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Berry's phases of ground states of interacting spin-one bosons:
Chains of monopoles and monosegments
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We study Berry’s connection potentials of many-body ground states of spin-one bosons with antiferromag-
netic interactions in adiabatically varying magnetic fields. We find that Berry’s connection potentials are
generally determined by, instead of usual singular monopoles, linearly positioned monosegments each of which
carries one unit of topological charge; in the absence of a magnetic field gradient this distribution of mono-
segments becomes a linear chain of monopoles. Consequently, Berry’s phases consist of a series of step
functions of magnetic fields; a magnetic field gradient causes rounding of these step functions. We also
calculate Berry’s connection fields, profiles of monosegments, and show that the total topological charge is
conserved in a parameter space.
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I. INTRODUCTION nection potentials(one-forrm), Berry’s connection fields

In the presence of time-dependent periodical potential§two-form), and topological charge densities for ground
V(t)=V(t+T) with a periodT, an eigenstate of the instanta- States of spin-one bosons with antiferromagnetic interactions.

neous Hamiltonian acquires a geometric phase known as tH8 @ parameter space
Berry's phasé.The Berry’s phase is a global characterization X}, a=1,2,..M (1)
of an eigenvector when it is transported in a Hilbert space. ' T
For a period ofT during which an eigenstat¥[V(t)] evolves  the connection potentiad,, two-form connection field§ .,
adiabatically, the Berry’s phase is simply and topological charge and current densitips]) are de-
dg=-Im[] (¥|a|¥)dt. From the point of view of fiber fined as
bundles, the Berry’s phase can be considered as the ho- _
lonomy of a Hermitian fiber bundle; its base space corre- A ({X}'\P):I— W v N _[ oY W
sponds to a parameter space and a fiber is an eigenstate el 2 I Xy I Xy '
which defines a mapping from the parameter space to the
Hilbert space. This point of view was illustrated in Ref. 2. {< P (9q,> < PR (;\p>}
Berry’'s phases have been observed in a variety of experi- Fa({Xc}; W) =i — -\ I/
ments such as nuclear magnetic resonahiddR) and rota- I Xal 9% IXo | I Xq
tion of light polarization in optical fibers, efcS L b

In condensed matter systems where there are large num- 47p = 5€0aFpe,  4mIq= GoFap. 2
bers of particles interacting with each other one way or the
other, the subject of Berry’s phases, or more general geomef
ric phases becomes more fascinating and intriguing. Ther
are at least two interesting aspects of this subjégtthe
effect of geometric pha§es on correlations ainpithe effect o 16 form connection fields are monopole-like due to an
of correlations on Berry's phases. . . -fold magnetic monopole at the point B0 in the param-
Thg first issue was addressed on quite a few differen ter space ofB,}, a=1,2,3 orx,y,z And the topological
occasions. The best known result perhaps is the geometric : ,
: . . ; . current is zero. That is
phases’ effect on spin correlations. As pointed out a while

Consider Berry’s connection potentials, two-form connec-
n fields and topological charges whéhspin-one bosons
fre in a magnetic fiel®=(B,,B,,B,). For ground states of
N-noninteracting spin-one bosons, one easily confirms that

ago for antiferromagnets, a Berry’s phase distinguishes inte- it _ Ba _

ger and half-integer spin chains, or even-integer, odd-integer by = EfachbC‘ Q(B)@* Q(B) =N,

and half-integer spin square lattices and results in different

ground states and excitatioi$.The other examples perhaps p=Q(B)&(B), J=0. 3)

are the possible geometric phases’ effects on statistical trans-

mutation and fractionalization in spin correlated We should emphasize here that the topological charge is lo-

systemdg%-13In mesoscopic magnetic systems effects of Ber-calized at the origirB=0 in the parameter space. Note that

ry's phases on collective quantum tunneling werethe Berry's two-form fieldb is a function of external mag-

investigated?~1° quantum interferences of Berry’'s phasesnetic fieldsB.

were observed in molecular magnéts. For N spin-one bosons with antiferromagnetic interac-
In this paper we are going to address the second aspedions, we are going to show that the profile of topological

correlations’ effect on Berry’s phases. We study Berry’s concharge density is a linear chain of monopoles. In the pres-
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ence of a field gradient, we also find nonsingular monoseg- 1

ments where topological charges distribute smoothly along g=|o

certain direction and topological current flows. And the den-

sity profile is a linear chain of monosegments. Details of 00 -1
topological charge density profile depend on the even-odd

parity of N, magnetic field gradient and spin relaxation.  petjc interactions was studied in a few experiments in Refs.
The plan of this paper is as follows. In Sec. Il, we intro- 21 and 22 and also theoretically investigated in various
duce the system which interests us and describe the algebrgg) ks23-26 a geometric-description-based nonperturbative
needtyed for th|s' |nv¢stlgat|on. In Sgc. III,_ we calculate _theapproach to strong-coupling limits was proposed in Refs. 27
Berry’s connection fields dW interacting spin-one bosons in ang 28 In optical lattices, correlated Mott states of spin-one
a uniform magnetic field. We show that antiferromagneticyosons were studied in a series of recent pafefd:spin
interactions in general expel the topological charges outwarflematic, spin singlet and dimerized-valence-bond crystals
from the origin and result in a linear chain distribution of \yare found for high dimensional and low dimensional opti-
monopoles in the parameter space. In Sec. IV, we study they| |attices. Unconventional spin disordered condensates in
effects of the spin nonconserving process; we calculate thﬁomogeneous limits were proposed in various pafet;
monosegment profile in the presence of a magnetic field granany properties of spin singlet condensates were further ex-
dient. In addition, we address the Landau-Zener effect.  piored in low dimensional optical latticé4.In fast rotating

In both Secs. IIl and 1V, we show that Berry's phases aréraps, correlated quantum liquids of spin-one bosons were
suppressed because of antiferromagnetic interactions and g& investigate@® 3

functions of magnetic field consist of a series of step-like |1 is convenient to introduce the following creation-
functions. Furthermore, the shape of steps is determined by gyninilation operators:
magnetic field gradient. We note that in the absence of inter-

0 0
0 0 (6)

The dilute limit of spin-one bosons with antiferromag-

actions, the many-body Berry’s phase is simply the sum of Ay Lo sy
each individual spin-one bosons and does not depend on ‘/’x‘E(‘ﬁ—l_‘ﬂl)’ (78
magnetic fields.

In Sec. IV we outline an alternative description of inter-

acting spin-one bosons using quantum rotor models. In the St Lot st 7b
effective representation, we show that the problem of inter- Y \E(l’b‘l W), (7b)
acting spin-one bosons in a magnetic field gradient is equiva-
lent to a quantum rotor coupled to a quadrupole field. ~pms
‘pz = lﬂO' (7C)
II. THE MICROSCOPIC HAMILTONIAN In this representation total spin operators are defined as
We consider spin-one bosons in an optical trap in the So=gtse S® = .
. e i - = , =-le€ s, 8
dilute limit defined byn a<1 wherea is the swave scat- Vsl Spy By ®

tering length and the density. The Hamiltonian is given as ’:’fl l‘/la (from now on,a=x,y,2) are usual bosonic operators

52 obeying the following commutation relations:
H= j df{zn VL) Y gr) + UG i(r)

[V ) = [0 V) = O[ s U] = 5. (9)
+yB- ‘ZZ(V)Saﬁ ‘}B(r) + %%(r)%,(r)z}ar(r)%(r) follg\/s\/iirr]% tff:)errsne: results, the Hamiltonian can be written in the
+ 210 S @ﬁ«rw(r)}- 4 H=(e0= Qo= 20N+ 0o N+ g S+ 7B - S (10)

with

Interactions between atoms are approximated by spin-

dependent contact interactions. _Cp 4
In a single mode approximation, the creation and annihi- Y= 2 J drxo(r)|

lation operators are defined as

iy i’ s C
T = 60, (5) 0= [ arlxetrl. (1
a=m=0, 1. x,(r) is the lowest orbital mode arjd,m) is a ) ) ) -
spin-one state witl8,=m; S,z are three matrices In terms of singlet pair creation operatoks
. R 1 SO
1010 1[0 0 A'l0) === 20111+ Yoyl O), (12)
SX:TE 101 , S/:TE i 0 ~—i , v
““\o10 ““\o i o the total spin operator can also be written as
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& =N(N+1) - 6ATA, (13)

with N:;//L;/;a the number operator. Consequently, we re-
write the Hamiltonian as

H=(e-0o— gIN + (Qo+ G)N? - 6 go(ATA) + 4B - étot-
(14

A. Spectrum
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Es,m (g

40

20

-20

-40

The Hamiltonian commutes with the number operator,

square of the total spin operatéf'ot, and operatorATA.

Eigenstates of the Hamiltonian are simultaneous eigenstates

of the number operatdf&l and operatov&TA. If IN,Ng is a
state with atotal number ofN particles and\ pairs of sin-
glets, then we have

S2IN,Ng = (N = 2Ng)(N = 2Ng + 1)|N,Ng)

or S=N-2N,.
For N patrticles in a magnetic fielB along thez axis, the
spin Hamiltonian is

H =052+ ¥B - St (16)

Obviously, an external magnetic field along thexis splits
the 2S+1-fold degeneracy of states with given sfiand S*

(15)

remains to be a good quantum number. The energy of an

eigen statdS,S,=m) is
Esm=0, S(S+1)+yBm. (17)

The lowest energy state for a given s@is |S,-S). The low

Esm

20

-20

-40

FIG. 1. Energy spectrum as a function of magnetic filg,, is
given in units ofg,, B in units ofg, y L. (a) is for an oddN and(b)
is for an even\.

[lI. MONOPOLES AND BERRY’S CONNECTION FIELDS
OF N INTERACTING SPIN-ONE BOSONS IN
HOMOGENEOUS MAGNETIC FIELDS

A. Local connection fields and topological charge densities

The microscopic many-body state (&, S,=-S) is given

energy spectrum at different magnetic fields can be found ims

Fig. 1.

B. Level crossings
1. N odd
Levels|S;,my) and|S,,m,) cross at

_ 0SS )-S(S+1)

B (18
Y m; —my
For the following values of magnetic fields
_9%
B,==(4k +5) (19
Y

with k=0,1,2,... My whereMy=(N-3)/2 for odd N, we
have level crossings in ground states.

2. N even

[S.S,= -9 =C(yl)°ANS"7).

HereA is the singlet creation operator defined befdzds a
normalization factor

1
C=6N"91 — (21)
(N2s)
2
with
2M +25+1)!!
f(M,9)=S!I'M PG (22)

(2S+1)!!

In a spherical coordinate system, we denote a magnetic
field B, of magnitudeB pointing in the direction ofn
=(cos ¢ sin 6,sin ¢ sin 6,cos ) as

B=(B,6,¢). (23

For an everN, the level crossings in the ground state take

place at
_®
B,==(4k+3), (20
Y

with k=0,1,2,... My whereMy=(N-2)/2 for evenN.

For a magnetic field pointing atn direction, ground states
|9) = Ygp)-sp)(N) (24)

are stategS,S,=-S;n) with the z axis defined along the
direction. The corresponding many-body wave functions are
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0 N i ~ My
Ve - (n)=C{—i sinz(—) €' Yly + —=sind 4 =qedB) + ————— s(|B|-B
S(B),-SB) > SN 0 p=00dB)+ - ‘9|B|2k=§1,... (1B - By
s
- co§<g>ei‘/’f/ﬁl} AtN-920y (25 X[8(6-m) + 8(6)],
> -
And f . , . 1 #Q(B)
nd finally Sis a function ofB, the magnitude of external J=—— > —cot(f)ey. (31
magnetic fields. As shown in Fig. 1: 4m(B| 9B
My Compared with noninteracting systems, we find the fol-
S=%(N)+2 >, O(B|-By. (26) lowing three new features in Berry’s connection fields and

k=0,1,2... topological charges.

. _ ) (i) Following Egs.(29) and (31), we find that the total
S(N) is zero for an evem but is unity for an odaN.  ¢5hqj0gical charge within thith shell bounded by an outer
For these correlated ground states, Berry’s connection pasrface B,=B,+h and an inner surfac®,=B,—h, where

tentials in spherical coordinatéB, 6, ¢) can be defined as B.,-B>h is a conserved integer independent Bfand
P indexk. Indeed

A(B) == Im(Wss(n)|—=[Ps-sn))es 1 1
—jg B - egdS- —jg B-egdS=2. (32
- §|m<‘l’s—s(n)|_|‘ys—s(n)>ee : o _

J0 Here the integration is over two surfacgs, of B=B ,.

P Therefore, each shell defined earlier still carries over all
Im(qrs_s(n)|ﬁ|\lf3_s(n)>e¢. 27) two units of topological charges. If we introduce the total

B sin ¢ charge of a surface with radiias
A direct calculation ofA yields desired results
a(B) = 2wf p(B,6)B? sin 6 do, (33
__cos#Q(B|)
sing Bl we find
M My
N
o(B) = qo(N) 8(B) + 2 8(B|-By). (34)
ABh=aN+2 > O(8l-B). (29 B)=qNaE)+2 2 Bl
k=0,1,2...

. At last, topological currents on each shell circulate around
do(N)=1 for an odd number of particles ang(N)=0 foran ., axis.p g

even number of particles. The two-form connection fields are  ag shown in the introduction. for noninteracting spin-one

19Q(B|) cos ¢ bosons, the topological charge is located at the center of the
= —ey. (29 parameter space. Following Eq81) and(34) it is evident
B JB sind that antiferromagnetic interactions between spin-one bosons

It is worth emphasizing that the radial componentbof lead to expulsion of topological charges from the origin
fields can be attributed to multiple shells, each of which car=0- As a result, topological charges distribute on different
ries exactly two units of charges and is locatedBatB,. ~ Shells with radiusB,, k=0,1,... My; each shell carries two

Indeed, if one defines#pg=V -(b-ep)es, one obtains units of charges. _
However, following Eq.(31), one also confirms that the

1
b= Q(|B|)@e5+

M 1 total topological charg®; is conservedQy is exactly the
pe=0(N)8B) +— > 8B-B)=, (30)  number of particles in the many-body state, independent of
27Tk:0 12 B . . .
e interaction strength. That is
which indicates an isotropic topological charge distribution
of a series of shells &=B,. Q= f p(B)dB = N. (35)

The topological charge due to tifecomponent ob fields
on the other hand consists of two contributio(®: an iso-  One can easily show that the solutions in E@2l) and(35)
tropic charge distribution of spherical shells exactly identicalare independent of the specific class of ground state wave
to —pg given earlier; andb) linearly distributed monopoles functions chosen for this investigation, though the results in
located atB==+*Be, each of which also carries one unit Eq. (31) do depend on choices of wave functions.
charge. As a result, the total amount of topological charge (ii) Furthermore, on each shell the distributionbofields
due to thed component vanishes identically on each shell;breaks the rotational symmetry, unlike in noninteracting
however, thed component deforms the isotropic distribution cases; consequently the charge distribution on each shell is

on each shell completely. highly anisotropic. The expulsion of topological charges for
Finally, the total topological charge and current densitiegzhe particular set of states studied here is alongzttais
are only. One can verify that in the case of homogeneous mag-
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Bz 2 =
e ¥ T
- .o ~
~ ‘<, ~
1 Ve > 3 v b
, AN Y F Pl .
- 7 \\T/ SN -
. z [ .
- 2 :Q 4’— N -
O~ - = ¥ - - - FIG. 2. Schematic of topologi-
_—_ "f// \ \\T: - . cal field and charge distribution in
N B . ‘5\/’// l \ \\//_f ~ the parameter spacéB,,B,,B,).
¥ N ‘*}& ,',,/r"f:‘ . In (a) we show the topological
- » < P field and charge distribution for
~ Ty ot . N-noninteracting spin-one bosons.
T Pt In (b) and (c) we show the field
-2 .~ - % 7 5 and charge distribution for an odd
Bx and even number of spin-one
bosons with antiferromagnetic in-
a) b) : Rt ee
teractions respectively; chains of
: monopoles are shown here explic-
2 = 4 T itly. The b fields only have radial
- \ T f S component except on shells 8f
\ /
~ N\ // ~ =By, k=0,1,2, ... My. Note that
1 N B~ b monopoles in(b) and (c) are also
= = e distributed on a series of shells
.oz T . with radius B=B,; and for the
0 - - even case, there are no monopoles
- - at the origin of the parameter
A T T space.
e - = ™~
1 . T 3__,_//'1)\ .
s N
-~/ / \ \ -
~ / | Loy
i -\\ » ////'-
-2 -1 0 1 2
¢)

netic fields two units of charges on thth shell are located =[cos ¢(t)sin 6,sin ¢(t)sin #,cosé]; 6 is a constant and

at #=0,, B=B, points; that is, all charges on each shell are=27(t is time dependent.

carried by two monopoles located at the northern and south- Previous results on connection fields indicate that Berry’s
ern poles of shells. So the density profile is a chain of monophases of many-body states

poles located aB=+B,g,, k+0,1,... My.

This structure, however, is not generic. As we will show B
in the next section in the presence of a field gradient, charges ®s(C) = CA ~dB (36)
on each shell are carried by smooth structures of monoseg-
ments instead of monopoles. depend on the magnitude of magnetic fields. Following cal-

(iii) On each shell 0B=B,, k=0,1,2, ... My as shownin  cyjations in Appendix C:
Fig. 2, theb field has a new component along thdirection.
This is due to the level crossing or more precisely presence dg=- 27 cos b Q(B). (37)
of different spin states in exact ground states. The new com-
ponent represents a Berry's phase when a closed path in tis shown in Eq.(37), at a given magnetic field which is
parameter space crosd8s B, surfaces. We will come back much smaller thaiBy , the Berry's phase is always strongly
to this point in the next subsection. suppressed because of antiferromagnetic correlations. We
summarize our results in Fig. 4.

The nonanalytical behavior of Berry’'s phases in rotating
fields is consistent with an anisotropic distribution of mono-

When a magnetic fiel@ with a given magnitude rotates poles discussed in the last section. Consider two infinitesimal
around thez axis, a correlated state of spin-one atomspathsC, ,centered at and also oriented along tfeis.C; is
evolves along a patlt shown in Fig. 83). During each slightly above B.ge, and C, slightly below. The Berry’'s
period the state acquires a many-body Berry’s phaseyhases evaluated in this way are singular at poiBig;and
Consider a rotating magnetic fielH(t)=B n(t) with n(t) experience a jump

B. Berry’s phases I: Rotating fields

115110-5
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Bz One of the interesting aspects of Eg9) is that there is a

# component irb fields because of antiferromagnetic inter-
actions. This yields a new possibility to study Berry’s phases
which is uniquely associated with interacting particles. Con-
sider a path that lies in a plane 6& 6, and is bounded by

B=B1s ¢=d1 (39

as shown in Fig. ®).
Following Eq.(29), one obtains

¢ =~ COS (¢, — $1)[Q(B,) — Q(By)]. (40)

a) This Berry's phase is nonzero only whBr B, , surfaces are
Bx at two sides 0B8=By surfaces. FoBy,,>B,>B,>B,;>B,_;
and 6,=3m/4, ¢g=(¢—p,)\V2. The Berry’s phase for
modulating fields of this kind vanishes identically for nonin-
teracting particles.

Discussions on geometrical phases are valid when slow
spin relaxation is allowed so that the system can always
reach true ground states in different magnetic fields within
practically relevant time intervals. Furthermore, we also as-
sume that the quantum symmetry restoring time is much
shorter than measurement time; the issue of symmetry restor-

By ing of condensates of spin-one bosons was addressed in
&> some detall in Ref. 34.

By

o1 IV. MONOSEGMENTS AND BERRY’'S PHASES OF N
X b) INTERACTING SPIN-ONE BOSONS IN
INHOMOGENEOUS MAGNETIC FIELDS

FIG. 3. Paths in a parameter spa@.A path corresponding to A. Spin conservation and magnetic field gradient
a rotating field;(b) a path for a modulating field discussed in this

subsection; the path is i6= 6, surface. In a homogeneous magnetic field, because of total spin

conservation there is no mixing between states with different
_ spins. However, a gradient in magnetic fields, as we will see
Pg(Ca) — Pp(Cy) = 4. (38) does not conserve total spin and does mix states with differ-

Thus, the step-function plotted in Fig. 4 indeed implies thattnt spins. This results in “level repulsion” when two spin
the surface bounded by pa@ andC, enclose a monopole States approach each other. o _
atB=-B,e,. One can apply similar argument BtB,e, and To show that an inhomogeneous magnetic field violates
arrive at the same conclusions. the conservation of total spin, we consider the commutator
[H,S3,] with H given by
C. Berry’s phases II: Modulating fields
For noninteracting case$, fields only haveeg compo- H=g, S, + VJ dx B(X) - ¥ Sasts,
nents. If a path completely lies in a plane paralleleto a
quantum state does not acquire a Berry’s phase because the

topological flux threading the path should be zero for an S, = —li€g, (41)
obvious reason. One easily verifies that
®, te &2
30 I dX B(X) - 4/, Saptip: Siot
25 ~ R
20 =— (2i){ f dx B(x) X w};sﬂﬁ,lpﬁ}
15
10 - -
5 x { j dy wz(wsm/wa/(y)}
25 5 75 10 125 15 B -~ ~
: : : -2 f dX g/ (X)B(X) - S,p ¥5(X). (42)

FIG. 4. A Berry's phase for a rotating field with=37/4 and
variousB; B is given ing,y . N is taken to be an odd number.  This commutator only vanishes in a homogeneous magnetic
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field but is nonzero when a field gradient is pre¢seg Ap- A= _ " _
pendix B. k=((2k+ 1), = (2k + D)[Hy[(2k + 3), - (2k + 3))

_12G'? \/(2k+ 2)(N - 2k - 1)(2k + 3)(N + 2k + 4)
N (4k + 5)(4k + 7) '
For spatially varying magnetic field3(x), we define cre- (51

ation and annihilation operatofﬁ%, fp;f in a local triad where  And for an everN:
the local magnetic field points at thedirection; the local A
field operators can be obtained by the following spin rota- A, =(2k,— 2k|H,|2k+ 2,— Xk - 2)

tion: _th’z\/(2k+ 1)(N - 2K)(2k + 2)(N + 2k + 3)
PX) = U (¥ 5(%), (43) " 4m (4k + 3)(4k +5)

with U 4(x) given by (52)
_ . Therefore, a field gradient in magnetic fields has nonvan-
Uap(x) = exili (x) - Sypl. (44) ishing matrix elements between states with different spins
The Zeeman splitting in terms of spin-rotated operators igind leads to mixing of corresponding many-body states. We
will study the resultant spectrum in the next subsection.

B. Mixing of many-body states with different total spins 4m

Hzeemar™ ')’f dx B(x) lﬂgsiglﬁ};, Sfllg =i Giﬁ. (45)
C. An effective Hamiltonian close to crossing
with B(x)=|B(x)|. On rotated spin-one fields, external mag- points By

netic fields always act along tfeaxis. For values ofB| close to the level crossing poing, we

One also finds that the spin-dependent and spinhaye a small tunneling term calculated earlier. If two nearly
independent interaction terms are invariant under the localegenerate states are far away from other levels, the Hilbert
spin rotation. However, the kinetic energy transforms nonspace can be truncated into a two-level Hilbert space and the
trivially and acquires a ternti,i, — Hyin +Hy (see Appendix  effective Hamiltonian in this subspace can be easily deter-

©. S mined.
Consider a field distribution WhenB is close toB,, we therefore obtain an effective
B(X) = By(1 - G'2)2 + G'By XK. (46) Hamiltonian in the truncated space
Es (B
We assume thas’ is very small compared to the dimension H= 558 A _ (53)
of the system, i.eG'QY3< 1. This ansatz was employed for Ay Es+2,-5-2(B)

the study of field gradient effect8.d, which is determined
by the relative orientation of magnetic fields with respect to
the z axis, can be calculated as

S=2k+1 for an oddN and S.=2k for an evenN. And once
again,k=0,1,2, ... My. We have assumed that the gradient
is small andA,<g, so that the truncation discussed here is

5o R - Iways applicable wheB is close toB.
=7XB(X)=G' x. 47) ~ &Wwaysapp k
00x) =2 X Bl) =G" Xy “7) For two levels|1,-1) and|3,-3) at B~ By=5g,/y:
Following Appendix C, we find that the spin rotation con-
sidered above effectively orients external fields alongzhe H= [Ely—l(B) Ao ] (54)
axis and results in a terid, in the single mode Hamiltonian, Ag Es-3(B)
ie.. .
with
HIB(X)] — H[B(x)e,] + H; (48) 2012
Ap= 317G (55)
and " V70 2m

npn E, _1=E3 _3=Ey with Eq=-3g, when B=By. Introduce
€ t 1,-1—E3,-37Ep 0 2 _ 0
Hl - _E Ir//a‘//a! (49) 5B=B—BO, 5E|'_| =E|'_| —Eo. One obtains 5E1'_1=_’)/58,
0E3 _3=—3ydB. The eigenvalues can be expressed as
where e=#2G’?/m. 2, A2\12
. . E.(6B) = —3g,— 2y 6B+ (y°6B-+ Aj)~'~. 56
The tunneling matrix elements can be calculated as +(%B) 30~ 2y 7 2 (56)

~ e |3 —————N"¢ [3
(1,-UH,[3,-3 = 5 %\’(N -~D(N+4) = > %N- D. Connection fields of spin mixed many-body states

(50) Because of the field gradient, matrix elements of the

Hamiltonian between states of different spins are nonzero.

For general level crossings in ground states, we obtain thEigenstates are generally superpositions of states with differ-
following matrix elements. For an odu: ent spins.
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Close to level crossing point, in the truncated Hilbert o(B)
space the eigenstates are

W*(N) = Gl Se— SaN) + SelSc+2,-Sc- 2:n),
|Gl +[*= 1 (57

the corresponding many-body microscopic wave functions J JKJUK\
are

5 10 15 20 25 B

= N s n O

W*(n) = 85,C(g DS (AHN-S012)0)

a)

~ B

+ 8o D2 (AHNSc220), (58 "

whereC andD are normalization constant?ﬂ; is a creation 8

operator defined in a local frame discussed in Appendix C 1. 6

U™ refers to the higher energy state in the truncated Hilbert

space andV~ refers to the lower energy state. For a giken 4

S=2k+1 for an oddN, 2 J
5 0 15 20 25
Sc=2k for an evenN. (59)

Finally, as the magnetic field increases from belBwto b)

aboveBk,. S _varies from one to zerq an¢2 fr_om .zero. to FIG. 5. The surface charggB) as a function of magnetic field
one. Taking into account the effective Hamiltonian in thej, the presence of a field gradie@t =1.32 cn?. B is measured in
truncated Hilbert space derived in Sec. IV C, we obtain theypits ofg,y L. (a) is for an odd number of particles arid) for an
following field dependence of the coefflmenﬁ'k2 whenB  even number of particles.

is close toB:

(ySBy £ VAZ+ 125BD) b= Qg(llil) . 19Qy(B)cos?
V2(20BE + AL £ y0B AL+ Y/0B]) B~ B 0B sin

€. (63)

k1™

The topological charge density is
Ay

5,= . (60) _ 1 9QyB), .~
V298] + Af £ YOBAL + Y0BY) P=NAB)* 2 Bsing g 07T HAOL
In Eq. (60), we have introducedéB,=B-B,. A, (k (64)

=0,1,2,...My) represent the matrix elements calculated in
EQ. (51); A =((2k+1),—(2k+1)|H,|(2k+3),—(2k+3)) for an 5
oddN andA,=((2k), —(2k)||3|1|(2k+ 2),—(2k+2)) for an even (B) = qo(N)8(B) + %9?, (65)
N.

Correspondingly, the surface charge becomes

Discussions on connection fields and topological charggvhich is analytical atB,, k=0,1,... My because of level
densities can be carried out, similar to those in the previougepulsion. Following Eqs(60) and (62), far away fromB,,
section. After some straightforward calculations, we find  (B) is vanishingly smallo(B) as a function oB is numeri-
cally plotted in Fig. 5.

A=-— &SQQ (|B|)e¢_ (61) Equationg63) and(65) again clearly indicate shell struc-
sing (B tures. Indeed, when the width of each shdlldefined before

Assuming the field gradient is small, we find th@(|B|) is Eq. (34) is much larger than a characteristic wid#:

identical toQ(|B|) defined in Sec. Ill A wherB is far away

from degeneracy point,; close toB, when 1|B-B,| are 2h> W= =, (66)
comparable ta\,, however: Y
the chargeQ, enclosed in théth shell centered @B=B, is
Qq([B)) = Sc+ 2 G, (62) w2
which varies smoothly fron, to S.+2. We want to empha- Q=2 +O<h—2k>; (67)
size that boths; and &, are real functions ofB| and inde-
pendent off and ¢. Qx approaches two units when the ratio betweérad W
Following discussions in the previous sections, one obbecomes infinity. And only on these shelisfields have a9
tains the two-form connection fields,, or b: component.
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Eomio,) The steps in the Berry’'s phases as a function of magnetic
-1 . field become rounded because of level repulsion.
-1.5
"2 V. LARGE N LIMIT
"2 A. An effective Hamiltonian in large N limit
_3 . -
As proposed in a few previous works, the problem of
-3.5 interacting spin-one bosons can be mapped into a con-
-4 . strained quantum rotor model in the laydimit.27:28.31,32,34
-4 5 And any microsopic many-body state can be expressed in

B (92 terms of a wave functiog{(n) of a quantum rotor character-

v ized by its directionn. In fact, an arbitrary wave function
#(n) represents the following microscopic wave function of
a correlated state

45 ] 55 b

FIG. 6. Eigenvalues as functions of magnetic fields closBgto

G’'=1.32 cm™.
— R\ — N+1 = ~in

Therefore, Eq(64) shows that on each shell the charge W= dn g(n)[n);|n) = W(”a‘/’a) 0). (70
distribution is highly anisotropic. All charges on each shell in
this case are carried by two monosegments. Each monoseg- Therefore, a state whem is localized on a two sphere
ment carries one unit of charge and is centeredBat corresponds to a polar condensateSamave ofn represents
=+B,e,; a monosegment is smooth along thaxis, the typi- @ rotationally invariant spin singlet ground state. More dis-
cal width of a monosegment locatedBt +B,g, is approxi- ~ cussions about connections between the two representations
mately W,. Topological charges overall distribute in a chain can be found in Ref. 34.
of monosegments instead of monopoles. Finally, in the pres- The Hamiltonian for spin-one bosons|in-representation

ence of field gradients, results in E@5) are still valid. is given by a quantum rotor model
Before we leave this subsection, we emphasize that ~, ~
fields are gauge invariant under a usuél) gauge transfor- H=gL“+yB-L. (71)

mation. Though this is hardly surprising by virtue of the
two-form construction, in Appendix E we nevertheless
present an explicit calculation to illustrate this point in terms
of many-body wave functions.

The total spin of spin-one particléﬁot(:lz) is a differential
operator

~ . J
L=—inXxX—, (72)
an
E. Landau-Zener effects ) ) )
) . ) ~i.e,, the total spin operator is the angular momentum operator
B(t) varies adiabatically. Whet— —oo, th_e ground_state IS yefined on the two-sphere whendives; is also a conju-
|1,-2 and vyhertg +oo the ground state !53'_3>' SinceB gate variable oh. Wave functions further observe the fol-
changes adiabatically, for the most of time the system re[owing Ising symmetry:
mains in the ground state; however, as the change rate Is '
finite, the system also makes transitions to an excited state y(n) = (- HNy(-n) (73
|1,-1) att—co with small probability.
Denoting the excited state by + and the groundstate by
the transition probability can be calculated with the follow-
ing formula®’

_for any N; this property of many-body wave functions was
identified and emphasized in previous works on homoge-
neous gases of spin-one bosyr§ and on spin-one bosons
in lattices?%:31.32.34
0 A direct calculation in Appendix F indicates the following
W,._= exp(— 2 Imf dAdE.(7) - E_(T)]). (68) relation in the|n)-representation
C

~pn
Here 7, is the complex value at whidh, (7)=E_(7) andC Yahapthp = NNahagnp. (74)

a curve fromt— - to t— +o passing above,. Substitut- Therefore, the field gradient induced quadratic Zeeman term

ing the results found in Eq59) into the earlier expression, discussed in Appendix D results in the following coupling

we get term in the quantum rotor representatiap to a shifj
B - VL
W, = exp[— 8 |mJ'w dr VAZ+ )/20272]=exp[— 2—A(2)] =N NapQag- (79
0 Yo
(69) Here
heg(t) =V 0, V 6,S..S. 5 (76)

with v as the rate. In Fig. 6, we show the energy of these two
levels as a function of magnetic field in the vicinity Bj. ~ andQ,; is the nematic order parameter
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1 . . . . )
Qup=NyNg= 38,5 (77) microscopic calculation. We do not present detailed calcula

L L . N _ tions here.
For a magnetic field distribution given in this article, the

matrix Is D. Observation of Berry's phase

=G4S g (78) The peculiar Berry’s phases of many-body states might be
observed by studying resonance transitions between a ground
state and a collective excitation, similar to NMR experiments
carried out earliet. In an adiabatically rotating magnetic
ﬁZG’Z field, the resonance frequency between these states should be
om N2 ng (79 shifted because of geometric phases. For instandg,less
than B, the shift in the resonance frequency of transitions
which was also proposed in an early pafser. between an excited staek+1,-2%-1) and the ground state
|1,-1) for an odd number of particles is

therefore, the effective Hamiltonian for the gradient term in
the largeN limit is

a#y

B. Effects due to anisotropy ow =2k cosH (). (84)

Taking into account anisotropy, the quantum rotor effec-Here() is the rotating frequency andis the angle between
tive hamiltonian for a magnetic field distribution given in Eq. the magnetic field and rotation axigsee Sec. Il A for the

(46) is geometry. Let us explain this in some detail.
H=0; L2+ yB: L+ haﬁQaB N, 1. Adiabatically evolving states: General consideration
th’Z Consider the following time-dependent Hamiltonian of a
hep = o SO+ 642 (80)  two level system
The tunneling term between different total spin states is H=yB() 'g- (85)

given by
o ~yn | The “magnetic field"B(t) is given by
(smihg g ppls' M) = hogTap(sms'm)N,
e o B(t) =B n(t)=B [cog Qt)sin(H)X + sin(Qt)sin( )y

o, ; +cog6)z]. 86
T.p(sms m)=fdn YerlMN g Yorv(n).  (81) 16)2] (86)
Let |+(t)) denote the instantaneous eigenstates of the Hamil-
For stateg1,-1) and|3,-3), we have tonianH(t):
1 i 0 H(O[£ (D) = EX 0] (1) (87)
Top(3,-3;1,-12= 70 i -1 0]. (82)  with EX(t)=+yB/2. These states acquire geometric phases
0 0 O whenH is time dependent. The corresponding states are
And the matrix element betwee8,-3) and|1,-1) is |y (1)) = e IME trSot-la=)at | (£)) (88)
#°G'? 3
N hogTes(3,-3;1,- 9= VN gy 2
2m V70 et
|lﬂ+(t)> —g (ilh)E™ t e fo dt <+"7t‘+>|+ (t)> (89)

Close toB,, stateg§1,-1) and|3,-3) are nearly degener- . o .
ate as mentioned before. In the two-level subspace, th&h€ transition probability betweefy (1)) and |y(1)) in-
Hamiltonian is identical to that in Eq53); Ag(=h,s T,z is ~ duced by a time-dependent fieB(t) = 5B; codwt) is
calculated earlier. One can then study the eigenstates in this BB 2

sin( —t- 2t)
2h 2

subspace; after redefininky, one obtains results identical to

those in Sec. IV C. 4 o |?
P, (t)——«SBZ2 1= — = 2
C. Berry’s phases fi T
In the quantum rotor representation, the spectra of the (90)
Hamiltonian subject to Ising symmetries in E@3) are iden- ith
tical to those discussed in Sec. Il. The Berry’s phases of'

many-body ground states in a rotating field can be evaluated ~

in a straightforward way. All results in Secs. Ill and IV can Ef=E"- ﬁ q; (9
be easily rederived; moreover, this effective description gives

a simple geometric interpretation of results obtained in aand
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®§=—Im§d¢<i|a¢|i>. (92)
The resonance frequency is given by
1 Q)
w:w+_:—{E+—E_——(¢E—¢)E)] (93
h 2

PHYSICAL REVIEW B 70, 115110(2004)

50
40
30
20
10

which differs from the resonance frequency in a static field

wS_=1/H(E*—E).

2. Shift in resonance frequencies for spin-one bosons in a
magnetic field

The resonance frequency between the ley8ls-3) and
(1,-1) as a function of magnetic field is

1 QO _ _
o@3,-3;1,-1(B) = %[E(s,—s) -Eq-pl- ZT[‘DEB’ -y

(94)
Here
PEY=- Imﬂg dg(1,- 1a,1,- 1 (95)
and
PEI=- Imjg dex3,— 3413,- 3. (96)

For oddN when there is no magnetic field gradient present,

the resonance frequency between the sties-1,m;) and
|2k, +1,mp) is

1
@k +1.my);(2ky+1my) (B) = %(E2k1+1,m1 ~ Eae1m,)

— %[(pgklﬂ,ml) _ ®§32k2+1,m2)],

(97)

where
q)(sz+1,m) - _ Im§ dep (2k+1,m|dg2k+1,m). (98

When there is a magnetic field gradient pregesee Fig. 7,
near the level crossing= By the low energy and high en-
ergy states are

WH(N) = GalSe = Sam + GolSc+ 2,-S—2in)  (99)

with coefficients specified in Eq60). Here we have that

50
40
30
20
10

FIG. 7. Berry’s phase in the presence of a field gradiént
=1.32 cnTl. Bis measured in units a,y . (a) is for an oddN. (b)
is for an everN.

1
w,-(B) = g(EE — B+ Q cog O{[(&1)? - (5 1S

+ [(5:2)2 - (5;2)2](8{" 2)}

:%(E; ~E7) - 20 cog a)ﬁ. (100
Here
Ex = 3[Earn) ~2ken) + Eqked) —(2ea) 1 3 VAER + 4A7
(101)
and
AE, = [Eke1) ~2k+1) — E2ke3) ~2k+3)]» (102

where Eyiq) —k+1) 1S the energy of a staték+1,—(2k
+1)) and A, is the matrix element between stat@k+1,
-(2k+1)) and|2k+3,—-(2k+3)) as given in Secs. IV C and
IV D. Eventually we find

By
(AF+ PoBY
(103

for the resonance frequency. The last term is the contribution
from Berry's phases ang=grug.

2
w,_y(B) = Z(f@Bﬁ +A)Y2-20) cos g

VI. CONCLUSION

In this paper we discuss the Berry’s connection fields of
many-body states of spin-one bosons with antiferromagnetic
interactions. We show that unlike noninteracting systems,
Berry’s connection fields are determined by a linear chain of

6B,=B-By. Now the shifts in the resonance frequencies ofmonopoles; more over in the presence of field gradients each

the transitions between the states given in @©§) are

monopole becomes a linearly extended object which we call
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a monosegment. Antiferromagnetic interactions appear to re- We consider the commutator
sult in anisotropic expulsion of topological charges from the
origin of parameter space and suppression of Berry's phases
in small rotating magnetic fields.

[étzom’ f dx B(x) - lAﬂl(X)SaglAﬂp(X)}- (B2)
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APPENDIX A: BASIC ALGEBRAS

One can verify the following algebra:

[S% gl = i€y, (Ala)
(S, uj] =iy, (Alb)
[S*, 58] =S, (Alc)
AN (A1d)
[p,08]= o, (Ale)
[S%p]=0. (A1f)

Furthermore, we define the singlet creation operator:

I T
AT=,—E¢/L¢Z[ with a=x,y,z
\J

1 ~.n an
= gWovo— 20L4). (A2)

This operator satisfies
[AAN=13+2N). (A3)

APPENDIX B: FIELD GRADIENT AND SPIN
CONSERVATION

. [ J X BO) - TSl f i J dy L) y)

XSt - Spp U (¥) Z@&x)] . (B3)
Using
[A,BC]=[A,B]C+B[A,C] (B4)
and
[aY), HH(X)] = 8,5 Sx —Y), (B5)

we find that the first term vanishes. The second term can be
simplified using the relations above and in the end we find
results in Eq(43). Now takeB(x) homogeneous. We find

{ J dx B(x) - &Lsaﬁfﬂg.éfm}
=(-2))B - “ dxfp};(x)sﬁﬁf&ﬁr(x)]
><|:f dylAﬂL(Y)Saa';ﬂa'(Y)]

-2B- f dX g () S, pt5(X)

= (= 20)B - (St X S ~ 2B - Sy
= (- 1)Bieu[ S, S - 2B'S= 0. (B6)

So for a homogeneous magnetic field total spin is conserved
and an inhomogeneous magnetic field breaks conservation of

In this appendix, we prove that a field gradient does nototal spin.
conserve the total spin of spin-one bosons. The second quan-

tized form of the total spin operatéfm is given by
S=2 f dx ¢ (%)

+ f dx f Ay $L 00 UA(Y) Saar - Sppr Vg (V) trar ().
(B1)

APPENDIX C: CALCULATIONS OF BERRY’S
CONNECTION FIELDS

1. General discussions: Without field gradient

Define a coordinate framé&x’,y’,z’) with the z' axis in
the direction of the magnetic field n
=(sin # cos ¢,sin A sin ¢p,cos ), and thex’ axis in the
(x,y) plane. The creation operator in the local frame is
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=i s i ¥ o i PeTexAE ©
AY
QB) . 14Q(B)
C1 - =
(Cy 2 St g cot(6)e,. (C5)
Therefore (¥s_s(n)|d¥sg(n)) is given by ForB+0, 8+ m, and#+ 0, we find
Ve _o(n)|d¥s_
(Ps-o(n)[d¥s_g(n)) 4rrp= Vg _bzii Bz@
. . _ 0\ ~ B%9B B?
=C%s <o|A<N‘S>’2<,//_’§[— e-'</>sin2(§> v
1 4|19Q(B)
2] +Bsin 659[5 JB cosﬁ]
+ei‘f’co§<—)f£ ]
2/ _14QB) 1496 _, 8
X (J DS IATN-51210y dep. B> 9B B? 4B '

L . . At B=0 or #=m, =0, andB=By points, theb fields are
The results for connection fields follow this identity. Now the gjnyiar. Calculations around those points lead to results in
Berry’s phase forN interacting spin-one atoms with total Eq. (31).

spin Sis given by
APPENDIX D: QUADRATIC ZEEMAN EFFECTS DUE TO
Pperry = lmfﬁ (Vso(N)|d¥s g(n)) = -2 Scogd). FIELD GRADIENTS
c We show explicitly for the invariance of a spin-dependent
term in the interaction. Let) ,z;=exdi#-S,g]:

2. General discussions: With a field gradient C, T A
Hint = E dx walpﬁsaa’ ’ SB,B’ wa’ l/’ﬁ’

Now for B~ By:
C ~ ~
(W5 |dWs () =% [ 06057 U005 U8, S
=i cos B{C2S5:2(B)d (0| AN-S0"2y Sy TATN-80/2| ) + - ,
S( k1l d) | lﬁ 1 ‘/l 1 | XUa/,yl(X)l,//,}/ U /51()()1//5/- (Dl)

+(Sc+ 2)DPGZBYAGOAN SRSy S sing

X AN-S-2120y 4 (S + 2) 57, (B) 5,(B)CD d P " t .
| S< k1 k2 d) Uaa’ Sarﬂr UB,B— (UaarX . Sa’,B’ UB,B,Uw,y . Salﬁl

X (O|AN-Sd/27 Sy HSD ATN-S-2)12| ) % U; g Uaw? Sup U,‘;,ﬁ)

+Skfi|:1(|3)5iz(|?)CD dif’ ) = (X' -Sup¥ - Sup2’ - Sup) (D2)

X(O|ANS272y1 [Scr2y ISATIN-SI/2| ) where the primes correspond to the rotated coordinate sys-
-4 i[5£12(B)SK+ 5;2?(8)(SK+ 2)]cos 6 déb. tem and the fact that the inner product is rotationally invari-

ant we find that the spin-dependent interaction term is invari-
ant under the local spin rotation.

3. Berry’s local connection fields and topological charge Now the kinetic term
densities 2
h ot 27
As mentioned in the introduction, Berry’s connection H=fdx—§nz,ba(x)v Pa(X) (D3)

fields of the ground state are given by
becomes in terms of’!, and y/j:

d
A(B) = - Im(g|—|g). (C2 X R
7B H= f dx 'L U s(x)V2 UT (x)(x)

For a statgS,—-S), following discussions in Appendix C 1 )
and C 2, Berry’s connection potentials in spherical coordi- :fdx_ ﬁ—:ﬂ'T(X)VZ [ﬂﬂr(x) +f dx
nates(6, ¢,B) are 2m~ “ “

hz ot T o ﬁz ot
A(B)=- %cot oe,. (C3) ~om ¥ aVUap(VUp,) - V i (x) + f dx =S¥
Now the Berry’s connection fields are given by: X (U () V2UT, () ¢,().. (D4)
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Using the relation

d . P X)
a—Xiex;{l0(x)-S]—| (—0X. ) Xdi6 - S] (D5)
and
90 .
% 5,G'y (D6)

for the ansatz in Eq54), we haveH=H,+H,, and

hz ot el T J S
HlIEanX lr/j aUDlB(IG Sy)ﬁ,yu,wyg(l//rl

#? N N
o f dx ¢/ TU [~ G' (), Ul 0. (D7)

By keeping only the zero mode contributions, we find

#h2G'2 -
2m

Hy= UL (25 g (D8)

PHYSICAL REVIEW Br0, 115110(2004

Therefore, we find

oP  19P 1 {ap

AB) = 8% B 6™ Bsing Y

B0 +Qqy(B)cos 0} €4-

(E3)

Note that Berry’s connection potentiad¢B) transform in an
expected form

A(B) — A(B) + V SP(B,6,9¢), (E4)
under a gauge transformtidh— P+ 5P:
B 1 dQqy(B) cos b
(@)= 28 Qy(B) 5
B B B sing '

We find on thekth shell two monopoles, one at the southern
and one at the northern pole. The connection figB) does
not depend on the choice &(B, 6, ¢), i.e., the gauge.

2. CaseP(B, 6, ¢)=0

We find in this limit

This is the effective quadratic coupling in the presence of a

field gradient which was previously obtained in Ref. 26.

APPENDIX E: GAUGE INVARIANCE OF TOPOLOGICAL
FIELDS

1. General

We define the following basis:

|S,-S;n) = C(5)gPEHY) {—i sin2<g)e‘i‘/’ v
+Lsing gt cos?<g> & y! ]
2 0 5 -1

X ATN-912)g) (E1)

cosé
AB)=- ng(B)e,f,, (E6)
B 1 B 0
s = L

APPENDIX F: ESTIMATE FOR COLD SODIUM
ATOMS

Consider a trap withN=1(F atoms, a densityn
=10" cm 3 anda,-a,=0.32 nm. We havegg=—3 for ZNa.
The Zeeman effect is characterized fy

K
¥=0 ug=— 3.3585% 1056 (F1)

Note thaty is negative. Previous results can be applied pro-
vided we take for the magnetic fieBl=—Bn(#, ¢). One also

Close toBy points, ground states are in general SUPEerpofings
sitions of these states; using the ansatz introduced in Sec.

IV D, we find
W(B,n) = §q(B)[S.—Si;n )
+ 5o(B)eK B +2 -5 - 2;n)  (E2)

with 8 ko, di functions of(B, ¢, 6). Calculations yieldj x,
as given in Sec. IV Dd,=0

Ag=2.18X 105K m? G, (F2)

where we have the following unit&’ in m™ and A in K.
Furthermore
g,=10'°K (F3)

The eigenvalues dfl in the vicinity of B, are
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E*(6B)=-30g,
— 2y5B+ yW4.23% 10°2G2 m’* G'4+ (5B)2.
(F4)

The relative level repulsioAE/g, is ~4 n? G’? with G’ in
m™.

APPENDIX G: CALCULATION OF MATRIX ELEMENTS
IN A LARGE- N LIMIT

Now the general operat(f,#lhaﬁ;/;,; with h,z; some matrix
acts on the wave function as follows:

PHYSICAL REVIEW B 70, 115110(2004)

(ga(n)| lA!’LhaB'j//A Pr(N))

N+1 ~
:fdnlfdnz NI <O|(n}y,)py N

X N gths(NZIHN0) i (ny) a(n)

N+1
:fdnlfdnz N?NLh,gns ¢3(ny)

2N!
X (O] (L) N2 )N 0)

= f dn N n,h,gng ¢1(n)i(n). (G)
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