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Density-functional theory of spin-polarized disordered quantum dots
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Using density-functional theory, we investigate fluctuations of the ground-state energy of spin-polarized,
disordered quantum dots in the metallic regime. To compare to experiment, we evaluate the distribution of
addition energies and find a convolution of the Wigner-Dyson distribution, expected for noninteracting elec-
trons, with a narrower Gaussian distribution. The width of the Gaussian is accurately given by the fluctuations
in the screenedCoulomb interaction between a pair of electrons at the Fermi energy.
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The interplay of disorder and electron-electron inter
tions in quantum dots has recently attracted much attent
Experiments using quantum dots—small islands fabrica
in a two-dimensional electron gas1—measure the spacing
between conductance peaks in the Coulomb blockade reg
Since the peak spacings reflect differences between gro
state energiesfor different numbers of electronsone should
not cavalierly apply random matrix theory2 to evaluate the
spectrum of peak-spacing fluctuations. Indeed, experim
find a more symmetric distribution than the Wigner-Dys
form. Experiments disagree, however, on the magnitude
the fluctuations.3–6 Sivanet al.3 observed fluctuations sever
times as large as the inferred mean level spacing^D0&, and
concluded that the fluctuations are a fixed percent
10–15% of the total charging energye2/C, whereC is the
dot capacitance. In contrast, Patelet al.5 found fluctuations
in GaAs dots comparable to the mean level spacing. Sim
et al.6 performed the experiment in small Si dots and fou
fluctuations roughly of order̂D0&.

Theoretical treatments also disagree regarding the ma
tude of the peak-spacing fluctuations. Sivanet al.3 found
large fluctuations scaling as (0.1020.17)e2/C for a small
lattice model. Similar results were found by Koulakovet al.
for the classical, strong interaction regimer s@1,7 where
electrons form a Wigner lattice.8 Blanter et al.9 used the
random-phase approximation~RPA!10 for weakly interacting
dots and concluded that, for dimensionless conductancg
@1,11 the contribution to fluctuations from interaction
should be parametricallysmallerthan the mean level spacin
^D0&. While the above results can be reconciled as apply
to different regimes ofr s andg, recent work employing the
self-consistent Hartree-Fock equations12–14 found peak-
spacing fluctuations several times as large as^D0& even for
r s;1 and g@1, where RPA should still provide a goo
approximation.10

The purpose of the present paper is to clarify the orig
magnitude, and distribution of peak-spacing fluctuations
spin-polarized disordered quantum dots in the regimeg*1
andr s;1. Density-functional theory~DFT! provides us with
accurate ground-state energies including electron-electro
teraction, confinement, and disorder for realistic quant
dots. We find that the distribution of peak spacings is
convolution of a Wigner-Dyson distribution, expected f
0163-1829/2001/63~7!/075301~5!/$15.00 63 0753
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noninteracting electrons, with anarrower Gaussian distribu-
tion due to interactions. The width of the Gaussian is ac
rately given by the fluctuations in the screened Coulo
interaction between a pair of electrons at the Fermi ene
The total peak spacingfluctuationsare hence smaller tha
the mean level spacinĝD0&. ~This central result is expecte
to also apply to unpolarized quantum dots, even though
noninteracting spectrum in that case is not Wigner-Dyso!
Use of anunscreenedinteraction between electrons, eith
direct or exchange, is found to greatly overestimate the m
nitude of the fluctuations. Furthermore, since interactio
add a symmetric contribution to the distribution of pea
spacing fluctuations, the third moment of the total distrib
tion is independent of interactions. Hence, we predict t
experimental application of a magnetic field will reduce t
third moment by a universal factor of 0.405, correspond
to a change from the Gaussian orthogonal ensemble to
Gaussian unitary ensemble.

The ground-state energies of spin-polarized, disorde
quantum dots are obtained within density-functional the
with the exchange-correlation part of the electron-elect
interactions treated in the local-density approximation. S
cifically, we solve the following Kohn-Sham equations15 nu-
merically, and iterate until self-consistent solutions a
obtained;16

F2
\2

2m*
¹21

e2

k E r~r 8!

ur2r 8u
dr 81

dExc@r,z#

dr~r !
1Vext~r !GC i~r !

5e iC i~r !, ~1!

where the density is

r~r !5(
i

N

uC i~r !u2. ~2!

Here Exc@r,z# is the exchange-correlation energ
functional17 with local spin polarizationz(r )51. The sum-
mation in the density~2! is taken over theN lowest energy
Kohn-Sham orbitals. In a previous work,18 we have shown
that the DFT method gives very accurate ground-state e
gies for clean parabolic GaAs quantum dots, in agreeme
©2001 The American Physical Society01-1
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with exact calculations for up to five electrons.19 Comparison
with quantum Monte Carlo calculations20 confirms that DFT
is valid for interaction strengths up to (e2/k l 0)/\v056 (r s
.8) and up toN58 electrons.

The external potential for our disordered dots is the s
of a confining parabola and multiple ‘‘impurity’’ potential
each with a Gaussian profile:

Vext~r !5
1

2
m* v0

2r 21
1

2pl2 (
i

Nimp

g i expS 2
ur2r i u2

2l2 D .

~3!

The impurity potentials are randomly distributed with de
sity nimp51.0331023 nm22 and strengthg i uniformly dis-
tributed on @2W/2,W/2# with W510\2/m* . The width
of each impurity is taken asl5 l 0 /(2A2), where l 0

5A\/m* v0.19.5 nm. Here we use the effective mass
GaAs, m* 50.067m, and \v053.0 meV. The strength o
the Coulomb interaction is controlled by changing the diel
tric constantk, wherek512.9 for GaAs. The resulting di
mensionless interaction strength is measured
(e2/k l 0)/\v0 or r s(51/Apr0aB* ), whereaB* 5\2k/m* e2 is
the effective Bohr radius, andr0 is the electron density at th
center of the dot. From a scattering phase-shift analysis
find the mean-free-path of electronsl 5vFt.170 nm to be
slightly larger than the dot diameterL51202160 nm, where
the dot diameter increases withr s . Therefore the dots are
marginally in the ballistic regime and have a dimensionl
conductanceg5224.11

At low temperatures, electron hopping into a dot conta
ing N21 electrons is suppressed except when the grou
state free energyE(N21)2(N21)m is equal to the ground
state free energy forN electrons E(N)2Nm. This
degeneracy condition determines the position of theNth con-
ductance peak as a function of the electron chemical po
tial mN5E(N)2E(N21), or equivalently, as a function o
an applied gate voltage.21 The increase inm needed to put an
extra electron in the dot, which we will refer to as the ad
tion energy D, is given by D5E(N11)22E(N)1E(N
21). From our solution of the Kohn-Sham equations,
ground-state energy of a dot withN electrons is obtained
from

E~N!5(
i

N

e i2
e2

2kE r~r !r~r 8!

ur2r 8u
dr dr 8

2E r~r !
dExc@r,z#

dr~r !
dr1Exc . ~4!

We consider fluctuations of the addition energy forN510
electrons. Thus for each realization of disorder we calcu
D[E(11)22E(10)1E(9). The disorder average is take
over more than 1,000 different impurity configurations. As
check of accuracy, we have confirmed that the ground-s
energies obtained from DFT for disordered quantum d
with N52 and 3 are in good agreement with exact diagon
ization results for 0<r s<5.
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Figure 1 shows the distribution of addition energiesD for
interacting dots with (e2/k l 0)/\v052.39 ~right!, and the
distribution of D0 for noninteracting dots of the same siz
~left!. In the inset, we show the charge densityr(r ) for one
realization of disorder. While interactions considerably e
hance the average addition energy^D&.6.50̂ D0&, the fluc-

tuation in the interacting casedD[A^D2&2^D&2 is only
;13% larger than the noninteracting fluctuationdD0

[A^D0
2&2^D0&

2. The distribution of level spacingsD0 in
the noninteracting dots has the Wigner-Dyson form, wh
that in the interacting dots is somewhat more symmetric
The symmetry continues to increase with increasing inter
tion strength.

Figure 2 shows the average addition energy^D&, its rms
fluctuationsdD, and its third moment for disordered dots
a function of the Coulomb interaction strength (e2/k l 0)/
\v0. For comparison, we have also plotted results for dis
dered, noninteracting dots of the same size, which we ob
as follows. First we find the effective potential for the cle
dot, without impurities. Then we solve for the single-partic
level energiese i

0 for this effective potential plus the random
impurity potentials in Eq.~3!. The addition energy is simply
given by D05eN11

0 2eN
0 with N510. All dot sizes satisfy

the relation dD05A4/p21 ^D0&.0.52̂ D0& predicted by
random matrix theory for the Gaussian orthogon
ensemble.2 In Fig. 2~a!, the average addition energy in th
noninteracting case is seen to decrease with increasing C
lomb interaction. This is because the increasing Coulo
repulsion among electrons causes the dot to grow and h
the level spacing to shrink. The average addition energy
the interacting case increases considerably with Coulomb
teraction strength, as expected from the classical electro
ics relation^D&.e2/C, whereC is the capacitance of the
dot. However, Fig. 2~b! shows that the interactions onl
slightly increase the addition-energyfluctuations. For GaAs,
r s.2, the enhancement is only about 10%, in rough agr
ment with the experiment of Patelet al.5

To understand the magnitude of addition-energy fluct

FIG. 1. Distribution of addition energiesD to add the 11th elec-
tron for interacting dots with (e2/k l 0)/\v052.39 ~right! and D0

for noninteracting dots of the same size~left!. The energy binwidth
is 0.05@meV#. The dashed lines show the distribution function o
tained from Eq.~10!. Inset: The charge density profiler(r ) for N
510 electrons with one configuration of impurities.
1-2
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DENSITY-FUNCTIONAL THEORY OF SPIN-POLARIZED . . . PHYSICAL REVIEW B63 075301
tions, we use the phenomenological framework presente
Blanteret al.9 for the regimer s!1, where RPA is valid, and
show that it applies to the DFT results at least up tor s.5.
Consider first a dot containingN21 electrons in the ground
state. Addition of theNth electron to form theN electron
ground state requires an electron chemical potentialmN . To
form instead the first excited state ofN electrons requires the
higher chemical potentialmN1De. For an ensemble of dis
ordered metallic dots,De will have Wigner-Dyson statistics

FIG. 2. ~a! Average addition energŷD&, ~b! fluctuationdD, and
~c! cube-rooted third momentA3 Š(D2^D&)3

‹, as a function of
electron-electron interaction strength (e2/k l 0)/\v0. The measure
of interaction strengthr s(51/Apr0 aB* ) indicated by arrows in~a!
can be applied to the data in all panels. For each data point,
disorder average is taken over more than 1000 different impu
configurations. At eachr s , the noninteracting data are taken f
dots of the same size as the interacting dots, and the relationdD0

.0.52̂ D0& expected for noninteracting level-spacing statistics
always satisfied. Also plotted in~b! are the fluctuations due to non
interacting level spacings plus thescreenedCoulomb interaction
between two electrons at the Fermi surface~crosses!, or the un-
screenedexchange interaction between the two electrons~open
circles!.
07530
by

with ^De& equal to the mean noninteracting level spaci
^D0&, since the lowest excitation of a Fermi liquid is a sing
electron promoted across the Fermi surface.

The addition energyD is the increasein chemical poten-
tial from mN required to add one more electron to the dot a
thus form theN11 electron ground state. This (N11)st
electron must have an extra energyDe to occupy the lowest
empty levelplusan extra energyUN,N11 due to its Coulomb
interaction with theNth electron. The total addition energyD
will be approximately given by the sum of these two cont
butions,

D.De1UN,N11 . ~5!

The distribution ofDe is given by the Wigner-Dyson distri
bution of level spacings for a noninteracting dot of the sa
size. The average interaction energy^UN,N11& is the capaci-
tive charging energye2/C. We estimate the fluctuations i
UN,N11 by calculating the screened Coulomb interaction b
tween two electrons at the Fermi surface.9 Specifically, we
treat the screening effect in the Thomas-Fermi approxim
tion as

UN,N11
TF 5eE wN~r !rN11

0 ~r !dr . ~6!

The screened potential due to theNth electron in Fourier
representation is22

wN~q!5
2pe

k

rN
0 ~q!

uqu1q0
, ~7!

where rN
0 (r )5ufN

0 (r )u2 is the density of theNth single-
particle wave functionfN

0 (r ) of a noninteracting disordere
dot. The Thomas-Fermi wave vector isq05(2pe2/
k)(dn/dm)51/aB* . It is found that the fluctuationdUTF

5A^(UN,N11
TF )2&2^UN,N11

TF &2 is always considerably
smaller than the noninteracting level-spacing fluctuationdD0
up to at leastr s.5. The total fluctuation estimated a

dDTF5A(dD0)21(dU TF)2 is shown in Fig. 2~b! by
crosses. We see that the fluctuations in the Thomas-Fe
screening model agree well with the DFT results with no fr
parameters. This supports the picture9 that the addition-
energy fluctuation arises from two quasiparticles abov
filled Fermi sea interacting via ascreenedCoulomb poten-
tial.

Within this picture, the increase of the fluctuation
UN,N11 with increasing interaction strength leads natura
to greater symmetry of the distribution of addition energi
Numerically, we find that that the distribution ofUN,N11

TF has
a symmetric Gaussian form. Hence, in agreement with
~5!, we observe that the addition-energy distribution functi
P(D) is always extremely well described by the convoluti
of a Wigner-Dyson distribution for level spacingsDe,

PWD~De!5
p

2

De

^D0&
2

e2pDe2/~4^D0&2! ~8!

with a Gaussian distribution for interaction energiesUN,N11,

he
ty

s
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PGauss~UN,N11!5
1

A2pdU
e2(UN,N112^D&1^D0&)2/@2~dU !2#.

~9!

The result for the distribution of addition energies is

P~D!5E E dDe dUN,N11 PWD~De!PGauss~UN,N11!

3d~De1UN,N112D!

5
1

2
Ap

2

dU

a^D0&
2

e2pD̃2/~4a^D0&2!

3He2D̃2/@2a(dU)2#1A p

2a

D̃

dU

3 F11erfS D̃

2a~dU !2D G J . ~10!

Here a5pdU2/(2^D0&
2)11 and D̃5D2^D&1^D0&,

where^D& is the center of the distribution anddU is a fitting
parameter giving the width of the fluctuations ofUN,N11. In
the noninteracting case,dU50 so thatP(D)5PWD(D) as
expected. In the other limit,P(D) becomes nearly symmetri
for sufficiently largedU. In Fig. 1, we showP(D) given by
Eq. ~10! as a dashed line. It is seen that the DFT distribut
is described very well by Eq.~10! with the best fit value
of dU50.13 meV very close to the valuedUN,N11

TF

50.10 meV estimated from the Thomas-Fermi scree
Coulomb interaction between two electrons at the Fermi s
face.

To test whether the distribution of addition energies
well described by the sum of noninteracting level spacin
and a symmetric distribution due to interactions, we prop
to compare the third moment of the distributionP(D) with
and without a magnetic fieldB' normal to the plane of the
dot. Since the interaction part, coming from the scree
Coulomb interaction in our picture, is symmetric, it does n
contribute to the third moment ofP(D). Therefore, the ratio
Š(D2^D&)3

‹B'Þ0 /Š(D2^D&)3
‹B'50 should take the value

(225p/8)/(226/p).0.405, which applies to level spac
ings taken from a Gaussian orthogonal ensemble (B'50)
and a Gaussian unitary ensemble (B'Þ0).2 Since our results
apply only to the case of spin-polarized electrons, it is n
essary to apply a large magnetic field in the plane of the d
or to spin polarize the nuclei.23 The result can also be teste
numerically, e.g., by exact diagonalization studies as in R
3.

Existing diagonalization studies for spin polarized ele
trons on small lattices find addition-energy fluctuationsdD
.0.15e2/C.3 For comparison, the Coulomb contribution
the fluctuations found by DFT are much smaller,dD
.0.03e2/C at r s.2. This difference may be attributed t
differences in the strength of disorder; while the dimensi
less conductance in our dots isg5224, we estimateg
07530
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50.120.3 in Ref. 3. Various theoretical estimates give flu
tuationsdD}^D0&/g ~Ref. 24! or dD}^D0&/Ag.9 In either
case, the discrepancy between exact diagonalization
DFT can be attributed to the order of magnitude difference
the dimensionless conductanceg in the samples studied. Th
experiments on GaAs~Refs. 3–5! haver s;1 andg.1, and
thus fall more closely in the range of interaction streng
and dimensionless conductance treated in this paper.

Recently, several calculations12–14 based on the self-
consistent Hartree-Fock~SCHF! equations have found larg
fluctuations, up todD.0.2e2/C, in the same range ofr s we
consider. In one case,13 the dimensionless conductance
estimated to beg@1, a regime where DFT predicts fluctua
tions an order of magnitude smaller. As pointed out
Walker et al.,12 the exchange interaction in the SCHF equ
tions is unscreened. To test whether the lack of excha
screening in the SCHF approach could be responsible for
discrepancy with DFT, we have calculated the unscree
exchange interaction between two electrons near the Fe
surface in our dots

UN,N11
exch 5

e2

k E E fN
0* ~r !fN

0 ~r 8!fN11
0* ~r 8!fN11

0 ~r !

ur2r 8u
dr dr 8.

~11!

In Fig. 2~b!, we have plotted as open circles the fluctuatio
taken by summing the unscreened exchange interaction~11!
with the noninteracting level spacing.25 It is clear that for
r s.1, the unscreened exchange interaction noticeably o
estimates the addition-energy fluctuations. In contra
density-functional theory correctly accounts for screen
within the electron gas, including exchange interactions26

These results suggest that the unscreened exchange in
tion in the SCHF approach may generally lead to an ove
timate of the addition-energy fluctuations.

In this paper, we have neglected external screening
gates or electrodes. This simplification should be valid
long as the distance to external conductors is larger than
diameter of the dot. In the opposite limit, it is essential
consider external screening, but this may be done b
simple modification of the 1/r potential between electrons.

In conclusion, we have studied the electronic states
spin-polarized, disordered quantum dots using dens
functional theory and investigated the fluctuation of t
ground-state energies. We have found that interacti
change the mean addition energy but not the second mom
much. Electron-electron interactions increase the fluctua
of addition energies by no more than 25%, up tor s.5, even
though the average addition energy is increased by a fa
of 10. The addition energy is well approximated as the s
of the noninteracting level spacing and the screened C
lomb interaction between two electrons at the Fermi surfa
Hence the distribution of addition energies is the convolut
of a Wigner-Dyson distribution of level spacings with
Gaussian distribution of interaction energies. Since the la
is symmetric, it does not contribute to the third moment
the addition-energy distribution. The third moment is the
1-4
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fore predicted to decrease by a universal factor of 0.405
application of a magnetic field that transforms the dot fro
the Gaussian orthogonal to the Gaussian unitary ensem
For quantum dots having larger numbers of electro
whether spin polarized or not, we anticipate that the decre
of the screened Coulomb interaction-energy fluctuations
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curs as fast as the decrease of the level spacing and thu
present results are also applicable.
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