd= uBsxdu. On rotated spin-one fields, external mag-
netic fields always act along thez axis.

One also finds that the spin-dependent and spin-
independent interaction terms are invariant under the local
spin rotation. However, the kinetic energy transforms non-
trivially and acquires a term,Hkin→Hkin+H1 (see Appendix
C).

Consider a field distribution

Bsxd = B0s1 − G8zdẑ + G8B0 xx̂. s46d

We assume thatG8 is very small compared to the dimension
of the system, i.e.,G8V1/3!1. This ansatz was employed for
the study of field gradient effects.26 u, which is determined
by the relative orientation of magnetic fields with respect to
the z axis, can be calculated as

usxd = ẑ 3 B̂sxd = G8 xŷ. s47d

Following Appendix C, we find that the spin rotation con-
sidered above effectively orients external fields along thez
axis and results in a termH1 in the single mode Hamiltonian,
i.e.:

HfBsxdg → HfBsxdezg + H1 s48d

and

H1 =
e

2o
aÞy

ĉa
†ĉa, s49d

wheree="2G82/m.
The tunneling matrix elements can be calculated as

k1,− 1uĤ1u3,− 3l =
e

2
Î 3

70
ÎsN − 1dsN + 4d =

N→` e

2
Î 3

70
N.

s50d

For general level crossings in ground states, we obtain the
following matrix elements. For an oddN:

Dk = ks2k + 1d,− s2k + 1duĤ1us2k + 3d,− s2k + 3dl

=
"2G82

4m
Îs2k + 2dsN − 2k − 1ds2k + 3dsN + 2k + 4d

s4k + 5ds4k + 7d
.

s51d

And for an evenN:

Dk = k2k,− 2kuĤ1u2k + 2,− 2k − 2l

=
"2G82

4m
Îs2k + 1dsN − 2kds2k + 2dsN + 2k + 3d

s4k + 3ds4k + 5d
.

s52d

Therefore, a field gradient in magnetic fields has nonvan-
ishing matrix elements between states with different spins
and leads to mixing of corresponding many-body states. We
will study the resultant spectrum in the next subsection.

C. An effective Hamiltonian close to crossing
points Bk

For values ofuBu close to the level crossing pointsBk, we
have a small tunneling term calculated earlier. If two nearly
degenerate states are far away from other levels, the Hilbert
space can be truncated into a two-level Hilbert space and the
effective Hamiltonian in this subspace can be easily deter-
mined.

When B is close toBk, we therefore obtain an effective
Hamiltonian in the truncated space

H = FESk,−Sk
sBd Dk

Dk ESk+2,−Sk−2sBd G . s53d

Sk=2k+1 for an oddN andSk=2k for an evenN. And once
again,k=0,1,2, ... ,MN. We have assumed that the gradient
is small andDk!g2 so that the truncation discussed here is
always applicable whenB is close toBk.

For two levelsu1,−1l and u3,−3l at B,B0=5g2/g:

H = FE1,−1sBd D0

D0 E3,−3sBd G s54d

with

D0 =Î 3

70

"2G82

2m
N. s55d

E1,−1=E3,−3=E0 with E0=−3g2 when B=B0. Introduce
dB=B−B0, dEl,−l =El,−l −E0. One obtains dE1,−1=−gdB,
dE3,−3=−3gdB. The eigenvalues can be expressed as

E±sdBd = − 3g2 − 2g dB ± sg2dB2 + D0
2d1/2. s56d

D. Connection fields of spin mixed many-body states

Because of the field gradient, matrix elements of the
Hamiltonian between states of different spins are nonzero.
Eigenstates are generally superpositions of states with differ-
ent spins.
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Close to level crossing pointsBk, in the truncated Hilbert
space the eigenstates are

C±snd = dk1
± uSk,− Sk;nl + dk2

± uSk + 2,−Sk − 2;nl,

udk1
± u2 + udk2

± u2 = 1; s57d

the corresponding many-body microscopic wave functions
are

C±snd = dk1
± Csĉ−19

†dSk sÂ†dsN−Skd/2u0l

+ dk2
± Dsc−19

†dSk+2 sÂ†dsN−Sk−2d/2u0l, s58d

whereC andD are normalization constants.ĉ−19
+ is a creation

operator defined in a local frame discussed in Appendix C 1.
C+ refers to the higher energy state in the truncated Hilbert
space andC− refers to the lower energy state. For a givenk:

Sk = 2k + 1 for an oddN,

Sk = 2k for an evenN. s59d

Finally, as the magnetic field increases from belowBk to
aboveBk, dk1

− varies from one to zero anddk2
− from zero to

one. Taking into account the effective Hamiltonian in the
truncated Hilbert space derived in Sec. IV C, we obtain the
following field dependence of the coefficientsdk1,k2

± whenB
is close toBk:

dk1
± =

sgdBk ± ÎDk
2 + g2dBk

2d
Î2sg2dBk

2 + Dk
2 ± gdBk

ÎDk
2 + g2dBk

2d
,

dk2
± =

Dk

Î2sg2dBk
2 + Dk

2 ± gdBk
ÎDk

2 + g2dBk
2d

. s60d

In Eq. (60), we have introduceddBk=B−Bk. Dk sk
=0,1,2, ... ,MNd represent the matrix elements calculated in

Eq. (51); Dk=ks2k+1d ,−s2k+1duĤ1us2k+3d ,−s2k+3dl for an

oddN andDk=ks2kd ,−s2kduĤ1us2k+2d ,−s2k+2dl for an even
N.

Discussions on connection fields and topological charge
densities can be carried out, similar to those in the previous
section. After some straightforward calculations, we find

A = −
cosu

sin u

QgsuBud
uBu

ef. s61d

Assuming the field gradient is small, we find thatQgsuBud is
identical toQsuBud defined in Sec. III A whenB is far away
from degeneracy pointsBk; close toBk when guB−Bku are
comparable toDk, however:

QgsuBud = Sk + 2udk2
− u2, s62d

which varies smoothly fromSk to Sk+2. We want to empha-
size that bothdk1

− anddk2
− are real functions ofuBu and inde-

pendent ofu andf.
Following discussions in the previous sections, one ob-

tains the two-form connection fieldsFab or b:

b =
QgsuBud

uBu2
eB +

1

B

] QgsBd
] B

cosu

sin u
eu. s63d

The topological charge density is

r = q0sNddsBd +
1

2puBu2sin u

] QgsuBud
] B

fdsu − pd + dsudg.

s64d

Correspondingly, the surface charge becomes

ssBd = q0sNddsBd +
] QgsBd

] B
, s65d

which is analytical atBk, k=0,1, ... ,MN because of level
repulsion. Following Eqs.(60) and (62), far away fromBk,
ssBd is vanishingly small.ssBd as a function ofB is numeri-
cally plotted in Fig. 5.

Equations(63) and(65) again clearly indicate shell struc-
tures. Indeed, when the width of each shell 2h defined before
Eq. (34) is much larger than a characteristic widthWk:

2h @ Wk =
Dk

g
, s66d

the chargeQk enclosed in thekth shell centered atB=Bk is

Qk = 2 +OSWk
2

h2 D; s67d

Qk approaches two units when the ratio between 2h andWk
becomes infinity. And only on these shells,b fields have au
component.

FIG. 5. The surface chargessBd as a function of magnetic field
in the presence of a field gradientG8=1.32 cm−1. B is measured in
units of g2g−1. (a) is for an odd number of particles and(b) for an
even number of particles.
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Therefore, Eq.(64) shows that on each shell the charge
distribution is highly anisotropic. All charges on each shell in
this case are carried by two monosegments. Each monoseg-
ment carries one unit of charge and is centered atB
= ±Bkez; a monosegment is smooth along thez axis, the typi-
cal width of a monosegment located atB= ±Bkez is approxi-
matelyWk. Topological charges overall distribute in a chain
of monosegments instead of monopoles. Finally, in the pres-
ence of field gradients, results in Eq.(35) are still valid.

Before we leave this subsection, we emphasize thatb
fields are gauge invariant under a usualUs1d gauge transfor-
mation. Though this is hardly surprising by virtue of the
two-form construction, in Appendix E we nevertheless
present an explicit calculation to illustrate this point in terms
of many-body wave functions.

E. Landau-Zener effects

Bstd varies adiabatically. Whent→−`, the ground state is
u1,−1l and whent→ +` the ground state isu3,−3l. SinceB
changes adiabatically, for the most of time the system re-
mains in the ground state; however, as the change rate is
finite, the system also makes transitions to an excited state
u1,−1l at t→` with small probability.

Denoting the excited state by + and the groundstate by −,
the transition probability can be calculated with the follow-
ing formula:37

W+;− = expS− 2 ImE
C

t0

dtfE+std − E−stdgD . s68d

Heret0 is the complex value at whichE+std=E−std andC
a curve fromt→−` to t→ +` passing abovet0. Substitut-
ing the results found in Eq.(59) into the earlier expression,
we get

W+;− = expF− 8 ImE
0

i
D0

vg dt ÎD0
2 + g2v2t2G=expF− 2

p

gv
D0

2G
s69d

with v as the rate. In Fig. 6, we show the energy of these two
levels as a function of magnetic field in the vicinity ofB0.

The steps in the Berry’s phases as a function of magnetic
field become rounded because of level repulsion.

V. LARGE N LIMIT

A. An effective Hamiltonian in large N limit

As proposed in a few previous works, the problem of
interacting spin-one bosons can be mapped into a con-
strained quantum rotor model in the largeN limit.27,28,31,32,34

And any microsopic many-body state can be expressed in
terms of a wave functioncsnd of a quantum rotor character-
ized by its directionn. In fact, an arbitrary wave function
csnd represents the following microscopic wave function of
a correlated state

C =E dn csndunl; unl =ÎN + 1

2N!
snaĉa

†dNu0l. s70d

Therefore, a state wheren is localized on a two sphere
corresponds to a polar condensate; anSwave ofn represents
a rotationally invariant spin singlet ground state. More dis-
cussions about connections between the two representations
can be found in Ref. 34.

The Hamiltonian for spin-one bosons inunl-representation
is given by a quantum rotor model

H = g2L̂
2 + g B · L̂ . s71d

The total spin of spin-one particlesŜtots=L̂ d is a differential
operator

L̂ = − i n 3
]

] n
, s72d

i.e., the total spin operator is the angular momentum operator

defined on the two-sphere wheren lives; L̂ is also a conju-
gate variable ofn. Wave functions further observe the fol-
lowing Ising symmetry:

csnd = s− 1dNcs− nd s73d

for any N; this property of many-body wave functions was
identified and emphasized in previous works on homoge-
neous gases of spin-one bosons27,28 and on spin-one bosons
in lattices.29,31,32,34

A direct calculation in Appendix F indicates the following
relation in theunl-representation

ĉa
†habĉb → Nnahabnb. s74d

Therefore, the field gradient induced quadratic Zeeman term
discussed in Appendix D results in the following coupling
term in the quantum rotor representation(up to a shift)

H1 = N
"2

2m
habQab. s75d

Here

habsr d = ¹ uh · ¹ ujSag
h Sgb

j ; s76d

andQab is the nematic order parameter

FIG. 6. Eigenvalues as functions of magnetic fields close toB0;
G8=1.32 cm−1.
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Qab = nanb − 1
3dab. s77d

For a magnetic field distribution given in this article, theh
matrix is

hab = G82sSySydab; s78d

therefore, the effective Hamiltonian for the gradient term in
the largeN limit is

H1 =
"2G82

2m
No

aÞy

na
2 , s79d

which was also proposed in an early paper.28

B. Effects due to anisotropy

Taking into account anisotropy, the quantum rotor effec-
tive hamiltonian for a magnetic field distribution given in Eq.
(46) is

H = g2 L̂ 2 + g B · L̂ + habQab N,

hab =
"2G82

2m
dabsdax + dazd. s80d

The tunneling term between different total spin states is
given by

ksmuhabĉa
†ĉbus8m8l = habTabssm,s8m8dN,

Tabssm,s8m8d =E dn Ysm
p sndnanb Ys8m8snd. s81d

For statesu1,−1l and u3,−3l, we have

Tabs3,− 3;1,− 1d =Î 3

7011 i 0

i − 1 0

0 0 0
2 . s82d

And the matrix element betweenu3,−3l and u1,−1l is

N habTabs3,− 3;1,− 1d =
"2G82

2m
Î 3

70
N. s83d

Close toB0, statesu1,−1l and u3,−3l are nearly degener-
ate as mentioned before. In the two-level subspace, the
Hamiltonian is identical to that in Eq.(53); D0s=hab Tabd is
calculated earlier. One can then study the eigenstates in this
subspace; after redefiningD0, one obtains results identical to
those in Sec. IV C.

C. Berry’s phases

In the quantum rotor representation, the spectra of the
Hamiltonian subject to Ising symmetries in Eq.(73) are iden-
tical to those discussed in Sec. II. The Berry’s phases of
many-body ground states in a rotating field can be evaluated
in a straightforward way. All results in Secs. III and IV can
be easily rederived; moreover, this effective description gives
a simple geometric interpretation of results obtained in a

microscopic calculation. We do not present detailed calcula-
tions here.

D. Observation of Berry’s phase

The peculiar Berry’s phases of many-body states might be
observed by studying resonance transitions between a ground
state and a collective excitation, similar to NMR experiments
carried out earlier.5 In an adiabatically rotating magnetic
field, the resonance frequency between these states should be
shifted because of geometric phases. For instance, atB less
than B0 the shift in the resonance frequency of transitions
between an excited stateu2k+1,−2k−1l and the ground state
u1,−1l for an odd number of particles is

dv = 2k cosu V. s84d

HereV is the rotating frequency andu is the angle between
the magnetic field and rotation axisz (see Sec. III A for the
geometry). Let us explain this in some detail.

1. Adiabatically evolving states: General consideration

Consider the following time-dependent Hamiltonian of a
two level system

H = g Bstd ·
s

2
. s85d

The “magnetic field”Bstd is given by

Bstd = B nstd=B fcossVtdsinsudx̂ + sinsVtdsinsudŷ

+ cossudẑg. s86d

Let u±stdl denote the instantaneous eigenstates of the Hamil-
tonianHstd:

Hstdu±stdl = E±stdu±stdl s87d

with E±std= ±gB/2. These states acquire geometric phases
whenH is time dependent. The corresponding states are

uc−stdl = e−si/"dE−te−e0
t k−u]tu−ldt8u− stdl s88d

and

uc+stdl = e−si/"dE+ t e−e0
t dt8k+u]tu+lu+ stdl. s89d

The transition probability betweenuc−stdl and uc+stdl in-
duced by a time-dependent fielddBzstd=dB0

z cossvtd is

P+−std =
4

"2dB0
z2Uk+ u

sz

4
u− lU2UsinS Ẽ+ − Ẽ−

2"
t −

v

2
tDU2

S Ẽ+ − Ẽ−

"
− vD2

s90d

with

Ẽ± = E± − "
V

2p
FB

± s91d

and
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FB
± = − Im R dfk± u]fu ± l. s92d

The resonance frequency is given by

v = v+− =
1

"
FE+ − E− −

"V

2p
sFB

+ − FB
−dG , s93d

which differs from the resonance frequency in a static field
v+−

s =1/"sE+−E−d.

2. Shift in resonance frequencies for spin-one bosons in a
magnetic field

The resonance frequency between the levelss3,−3d and
s1,−1d as a function of magnetic field is

vs3,−3d;s1,−1dsBd =
1

"
fEs3,−3d − Es1,−1dg −

V

2p
fFB

s3,−3d − FB
s1,−1dg.

s94d

Here

FB
s1,−1d = − ImR dfk1,− 1u]fu1,− 1l s95d

and

FB
s3,−3d = − ImR dfk3,− 3u]fu3,− 3l. s96d

For oddN when there is no magnetic field gradient present,
the resonance frequency between the statesu2k1+1,m1l and
u2k2+1,m2l is

vs2k1+1,m1d;s2k2+1,m2dsBd =
1

"
sE2k1+1,m1

− E2k2+1,m2
d

−
V

2p
fFB

s2k1+1,m1d − FB
s2k2+1,m2dg,

s97d

where

FB
s2k+1,md = − ImR df k2k + 1,mu]fu2k + 1,ml. s98d

When there is a magnetic field gradient present(see Fig. 7),
near the level crossingB<Bk the low energy and high en-
ergy states are

C±snd = dk1
± uSk,− Sk;nl + dk2

± uSk + 2,−Sk − 2;nl s99d

with coefficients specified in Eq.(60). Here we have that
dBk=B−Bk. Now the shifts in the resonance frequencies of
the transitions between the states given in Eq.(99) are

v+−,ksBd =
1

"
sEk

+ − Ek
−d + V cossudhfsdk,1

+ d2 − sdk,1
− d2gSk

+ fsdk,2
+ d2 − sdk,2

− d2gsSk + 2dj

=
1

"
sEk

+ − Ek
−d − 2V cossud

DEk

Î4Dk
2 + DEk

2
. s100d

Here

Ek
± = 1

2fEs2k+1d,−s2k+1d + Es2k+3d,−s2k+3dg±
1
2
ÎDEk

2 + 4Dk
2

s101d

and

DEk = fEs2k+1d,−s2k+1d − Es2k+3d,−s2k+3dg, s102d

where Es2k+1d,−s2k+1d is the energy of a stateu2k+1,−s2k
+1dl and Dk is the matrix element between statesu2k+1,
−s2k+1dl and u2k+3,−s2k+3dl as given in Secs. IV C and
IV D. Eventually we find

v+−,ksBd =
2

"
sg2dBk

2 + Dk
2d1/2 − 2V cosu

gdBk

sDk
2 + g2dBk

2d1/2

s103d

for the resonance frequency. The last term is the contribution
from Berry’s phases andg=gFmB.

VI. CONCLUSION

In this paper we discuss the Berry’s connection fields of
many-body states of spin-one bosons with antiferromagnetic
interactions. We show that unlike noninteracting systems,
Berry’s connection fields are determined by a linear chain of
monopoles; more over in the presence of field gradients each
monopole becomes a linearly extended object which we call

FIG. 7. Berry’s phase in the presence of a field gradientG8
=1.32 cm−1. B is measured in units ofg2g−1. (a) is for an oddN. (b)
is for an evenN.
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a monosegment. Antiferromagnetic interactions appear to re-
sult in anisotropic expulsion of topological charges from the
origin of parameter space and suppression of Berry’s phases
in small rotating magnetic fields.
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APPENDIX A: BASIC ALGEBRAS

One can verify the following algebra:

fŜa,ĉbg = ieabgĉg, sA1ad

fŜa,ĉb
†g = ieabgĉg

†, sA1bd

fŜa,Ŝbg = ieabgŜg, sA1cd

fr̂,ĉag = − ĉa, sA1dd

fr̂,ĉa
†g = ĉa

† , sA1ed

fŜa,r̂g = 0. sA1fd

Furthermore, we define the singlet creation operator:

Â† =
1
Î6

ĉa
†ĉa

† with a = x,y,z

=
1
Î6

sĉ0
†ĉ0

† − 2ĉ−1
† ĉ1

†d. sA2d

This operator satisfies

fÂ,Â†g = 1
3s3 + 2N̂d. sA3d

APPENDIX B: FIELD GRADIENT AND SPIN
CONSERVATION

In this appendix, we prove that a field gradient does not
conserve the total spin of spin-one bosons. The second quan-

tized form of the total spin operatorŜtot
2 is given by

Ŝtot
2 = 2E dx ĉa

†sxdĉasxd

+E dxE dyĉa
†sxdĉb

†sydSaa8 ·Sbb8ĉb8sydĉa8sxd.

sB1d

We consider the commutator

FŜtot
2 ,gE dx Bsxd · ĉa

†sxdSabĉbsxdG . sB2d

Calculations yield

FE dx Bsxd · ĉa
† Sabĉb,Ŝtot

2 G
= FE dx Bsxd · ĉa

†Sabĉb,2E dxĉa
†sxdĉasxdG

+ FE dx Bsxd · ĉa
†Sabĉb,E dxE dy ĉa

†sxdĉb
†syd

3Saa8 ·Sbb8ĉb8sydĉa8sxdG . sB3d

Using

fA,BCg = fA,BgC + BfA,Cg sB4d

and

fĉasyd,ĉb
†sxdg = dab dsx − yd, sB5d

we find that the first term vanishes. The second term can be
simplified using the relations above and in the end we find
results in Eq.(43). Now takeBsxd homogeneous. We find

FE dx Bsxd · ĉa
†Sabĉb,Ŝtot

2 G
= s− 2idB ·FE dxĉb

†sxdSbb8ĉb8sxdG
3FE dyĉa

†sydSaa8ĉa8sydG
− 2B ·E dxĉa

†sxdSabĉbsxd

= s− 2idB · sŜtot 3 Ŝtotd − 2B · Ŝtot

= s− idBiei jkfŜj
tot,Ŝk

totg − 2BiŜi
tot = 0. sB6d

So for a homogeneous magnetic field total spin is conserved
and an inhomogeneous magnetic field breaks conservation of
total spin.

APPENDIX C: CALCULATIONS OF BERRY’S
CONNECTION FIELDS

1. General discussions: Without field gradient

Define a coordinate framesx8 ,y8 ,z8d with the z8 axis in
the direction of the magnetic field n
=ssin u cosf ,sin u sin f ,cosud, and the x8 axis in the
sx,yd plane. The creation operator in the local frame is
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ĉ−19
† = − ie−ifsin2Su

2
Dĉ1

† + i
sin u

Î2
ĉ0

† − i cos2Su

2
Deifĉ−1

† .

sC1d

Therefore,kCS,−Ssnd udCS,−Ssndl is given by

kCS,−SsndudCS,−Ssndl

= C2S k0uÂsN−Sd/2ĉ−19
SF− e−ifsin2Su

2
Dĉ1

†

+ eifcos2Su

2
Dĉ−1

† G
3sĉ−19

†dS−1Â†sN−Sd/2u0l df.

The results for connection fields follow this identity. Now the
Berry’s phase forN interacting spin-one atoms with total
spin S is given by

fBerry = ImR
C

kCS−SsndudCS−Ssndl = − 2p S cossud.

2. General discussions: With a field gradient

Now for B,Bk:

kCS,−SsndudCS,−Ssndl

=i cosuhC2Skdk1
−2sBddfk0uÂsN−Skd/2ĉ−19

Skĉ−19
†SkÂ†sN−Skd/2u0l

+ sSk + 2dD2dk2
−2sBddfk0uÂsN−Sk−2d/2ĉ−19

sSk+2dĉ−19
†sSk+2d

3Â†N−Sk−2/2u0l + sSk + 2ddk1
− sBddk2

− sBdCD df

3k0uÂsN−Skd/2c−19
Skĉ−19

†sSk+2dÂ†sN−Sk−2d/2u0l

+ Skdk1
− sBddk2

− sBdCD df

3k0uÂsN−Sk−2d/2ĉ−19
sSk+2dĉ−19

†SkÂ†sN−Skd/2u0lj

= + ifdk1
−2sBdSk + dk2

−2sBdsSk + 2dgcosu df.

3. Berry’s local connection fields and topological charge
densities

As mentioned in the introduction, Berry’s connection
fields of the ground state are given by

AsBd = − Imkgu
]

] B
ugl. sC2d

For a stateuS,−Sl, following discussions in Appendix C 1
and C 2, Berry’s connection potentials in spherical coordi-
natessu ,f ,Bd are

AsBd = −
QsBd

B
cot uef. sC3d

Now the Berry’s connection fields are given by:

b = ¹B 3 AsBd sC4d

=
QsBd
B2 eB +

1

B

] QsBd
] B

cotsudeu. sC5d

For BÞ0, uÞp, anduÞ0, we find

4pr = ¹B ·b =
1

B2

]

] B
FB2QsBd

B2 G
+

1

B sin u

]

] u
F 1

B

] QsBd
] B

cosuG
=

1

B2

] QsBd
] B

−
1

B2

] QsBd
] B

= 0. sC6d

At B=0 or u=p, u=0, andB=Bk points, theb fields are
singular. Calculations around those points lead to results in
Eq. (31).

APPENDIX D: QUADRATIC ZEEMAN EFFECTS DUE TO
FIELD GRADIENTS

We show explicitly for the invariance of a spin-dependent
term in the interaction. LetUab=expfiu ·Sabg:

Hint =
c2

2
E dx ĉa

†ĉb
†Saa8 ·Sbb8ĉa8ĉb8

=
c2

2
E dxĉg8

† Ugasxdĉd8
† UdbsxdSaa8 ·Sbb8

3Ua8g8
† sxdcg8

8 Ub8d8
† sxdcd8

8 . sD1d

Now using

Uaa8 Sa8b8 Ub8b
† = sUaa8x̂ ·Sa8b8 Ub8b

† ,Uaa8ŷ ·Sa8b8

3Ub8b
† ,Uaa8ẑ ·Sa8b8 Ub8b

† d

= sx̂8 ·Sab,ŷ8 ·Sab,ẑ8 ·Sabd sD2d

where the primes correspond to the rotated coordinate sys-
tem and the fact that the inner product is rotationally invari-
ant we find that the spin-dependent interaction term is invari-
ant under the local spin rotation.

Now the kinetic term

H =E dx −
"2

2m
ĉa

†sxd=2ĉasxd sD3d

becomes in terms ofĉ8a
† and ĉb8:

H =E dx ĉ8d
† Udesxd=2 Uea

† sxdĉa8sxd

=E dx −
"2

2m
ĉ8a

†sxd=2 ĉ8a
†sxd +E dx

−
"2

2m
ĉ8a

†sxdUabs=Ubg
† d · = ĉg8sxd +E dx −

"2

2m
ĉ8a

†sxd

3„Uabsxd=2Ubg
† sxd…ĉg8sxd. sD4d
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Using the relation

]

] xi
expfiusxd · Ŝg = i S ] usxd

] xi
· ŜD expfiu · Ŝg sD5d

and

] u

] xi
= di,xG8ŷ sD6d

for the ansatz in Eq.(54), we haveH=H0+H1, and

H1 =
"2

2m
E dx ĉ8a

†UabsiG8SydbgUgh
† ]

] x
ĉh8

−
"2

2m
E dx ĉ8a

†Uabf− G82sSyd2gbgUgh
† ĉh8 . sD7d

By keeping only the zero mode contributions, we find

H1 =
"2G82

2m
ĉa

† sSydab
2 ĉb. sD8d

This is the effective quadratic coupling in the presence of a
field gradient which was previously obtained in Ref. 26.

APPENDIX E: GAUGE INVARIANCE OF TOPOLOGICAL
FIELDS

1. General

We define the following basis:

uS,− S;nl = CsSdeiPsB,u,fd F− i sin2Su

2
De−if ĉ+1

†

+
i

Î2
sin u ĉ0

† − i cos2Su

2
D eif ĉ−1

† GS

3Â†sN−Sd/2u0l. sE1d

Close toBk points, ground states are in general superpo-
sitions of these states; using the ansatz introduced in Sec.
IV D, we find

CsB,nd = dk1sBduSk,− Sk;n l

+ dk2sBdeidksu,f,BduSk + 2,−Sk − 2;nl sE2d

with dk1,k2, dk functions ofsB,f ,ud. Calculations yielddk1,k2

as given in Sec. IV D;dk=0.

Therefore, we find

AsBd = −
] P

] B
eB −

1

B

] P

] u
eu −

1

B sin u
F ] P

] f
+ QgsBdcosuGef.

sE3d

Note that Berry’s connection potentialsAsBd transform in an
expected form

AsBd → AsBd + ¹ dPsB,u,fd, sE4d

under a gauge transformtionP→P+dP:

bsBd =
QgsBd

B2 eB +
1

B

] QgsBd
] B

cosu

sin u
eu. sE5d

We find on thekth shell two monopoles, one at the southern
and one at the northern pole. The connection fieldbsBd does
not depend on the choice ofPsB,u ,fd, i.e., the gauge.

2. CaseP„B ,u ,f…=0

We find in this limit

AsBd = −
cosu

B sin u
QgsBdef, sE6d

bsBd =
QgsBd

B2 eB +
1

B

] QgsBd
] B

cosu

sin u
eu. sE7d

APPENDIX F: ESTIMATE FOR COLD SODIUM
ATOMS

Consider a trap with N=106 atoms, a densityn
=1014 cm−3 anda2−a0=0.32 nm. We havegF=−1

2 for 23Na.
The Zeeman effect is characterized byg:

g = gF mB = − 3.35853 10−5K

G
. sF1d

Note thatg is negative. Previous results can be applied pro-
vided we take for the magnetic fieldB=−Bnsu ,fd. One also
finds

D0 = 2.183 10−15 K m2 G82, sF2d

where we have the following units:G8 in m−1 and D in K.
Furthermore

g2 = 10−15 K. sF3d

The eigenvalues ofH in the vicinity of B0 are
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E±sdBd = − 3 g2

− 2gdB ± gÎ4.233 10−21G2 m4 G84 + sdBd2.

sF4d

The relative level repulsionDE/g2 is ,4 m2 G82 with G8 in
m−1.

APPENDIX G: CALCULATION OF MATRIX ELEMENTS
IN A LARGE- N LIMIT

Now the general operatorĉa
†habĉb with hab some matrix

acts on the wave function as follows:

kc1snduĉa
†habĉbuc2sndl

=E dn1E dn2
N + 1

2N!
k0usng

1ĉgdN

3ĉa
†habĉbsnd

2ĉd
†dNu0lc1

psn1dc2sn2d

=E dn1E dn2
N + 1

2N!
N2na

1habnb
2 c1

psn1d

3c2sn2dk0usng
1ĉgdN−1snd

2ĉd
†dN−1u0l

=E dn N nahabnb c1
psndc2snd. sG1d
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