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Device-size atomistic models of amorphous silicon
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The atomic structure of amorphous materials is believed to be well described by the continuous-random-
network model. We present an algorithm for the generation of large, high-quality continuous random networks.
The algorithm is a variation of thesillium approach introduced by Wooten, Winer, and Weaire@Phys. Rev. Lett.
54, 1392~1985!#. By employing local relaxation techniques, local atomic rearrangements can be tried that scale
almost independently of system size. This scaling property of the algorithm paves the way for the generation
of realistic device-size atomic networks.
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I. INTRODUCTION

The structure of amorphous semiconductors is believe
be well represented by the continuous-random-netw
~CRN! model introduced by Zachariasen more than si
years ago.1 As a result, the generation of high-quality CRN
has been the subject of investigation for many years.
first CRNs were built by hand, see for instance the work
Polk.2 Nowadays, the generation of CRNs is mostly carr
out on computers.

The first computer-generated networks, which date b
to the sixties and seventies, typically contain a few hund
particles. More advanced algorithms and faster compu
have increased the size of the networks that can be han
to a few thousand atoms, with simulation cells of up to
340340 Å.3 As the simulation cells increase in size, actu
devices have decreased in size. For example, the thickne
solar cells based on amorphous silicon has already decre
to 1000 Å; and because in-plane periodicity after appro
mately 30 Å is expected to be a good approximation of
macroscopic lateral size, a reasonable solar-cell model w
require a simulation cell of 3033031000 Å3, containing
approximately 45 000 atoms. This is only one order of m
nitude larger than what is currently feasible. For other el
tronic devices, lithography on 0.1mm(51000 Å) technol-
ogy is expected to be reached in the coming decade.

In this work, we present a computational approach to g
erating large CRNs, and discuss the properties of hi
quality networks containing up to 20 000 particles. Th
achievement shows that the generation of device-
atomic-configuration networks is within reach. Our alg
rithm is similar in spirit to the algorithm of Wooten, Wine
and Weaire~WWW!, which has been the basis of the be
CRNs generated to date. Another method to generate C
is reverse Monte Carlo, see for example Ref. 3 for results
a CRN consisting of 1728 atoms.

We begin by describing the algorithm of Wooten, Win
and Weaire. We then move on to describe a number of
provements made to the original WWW algorithm b
Barkema and Mousseau in 2000.4 These improvements ac
celerate the relaxation by two orders of magnitude or mo
0163-1829/2001/64~24!/245214~6!/$20.00 64 2452
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Both the original and the improved WWW algorithm, how
ever, scale poorly with system size, since the computatio
effort per attempted local atomic rearrangement increa
linearly with system size. In this work, we introduce loc
force and energy evaluations and improve the scaling
computation time with system sizeN significantly, namely, to
a constant per attempted move plusO(N) per accepted
move. We also demonstrate how parallel processing can
used to realize an additional speedup, with parallel effici
cies of over 50%. The significance of these improvement
demonstrated by generating 10 000-atom and 20 000-a
CRNs. We then discuss the structural and electronic pro
ties of these models and conclude with an outlook on fut
research, aiming towards the generation of device-s
atomic networks.

II. THE WWW ALGORITHM

In 1985, Wooten, Winer, and Weaire presented an al
rithm for the generation of fourfold coordinated CRNs.5 In
their approach, a configuration consists of the coordinate
N atoms and a list of the 2N bonds between them. The stru
tural evolution consists of a sequence of bond transposit
as illustrated in Fig. 1.

Within the original WWW approach, the generation of
CRN starts with a cubic diamond structure that is rando

FIG. 1. Diagram depicting the WWW bond transposition. Fo
atomsA, B, C, andD are selected following the geometry show
left; two bonds,AB andCD, are then broken and atomsA andD
are reassigned toC and B, respectively, creating two new bond
AC andBD, resulting in the geometry shown right.
©2001 The American Physical Society14-1
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ized by a large number of such bond transpositions. A
randomization, the network is relaxed through a sequenc
bond transpositions, accepted with the Metropolis accepta
probability6

P5minF1,expS Eb2Ef

kBT D G , ~1!

where kB is the Boltzmann constant,T is the temperature
andEb andEf are the total quenched energies of the syst
before and after the proposed bond transposition.

With an explicit list of neighbors, it is possible to use
simple interaction such as the Keating potential7 to calculate
energy and forces

E5
3

16

a

d2 (̂
i j &

~rW i j •rW i j 2d2!21
3

8

b

d2 (
^ j ik &

S rW i j •rW ik1
1

3
d2D 2

,

~2!

where a and b are the bond-stretching and bond-bendi
force constants, andd52.35 Å is the Si-Si strain-free equi
librium bond length in the diamond structure. Usual valu
area52.965 eV Å22 andb50.285a.

With the approach described above, Wooten and We
generated a 216-atom model with an angular distribution
low as 109 °.8 A decade later, using the same approach
more computing power, Djordjevic´, Thorpe, and Wooten
produced two large 4096-atom networks of even better q
ity, with a bond-angle distribution of 11.02° for configur
tions without four-membered rings and 10.51° when th
rings are allowed.9

III. THE IMPROVED WWW ALGORITHM

The WWW algorithm in its original form is capable o
producing high-quality amorphous networks containing
the order of a thousand atoms; it is not well suited to gen
ate much larger networks. This is mostly due to the fact t
for each proposed bond transposition, about one hundred
ergy and force calculations are required, each scaling
O(N) with system sizeN. TheseO(N) operations are the
bottleneck of the algorithm.

In 2000, Barkema and Mousseau~BM! presented a num
ber of modifications to the original WWW algorithm, pa
tially aimed at resolving these poor scaling properties.4 Their
modifications are summarized below:

1. Starting point for the relaxation in this case is a tru
random configuration whereby the atoms are placed at
dom locations in a periodic box at the crystalline dens
This guarantees that the resulting network is not conta
nated by some memory of the crystalline state.

2. After a bond transposition in the original WWW ap
proach, the structure is always completely quenched, i.e.
the atomic coordinates are fully relaxed. After the quen
the bond transposition is either accepted or rejected base
the Metropolis probability. In contrast, BM determines
threshold energy before quenching. During the quench
final quenched energy is continuously estimated. Relaxa
is stopped when it becomes clear that the threshold en
cannot be reached so that the bond transposition will ev
24521
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tually have to be rejected. This leads to a large reduction
the number of force evaluations associated with rejec
bond transpositions.

3. A local-relaxation procedure is used whenever p
sible. Immediately after a bond transposition, only a sm
cluster of atoms in the model experiences a significant fo
This cluster consists of the atoms directly involved in t
bond transposition~markedA, B, C, andD in Fig. 1! and of
nearby atoms, typically up to the fourth neighbor shell of t
four transposition atoms. The number of atoms in suc
cluster is about 80. It, therefore, suffices to calculate
force locally ~i.e., only for the 80 or so atoms inside th
cluster! rather thanglobally ~i.e., for all the atoms in the
model!.

Calculating the force on a cluster of atoms is anO(1)
operation, which means that it is independent of the to
system size. Local force calculations are, therefore, m
cheaper than globalO(N) force calculations. By using a
local-relaxation scheme BM increased the efficiency of
algorithm significantly. Still, to make the final accept/reje
decision on the proposed move, the total Keating energy
the system has to be calculated, which is again anO(N)
operation. In practice, a switch must be made from loca
global relaxation, usually after about ten local relaxati
steps.

4. The zero-temperature case is treated specifically.
Using the improved WWW algorithm, Barkema an

Mousseau generated two 1000-atom models with bond-a
deviations as low as 9.20°.4 Furthermore, using the sam
algorithm they generated a 4096-atom model with an ang
deviation of 9.89°. Also, Nakhmansonet al. generated
paracrystalline models.10 All models show structural and
electronic properties in excellent agreement with expe
ments.

IV. A SCALABLE WWW ALGORITHM

While the improved WWW algorithm can successful
generate networks containing several thousand particle
does not deal well with systems of 10 000 particles or mo
Each attempted bond transposition still requires one or m
O(N) operations. In this section, we present an algorithm
attempting bond transpositions that is completely local, i
free of O(N) operations for unsuccessful bond transpo
tions.

A. Local energy and force evaluations

To exploit the local nature of the bond transpositions,
need to introduce the concept of local energy: we assign
each atomi an energye i such thatE5( i 51

N e i with E the
Keating energy of the system given by Eq.~2!. One way to
achieve this is to divide the energy due to two-body inter
tions equally between the two participating atoms and
assign the energy of three-body interactions to the cen
atom of the corresponding triple. Thus, we obtain
4-2
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e i[(
j 51
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a
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1 (
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3

8

b

d2 S rW j•rWk1
1

3
d2D 2G . ~3!

Here, the constantsa, b, andd are defined as in Eq.~2!; rW j
represents the vector pointing in the direction of thej th bond
away from atomi. The energyEC of a clusterC of atoms can
now be calculated using

EC5 (
i PC

e i . ~4!

The force on the atoms inside the cluster is obtained from
derivative of the Keating energy with respect to the atom
coordinates. Care has to be taken for atoms on the edg
the cluster since these atoms also interact with atoms ou
the cluster: due to the two- and three-body terms in the K
ing potential, all atoms interact with their first and seco
nearest neighbors; for atoms located on the edge of the c
ter, some of these neighbors are outside the cluster.

B. Local WWW moves

Starting point is a random configuration generated us
the method described in Ref. 4. This guarantees that the
sulting configurations are not contaminated by some mem
of the crystalline state. Assuming that the total Keating
ergy of the initial configuration is known and equalsE,
WWW moves can be attempted locally as follows:

1. A threshold energyEt is determined by using the equa
tion

Et5E2kBT ln~12r !, ~5!

wherer is a random number uniformly drawn from the in
terval @0,1&. The move is accepted if the attempted bo
transposition leads to a configurational energy below
threshold energy; otherwise it is rejected.

2. The four atoms involved in the attempted bond tra
position and all atoms up to the fourth neighbor shells
these four atoms are grouped into a cluster. These ato
about 80, are allowed to move. Also the atoms in the fi
neighbor shell are included in the cluster since their lo
energies may change. These atoms, about 70, are not allo
to move.

3. A list is constructed of all the bonds that contribute
the force on the atoms inside the cluster. As was explai
above, some of these bonds involve atoms outside the c
ter. For each bond we store the labels of the two atoms c
stituting the bond, thex, y, and z components of the bond
vector~taking care of the periodic boundary conditions!, and
the square of the bond length. We then calculate the clu
energyEC using Eq.~4!. In the calculation of the cluste
energy most bonds are encountered more than once. T
crease efficiency, a bond~i.e., its set of three components! is
calculated only once during an energy or force evaluati
once a bond has been calculated it is time stamped with
integer flag and the bond information is stored. Later re
24521
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ences to the same bond are then retrieved from memory
also store the energy of the atoms that remain outside
cluster:Er[E2EC . We then perform the bond transpositio
to obtain the geometry shown in the right frame of Fig. 1

4. The system is relaxed locally, i.e., only atoms insi
the fourth shell allowed to move. At each relaxation step
use Eq.~4! to calculate the energy of the clusterEC and the
atomic forces, again making sure each bond is calcula
only once, and perform structural relaxation as in the origi
and improved WWW algorithms. At each relaxation step t
total energy of the system is equal toE5Er1EC . Local
relaxation is continued until the energy has converged
until it becomes clear that the threshold energy cannot
reached.

In the local-relaxation procedure above, the compu
tional effort per attempted bond transposition does not gr
with the system size. Local relaxation alone, however, is
sufficient and we also have to relax globally to relieve a
strain that may have built up between atoms on the edge
cluster and noncluster atoms. For clusters extending up to
fifth neighbor shell around the atoms directly involved in t
bond transposition we find that global relaxation can low
the configurational energy typically by less than 0.1 eV. W
therefore, switch from local to global relaxation when, du
ing local relaxation, the energy comes to within 0.1 eV
the threshold energy. In most cases, this leads to the m
being accepted.

V. PARALLEL PROCESSING

We have developed a parallel version of our algorithm
bulk synchronous parallel~BSP! style,11 with alternating
phases of computation and communication separated b
barrier synchronization. The parallel algorithm has two m
parts, local relaxation and global relaxation.

The local relaxation is done in parallel by letting eve
processor try a sequence of randomly chosen bond tran
sitions, until one of the processors finds an acceptable tr
position. The processors work independently but synchron
at regular intervals to communicate their success or failur
the others. If several processors succeed, an arbitrary o
chosen as the winner. This approach requires the replica
of all the atomic data. Fortunately, the memory stora
needed is limited to a few arrays of sizeN, which usually fits
in every processor. Furthermore, this approach requires
freshing the atomic data when the positions change, cau
communication, but this only happens after a success, w
is a relatively rare event~about once every thousand a
tempts!. Therefore, we replicate the data instead of distrib
ing them, and base our parallel local-relaxation algorithm
replicated data.

A suitable time interval must be chosen between succ
sive synchronizations. If the interval is too short, synchro
zation time or work-load fluctuations will become signifi
cant; if it is too long, an accepted move will be found
almost every time interval and much time will be wasted: t
work done by other processors after a move has been
cepted is unnecessary. We set the time interval on empir
grounds at 50 relaxation steps performed during bo
4-3



t two
ively, to
-atom
96 is a

xt. The

5

VINK, BARKEMA, STIJNMAN, AND BISSELING PHYSICAL REVIEW B 64 245214
TABLE I. Energetic and structural properties of models relaxed with the Keating potential. The firs
models, DTW4096a and DTW4096b, are the 4096-atom models prepared in Ref. 9 and refer, respect
a model with and without four-membered rings. Configurations BM1000a and BM1000b are 1000
configurations prepared by Barkema and Mousseau using the improved WWW algorithm and BM40
4096-atom model prepared in the same way.4 Configurations ‘‘10k’ ’ and ‘‘20k’ ’ represent, respectively,
10 000-atom and 20 000-atom models prepared using the scalable WWW algorithm described in the te
ring statistics are for irreducible rings andr0 is based ond52.35 Å.

DTW4096a DTW4096b BM1000a BM1000b BM4096 10k 20k

E ~eV/atom! 0.336 0.367 0.267 0.264 0.304 0.301 0.286
r/r0 1.000 1.000 1.043 1.040 1.051 1.054 1.042
^r &/d 0.996 0.997 0.982 0.982 0.980 0.980 0.981
^u& 109.24 109.25 109.30 109.27 109.28 109.28 109.2
Du 10.51 11.02 9.21 9.20 9.89 9.88 9.63

rings/atom
4 0.015 0.000 0.000 0.000 0.000 0.000 0.020
5 0.491 0.523 0.472 0.480 0.490 0.480 0.456
6 0.698 0.676 0.761 0.750 0.739 0.742 0.759
7 0.484 0.462 0.507 0.515 0.467 0.512 0.501
8 0.156 0.164 0.125 0.116 0.148 0.142 0.149
9 0.034 0.033 0.035 0.034 0.039
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transposition attempts.~Each relaxation step requires abo
105 floating point operations.! For a large number of proces
sors, this choice becomes critical.

The global relaxation is done in parallel by partitionin
the simulation cell over thep processors of the parallel com
puter and letting every processor compute the energiese i ,
forces, and displacements for the atoms in its own part of
cell. In contrast to the local relaxation, it is now justified
have all the processors participate in one relaxation step
amount of work,O(N), in a relaxation step is much large
and there is no other useful work to do anyway.

Communication arises in the global relaxation beca
processors need data from other processors concerning a
near interprocessor boundaries. Thus at the end of an i
tion, a processor has to communicate the positional chan
of its boundary atoms~i.e., atoms within two bonds from a
atom on another processor!. To reduce the size of the bound
ary region, we use three types of partitioning:12 standard cu-
bic ~SC!, which splits the simulation cell intop5k3 sub-
cubes; body-centred cubic~BCC!, which splits it into p
52k3 truncated octahedra centered at the sites of the B
lattice; and face-centered cubic~FCC!, which splits the cell
into p54k3 rhombic dodecahedra centered at the sites of
FCC lattice. The BCC and FCC partitionings generate ab
10% less communication than the commonly used SC p
tioning. With these three partitionings, we can choose from
wide range of processor numbersp, including all powers of
two.

We have implemented the parallel algorithm using
BSPlib communications library13 on a Cray T3E~with 300
MHz Dec Alpha 21164 processors!. In the local relaxation,
we have achieved a speedup of 18.6 on 32 processors fo
20 000-atom model, i.e., an efficiency of 58%. The efficien
loss is mainly due to work load fluctuations and to unnec
sary work at the end of successful intervals. In the glo
24521
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relaxation, we have achieved a speedup of 19.3, i.e., an
ciency of 60%, see Ref. 12 for more details. Here, the e
ciency loss is mainly due to redundant computations
boundary regions and communication of boundary data.
total speedup of our parallel version depends on the mix
of local and global relaxations needed. This mixture is infl
enced by a variety of parameters such as the temperatureT in
the Metropolis acceptance criterion~1! and the expected en
ergy reduction due to the global relaxation. In our simu
tions, the amounts of CPU time spent on local and glo
relaxation were nearly equal.

The parallel and sequential versions of our program
interchangeable: both can be used to relax a given CRN
to create a new one. The choice between them can be m
depending on the computer available. A rough estimate
the total computation time needed for the 10 000-atom mo
is 20 processor weeks on a 300 MHz Dec Alpha 21164 p
cessor; for the 20 000-atom model, 7 processor weeks o
667 MHz Dec Alpha 21264 processor. Using the para
program reduces the elapsed time, although by less th
factor p because of efficiency loss.

VI. RESULTS

Using the scalable WWW algorithm we have genera
one 10 000-atom amorphous silicon network and one 20 0
atom network. In this section, we discuss the structural
electronic properties of these networks. In Table I, we co
pare our configurations relaxed with the Keating poten
with those of Djordjevic´, Thorpe, and Wooten~DTW! ~Ref.
9! and with models generated by Barkema and Mouss
using the improved WWW algorithm.4 We also provide irre-
ducible ring statistics.

Table I shows that the strain per atom for the 10 000-at
and 20 000-atom models is significantly lower than that
4-4
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TABLE II. Structural properties of configurations after relaxation with the modified Stillinger-We
~mSW! potential. The total ring number per atom~including reducible rings! is also reported, as well as th
energy after relaxation with the original Stillinger-Weber~SW! potential.

BM1000a BM1000b BM4096 10k 20k

E ~eV/atom, mSW! 24.026 24.034 23.990 23.994 24.008
E ~eV/atom, SW! 24.126 24.133 24.106 24.109 24.116
r/r0 0.947 0.950 0.936 0.938 0.933
^r &/d 1.018 1.017 1.020 1.021 1.020
^u& 109.25 109.24 109.20 109.19 109.20
Du 9.77 9.70 10.51 10.54 10.18

rings/atom
4 0.000 0.000 0.001 0.003 0.020
5 0.472 0.480 0.489 0.481 0.456
6 0.840 0.847 0.830 0.844 0.843
7 1.011 1.023 0.979 1.034 1.020
8 2.025 2.002 2.064 2.038 2.018
r

0-
u
W
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om
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e
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h-
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of

e

.

del
the DTW models. Compared to the 1000-atom models p
pared with the improved WWW algorithm~BM1000a and
BM1000b! we find that the strain per atom in our 10 00
atom and 20 000-atom models is only slightly higher, th
clearly demonstrating the efficiency of the scalable WW
approach.

An important quantity that can be compared with expe
ment is the width of the bond-angle distributionDu. Experi-
mentally, this quantity can be extracted from the rad

FIG. 2. Pair-correlation function for the 10 000-atom mod
~top! and the 20 000-atom model~bottom! after relaxation with the
modified Stillinger-Weber potential~solid line!. The dashed line
shows the experimental result from Ref. 14; distances are in Å
24521
e-
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-

l

distribution function ~RDF! ~Ref. 14! or the Raman
spectrum.15,16 The most recent measurement, obtained fr
the RDF, yields 10.45° for as-implanted samples and 96
for annealed samples.14 The bond-angle distributions of th
10 000-atom and 20 000-atom models generated by us a
good agreement with these experimental values.

Although the Keating potential already produces hig
quality networks by itself, it is important to check the stab
ity of these networks when relaxed with a more realis
interaction potential that does not require a pre-set list

l
FIG. 3. Electronic density of states for the 10 000-atom mo

~top! and the 20 000-atom model~bottom! as obtained fromab
initio tight binding.23
4-5
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neighbors. For this purpose we use the Stillinger-We
~SW! potential17 but with an enhanced angular force: th
three-body term is increased by 50% with respect to
two-body term. Thisad hocmodification was shown to pro
duce good structural properties for amorphous silicon.18–22

The properties of the networks after relaxation with t
~modified! SW potential are reported in Table II. For all con
figurations, the bond-angle distribution widens and the d
sity decreases.

Figure 2 shows the pair-correlation function for th
10 000-atom and 20 000-atom models compared to the
perimental pair-correlation function obtained by Laaz
et al. on annealed a-Si samples prepared by io
bombardment.14 Agreement is excellent. However, configu
rations differing widely in topology can easily produce sim
lar pair-correlation functions. Agreement with the expe
mental pair-correlation function must, therefore, be regar
as a minimum demand on a high-quality CRN.

A more stringent criterion that can be used to evaluate
quality of a model is the coordination number of the atom
Using the minimum of the pair-correlation function betwe
the first and second neighbor peak as the nearest-neig
cut-off distance~at r'3.10 Å) and after relaxation with the
modified Stillinger-Weber potential, the 10 000-atom mod
develops 1.08% of atoms with three or five neighbors. F
the 20 000-atom model this percentage is 0.24%. The rati
the number of threefold coordinated atoms to the numbe
fivefold coordinated atoms is sensitive to the precise value
the nearest-neighbor cut off; a smaller cut-off decreases
number of fivefolds, while increasing the number of thre
folds. With the cut-off used here, the 10 000-atom mo
contains 0.13% of threefold coordinated atoms and 0.95%
fivefold coordinated atoms. For the 20 000-atom model th
percentages are 0.07% and 0.17%, respectively.
n

r

a
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While structural averages provide good insight into t
overall quality of a model, they do not say much regard
local environments. It is, therefore, also important to look
the electronic properties of our models: even small dens
of highly strained geometries or defects will be picked up
states in the gap of the electronic density of states~EDOS!.
In Fig. 3 we show the EDOS of the 10 000-atom and 20 0
atom models. TheFIREBALL local-basisab initio code23 was
used to obtain the EDOS. A remarkable feature of the s
densities shown here is the absence of states in the
leading to a perfect gap of 1.3 eV for both models.

VII. SUMMARY AND CONCLUSION

We have presented here a scalable version of the WW
algorithm that allows for local atomic rearrangements to
tried using onlyO(1) operations. We have developed
efficient parallel version that achieves good load balance
limits communication. The scalable performance of the al
rithm has been demonstrated by generating one 10 000-a
and one 20 000-atom model. Structural and electronic pr
erties of these models are excellent and they compare we
experiments.

These high-quality models have the long-term goal of
curately modeling devices such as solar cells. At this po
using periodic-boundary conditions in the two extended
rections, we are able to simulatea-Si films with a thickness
of about 1000 Å. Once such atomic configurations beco
available, the role of various structural and electronic defe
can be studied.
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