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Density-functional theory of spin-polarized disordered quantum dots

Kenji Hirose! Fei Zhou? and Ned S. Wingreén
IFundamental Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501, Japan
2physics Department, Princeton University, Princeton, New Jersey 08544
SNEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540
(Received 28 June 2000; published 16 January 001

Using density-functional theory, we investigate fluctuations of the ground-state energy of spin-polarized,
disordered quantum dots in the metallic regime. To compare to experiment, we evaluate the distribution of
addition energies and find a convolution of the Wigner-Dyson distribution, expected for noninteracting elec-
trons, with a narrower Gaussian distribution. The width of the Gaussian is accurately given by the fluctuations
in the screenedCoulomb interaction between a pair of electrons at the Fermi energy.
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The interplay of disorder and electron-electron interac-noninteracting electrons, with rrarrower Gaussian distribu-
tions in quantum dots has recently attracted much attentioriion due to interactions. The width of the Gaussian is accu-
Experiments using quantum dots—small islands fabricatedately given by the fluctuations in the screened Coulomb
in a two-dimensional electron gasmeasure the spacings interaction between a pair of electrons at the Fermi energy.
between conductance peaks in the Coulomb blockade regiofihe total peak spacinfuctuationsare hence smaller than
Since the peak spacings reflect differences between grounthe mean level spacin@\,). (This central result is expected
state energiefor different numbers of electrorene should to also apply to unpolarized quantum dots, even though the
not cavalierly apply random matrix thedryo evaluate the noninteracting spectrum in that case is not Wigner-Dyson.
spectrum of peak-spacing fluctuations. Indeed, experimentdse of anunscreenednteraction between electrons, either
find a more symmetric distribution than the Wigner-Dysondirect or exchange, is found to greatly overestimate the mag-
form. Experiments disagree, however, on the magnitude ofitude of the fluctuations. Furthermore, since interactions
the fluctuations~® Sivanet al® observed fluctuations several add a symmetric contribution to the distribution of peak-
times as large as the inferred mean level spa¢ihg), and  spacing fluctuations, the third moment of the total distribu-
concluded that the fluctuations are a fixed percentagéon is independent of interactions. Hence, we predict that
10-15% of the total charging energy/C, whereC is the  experimental application of a magnetic field will reduce the
dot capacitance. In contrast, Pa&tlal® found fluctuations  third moment by a universal factor of 0.405, corresponding
in GaAs dots comparable to the mean level spacing. Simmeb a change from the Gaussian orthogonal ensemble to the
et al® performed the experiment in small Si dots and foundGaussian unitary ensemble.
fluctuations roughly of ordefA). The ground-state energies of spin-polarized, disordered

Theoretical treatments also disagree regarding the magnifuantum dots are obtained within density-functional theory
tude of the peak-spacing fluctuations. Sivanal® found  with the exchange-correlation part of the electron-electron
large fluctuations scaling as (0-40.17)e?/C for a small  interactions treated in the local-density approximation. Spe-
lattice model. Similar results were found by Koulaketal.  cifically, we solve the following Kohn-Sham equationau-
for the classical, strong interaction regimg>1," where  merically, and iterate until self-consistent solutions are
electrons form a Wigner latticé Blanter et al® used the obtained'®
random-phase approximati¢RPA)° for weakly interacting
dots and concluded that, for dimensionless conductance
>1 the contribution to fluctuations from interactions
should be parametricallgmallerthan the mean level spacing 2m* r—r’| op(r)
(Ap). While the above results can be reconciled as applying
to different regimes of ¢ andg, recent work employing the =e&Vi(r), @
self-consistent Hartree-Fock equatithd® found peak- \yhere the density is
spacing fluctuations several times as large /&g even for
r«~1 and g>nllo, where RPA should still provide a good N
approximation. _ 2

The purpose of the present paper is to clarify the origin, p(r)—zi, [wi(nl* @)
magnitude, and distribution of peak-spacing fluctuations in
spin-polarized disordered quantum dots in the reggrel ~ Here E,J[p,{] is the exchange-correlation energy
andr ¢~ 1. Density-functional theoryDFT) provides us with  functional’ with local spin polarization/(r)=1. The sum-
accurate ground-state energies including electron-electron imaation in the density2) is taken over theN lowest energy
teraction, confinement, and disorder for realistic quantuniKohn-Sham orbitals. In a previous wotkwe have shown
dots. We find that the distribution of peak spacings is thethat the DFT method gives very accurate ground-state ener-
convolution of a Wigner-Dyson distribution, expected for gies for clean parabolic GaAs quantum dots, in agreement
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with exact calculations for up to five electrols<Comparison 2.5 e e
with quantum Monte Carlo calculatioffsconfirms that DFT = L ]
is valid for interaction strengths up t@{/«lo)/hwe=6 (I “E* 2 E
=8) and up toN=8 electrons. = ]
The external potential for our disordered dots is the sumZ’ L5 ¢ ]
of a confining parabola and multiple “impurity” potentials .S ]
each with a Gaussian profile: 2 1 E
g ]
\ 2 05 .

1 1 0w r—rl? _ .

Vel )= 5 M* wlr2+ > yiex _| 2'| . s il
2 2\ 2\ 0 1 2 3 4

©) Addition Energy [meV]

The impurity potentials are randomly distributed with den-
Sity Nimp=1.03x10"3 nm~2 and strengt?yi uniformly dis-
tributed 0_” [_V_WZ'\_le] with W=10~*/m". The width for noninteracting dots of the same sizeft). The energy binwidth
of each impurity is taken as>\=|0/(2\/§), Where lo is 0.05[meV]. The dashed lines show the distribution function ob-
= VAIM* wo=19.5 nm. Here we use the effective mass forained from Eq.(10). Inset: The charge density profigr) for N
GaAs, m*=0.06M, and fiwy=3.0 meV. The strength of =10 electrons with one configuration of impurities.

the Coulomb interaction is controlled by changing the dielec-

tric constantx, wherex=12.9 for GaAs. The resulting di- ) o .
mensionless interaction  strength is measured by Figurel ZhOWS tf;]egllst?t;l;;;on of addl'?onhe)nergfﬁcr)]r

2 _ * * 32 k2 Interacting dots wit K wo=2.39 (right), and the
el klg)fiwg or r(=1/\Jmpoal), whereag =A“k/m* e is e -0 0 .
ghe eff(ze)ctiveOBohrS radius ar(‘;ﬂ)Bis the eIec?ron density at the dlls;ftr)|but|or:1 of A, for nor:unterhactlrr\]g dotz of t?ye) ?ame size

' ! ; . eft). In the inset, we show the charge dengi or one

?egtfrr] of the d?t' Frortr;] a fsclatt?rlr;]g phaiei%lft antalysls Wrealization of disorder. While interactions considerably en-
Ind the mean-iree-path of electrons vgr= NM 10 D€ hance the average addition enefgy)~6.50/A,), the fluc-
slightly larger than the dot diameter=120-160 nm, where o . ) 5 5
the dot diameter increases with. Therefore the dots are tuation in the interacting caséA=\(A%)—(A)“ is only
marginally in the ballistic regime and have a dimensionless~13%__larger than the noninteracting fluctuatiod
conductancg=2—4 1! = (A2 —(A)2. The distribution of level spacingd, in

At low temperatures, electron hopping into a dot contain-the noninteracting dots has the Wigner-Dyson form, while
ing N—1 electrons is suppressed except when the groundhat in the interacting dots is somewhat more symmetrical.
state free energ(N—1)— (N—1)u is equal to the ground- The symmetry continues to increase with increasing interac-
state free energy forN electrons E(N)—Ngu. This  tion strength. N .
degeneracy condition determines the position ofNitie con- Figure 2 shows the average addition enefgy, its rms
ductance peak as a function of the electron chemical poteﬁluctuatlonséA, and its third moment for disordered dots as
tial uy=E(N)—E(N—1), or equivalently, as a function of & function of the Coulomb interaction strengte?(«| )/

an applied gate voltagé.The increase in needed to put an % @o. For comparison, we have also plotted results for disor-
extra electron in the dot, which we will refer to as the addi-dered, noninteracting dots of the same size, which we obtain

tion energy A, is given by A=E(N+1)-2E(N)+E(N  as follows. First we find the effective potential for the clean
—1). From our solution of the Kohn-Sham equations, thedot, without impurities. Then we solve for the single-particle
ground-state energy of a dot witk electrons is obtained level energies” for this effective potential plus the random
from impurity potentials in Eq(3). The addition energy is simply
given by Ag=e€}, ;— ey with N=10. All dot sizes satisfy
N 5 , the relation 5A_0=\/4/77—1<A0>20.52(A0> predicted by
E(N)=2 & p(r)p(r )d dr’ random matrix theory for the Gaussian orthogonal
' 2k lr—r’| ensemblé. In Fig. 2a), the average addition energy in the
noninteracting case is seen to decrease with increasing Cou-
lomb interaction. This is because the increasing Coulomb
repulsion among electrons causes the dot to grow and hence
the level spacing to shrink. The average addition energy in
We consider fluctuations of the addition energy fd+=10 the interacting case increases considerably with Coulomb in-
electrons. Thus for each realization of disorder we calculatgeraction strength, as expected from the classical electrostat-
A=E(11)-2E(10)+E(9). The disorder average is taken ics relation(A)=e?/C, whereC is the capacitance of the
over more than 1,000 different impurity configurations. As adot. However, Fig. &) shows that the interactions only
check of accuracy, we have confirmed that the ground-statslightly increase the addition-ener@yctuations For GaAs,
energies obtained from DFT for disordered quantum dots =2, the enhancement is only about 10%, in rough agree-
with N=2 and 3 are in good agreement with exact diagonalment with the experiment of Patet al®
ization results for Gr <5. To understand the magnitude of addition-energy fluctua-

FIG. 1. Distribution of addition energies to add the 11th elec-
tron for interacting dots with €/ kly)/%wy=2.39 (right) and A,

OE,d p,
_f p(r)%dr—kExc- (4)
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with (Ae) equal to the mean noninteracting level spacing
(Ay), since the lowest excitation of a Fermi liquid is a single
electron promoted across the Fermi surface.

The addition energ is theincreasein chemical poten-
tial from wy required to add one more electron to the dot and
thus form theN+1 electron ground state. ThidN@ 1)st
electron must have an extra eneryy to occupy the lowest
empty levelplusan extra energy y -, due to its Coulomb
interaction with theNth electron. The total addition enerdy
will be approximately given by the sum of these two contri-

a0F
30 f

20

<A> [meV]

1.0 E

0.5 [ butions,
= D _
E 0.4_ A_A€+UN,N+1' (5)
o [ The distribution ofA € is given by the Wigner-Dyson distri-
= 03 ; ; : ;
N h bution of level spacings for a noninteracting dot of the same
B [ size. The average interaction enef@yy n+ 1) iS the capaci-
g 0.2 . tive charging energe?/C. We estimate the fluctuations in
4 _ ] Uy, n+1 DY calculating the screened Coulomb interaction be-
v o1r ] tween two electrons at the Fermi surfac8pecifically, we
} ] treat the screening effect in the Thomas-Fermi approxima-
04 [ —————————————+—+ ] tion as
= 0 © ]
E 03y ] U-ll\—l',:NJrl:eJ’ en(r)pRsa(r)dr. (6)
@ [ Interacting 1
m7€ o2 L b The screened potential due to thih electron in Fourier
P Non_Interacting representation f3
3 [
| [ ] 0
401 . 2me pn(d)
v oI ] end)=—— o, )
— N x lal+ao
o i ; ; 4 where pQ(r)=|¢3(r)|? is the density of theNth single-
(€2/xto)/h wo particle wave functiortﬁﬁ,(r) of a noninteracting disordered

dot. The Thomas-Fermi wave vector igo=(2mwe?/

FIG. 2. (a) Average addition energ§/\), (b) fluctuationsA, and  «)(dn/du)=1/a% . It is found that the fluctuationsU™"
(c) cube-rooted third mqmen?/((A—(zA))g), as a function of —\/<(UNN+1 2> <UNN+1>2 is always considerably

electron-electron interaction strength“(«ly)/% wy. The measure smaller than the noninteracting level-spacing fluctuatidp

of interaction strengthy(=1/\/mpy af) indicated by arrows irfa) - .
can be applied to the data in aII panels. For each data point, thUp to at leastrs=5. The total fluctuation estimated as

disorder average is taken over more than 1000 different impuritydA ' =V(8M¢)2+(8UTF)? is shown in Fig. 2b) by _
configurations. At each, the noninteracting data are taken for crosses. We see that the fluctuations in the Thomas-Fermi

dots of the same size as the interacting dots, and the relafign  screening model agree well with the DFT results with no free
=0.52A,) expected for noninteracting level-spacing statistics isparameters. This supports the pictutthat the addition-
always satisfied. Also plotted iflb) are the fluctuations due to non- energy fluctuation arises from two quasiparticles above a
interacting level spacings plus treereenedCoulomb interaction filled Fermi sea interacting via screenedCoulomb poten-

between two electrons at the Fermi surfdceossey or the un- tial.
screenedexchange interaction between the two electréogen Within this picture, the increase of the fluctuation of
circles. Un n+1 With increasing interaction strength leads naturally

to greater symmetry of the distribution of addition energies.
Numerically, we find that that the distribution bf{y . ; has
tions, we use the phenomenological framework presented by symmetric Gaussian form. Hence, in agreement with Eq.
Blanteret al? for the regimer <1, where RPA is valid, and (5), we observe that the addition-energy distribution function
show that it applies to the DFT results at least up de5. P(A) is always extremely well described by the convolution
Consider first a dot containiny—1 electrons in the ground of a Wigner-Dyson distribution for level spacings,
state. Addition of theNth electron to form theN electron
ground state requires an electron chemical poteptigl To T Ae
form instead the first excited state felectrons requires the Pwp(Ae€)= 2 A2
higher chemical potentigky+ Ae. For an ensemble of dis- (40
ordered metallic dots) e will have Wigner-Dyson statistics, with a Gaussian distribution for interaction enerdifgy + 1,

— mAE2I(A4(Ag)?) (8)
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=0.1-0.3 in Ref. 3. Various theoretical estimates give fluc-
tuations 5A<(Aq)/g (Ref. 24 or 5Ax(Ay)/g.® In either
case, the discrepancy between exact diagonalization and

© DFT can be attributed to the order of magnitude difference in

the dimensionless conductangé the samples studied. The
experiments on GaA&Refs. 3—% haver,~1 andg>1, and
thus fall more closely in the range of interaction strengths
and dimensionless conductance treated in this paper.
Recently, several calculatiolfs'* based on the self-
consistent Hartree-FodlSCHP equations have found large
fluctuations, up taSA=0.2e?/C, in the same range of, we
consider. In one casg,the dimensionless conductance is
estimated to bg>1, a regime where DFT predicts fluctua-
tions an order of magnitude smaller. As pointed out by
Walker et al,*? the exchange interaction in the SCHF equa-
~ tions is unscreened. To test whether the lack of exchange

The result for the distribution of addition energies is

P(A):f fdAedUN,N+l PWD(AG)PGauséuN,NH)
><5(A6+UNYN+1—A)

1 \/E sU
=-\5 e
2 2 a<Ao>2

— 7 X2/(4a(Ap)?)

x| @ A2a(5V)?] 4 A screening in the SCHF approach could be responsible for the
2a6U discrepancy with DFT, we have calculated the unscreened
exchange interaction between two electrons near the Fermi
A surface in our dots
X | 1l+erfl —— . (10
2a(8U)?

Here a=m8U%(2(Ag)2)+1 and A=A—(A)+(A,),
where(A) is the center of the distribution argU is a fitting
parameter giving the width of the fluctuations@f; n ;. In
the noninteracting cas&U=0 so thatP(A)=Py,p(A) as

expected. In the other limik(4) becomes nearly symmetric In Fig. 2(b), we have plotted as open circles the fluctuations

for sufficiently largesU. In Fig. 1, we showP(A) given by : : )
Eqg. (10) as a dashed line. It is seen that the DFT distributionta.ken by summing the unscreened exchange interattin

is described very well by Eq10) with the best fit value with the noninteracting level spaqﬁ@.lt is clear that for

f sU=013 meV | — luesUTF r<>1, the unscreened exchange interaction noticeably over-
° —U.lomev. very close 10 the Valu®Lynii stimates the addition-energy fluctuations. In contrast,
=0.10 meV estimated from the Thomas-Fermi screene

Coulomb i ion b | he Fermi ensity-functional theory correctly accounts for screening
fa?;g omb interaction between two electrons at the Fermi sulyihin"the electron gas, including exchange interactns.

L . .. These results suggest that the unscreened exchange interac-
To test whether the distribution of addition energies is 99 g

. : ) > tion in the SCHF approach may generally lead to an overes-
well described by the sum of noninteracting level spacingsimate of the addition-energy fluctuations
and a symmetric distribution due to interactions, we propose In this paper, we have neglected extérnal screening by

to compare the third moment of the distributi®fA) with 404 or electrodes. This simplification should be valid as

and without a magnetic field, normal to the plane of the |onq 45 the distance to external conductors is larger than the

dot. Since the interaction part, coming from the screenedjiameter of the dot. In the opposite limit, it is essential to
Coulomb interaction in our picture, is symmetric, it does notgoncider external screening, but this may be done by a

contribute to the third moment ¢#(A). Therefore, the ratio - gjmnje modification of the /potential between electrons.

((A=(A))s, »0/{(A—=(A))*)5, =0 should take the value | conclusion, we have studied the electronic states of
(2—57/8)/(2—6/m)=0.405, which applies to level spac- spin-polarized, disordered quantum dots using density-
ings taken from a Gaussian orthogonal ensemBle<0)  functional theory and investigated the fluctuation of the
and a Gaussian unitary ensembi ¢ 0).2 Since our results ground-state energies. We have found that interactions
apply only to the case of spin-polarized electrons, it is necchange the mean addition energy but not the second moment
essary to apply a large magnetic field in the plane of the dotsnuch. Electron-electron interactions increase the fluctuation
or to spin polarize the nucléf. The result can also be tested of addition energies by no more than 25%, up &5, even
numerically, e.g., by exact diagonalization studies as in Refthough the average addition energy is increased by a factor
3. of 10. The addition energy is well approximated as the sum
Existing diagonalization studies for spin polarized elec-of the noninteracting level spacing and the screened Cou-
trons on small lattices find addition-energy fluctuatiai’s  lomb interaction between two electrons at the Fermi surface.
=0.1%%/C.2 For comparison, the Coulomb contribution to Hence the distribution of addition energies is the convolution
the fluctuations found by DFT are much smalle¥A  of a Wigner-Dyson distribution of level spacings with a
=0.0%%C atry=2. This difference may be attributed to Gaussian distribution of interaction energies. Since the latter
differences in the strength of disorder; while the dimensionis symmetric, it does not contribute to the third moment of
less conductance in our dots g&=2—4, we estimateg  the addition-energy distribution. The third moment is there-

S (1) (1) aﬁl<r’>¢%+1<r>dr

dr’.
r=r'|

(11)

2
Uexch :e_f
N,N+1 K
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fore predicted to decrease by a universal factor of 0.405 owurs as fast as the decrease of the level spacing and thus the
application of a magnetic field that transforms the dot frompresent results are also applicable.

the Gaussian orthogonal to the Gaussian unitary ensemble.

For quantum dots having larger numbers of electrons, We acknowledge I. L. Aleiner, B. L. Altshuler, R. Berko-
whether spin polarized or not, we anticipate that the decreasséts, C. M. Marcus, and M. Stopa for useful comments and
of the screened Coulomb interaction-energy fluctuations ocsuggestions.
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