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Stochastic dynamics of a trapped Bose-Einstein condensate
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We present a variational solution of the Langevin field equation describing the nonequilibrium dynamics of
a harmonically trapped Bose-Einstein condensate. If the thermal cloud remains in equilibrium at all times, we
find that the equations of motion for the parameters in our variatianshtzare equivalent to the Langevin
equations describing the motion of a massive Brownian particle in an external potential. Moreover, these
equations are coupled to a stochastic rate equation for the number of atoms in the condensate. As applications
of our approach, we have calculated the collisional damping rates and frequencies of the low-lying collective
excitations of a condensate with repulsive interactions, and have obtained a description of the growth and
subsequent collapse of a condensate with attractive interactions. We have found good agreement with the
available experimental results in both cases.
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[. INTRODUCTION alized Gross-Pitaevskii equation, fluctuations must also be
included.

The experimental realization of Bose-Einstein condensa- Gardiner and Zoller have included such fluctuations in the
tion in dilute atomic gasel—3], has led to a large increase description of a Bose-condensed system by deriving with
in the amount of both experimental and theoretical researchecond-order perturbation theory a master equation for the
on these quantum systems. Various theoretical predictionsne-body density matrikl9], a procedure well-known from
regarding equilibrium and nonequilibrium properties of de-quantum optics. However, in this paper, we will use the non-
generate Bose gases, may now be directly compared witherturbative formulation developed previously by one of us
experimental data. Regarding the zero-temperature behavipr,20]. Using field-theoretical techniques, Stoof derived a
of a Bose-Einstein condensate, a great deal of the physics isokker-Planck equation describing the full nonequilibrium
well described by the Gross-Pitaevskii equation, i.e., a mearprobability distribution of the order parameter. An equivalent
field equation for the macroscopic wave function of the conformulation of this theory may be given in terms of a dissi-
densate. It has led to very good agreement with experimentglative nonlinear Schabnger equation with noise. Although
results on, for example, the condensate collective mode frdn principle we may turn to numerical methods for the solu-
quencies and the density profile of the condensate at zetibn of the Fokker-Planck equation, or its corresponding
temperaturd4]. To understand the nonzero temperature beiangevin equatiorill], we find it more convenient here to
havior of Bose-condensed gases, several proposals have bgenceed analytically, by means of a variational method.
made to generalize the Gross-Pitaevskii equation and to invariational approximations have previously provided a use-
clude the effects of the thermal cloud on the condensate. Aful way to make analytical progress, and capture as much of
the mean-field level, this is achieved by introducing in thethe physics as possible. In particular, when applied to the
Gross-Pitaevskii equation real and imaginary terms, whiclzero-temperature Gross-Pitaevskii equation, a Gaussian
describe the coherent and incoherent effects of collisions berariational approximation has led to good results on the col-
tween condensate and thermal atoms, and which in particuldgctive modes of the condensgd—23, and on the descrip-
cause evaporation or growth of the conden$&ted]. How-  tion of the macroscopic tunneling of a condensate with at-
ever, at nonzero temperatures, fluctuations also may play aractive interaction$13,15,24,2% It is the aim of this paper
important role. An example of this is the reversible formationto also apply a similar variational method to the dissipative
of a condensate, as was experimentally achieved by Stampeatenlinear Schidinger equation with noise appropriate for
Kurn et al. [10]. Since the system is several times in thenonzero temperatures. We achieve this by assuming that the
critical region where the average number of condensate athermal cloud is in equilibrium at all times, and therefore
oms is very small, fluctuations of the order parameter aroundcts as a “heat bath” on the condensate. The stochastic non-
its mean-field value are of the utmost importance to describéinear Schrdinger equation then obeys an equilibrium ver-
this experimenf11]. In addition, both quantum and thermal sion of the fluctuation-dissipation theorem, which ensures
fluctuations are important to understanding the stochastic nahat the condensate relaxes to the physically correct equilib-
ture of the collapse observed ifLi [12—17 and the phe- rium. With this assumption, we are then able to derive
nomenon of phase “diffusion['18], in which case these fluc- Langevin equations for the variational parameters in our
tuations disturb the global phase of the condensate. Finall\zaussiaransatz which turn out to be equivalent to the equa-
from a fundamental point of view, a consistent description oftions of motion for a Brownian particle in a potential. These
a partially Bose-Einstein condensed gas requires that theguations are coupled to a stochastic rate equation for the
fluctuation-dissipation theorem is obeyed, since this ensurasumber of atoms in the condensate. Using these equations of
relaxation of the system towards its correct physical equilib-motion, we are then able to describe collisional damping of
rium. Therefore, if dissipation is to be included in the gener-the condensate collective modes at nonzero temperatures,
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and the condensate growth and stochastic initiation of th@rownian particle relaxes to the Boltzmann distribution, as

collapse, as recently observed ihi [16,17). we will see in detail later on. We now want to derive the
The rest of this paper is organized as follows. To makd&-okker-Planck equation associated with this Langevin equa-

this paper self-contained, we review in Sec. Il the techniquetion of motion. To do so, we first write it as a set of two

of path integrals, and their application to stochastic differenfirst-order differential equations

tial equations. We use the method of functional integration

throughout this paper. In Sec. lll, we review the Fokker-

Planck equation describing the nonequilibrium dynamics of a a(t)=v(t),

Bose-Einstein condensed gas, and discuss the equilibrium

solution of this Fokker-Planck equation. The most important

result of this section is the Langevin field equation for the _ 1 9V

order parameter, that obeys the fluctuation-dissipation theo- v(t)=—yv(t)— = —(q(t))+ 7(t). 3)

rem. This Langevin field equation takes the form of a dissi- m dq

pative nonlinear Schrdinger equation with noise. We also . . . .

derive the stochastic equations of motion for the density andve are mterested- n th_e probability dIS.t.I’IbutIOI’l

phase of the condensate, and a damped wave equation dad:v:t;do,vo,to], which is defined as the probability den-

scribing the propagation of sound waves in a homogeneou® that a particle with velocity, and positionq, at an

Bose gas, at nonzero temperatures. In Sec. IV, we present tHatial time to, has a velocityy and a positiong at time t.

variational approximation to our nonlinear dissipative ' NS probability distribution is thus given by

Schalinger equation with noise, and also derive stochastic

equations of motion for the variational parameters, which are

the central result of this paper. To the best of our knowledge, Pld,v,t;do,vo,to] =(8@(t) () —v)), (4

a variational method for stochastic field equations, such as ) ) o ]

the stochastic nonlinear Scliager equation under consid- Where(q(t),v(t)) is a solution of Eq(3), with initial condi-

eration here, has not been developed previously. In Sec. Wons (A(to),v(to))=(do,vo)- _

we apply our equations to calculate the temperature depen- W& now want to derive a path-integral expres<i28,29

dence of the damping and frequencies of the collectivdor the probability distribution P[q,v,t;qo,v0.t0]. TO

modes of a condensate, and to obtain a description of @chieve this, we first divide the time intervet-to into N

growth-collapse curve of a condensate with attractive interPieces, each of lengtih = (t—to)/N. Using the notation

actions. We end in Sec. VI with our conclusions. q(tn)=0n, v(ty)=vn, and 5(ty)=7,, we discretize the
set of equations in Eq3) as follows:

Il. PATH INTEGRALS AND STOCHASTIC DIFFERENTIAL
EQUATIONS

1
In this section, we discuss the application of path integrals 7 (Gn+17=0n) =vn,
to stochastic differential equations. To this end, we consider
the Brownian motion of a massive particle with magsn a
potentialV(q). The equation of motion of the Brownian par-

19V
ticle is given by the Langevin equati¢@6,27 K(vn+1—vn)= YT o E(an - (5)
) _ 19V The time correlation of the noise is given by
G0 +79(0) = = - 22 @)+ (). (1)
In this equationg(t) denotes the position of the particle, and (min;)= %5” , (6)

n(t) is a fluctuating force per unit mass, with a Gaussian
probability distribution. The parametey>0 is a friction

constant. The time-correlation of the noise is given by ~ Which reduces to E¢2) in the limit A—0. Making use of

the fact that the noise has a Gaussian distribution, we now
write the probability distribution for a particular realization
of the noise as

: 2Y oo
(n(t) ()= Lz ot ~b), 2
; . . . A N/2 mBA N-1
where the average is taken over all possible realizations of _ Y _ 2
. . ! ) . P({7n}) ex (- (D
the Gaussian noise. Her8=1/kgT is the inverse thermal mBA 4y 70

energy. Note that the strength of the fluctuations is related to

the amount of dissipationy through Eq.(2). This is the Using this probability distribution, we are able to calculate
fluctuation-dissipation theorem, which ensures that the probaverages over the noise as Gaussian integrals. The two-point
ability distribution for the position and velocity of the function of the noise is, for example, given by
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<77i77j>5j

which reproduces the correct correlations, given in . 14 2
We first calculate the probability distribution +yoj+— (qj)} ] ) (12)
P[Q1,v1,t1;00,v0,to], Which is the probability distribution m Jq
that a solution of the set of equations in Eg) reaches the
value (@;,v,) at timet;=t,+ A. Since we may easily solve Note that this expression explicitly shows that the integration
these equations explicitly for one time step, we find from thels only over intermediate coordinates, and that the boundary
definition in Eq.(4) that this probability distribution is given values Qy,vy) and @o,vo) are fixed. We now take the limit
by N—oo and A—0, while keepingty—tg fixed. If we absorb
the prefactor in Eq(12) in the integral measure, we get, after
puttingqy=4, vny=v, andty=t, the result

(v,+1 vj)

N—1

AN
I1 d%) 7i17;P 7n}), (8) ><exp{ nf
n=0 Y j=1

Pldy,v1,t1;d0,v0,t0]

4my\ 21 _
:J d7]0 mﬁA A5 Vo™ A(ql qO) P[qivvtvqoal}OatO]
[* aa [* arwrsto)-aay
= q v]dlv(t')—q
X exp[ - % 7]3] a(to)=do v(tg)=vg
mﬁ ! Ay ’
1 oV(qo) Xexp’—4—f dt (v(t )+ yu(th)
X 8| vgtA ~ Yo 7 + 79| —v1]. (9) Y Jt
19
Second, we integrate out the noigg to obtain the result + a(Q(t ))) ] (13
P[g1,01,t1;00.00.t0] The integral measure of the functional integrgl in EIR)
denotes integration over all patgét) anduv(t) with bound-
mBA ary conditionsq(tg)=dq, q(t)=q and v(tg)=vy, v(t)
- A2 729 vo~ A (Q1 Go) |€Xp; — —4y =v, respectively. Each of these paths gives a weighted con-
tribution to the probability distribution. We next represent the
1 19 2 delta functional by a Fourier path integral over an auxiliary
X| 3 (wimvo) T ywot —— 3 (OIo)) (10 coordinatep, . As the notation suggests, this turns out to be

the momentum conjugate tp The path-integral expression

We use this expression at each time step, and “tie” thenfor P[q,v,t;do,v0,to] then becomes
together using

P[g,v,t;d0,v0,t0]
Pldi+1.Vit1,tis1:0i—1,0i—1,ti—1]

q(t)= (t)=v
:J dg dv; P[Qi+1,0i+1,t+1;0,0i,t] :f _ d[q]f d[pq]f d[v]
a(to)=do
XPLa;,vi,ti3di—1,0i-1,ti 1], (11

which follows from the fact that the total probability is con- Xexp{ f dt’ [pq(t at)—v(t)]

served. The result fdP[ gy ,vn,tn; o, Vo, to] then becomes,

after a combination of Eqg$10) and(11) at each intermedi- . 2

ate time step, + ihmp o(t)+ yu(t')+ 1 5—(q(t )

4y m dq '

(14
P[qN yUN !tN §CIo:UO:to]
In this expression, we extracted a factorith outside the
N1 time integral in the exponent for reasons that will become
=A’2(N’2)f ( H da, dvn) clear shortly, and we again absorbed some normalization fac-
=t tors in the path-integral measure. We then introduce also the
N—1 1 momentum conjugate to, denoted byp,, by multiplying
« H 5(Ui— (G i)) the integrant in Eq(14) by a factor of one, written as the
Gaussian functional integral over, given by
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_ ey ,_ 1AmB IP[q,v;t] P P 10V, vy &
1—f d[pu]eXP[hjtodt hmﬁ{p”(t ) 2y Y ——aqv-i-—&v(yv-i-a—aq)—i-—mﬁ 07
: 19V 2
X v(t')+70(t’)+ma(q(t’))” ] (19 *Pla..t, (18

which is indeed the Fokker-Planck equation associated with
the Brownian motion of a particle with massin a potential
This procedure is generally known as a Hubbard-V(d), and known as the Kramers-Klein equatici]. Note
Stratonovich transformatiof80]. After this procedure, the that the Fokker-Planck equation has terms linear in the de-
result for the probability distributionP[q,v,t;q0,v0,to] rivatives with respect to andq. These terms correspond to
reads the reversible part of the Langevin equation in Ef. The
“diffusion” term, quadratic in the derivatives, represents the
irreversible stochastic behavior. All Fokker-Planck equations
that correspond to a Langevin equation with Gaussian noise
Plq,v,t;q0,v0,t0] have this general structure.
It may be shown that the stationary solution of Ep) is

a(t)=q v(t)=v - o
:j d[q]f d[Pq]J d[v]f dlp,] given by the Boltzmann distribution
a(to)=dp v(to)=vo

xexp‘;L—ftdt'[pq<t'>Q(t'>+pu(t'>z}<t'> P[q,v;taoo]ocexp[—ﬁ(%mv%wq))], (19
to

which may be checked by insertion. It is important to realize
—H(pq,q;py *U)]) , (1) that the fluctuation-dissipation theorem in E). is essential
for the probability distribution to relax to the correct equilib-
rium distribution. It embodies the fact that dissipation and
with a Hamiltonian given by thermal fluctuations cooperate to achieve thermal equilib-
rium.
At this point, we want to make clear that in writing down
the time-sliced version of the Langevin equation, we have
iy 10V made the choice to interpret the noise term as a so-called Ito
H(pq.d;Pp, ,v)=Pgv — mpv— pv( yu+ m a) . process, as opposed to a Stratonovich process. The difference
(17) between Ito and Stratonovich calculus emerges when one
deals with multiplicative noise. For example, let us consider
the Langevin equation
At this point, it might be somewhat confusing that the mo-
mentum conjugate tq is not simply proportional t@. We .
are, however, not quantizing a classical system, but instead, a(t)=f(@(t))+g(q(t))»(t), (20
trying to derive a path integral for the probability distribution i , ) i , )
generated by a classical stochastic equation of motion. Thynere#(t) is a Gaussian noise term with correlations given
connection with quantum mechanics lies in the fact that we?Y
may identify this probability distribution with a quantum-
mechanical amplitude for some quantum system. This does , _ r_
not mean that the Brownian particle has wavelike properties. {(n(t)n(t)=odt’=1). (21)
Nevertheless, Eq(16) is precisely the canonical path- | one interprets the noise in E6R0) as an Ito process, the
integral representation for a matrix element of the evolutiongjscretization reads
operator.  Therefore, the  probability distribution
P[q,v,t;qg,v0,to] Obeys the time-dependent Sctimger
equation with the Hamiltoniak (py,q;p, ,v) given by Eq. 1
(17), in the position representation. It is essential that we use K(qn+1_Qn): f(an)+9(an) 7n- (22
normal ordering, i.e., that we place the momentum operators
left of the position operators when quantizing this Hamil- The corresponding Fokker-Planck equation then becomes
tonian. This is because of the fact that, in the path-integral
formulation of quantum mechanics, one always deals with

normal ordered Hamiltonians. Keeping this in mind, we may P[q,t] dfo 9 ) |

thus quantize this Hamiltonian, by puttirfg|,pq]=[v.p,] Tt 49|24 (@)—f(a) |PTa,t]. (23
=i#, with all other commutators equal to zero. So, we have

in the position representatiop,=—ifd/dq and p,= However, the time-sliced version of EO) is in the Stra-

—ihaldv. The Schrdinger equation that results is given by tonovich calculus given bj32]
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1 1 arises as the equation of motion for the superfluid order pa-
A (On+170n) = 5[F(An) + T(An+)] rameter, which is the expectation value of the Bose field

operatory(x,t), which annihilates an atom at positiarand
1 at timet. The Gross-Pitaevskii equation is also referred to as
+ E[g(q“) +9(An+1)17- (24 the nonlinear Schidinger equation for the macroscopic con-
densate wave-functioW (x,t), since the condensate density
In this case, the Fokker-Planck equation reads is given by

o

d n(x,t)=|w(x,t)|2 (29
EQZ(Q)a—f(Q)

IPIa;t] 9

at aq

PHa;t]. (25
The time-dependent Gross-Pitaevskii equation has stationary
The Stratonovich interpretation, therefore, leads to an addisolutions of the form¥ (x,t) =¥ (x)e ", where the pa-

tional noise-induced drift term in the equation for the aver-rameterx is the chemical potential that fixes the number of
age ofq(t), as can be seen from atoms in the condensate anki(x) now obeys the time-

independent Gross-Pitaevskii equation,

d{(qg)S(t
—<q(jt( ) =(f())(t)+o(g(ag’())%(t), (26 [ V2

2m

+VO(x)— u+ T2 W (x)|2} ¥ (x)=0. (29

where g’ (q)=dg/dq. This result follows straightforward . . . L .
from the Fokker-Planck equation in E@5), with the use of The time-dependent Gross-Pitaevskii equation is a semi-
' classical mean-field equation, describing the average dynam-

partial integration. Note that the second term on the right- . L
s of the condensate only. It contains no description of the

hand side of the last equation, which is the so-called spurioulé? . e .
or noise-induced drift term. is absent in the case of an itdelaxation of the condensate towards equilibrium, and neither

process. In physics, a Stratonovich process arises natural e; I co?taln cond?nsatetgrowth frotm the thtermal (,\:/IIOUd’ or
when the delta function in the time correlation of the noise jsCONc€Nsate evaporation, at nonzero temperatures. vioreover,

the result of a limiting procedure in which the correlation it compl_etely neglects flgctuations of_th_e order parameter
time becomes equal to zero. around_ its mean value in the _descrlp.tlon. T_herefore, we
With these important remarks, we conclude our brief re_would like to modify the Gross-Pitaevskii equation such that

' it contains fluctuations due to incoherent collisions between

view of path integrals and stochastic differential equations. d ; d d te at " d "
In the next section, we will use these techniques in the treaffONdeNSate and noncondensate atoms, as well as condensate

ment of the nonequilibrium dynamics of a Bose-EinsteingrOWth and e_zvaporation. In ord_e_r to_do_ SO consistently, we
condensate have to consider the full probability distribution for the order

parameter, which may be found by means of the many-body
T-matrix approximation to a field-theoretic formulation of
the Keldysh theory7,2Q]. It is given as a functional integral
In this section, we present the Fokker-Planck equatio®y

describing the nonequilibrium dynamics of a Bose-Einstein
condensed gas, and its corresponding Langevin field equa- ..
tion. The so-called hydrodynamic formulation will also be PLo, ¢ 1]
discussed. Since the Langevin field equation generalizes the PN

. . . ¢™ () =™ (X)
Gross-Pitaevskii equation to nonzero temperature, we start = f
our discussion by recalling this well-known equation. 0= ¢

III. NONEQUILIBRIUM DYNAMICS

d[cb*]d[qb]exp{,'i—seﬁw*,m], (30

) _ . ) with an effective action
A. Stochastic nonlinear Schralinger equation

The dynamics of a trapped Bose-Einstein condensate is

very well described at sufficiently low temperatures by the P L 2
time-dependent Gross-Pitaevskii equation STle *‘ﬁ]_ﬁodt jdxm

aV(xt) [ H2V? wllinl 4 ZVZ_Vext( RO
ih = | 5 VOO TR (D2 W), "o 2m IR

(27)

where# is Planck’s constantnis the mass of a single atom,
Ve{(x) is the external trapping potential, and?t
=4mah?/m is the two-body transition matrix, witta the  In this effective action, the imaginary teriR(x,t) describes
swave scattering length. The Gross-Pitaevskii equatiorthe exchange of atoms between the condensate and the ther-

2
. (3D

+p(t)+T28) ¢(X,t’)|2> (x.t")
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mal cloud. Since, at this point, we also want to be able tdn this expressionN;=N(x,k; ,t) is the Wigner distribution
describe a thermal cloud that is not in thermal equilibrium,function of the thermal cloud, which may be determined by
we have to allow for a time-dependent chemical potentialsolving the corresponding quantum Boltzmann equation. We
Before we discuss the physical content of the expressions iwill not do this explicitly here, since later on we assume that
Egs. (30) and (31) further, let us first derive the Fokker- the noncondensed cloud is in thermal equilibrium. The en-
Planck equation determining the time dependence oérgy of a thermal atom is given by
P[ ¢,¢*;t]. To do so, we note that the expressions in Egs.
(30) and(31) are very similar to the path-integral expressions
we encountered in the preceding section for the probability i
distribution generated by a stochastic differential equation. fizﬁ+VeXt(X)+2T28|<¢(X)>(t)|2' (34)
The main difference is that the functional integration is now
over all complex fieldsp* (x,t) and ¢(x,t), instead of real Note that both in this expression, and in the Fokker-Planck
functions. Also, note that we did not specify the initial con- equation in Eq(32) we neglected the effect of the mean field
ditions at the time,. This is because we are only interestedof the thermal atoms, because it plays a minor role in the
in the universal long-time dynamics of the gas, which aredynamics of the condensate. Note also that, for the average
independent of the specific form of the initial conditions. value of the order parameter calculated with the probability
Moreover, as we have seen in the previous section, the formistribution in Eq.(30), we used the notatiofyp(x))(t). The
of the Fokker-Planck equation is in fact independent of thes@oisy order-parameter field will be denoted x,t) and
initial conditions. From Eq(30), we may derive the Fokker- for stochastic averages of this quantity we will use the nota-
Planck equation by quantizing the effective action in Eq.tion {¢(x,t)). Since the Fokker-Planck equation and its cor-
(31), just as in the previous section. It is ultimately given by responding Langevin equation are equivalent, we have of
course that{¢(x))(t)=(¢(x,t)). The Keldysh self-energy
#3K(x,t) in the Fokker-Planck equation describes the ther-
P mal fluctuations due to incoherent collisions between con-
ihﬁp[q{)*,d,;t] Ejerisate and noncondensate atoms. It is given explicitly by
20

2|2

B 5 ( neve o ,
__de&ﬁ(x) T + V(X)) — u(t) —iR(X,t)

ﬁEK(x,t):_4m(T2B)2J dklf dsz‘ dks

+T28| ¢(x>|2) d(X)P[d*, ;] (2m?3) (2m)3) (2m)3

X(27T)35(k1_k2_k3)5(6+ 61_62_63)
5BV : N3(1+Np)(1+N3) + (1+NyNN
+de - T + V(X)) — u(t) +iR(X,1) X[N1(1+Nz)(1+Ng)+(1+N;)N;Nz].
3¢* (%) @5
+ T2 ¢(x)|2) d* (X)P[d*, ;] Note that both the dissipatioR(x,t) and the Keldysh self-
energyn3K(x,t), depend on the energyto take a conden-
1 52 sate atom out of the gas at positiwand timet, which has to
— _J’ dx————a3K(x,t)P[¢*,p;t]. (32 be determined self consistently. This implies that actu-
2 Sp(x) 8™ (x) ally an operator in the configuration space of the order pa-

rameter, and given bj20]
This Fokker-Planck equation describes the time evolution of

the probability distribution of the condensate wave function 52y2
at nonzero temperatures, in the presence of a thermal cloud. €= — +VE{X) + T8 p(x)|2. (36)
The dissipation termR(x,t) describes the exchange of 2m

atoms between the thermal cloud and the condensate, due
elastic collisions. In the Hartree-Fock approximation, which
is sufficiently accurate for the nonzero temperatures of inter
est here, it is given bj20]

‘I‘%e fact thate should be viewed as an operator will turn out
to be crucial for the probability distribution of the order pa-
rameter to relax to the correct equilibrium distribution func-
tion.

Although our Fokker-Planck equation for the condensate,
coupled to the appropriate quantum Boltzmann equation for

dk;, dk, dks the Wigner distribution function of the thermal cloud, de-

R(x,t)=27-r(TZB)2J 3f :J S(2m)° scribes, in principle, the full nonequilibrium dynamics of the
(2m)*) (2m)°) (2m) Bose-condensed gas, its solution is very difficult even nu-

X 8(ky—ko—Kz) e+ €, — €2— €3) merically. This is because of the fact that in the Fokker-

Planck equation, the dissipatiét{x,t) and the Keldysh self-
X[N7(1+N5)(1+N3)—(1+N;)N,N3]. (33 energy also depend on the condensate wave function,

013603-6



STOCHASTIC DYNAMICS OF A TRAPPED BOSE .. PHYSICAL REVIEW A 65 013603

through their dependence ergiven in Eq.(36), and through  we will see below. Since we are dealing with Bose conden-
the mean-field effect of the condensate on the thermal atomsation, the occupation numbefd(e) are generally very
As a result, writing down the corresponding Langevin equadarge, and we have in a good approximation

tion results in a stochastic equation with multiplicative noise,

and with a prefactor of the noise that has a complicated de- 1

pendence onp(x,t). We may, however, make progress by [1+2N(e)] t==[B(e—p)]. (39
assuming that the thermal cloud is sufficiently close to equi- 2

librium, which is, for example, justified for linear-response
calculations around equilibrium, and also for condensat
growth if the evaporative cooling is performed sufficiently
slowly. From now on, we therefore assume that the thermal
cloud may be described by a Bose distribution function

If we combine this result with Eq(38), and substitute the
®perator in Eq(36), we arrive at the approximation

iIR(X,t)=— gﬁEK(x,t)

N(ep)=[ea—m—1] 7%, (37) 2y2

X

o V)~ T 602

with a chemical-potentialu and an inverse temperature
B=1/kgT. The thermal cloud therefore now acts as a “heat (40
bath” on the condensate. Making tleedependence explicit
for a moment, we may relate the dissipati®(x;e), and the
Keldysh self-energyi 3 X(x;e) by means of

whereh 3 X(x,t) =325 (x;(ux,1))), and the local chemical
potential of the condensate..(x,t)) is given by

(pelxD)) [ axta oo

P
1 -
IR(X €)= =5 A2 (x e)[1+2N(e)] ™, (39 S|(b(x))(1)]2

2y 2 2B
which follows simply from the form of the Bose distribution x| — V) + —= [((x))(1)]?
function, together with the energy-conserving delta function 2m 2
in Egs.(33) and(35). This relation between the dissipation X( (X)) (). (41)

R(x;e) and the Keldysh self-energy>"(x;e) determining

the strength of the fluctuations, is in fact the fluctuation- We now show that the above “classical” approximation to
dissipation theorem. Just as in the case of the Brownian madhe fluctuation-dissipation theorem indeed leads to the cor-
tion of a particle discussed in the previous section, it causesect equilibrium. Let us therefore substitute E4Q) into the

the system to relax to the correct equilibrium distribution, asFokker-Planck equation, which simplifies to

#2v?2
(— +VeX‘(x)—u+TZBI¢(x)Iz)¢(X>P[¢*,¢;t]

d
iﬁﬁp[¢*,¢;t]=—§f dx A3 K(x,t) >

6¢(X)

ﬁ 5 hZVZ ex * * .

—Zf dxﬁzK<x,t>5¢*(X)(— StV t(X)_/-L+TZB|¢(X)|2)¢ (X)P[*, ;1]

—lf dx A3 K(x t)ﬁ—sz* o;t]. (42)
2 8 (X) 5d* (X) s

The stationary solution of this Fokker-Planck equation isfact the correct equilibrium distribution, we have to show
given by that the macroscopic condensate wave-functigh(x))
obeys the time-independent Gross-Pitaevskii equation. To

2y2 see this, we first note that

P[¢*:¢:H°°]°cex4 —ﬁf dx¢*<x>( — V()

2m
)

8¢* ()

for a general probability distribution that vanishes at the
as can be checked by substitution. To see that(£8).is in  boundaries of the domain of integration. If we apply this to

f d[¢*1d[ 4] Pl¢*,#;t]=0 (44)

TZB
ot o0 ¢><x>], @3
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the equilibrium distributiorP[ ¢*, ¢;t] we get, by applying equation, and in the above expression for the energy of a

the mean-field approximation (| ¢(x)|2¢(x))  thermal particle{$(x,t)) has to be determined self-consis-
=[{H(x))|%($(x)), the desired result tently, since only then the probability distribution generated
by the Langevin equation in E@46) relaxes to the correct
neve - ) equilibrium.
—5m TV 00—+ T2 D(x))]? | (h(x))=0, The stochastic nonlinear Schiiager equation in Eq.

(45) (46), together with the expression for the Keldysh self-energy
in Eq. (48), gives a nonequilibrium description of the con-

which is precisely the time-independent Gross-Pitaevskidensate, that obeys the fluctuation-dissipation theorem. In
equation. Note that EQq(40), together with the time- Sec. IV, we use a variationansatzto solve this equation.
independent Gross-Pitaevskii equation, implies that in equiHowever, we first derive the corresponding noisy hydrody-
librium (R(x,t))=0. This means that there is a detailed bal-namic formulation.
ance between the condensate and the thermal cloud, and that
there is, on average, no condensate growth or evaporation
when the system has relaxed to equilibrium. B. Stochastic hydrodynamics

Using the results of the preceding section, we now give & The condensate is often described in terms of its density
formulation of the nonequilibrium theory discussed above ingq its phase, by making the transformatign= pe'®.
terms of a Langevin field equation corresponding to theyhen applied to the Gross-Pitaevskii equation, this transfor-
Fokker-Planck equation in Eq42). This Langevin field  ation results in the so-called Josephson equation for the
equation takes the form of a dissipative nonlinear SChrOphase and a continuity equation for the den§ity]. We
dinger equation with noise, given by now want to derive the generalization of these two equations

to the case of our Langevin equation for the condensate. To
ex do this, we first substitute the “classical” approximation to
+V&i(x) TSt SULSTE . . .
the fluctuation-dissipation theorem into the effective action
S ¢* , 4], which now reads

2y2

dd(x,t)
ot

B

i% ZﬁEK(x,t))[—

1+

2m

—ut+ T ¢(X,t)|2] (X H)+7(x.1).

t 2
S g, =J dt’f dx———
(46) [¢%.4] t A3K(x,t")
This Langevin equation quite generally generalizes the 9 B
Gross-Pitaevskii equation to nonzero temperatures, and in- X (ih_Jr 1+_ﬁEK(X,t’))
cludes both dissipation and thermal fluctuations. The com- at’ 4

plex Gaussian noise in the Langevin field equation has cor-

. 22
relations[20,11] y 2:] V) 4t T ¢(X,t,)|2D
.ﬁz
(7 (0 (X 1)) = - 5K 8t -1) Sx— ), 2
) X p(xt") (50

where the strength of the noise is determined by a Keldysh

self energy, given by The reason for this substitution is that we have defined the

fluctuation-dissipation theorem as an operator equation in the
RSK(x,)= —4Wi(TZB)2f dk; f dk; f dks (2m)3 configuration space of the order parameter, and not in terms

2m)3) (2m)3) (2m)° of its density and phase. We may now easily substitite
= \/pe'? into this effective action. This substitution results in
X (ki —ka—Ka) 8((pe(X,1)) + €1~ €2~ €3) an effective action in terms of the density and the phase of

X[Ny(1+Ny)(1+Ng)+(14N;)N,Ng].  (48) the order parameter, i.e.,

In this expression\; is again the Bose-distribution function

of the thermal cloud, evaluated at an energy of a thermal t 2
particle, which is in the Hartree-Fock approximation given Seﬁ[P,0]=f dt’f dX————
by to AZE(X,t")

h2K2 n| A 20) B
€= VOO 2TE (BN (49 X{P(X* )(f‘ At

The average local chemical potential of the condensate at- XhV-[p(x,t’)vS(x,t’)]
oms{uqx,t)), is given by Eqg.(41). Note that in the latter 2p(x,t")

+u(X ) —p
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L S vt
. X Vo X
o (Xt Velx,t")]

2
+ giEK(X,t')[Mc(X,t')—M]p(xyt’)) ] , (59

where we used that¥(x,t) only has a negative imaginary

part, as seen from E@48), and thus ¥ (x,t) is a positive
and real quantity. We defined the superfluid velowiffx,t),
and the condensate chemical-potengia(x,t) by means of
[33]

#2V2\p(x,1)

= ex 2B
,U/C(X,t) Zm\/m +V t(x)+T P(X:t)

1 2
+ Emvs(x,t);

vs(x,t)=%V o(x,t), (52

which coincides with the expression in Ed1). The effec-

PHYSICAL REVIEW A 65 013603

dp(x,t)
at

+V-[p(X)vyx1)]

=- giEK(X.t)[MC(X,t) —rlp(X,1) +2Vp(x, 1) §(X,1),
(55

with correlations of the Gaussian noi§éx,t) given by

K
SR(x,1) 5

(D EX 1)) =+ (x=x)3(t—1). (56)

In the Appendix, it is explained that we have to interpret this
noise as a Stratonovich process. This gives rise to additional
drift terms in the equation of motion for the average of the
density, because in E¢55) we are dealing with multiplica-
tive noise. Note that from Ed55), it is explicitly seen that
there is condensate growth if>pu., i.e., if the chemical
potential lies above the chemical potential of the condensate.
If u<u., there is condensate evaporation.

We will omit here the Fokker-Planck equation in terms of
p and @, but only discuss the equilibrium distribution gener-

tive actionS®f p, 4] yields two stochastic equations of mo- ated by Eqs.(53) and (55). It is simply determined from
tion. The equation for the phase of the condensate takes tH ¢*,¢;t—o] in Eq. (43) by the substitutiong= Jpe'?,

form of a stochastic Josephson equation

a0(x,t) B.
a4

12V - [p(x,t)VO(x,1)]
2mp(x,t)

3 K(x,t)
v(X,t)

=p— (X, t)+ .
m— pe(X,) oD

Here, the real Gaussian nois€x,t) has correlations given
by

(53

T E2
(v(x,t)v(x’,t’))=%ﬁEK(x,t)ﬁ(t—t’)é(x—x’).
(54)

since the Jacobian of this transformation is equal to one. So
we have

h2V2\p(x
P[p,b’;t—mo]ocexp{ —,BI pr(x)( — 2r11—\/;::_(>0)

2B
1
+ V(%) + — P+ Emvg(x) —

|

We see from this probability distribution thaty)=0, which
should be the case in equilibrium. The average density pro-
file is again determined by the time-independent Gross-
Pitaevskii equation, as explained before.

To discuss the physical content of the stochastic continu-

The stochastic Josephson equation has two modificatiorig/ equation and the stochastic Josephson equation further,
with respect to the ordinary Josephson equation. First, it hage now derive the wave equation describing the propagation
a spatial diffusionlike term proportional id3(x,t). This  of sound waves in a Bose-Einstein condensate. For simplic-
term will cause the phase to undergo spatial diffusion due t@ty, we discuss here the homogeneous case, Wh&féx)
collisions of thermal atoms with the condensate atoms, not te-0. A treatment of the trapped case is presented in Sec. V A.
be confused with the phenomenon of phase “diffusion,”We linearize the averages of Eq55) and(53) around their
which corresponds to spreading of the global phase due tequilibrium solutions p(x,t))=po and(vgx,t))=0. There-
quantum fluctuationg18], and therefore relax to a state fore, we write (p(x,t))=po+dp(x,t), and (vg(x,t))
where the phase is position independent. So, in equilibrium= dv(x,t), and substitute this into the average of E@S)

we have(vg)=7%(V #)/m=0, as expected. We will see later and (55). Linearization results in two coupled equations of
on that this tendency towards equilibrium will give rise to an motion for the deviations, i.e.,

increase in the sound velocity in the Bose condensate. Sec-
ond, the Josephson equation has a noise term inversely pro-
portional to the square root of the density. This noise repre- m
sents the fluctuations in the phase of the condensate due to
incoherent collisions of thermal atoms with condensate at-
oms, i.e., due to thermal fluctuations. d6p(X,t)

The equation of motion for the density is a stochastic ot
continuity equation with a source term,

IVg(X,t in?sK
%: — T2V Sp(x,t)+ P 5

VZovg(x,t),

+po¥ - VX )=~ B ISK[2T2%p5 - uop(x.)
57
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Note that we have made use of the fact thaf¢ is indepen- Instead, they use, for the condensate energy in the energy-
dent of the spatial coordinates for a homogeneous Bose gaspnserving delta function, the expressign.(x,t)), which in

as can be seen from E@8). Next, we combine these two principle violates the fluctuation-dissipation theorem. As a
equations to obtain a single damped wave equation for theonsequence, these authors do not find an increase in the
propagation of sound waves in a homogeneous Bose gas, sound velocity at nonzero temperatures.

IV. VARIATIONAL APPROXIMATION

2
( P ) 1 35p(x,t). -

— _2y2 = — . . - .
o2 cV= ] dp(x,1) T ot Although the stochastic nonlinear Sctioger equation

given in Eq.(46), or equivalently, the hydrodynamic formu-

The relaxation timer is defined to be inversely proportional lation given in Eqs(53) and(55), give a full nonequilibrium

to the damping rate of the waves. Physically, this dampingjescrlpnon of the con_dengate that can, in principle, be solved
arises because the excitation of a sound wave slightly dig?umerically[11], we find it more convenient to make ana-
turbs the equilibrium situation where the average growth ofYtical progress. Therefore, in the case of a harmonic trap-
evaporation of the condensate is equal to zero. Hence, theRing potentialV®(x) = =;mw;x/2, we consider a Gaussian

is no longer a detailed balance between the condensate aMariationalansatzfor the condensate wave function

the thermal cloud, and the collisions between the condensate

and thermal atoms drive the condensate back to the equilib- 1 14

rium situation, whereSp(x,t)=0, andévgx,t)=0. The re- d(x,t) =N (t)e O] | ( 5 )

laxation timer is given by i\ mai(t)

1 X _X (1—iE t't) 61

where we used the time-independent Gross-Pitaevskii e uy_ere, the variational parametegy(t) denote the Gaussian
. o P B o U%idths of the condensate in the three spatial directions. The
tion that reduces in this case jo=T""p,, to eliminate the

chemical potential. The sound velacityn Eq. (58 is given wave function is no_rmalized_ to_the number of atoms in the
by ' ' f:onden_sate\lc(t). T_hls ansatzs dlffere_nt from the ones used

in previous work, in the sense that it also contains a global
phasefy(t). This turns out to be crucial, since the number of
particlesN(t), which is the variable conjugate to the global
phase, is not constant in our case. Therefore, one must also
allow for fluctuations in the global phagg(t) of the con-
Where(;O:(TZBPO/m)ll2 is the well-known zero-temperature densate. We expect themsatzto give correct results when
sound velocity, predicted by the Gross-Pitaevskii equationthe number of particles is small, because the mean-field in-
and first obtained by Bogoliubo\84]. We see that our non- teraction of the condensate will then be small, and the con-
equilibrium treatment results in increased sound velocitydensate density profile will be close to the ideal gas solution.
This increase is a result from the term in the stochastic JoMoreover, it has also proven to give correct results for the
sephson equation in E¢53) proportional toi Sk, Physi- frequencies of the collective modes of the condensate even in
cally, this term represents the fact that the phase of the corthe Thomas-Fermi regime, where the mean-field interaction,
densate undergoes spatial diffusion due to collisions betweeand thus the number of atoms in the condensate is [@®e
condensate and thermal atoms, and therefore relaxes to Tderefore, we also expect to obtain physically sensible re-
state wherdvy) =0. The spatial diffusion of the phase there- sults even in this case.
fore increases the “stiffness” of the condensate, and hence When the Gaussiaransatzis applied to the Gross-
results in an increase of the sound velocity. Since the inPitaevskii equation we find that the variational parameters
crease in the sound velocity is of ordél(|Ba3X|?), its  d;(t) obey Newton's equations of motidi3,21,24
effect is in general small below the critical temperature, as
the collisionless limit is determined Q%S| <1 and ex- 1 ) IV
periments are usually in this limit. The damped-wave equa- > MN(1)q;(t) = —a—q(Q(t),Nc(t)), (62
tion in Eqg. (58) should be compared to the result found by !
Williams and Griffin [35]. These authors use a dissipative yjth a potential energy equal to
nonlinear Schdinger equation, with a damping term similar
to Eqg.(33), to arrive at a damped wave equation describing

N

c®=c3 , (60)

1
25K\ 2
1+ 16(,8|h2 )

the propagation of sound in a trapped Bose-Einstein conden- V(Q.N )ZE Nfi? n EmN 242 | 4 aﬁ2N§
sate in the presence of a static thermal cloud. Note, however, 9. Ne 7 lamgg 4 @i qj 27maq.d,
that although the microscopic expression used by Williams : Y (63)

and Giriffin is of the same form as in E@3), the chemical
potential of the condensate used by these authors in the cdrom the action in Eq(50), we want to derive similar equa-
culation of R(x,t) is not the operator given by Ed36). tions of motion, extended to the nonequilibrium case. For
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simplicity, we first consider an ideal gas, i.e., we drop thedensate. We substitute our trial wave function into the effec-
mean-field interaction term?| ¢(x,t)|2. The condensate re- tive action in Eq.(50), to obtain a probability distribution in
mains, however, in contact with the thermal cloud, that actderms ofN., 6y, andqg. It is given by

as a “heat bath.” Second, we assume that the Keldysh self-

energy is constant over the size of the condensate. Although _ i &

this assumption is not justified in general, we can aIwaysP[Nc'GO'q't]zf d[Nc]d[ old[alexp) >~ S*[Ne, 6,a]
approximately compensate for this, by calculating a position (64)
independent Keldysh self-energy>(t) by means of an

appropriately averagefi>¥(x,t) over the size of the con- with an effective action that reads

2
ffi . ! ’ 2 ’ daO(t’) N _ } ~N2(t! E (NN () —
S*N¢, ;0] ftodt ﬁEK(t’)lNC(t >(ﬁ o Tadt) 21_34mq,(t)+21 Zma(t)g;(t) —
n? [dN(t) B ° o dAt)
- ’ A N ’
4Nc(t,)( e +SIEN)[ae(t) — wING(L) +; NI
1 N8 Cqty v ) .
X(EmNc(t )a;(t )+Tlﬁ22K(t )WJF(;—%[QU ),N((t")] +O((ﬂlﬁ2K)2)}- (65

The potential in this effective action is defined by with time correlation of the noise
Ncﬁz 1 2 2 |ﬁ22K(t)
V(q’Nc)—; <4mqu+szcwj qj | (66) (W) () == 8(t' ~1). (69)

which is precisely the potential given by E@3), without . ) ) )
the mean-field interaction term. The condensate chemical pathis stochastic equation again has the form of a Josephson

tential for the Gaussiaansatzis given by equation with a noise term added, similar to Es@). Note
that the noise term in E@68) is inversely proportional to the
N 1 . square root of the number of particles in the condensate. As
mdt)= m(q(t),Nc(t))JrZ qu]?(t), (67)  aresult, the Fokker-Planck equation for the probability dis-
c J

tribution of #y(t), associated with the Langevin equation in

Eq. (68), will have a “diffusion” term inversely proportional

as ex}?ected. We now assume the dimensionless parameigfihe number of particles. This means that the global phase
Bif%" to be small, and thus, restrict ourselves to a temperays only well determined if there is an infinite number of

ture regime sufficiently far below the critical temperature, gtoms in the condensate, otherwise the global phase under-
where| 33| <1, i.e., the collisionless regime. We can then goes phase diffusion, due to thermal fluctuations. This
to a good approximation neglect the terms quadratic ifnechanism for phase diffusion is different than the phase
Bih>K. The effective action in Eq65) thus becomes a sum «gjffusion” considered by Lewenstein and Yo[18], who

of three squares, and we may extract equations of motioonsidered phase spreading due to quantum fluctuations.
with Gaussian noise terms, exactly as in Sec. Il. Since the Having made these remarks, we perform the integration

action is quadratic irfg(t), we may integrate over this glo- oyer g,(t), and are left with a probability distribution fo¥
bal phase exactly, because it only requires a Gaussian intgnqq. It is given by

gral. However, before we perform this integration, we dis-
cuss the stochastic equation of motion fy(t). With the

techniques discussed in Sec. Il, we easily see that it is given .
by PINc.a.v:t]= | dINGJaraldrv]aTvt)—a(t)]
dog(t 1. 1 ) | e
jﬁ )=M—Mc<t>+§ 2MA =2 Zma (0D Xexp[gse [Ncyq’vl]- (70
v(t)

, (68) Here, we introduced the velocity(t) =q(t) by means of a
VN(t) delta functional. The resulting effective action reads
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42 dNg(t") densate atoms. This stochastic rate equation also follows di-
S N¢,q,v]= f n | ( < rectly from the effective action in Eq.71) with the tech-
to ﬁE (t") [4Ng(t") | dt’ niques discussed previously and is given by
B ’ N __ éiEK(t)[ (1) — wING(t) +2N(t) 7(t)
+§‘2K09[MJV>—MJNAV>) at 2 #e() =~ N (),
(74)
( ") with correlations of the Gaussian noise given by
AN mN(t)v(t) K()
(nlt)m()= S(t'—1). (79
(t )B vj(t’)
———in2K ()~ As explained in the Appendix, we have to treat the multipli-

20471

gt cative noise in Eq(74) again as a Stratonovich process, to
achieve the correct equilibrium distribution. Physically, Eq.

(72) (74) describes the growth or evaporation of the condensate.
The noise term in Eq.74) represents the fluctuations in the
number of particles.

Equations(70) and (71) are similar to the path-integral ex- To see that Eq972) and (74) generate the correct equi-

pressions we encountered in our discussion of the Browniafibrium distribution, we now discuss the Fokker-Planck

motion of a particle in a potential in Sec. Il. Therefore, we equation forP[N,,q,v;t]. However, let us first discuss the

immediately conclude that the equations of motion for theequilibrium solution we expect on basis of H¢3). A sub-

variational parameters are given by stitution of the Gaussiamnsatzin Eq. (61) into Eq. (43)

+ﬂ( t'),N(t")) 2
aqu( ) N(t") .

results in
1 c( )B g;(t)
2mNc(t)qj(t)+ 2 (t )quz(t) P[Nc,q,v;t—mo]
1
_ ﬂ(q(t) N(D)+ V2N(1) £(1) 72 ocexp{ —,8( EJ: ZmNCvJ-ZJrV(q,NC)—,u,NC) (76)
aq; ne q;(t) ’

_ ) _ _ ) whereV(qg,N.) is the potential given by Eq63). Although
Wlth the time correlations of the Gaussian noise tegn(s) the Langevin equations fax;(t) andN(t) did, in first in-
given by stance, not include the mean-field interactions, we argue that
i723K(t) they also are correct for the interacting case. The reason for
(&(D&(t"))= — Gdt=t). (73)  this is, that in this manner, we are led to the correct equilib-
rium distribution as we show now. Let us therefore determine
So, we have found the important result that the variationaine Fokker-Planck equation for the probability distribution of

parameters obey the equations of motion of a Brownian partc: d @ndv, generated by the stochastic equations in Egs.
ticle with masamN,/2 in a potentiaV(g,N,). Physically, the (72) and(74) with the interacting potential in Eq63). It is

variational description of the condensate with the Langevirf'Ven by

equation in Eq(72), as opposed to E¢62), has two impor- OPIN..,q.v:t] P
tant extra features. First, there is a damping term present, i.e., —C’ = 2 { .
a term proportional to the velocik'yj(t). This damping term J ﬁqi ‘9”J

Bt K(t) 2 oV

collective modes of the condensate. Since the damping term —
2mq2 ! mN &qj

is proportional ta4 %X, we conclude that it arises because of
incoherent collisions between condensate and thermal atoms,

may, for example, be used to calculate the damping on the (
——(q,No)

which drive the condensate back to equilibrium, and let the
phase of the condensate relax to a state where the phase is,
on average, position independent. Second, since the Lange-
vin equation also contains fluctuations, it may, for example,
be used to describe the stochastic initiation of the collapse
observed in’Li [14-17. Our description contains thermal
fluctuations, which cause the condensate to overcome the
macroscopic energy barrier and start the collapse. In the next
section, we will present the result of calculations that we
have done on the two above-mentioned phenomena.

Since the potential in the Langevin equation in EfR)
depends on the number of condensate partidlgswe have
to couple Eq(72) to a rate equation for the number of con-
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and insertion of the equilibrium distribution shows that it is the Keldysh self-energy will be time independent to a good
indeed a stationary solution of this Fokker-Planck equationapproximation, and we thus drop its explicit dependence on
Thus, we conclude that the Langevin equationsgfigt) and  time. For a description of the collective modes, we also have
N(t) give, with the potentiaV/(qg,N.) given in Eq.(63), the  to consider variations in the average number of particles of
correct description of the nonequilibrium dynamics of athe condensate, caused by the excitation of a mode. This
Bose-Einstein condensate in the Gaussian approximatiomeans that we also have to consider the rate equation for the
This description includes damping of the collective modes ofaverage number of particles

the condensate, as well as condensate growth and evapora-

tion. The essence of our method lies in the fluctuation-

dissipation theorem, which ensures the relaxation towards dN() B izK

the correct physical equilibrium distribution. gt~ 2 2 udO=pINO+—=. (79

V. APPLICATIONS . . . .
In writing down this equation, we again left out the brackets

In this section, we first apply the Langevin equations for(- - - ), which denote averaging over different realizations of
the variational parameters, derived in the previous section, tthe noise in the stochastic rate equation in &¢). The last
the calculation of the damping and frequency of the collecterm on the right-hand side of E(9) is a so-called noise-
tive modes of the condensate. As a second application, wi@duced, or spurious drift term. It arises because in(E4),
also obtain a description of the initial growth of a conden-we are dealing with multiplicative Stratonovich noise. With-
sate. out this drift term, the equilibrium number of particles pre-
dicted by Eq.(79) would not be correct, as we will see later
on. Note that the average of the stochastic rate equation in
Eq. (79) is very similar to the result obtained by Gardiner
In this section, we use the Langevin equations in®#@ et al.[38]. However, their expression for the chemical poten-
for the Gaussian variational parameters, and the stochastig| of the condensate is different since they do not consider
rate equation in Eq(74) for the number of particles in the a Gaussiamnsatz and they also have not made the “classi-
condensate, to obtain a description of the collective modes afal” approximation to the fluctuation-dissipation theorem.
the condensate. We calculate the frequency and damping of To obtain a description of the collective modes of the
both the monopole and quadrupole mode in an isotropic tragsondensate, we have to linearize the equations in &@.
and compare those results with the theoretical results foungnd (79) around their time-independent equilibrium solu-
by Williams and Griffin[35,36. Since we are considering tions. Let us therefore puq]-(t)=qj(°)+ 59;(t) and N(t)
the case of a static thermal cloud, our results will be correct \y, + 5N(t) and substitute this in Eqs(78) and (79).
only for the modes where the thermal cloud does not play agquating the zeroth-order terms after linearization results for
important role, i.e., for the out-of-phase mod@2,23. In e average rate equation in
the experiments of Jiet al. [37], this turns out to be the
guadrupole mode. We calculate the frequency of the quadru-
pole mode for this experiment, by means of a fit to the ex- aV(q®,No) 1
perimental data for the damping. {B(T—M) - N—}Nozo- (80)
The frequency and damping of the collective modes are, ¢ 0
as measured in experiment, averaged quantities. Therefore,

we first write down the equations of motion for the averagesrom this equation, the equilibrium number of particles may
of the Gaussian variational parameters and the number fe calculated. It is, however, much more convenient to use
particles in the condensate. The equations of motion for théne number of particles in the condensate as experimental

A. Collective modes of the condensate

average of the Gaussian widths read input, and calculate the chemical-potentialsuch that Eq.
. N2 1 () N (80) is satisfied. The equilibrium conditions for the Gaussian
EmNc(t)dj(t)_l_ d iﬁzquJZ —— (1),Ng(1)). variational parameters read
aj(t) gj
78
79 V(99 Ng) 0 61)
For notational convenience, we omit the brackets-) de- aq; o

noting the noise average of a stochastic quantity, and denoted

the averages of the Gaussian variational parameters simply ] ) )
by q;(t), wherej equalsx, y, or z. The average equation in from which q©® can be calculated. For the noninteracting
Eq (78) is obtained from the Langevin equation ﬁn(t) by case, whera=0 in the pOtentIal, the above equa“ons result
simply leaving out the noise term. This may be done becaus® d; = VAi/mw; as expected. In this casl, is given by

the noise in the Langevin equation does not induce a drift

term for the average. This follows directly from the Fokker- .

Planck equation, with the use of partial integration. Since we Ne— B(E(a’ + oyt w,)— ) 82
want to describe a perturbation around a static equilibrium, 0 2\ OxTOyT @) '
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which is the correct equilibrium ground-state occupation The linearized equations of motion for the deviation of
number of a noninteracting Bose gas, within the “classical’the Gaussian variational parameters take the form of damped
approximation. Note that without the noise-induced driftharmonic equations

term in the rate equation for the average number of particles,
the correct equilibrium would not have been obtained.

The linearized equations of motion for the deviations are
found by equating the first-order contribution on the left- and
nght-hand side of Eq_s(.7_8) a_1nd(79) aftfa_r I|_near|zat|on. The _ 2 Qj2k5Qk(t)- (86)
equation for the deviation in the equilibrium numbeg of K#]
condensate atoms due to the excitation of a collective mode

. . (e h
89;(1)+T;8q;(t) = —j SN(t) — Q7 5q;(t)

is given by The damping rate§; are given by
SN(t)=—T 6N(t)— >, a;89;(1). (83 Fj:%ifﬂz& (87)
i 2m(q;™)
Here, the parametdr is given by and the frequencieQ; and () read
1 *V(q®,N 2 *V(qN 2 #V(qON
F:_giEK N (q O) (84) QZ (q O) 2 (q O).

BN, IN2 ' IomN o> K mNy  9q;d0y

(89)
where we eliminated the chemical potentialby using Eq. ) )
(80). Physically, T describes the lack of detailed balance In EQ.(86), we introduced the parameter-mNyiX. /4 for
between the thermal cloud and the condensate due to an eiter convenience. Physically, the damping rdtesirise be-
citation of a collective mode of the condensate. In generalcause of collisions between thermal atoms and condensate
this lack of detailed balance will cause damping, and willatoms. This causes damping of the collective modes on the

alter the frequency with respect to the undamped case. Tﬁg)ndensate, and also alters the frequencies with respect to the

parametergli are given by results obtained without damplng It should be noted here,
that all the parameters mentioned above may be calculated
B. . V(AN microscopically, by using the expression for the Keldysh self
aj=51 aq;oNg (85 energy given in Eq(48).

To obtain the eigenmodes of Eq83) and(86), we have
and represent the response of the fluctuations in the numb& consider solutions of the form (oN(t),oq(t))
of particles due to a deformation of the condensate ijthe = (SN(0),5q(0))e'“". For such solutions, we may rewrite

direction, and vice versa. these equations as
|
a(l'—iw) ay ay a, ON(0)/
ay Q)Z(—iwrx—wz Qiy Q)Z(z 509,(0) o @9
ay Q% w;—iwly—o? 7, 89,(0) '
a, 02, QZ, Q2—iwl,—w?| | 60,0)

This matrix equation only has nontrivial solutions if the de-and the eigenvalue equation simplifies significantly. For the
terminant of the above matrix is equal to zero. Solving thisfrequencies and damping rates we have
condition for w results, in general, in complex frequencies

w=wre— i wy,. The real pariwge then gives the frequency 0,=0,=0,=0,,
of a collective mode, whereas the imaginary payt, gives
the damping of this mode. Qyy=Qy=Qy=Qy (90

1. Isotropic trapping potential I=ry=I=I,.

We consider now the case of an isotropic trapping potenfor the parameters; , we have the same simplification, and
tial V&(x) = (1/2)mw3x? for a discussion of the frequencies we denote these parameters by. With these simplifica-
and damping rate of the low-lying collective modes of thetions, the eigenmodes may be calculated analytically. One
condensate. Because of the spherical symmetry of the comrode is doubly degenerate, with eigenvectors (0110)
densate in equilibrium, the number of parameters reducesnd (0,1,0;-1), and is thus the quadrupole mode. From the
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form of the eigenvectors of the quadrupole mode, we are lec, ' ' TF-limit —

to the important conclusion that the number of particles in‘g L ideal qas 1

the condensate is constant for this mode. Physically, this ma\g 9

be understood from the fact that the motion of the conden-8 ¢ |- ]

sate is “volume preserving” in this case: as one direction g B

shrinks, the other one expands and vice-versa. This motiore

does not lead to a change in the chemical potential of thex 08 i

condensate, at least to a linear approximation, and therefor g .

does not affect the average number of atoms in the conden:@' 04 | 1

sate. The complex frequency of the quadrupole mode i<© A

given by S o2} R

~ \/QZ—Q2 (L 2— }'F 91 = ' ! ! .

©quad™ U ol (92) 0 0.2 0.4 0.6 0.8 1

. o TTgec

Note that from this expression, it is clearly seen that the
damping also affects the frequencies of the collective modes FIG. 1. The solid line gives the condensate fraction fdt'Rb
[23]. gas of 2 10 atoms in an isotropic trap with/27=10 Hz. The

The frequency and eigenvector of the monopole modélashed line corresponds to the ideal Bose gas in the thermodynamic
may also be calculated analytically for the isotropic caselimit.
However, because of the rather formidable expressions in-. ) )
volved, we omit them here. For the monopole mode, thef!es, and the damping rates as a function of the reduced
number of atoms in the condensate is not constant, but oscifemperaturel/Tgec, whereTgec is the critical temperature
lates out of phase with the spatial degrees of freedom of thior an ideal Bose gas. _ _
condensate. This may be understood from the fact that the The procedure for calculating the number of atoms in the
monopole motion leads to a global increase in the density ofondensate as a function of temperature is as follows. For a
the condensate, and therefore affects the detailed balance @iV€n number of condensate atofds, we first calculate the
the condensate with the thermal cloud. In the case where w@verage condensate density profile and the chemical potential
ignore the fluctuations of the number of atoms in the confrom the time-independent Gross-Pitaevskii equation. In the
densate, and take= a, =I'=0, the expression for the com- Thomas-Fermi limit, the average condensate density profile

plex frequency of the monopole mode is given by is given by
r\? 1 1
mono™ \/95“%_(5) o (92 (P00 [*=—5 (k= V=x)), (93)
Comparing the results in EqE91) and(92), we see that the With a condensate chemical potential
damping rate of both modes is equal in first ordef’in at 5
least within our variational approximation. _ w= ﬂ(lSNoa/I)%, (94)
We now turn to an explicit calculation of the frequencies 2

and damping rates of the quadrupole and monopole mode in . . )
an isotropic trap. We have used the same parameters as wikherel = JAi/ma, is the harmonic-oscillator length. Clearly,

liams and Griffin[35,36, and thus have taken the trapping the condensate density may not be negative, so(®#).is
potential frequency equal tey/27=10 Hz. The calcula- only valid if the condensate density is positive, otherwise, it
tions are performed foP’Rb, which has a scattering length Should be taken equal to zero. pJd=12u/fiwo=Rrr, the

of a=5.7 nm. We take the total number of atoms equal totondensate dens@y is equal to zero. Ne_xt, we calculate the
Nyow=2X 1CP. Since the number of atoms in the condensaté"'umb_er of atoms in the thermal cloud W|th the value of the
is large at most temperatures below the critical temperaturé&nemical potential determined by E@4) using

we are mainly in the Thomas-Fermi regime, and may neglect

the kinetic energy of the condensate atoms with respect to N _J de dk N(e(x,k)) (95)
their mean-field interaction. Therefore, we have used a thermar™ (2m)3 e

Thomas-Fermi profile for the condensate to calculate the col-

lision integral in the expression for the Keldysh self energywith N(e(x,k)) given by Eqs(37) and(49). We repeat these

in Eq. (48). As a result, the Keldysh self-energy turns out notsteps for a variable number of condensate atoms bgfil

to be constant over the size of the condensate in this limit;+ Nyerma= Niota- The result of the calculation is shown in
contrary to our assumption in the derivation of the stochasti¢=ig. 1, together with the result for an ideal Bose gas in the
equations for the variational parameters. To compensate faghermodynamic limit. Using this result fo, as a function
this effect, we have calculated® ¥ by taking a volume av- of the temperaturd, we have calculated the Keldysh self-
erage ofa3KX(x) over the size of the condensate. We reportenergy as a function of temperature using the expression in
our results for the number of condensate atoms, the frequetEq. (48) [39]. In Fig. 2, the function fA3X(x)| is shown,
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FIG. 2. The dimensionless quantify#3X(x)|. At |x|=Rq¢
there is a divergence, when the collision integral in E4B) is
calculated in the Thomas-Fermi limit. This is indicated by the
dashed line. The calculation is performed fo# 0.5T g with the
same parameters as in Fig. 1.

FIG. 4. The damping rate for both the quadrupole and monopole
mode for a condensate in an isotropic trap, which is the same for
small damping in our variational approximation. The inset shows
the dimensionless parametg@#3X|. The parameters are the same
as in Fig. 1.

for T=0.5Tgec. Itis clear from this figure that the Keldysh sentially T=0 results for a variable number of condensate
self-energy is not constant over the size of the condensatgtoms. In the Thomas-Fermi limit, these frequencies are in-
and even diverges in the Thomas-Fermi approximation afependent of the number of atoms in the condensate, but
|X|=Rre. The equilibrium values of the variational param- pelow N,~10* condensate atoms, where the Thomas-Fermi
eters were calculated using E&1). Subsequently, the vari- approximation starts to break down, the frequencies deviate
ous parameters were calculated from E@Y, (85), (87),  from the T=0 results, as is seen in Fig. 3. Although for the
and(88). The complex frequency of the quadrupole was cal-monopole mode the full expression for the frequency and
culated from Eq.(91), and the complex frequency of the gamping involves the parametef’s a,, and«, which are
monopole mode was calculated from the corresponding ange|ated to the fluctuations in the number of condensate atoms
lytical expression, which we have omitted here. due to the excitation of a collective mode, this hardly affects
The results for the frequencies are presented in Fig. 3. Th@he results for the frequencies and damping of this mode. We
dashed lines are the=0 frequencies obtained by Stringari therefore conclude that the fluctuations in the number of con-
[40], in the Thomas-Fermi limit. Since the calculations are ingensate atoms during the excitation of a collective mode
the collisionless limit, wher¢g#s2X|<1, the results are es- hardly affect the damping and frequency of this mode, and
that the expression in Eq92) is valid as long aggaX K|
26 T T T <1.
The results for the damping rate are shown in Fig. 4,

24 r 1 together with the result fof343¥|. Within our variational
monopole approximation, the damping rates for both the quadrupole
22r and the monopole modes are found to be the same in the
oL collisionless regime considered here. As clearly seen from
g Fig. 4, the damping rate increases with increasing tempera-
3 18l ture. This is because the density of the thermal cloud be-

comes larger with increasing temperature, and there are
16+ —J therefore more collisions between condensate and thermal

atoms, which cause the damping. Williams and Griff3]

14 F 3 | T T have also calculated the damping of the monopole mode for
quadrupole a condensate in a spherical trap in the presence of a static
1.2 ! : ; thermal cloud. These authors have generalized the wave
0.8 0.85 0.9 0.95 1 ; . ; .
TTeec equation derived by Stringaf#0] to nonzero temperatures,

similar to our result in Eq(58), albeit that their work does
FIG. 3. Frequencies for both the monopole and quadrupold0t obey the fluctuation-dissipation theorem as mentioned
modes as a function of the temperature. The dashed lines indicaff€viously. They have calculated the damping of the mono-
the zero-temperature results found by Stringa0], i.e., wqyaq pole mode in perturbation theory, considering the damping as
= 2wy and wmene= VB wo. The plot starts al = 0.8Tgec since for @ perturbation parameter. Our results for the damping of the
smaller temperatures the deviation from these values is negligiblenonopole mode have the same order of magnitude as their
The parameters are the same as in Fig. 1. results. There are, however, some qualitative differences. We
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find that the damping rate increases very slowly with tem- ' ' ' ' ' ' '

perature for a large temperature regime 0.95T g, and T — i
then increases dramatically as the temperature approache 4, T — i
the critical temperature. Williams and Griffin find that the S

damping rate increases much more gradually with increasing 1+
temperature. These differences are probably due to the fac o
that these authors take into account that the collision integra8 08
in Eq. (48) has a position dependence. In R&6], Williams 3
and Griffin improve upon their Thomas-Fermi calculation for
the damping rate by using the Bogoliubov-deGennes equa o4 | + 4

06 |

tions that follow from linearizing the Gross-Pitaevskii equa-
tion with an imaginary term. In this case, their results for the 02|
damping also show a dramatic increase as the temperatur . . . . . . .
reaches the critical temperature and the Thomas-Fermi ap 0 0.2 0.4 0.6 0.8 1 12 1.4
proximation breaks down. In this latter work, it is also found 0R/0g

that the damping for the quadrupole mode and the monopole

mode are slightly different. The fact that we find that the FIG. 5. The complex» plane. In our expression for the fre-
damping for both the monopole mode and the quadrupolguency and damping rate of the=2 quadrupole mode in E¢91),
mode are equal to first order i, is a result of neglecting the complex frequencies lie on a circle of radi{w, . The experi-
the spatial dependence of the Keldysh self energy. William#gnental points taken from Ref37] are also shown.

and Griffin also find that there is no first-order correction in

the damping to the real part of the frequencies, a conclusiopex frequencies lie on a circle of radiu$wqyad

consistent with Eqs(91) and (92). — 0702 ~3 To test th liditv of )
Summarizing, we have calculated the damping and fre; F~ 07 =\2w,. To test the validity of our expression

. f?r the frequency of the quadrupole mode, we have plotted
guencies for the quadrupole mode and the monopole mode e experimental data points taken from R&f] in the com-
a condensate in a spherical trap. Our results differ slightl P P :

both qualitatively and quantitatively from the theoretical re-P/€X @ Plane. In Fig. 5, the result is shown, together with a
sults found by Williams and Griffi{35,36. These differ- circle _of radius\2w, . _T_he g_ood_quan_tltau_ve agreement with

ences are probably mostly due to the fact that the calcula@xPeriment, clearly visible in Fig. 5, implies that the expres-
tions are performed for a large number of atoms in the trapSion in Eq.(91) for the frequency and damping of the quad-

which implies that the collision integral involved in the cal- fupole mode is correct, even in the hydrodynamic regime,
culation has a significant position dependence, which ouwhere|B#3X|>1. This may at first come as a surprise, since
variational approach does not properly account for. Howevemur variational approximation to the stochastic nonlinear
for a smaller amount of atoms in the trap, we believe that ouSchralinger Eq.(46) was derived in the collisionless regime,

method should give accurate results, and goes in principlevhere| 543 K| <1. Apparently, the relatiofwgyad = 2w, is

beyond the perturbation theory considered in RE35,36.  also valid in the hydrodynamic regime. This may be under-
) _ ) _ stood from the fact that this relation for the complex fre-
2. Anisotropic trapping potential quency is quite general for a damped harmonic oscillator and

We now calculate the frequency of the=2 quadrupole ~We expect on general grounds that the quadrupole mode of
mode, wheram is the azimuthal quantum number of the an-the condensate may be described in this way, both in the
gular momentum, for the experimental parameters of Jirgollisionless and in the hydrodynamic regime.
et al.[37]. In this experiment, one load¥Rb atoms into an To determine|3A2X| as a function of temperature, we
anisotropic trap, with radial frequenaey,/2m=129 Hz, and have fitted the imaginary part of E(P1) to the experimental
axial frequencyw,/27m=365 Hz. Although the equilibrium data for the damping presented in R&7]. From this fit, we
shape of the condensate is now anisotropic, the expressidrave calculated the dimensionless parampsé> |, using
for the frequency of the quadrupole mode found in the isoEQs.(87), (88), and(91). The results of this fit are presented
tropic case in Eq(91), turns out to be also correct for the in Fig. 6. The value fotg#3.X| found in this manner is then

m=2 quadrupole mode. The paramet€&s, Q. , andl’,, used to calculate the real part of E§J), i.e., the frequency
are now given by of the collective mode. In both the fitting of the damping,
and the calculation of the frequency, we used the fit pre-
Q,=0,=Q,, sented in Ref[23] to determine the experimental values for
the number of condensate atoms as a function of the tem-
O =0yy=0yy, (96) perature. The result for the frequency is presented in Fig. 7,
together with the frequency calculated from Ef1), with
=0,=9,, I',=0, i.e., the zero-temperature frequency for a variable

number of condensate atoms. The experimental points are
which follow from the axial symmetry of the condensate in also shown. In Fig. 7, a good quantitative agreement with the
equilibrium. It follows from the expression for the complex experimental results is found. Figure 7 also shows clearly
frequency of the quadrupole mode in EQ1) that the com- that at nonzero temperatures, the damping seriously affects
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FIG. 6. Fit to the damping rate of the quadrupole mode, as F|G. 8. The condensate energy as a function of the condensate
measured by Jiret al. [37]. The solid line shows the fit and the width in the Gaussian approximation for three different values of
experimental points are taken from RE87]. The inset shows the  the condensate atom number. If the number of atoms in the conden-
value of i3], as calculated from this fit with Eq$87), (88),  sate is larger thai,,, the condensate is unstable; otherwise, a
and(91). metastable condensate is possible.

the frequency of the quadrupole mode, as was also found
Al Khawaja and Stoof23]. However, a microscopic calcu-
lation of 23X in the Thomas-Fermi limit for the experimen-
tal conditions of interest, by means of a volume average o

Eq. (48) over tr|1<e size of the con_densate, turns out to giVesolution of the average of the Langevin equation in @6),
values for| pfi>"| that are gpproxmatel_y one order of mag- to investigate the importance of the position dependence of
nitude too small to explain the expenmental data for theﬁEK(X)’ and a comparison of this numerically exact ap-
qyadrupole mode. Therg are severaj possible reasons fort TPoach to the variational method developed here. Another
dlsirepancy. One possible reason 1S that the calculation ossible. reason for the discrepancy with the ex.perimental
% as an average over the size of the condensate Qb5 s the presence of other sources of damping, such as

K . . . .
A%7(x) is not & goodKapprOX|mat|on. Sinde (x) becomes | Jn4ay and Beliaev damping, which have not been included
large compared t&"(0) at the edges of the condensate, i, our calculations.

where the depletion of the thermal cloud due to the conden-

sate’s mean field is relatively small, the position dependence

of #3K(x) is of importance, in particular since the density B. Condensate growth and collapse

fluctuations occur for the quadrupole mode precisely near the Although so far we have focused on repulsive interac-

tions, and thus a positive scattering lengthwe consider in

bé(dges of the condensate. This is clearly shown in Fig. 2,
which shows that the Keldysh self-energy even diverges at
X| = Rqg in the Thomas-Fermi limit. With respect to this re-
ark, we refer to future work concerning the full numerical

1.45 this section the case where the scattering length is negative.
In this case, the condensate energy in the Gaussian approxi-
14 mation becomes
2 PINY
0 V(q,Ng =2, (MJrEmNcwquf)—'am—Nc.
3 T \4mg 4 V2mmaaq,q,
3 13 97)
1.25
From this potential, it is easily seen that there is only a meta-
12 stable condensate possible if the number of atoms in the
condensate is smaller than a certain critical value. This is
1.15 L L L L illustrated in Fig. 8, where we show the potential in E2j7),
0.4 0.5 0.8 0.7 0.8 09 for several values of the number of atoms in an isotropic
T/Teec condensate. For an isotropic trap, the maximum condensate

FIG. 7. The frequency of the quadrupole mode as a function opumbeerax turns out to be given by the condition

temperature, calculated with E@1), by using the fit shown in Fig.

6. The dashed line shows tfie=0 frequency for a variable number |a| 2@

of condensate atoms. The experimental points taken froretJh N, ..—<———=0.67. 98
max | 5/4 ( )

[37] are also shown. 5
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If the number of atoms in the condensate is above this valugion, for a condensate that has initially no atoms. In the ex-
the potential in Eq(97) has no(metastable minima. If the periment performed by Gertoet al. this would correspond
number of atoms is smaller tha¥,,,,, the potential has a to the situation where the condensate is dumped completely.
metastable minimum, and the condensate may start to cofFhe stochastic rate equation in E@4) is well suited for this
lapse by overcoming the metastable energy barrier by eithgsurpose, since it also contains fluctuations, which initiate the
macroscopic quantum tunneling or thermal fluctuatigk®.  growth in this case. Without these fluctuations, the growth
The stability condition for the condensate, found by a fullrate of the condensate would never become nonzero. These
numerical solution of the Gross Pitaevskii, turns out to beinitial conditions for condensate growth are different from
Nca/l <0.58 [41], and thus, we see that the Gaussian apthe experiments conducted by Miesratral. [42], in which

proximation is only 16% off. o ~ the condensate growth is observed after evaporatively cool-
The first experiments on Bose-Einstein condensation in éng the gas. In this case, the ground state already has a rather
gas with attractive interactions were performed withi large nonzero occupation number above the critical tempera-

[2,14], which has a negative scattering length af ture, which causes a growth process dominated by Bose
—1.45 nm. In these experiments, the gas is evaporativelgtimulation. Therefore, for a theoretical description of the
cooled below the critical temperature, which causes the corcondensate growth, it is not so essential to include fluctua-
densate to undergo several growth and collapse cycles befotiens in this cas¢43,44. We perform our simulations for the
relaxing to a metastable equilibriufrl5]. Because of the experimental conditions reported in RgL7]. The trap fre-
stochastic initiation of the collapse, one could not make ajuencies are given byw,/27=151 Hz and w,/27
sequence of destructive measurements. However, a statistical131.5 Hz. We consider a thermal cloud with 70 000 atoms
analysis revealed that during a collapse the number of corat a temperatur&=170 nK. The parametek is taken equal
densate atoms is not reduced to zero, but that the collapse four. These values correspond to typical experimental con-
stops, presumably because of elastic and inelastic collisionalitions [45]. The Keldysh self-energg>K is calculated us-
loss processes, when the number of atoms in the condensaig) Eq. (48), with the nonequilibrium distribution function
is about 200[16]. In a recent experiment, one was able tof(e) given by Eq.(99). The mean-field effects of the con-
make a sequence of destructive measurementpdyially)  densate on the thermal cloud are neglected, an approximation
dumping the condensate by a two-photon pUl$€], and  that will certainly be valid in the initial stage of the conden-
thus observe the subsequent regrowth and collapse of theite growth, when the condensate is small. Moreover, we
condensate. take the chemical potential of the condensgig(x,t)) in
Using the Langevin equations fqy(t), and the stochastic Eq. (48) equal to zero. Since the density of thermal atoms
rate equation for the number of atoms in the condensate, Wgill be the largest in the center of the trap, and the conden-
are able to describe this experiment. To do so in the easieshte is small in this case, we do not perform an average to
way, we want to model the thermal cloud by an equilibriumcalculate# 3 ¥, but simply takeiSK=#3K(0).
Bose distribution of a noninteracting gas. However, numeri- \We solve the Langevin equations coupled to the stochastic
cal solutions of the quantum Boltzmann equation for thesgate equation, using standard numerical techniques for sto-
experiments have shown that the thermal cloud is not irchastic differential equationg!6]. Since the initial number
equilibrium, but may be well modeled by a distribution func- of condensate atoms is equal to zero, we put at time the

tion given by[16] values of the Gaussian variational parameters equal; to
, =hilmw;, which is their equilibrium value in the limit
(e)= exdpn’ —m] _ A (999  Where the number of condensate atoms approaches zero. A
exdB(e—u)]—1 exgdBe—p)]—-1" slight subtlety arises in the use of the stochastic rate equa-

tion. One has to realize that the chemical potential of the
At high energiesf has the form of a Boltzmann distribution thermal cloud in this equation is measured with respect to the
with chemical-potentiaju’ and temperature &48. At low energy of the lowest excited level, since we want the distri-
energies,f has the formf(e)=A/B(e— ), which is pre- bution function to describe the noncondensed atoms only.
cisely the low-energy tail of a Bose distribution with effec- This means that we should use in the rate equation the
tive temperatureA/kgB. Therefore, we conclude that Eq. chemical potential found in matching the distribution func-
(40) is to a good approximation still valid for the distribution tion in Eq.(99) to the number of thermal atoms, and add the
function given by Eq.(99), if we make the replacemem@  energy of the lowest excited level to it. This is immediately
— B/A in the operator on the right-hand side of E40). In  clear when we write the number of atoms in the thermal
this manner, we obey the fluctuation-dissipation theorem¢loud as a sum over occupation numbers, instead of an inte-
and have also accounted for the fact that the distributiorgral over energy. Figure 9 shows the results of our simula-
function of the thermal cloud is a nonequilibrium distribution tions. In Fig. 9a), we plot the number of condensate atoms
function. We expect that this approximation will give quan- as a function of time, for the solutions of the Langevin equa-
titatively correct results for the condensate growth rate, sincéions and the stochastic rate equation for three different real-
it is particularly good for the low-lying energy levels, which izations of the noise. We assume that during the growth and
dominate the condensate growth. subsequent collapse of the condensate, the distribution func-
Before comparing it to the experimental data reported irtion of the thermal cloud is not affected. The maximum num-
Ref.[17], we discuss some aspects of the numerical solutionber of atoms in the condensate is for the parameters under
of the stochastic rate equation coupled to the Langevin equaonsideration here equal t§,,,,=1470 atoms, within the

013603-19



R. A. DUINE AND H. T. C. STOOF PHYSICAL REVIEW A65 013603

1901 (a) .
1400 - ,'f Hl -
1200 F ln 1 | i
1000 | f lll.fli / I ' 1
il | " !

600 - j | ﬁ\' Hw

200 | ".l"* Jw '*rJ' Mﬁa"\u I I'._

\

[] '*1 L
i A .Fn"' L
0 ﬂuﬂ{lmeﬁH kd?ll":‘:ﬂ A ] ]

number of atoms in condensate

0 0.2 0.4 0.6 CI.B 1 1.2 1.4
12‘E|'E|' T T T T T T T
(b)
1000 =
800 | f -
; |
N ' !
| .y Ll
600 [ |.M i I 1 Ao flr
- ' | VI \[ iy
g ‘l LN A A Y Y f
K AL W
= W I I|'||
400 + e [ | f
/ﬂf’f—:‘ i d
i Ny o
L ar. W el
200 F Ay "' ! -
/{.‘Iﬁ".- "'u.
-I."-'N
ﬂ . 1 | | 1 1 | 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4
time (s)

FIG. 9. (Colon (a) Growth-collapse curves of &.i condensate, anth) their averages. The colored lines(@ display the number of
condensate atoms for solutions of the Langevin equatiorgfft), coupled to the stochastic rate equation fyt), for three different
realizations of the noise. Ifib), the red line corresponds to an average over 5 realizations, the green line to 10, and the blue line to an average
over 1000 different realizations of the noise. The simulations are done for a thermal cloud of 70 000 atoms With nK andA=4.

Gaussian approximation. This means that during one growthenly. Once a collapse is initiated by the noise in EGR)
collapse cycle the number of atoms in the thermal cloud isand (74), we model the collapse by putting the number of
reduced by only approximately 2%, and therefore, this apeondensate atoms instantaneously equal to a Gaussian ran-
proximation seems valid for the description of one growth-dom number with a mean value of 200 and a deviation of 40,
collapse curve. However, in principle, the parametfer which corresponds to the 20% systematic uncertainty re-
should gradually approach one during the growth-collapsegorted in[16], and the variational parametegg(t) equal to
process due to the relaxation of the thermal cloud to equilibtheir corresponding equilibrium values, given by E§1).

rium. We expect this to affect our simulations at longer timesThe collapse occurs on a time sc&é1/w) which is much
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faster than the time scale on which the condensate grow: 1200
Since we are interested in the growth process here, and not ia)
the loss process that stops the collapse, this appears a re 1000 | * .
sonable way to model the collapse. Figufe)Zlearly shows ‘
that when the number of condensate atoms approaches t 800 |
maximum numbem,,,,, the condensate tends to collapse. i g B
We found that the collapse is initiated stochastically by the 800 1 . ' J
fluctuations in the number of atoms in the condensate, whic T . 1
cause density fluctuations that cause the condensate to ov a0 L i1 |
come the macroscopic energy barrier and start the collaps i i t ¢ .
As a result, the number of condensate atoms may be larg 1
thanN,.x. Since our description only includes thermal fluc-
tuations, we may ask if macroscopic quantum tunneling
might be of importance. However, previous work has showr
that decay by thermal fluctuations is the main decay mechz {5
nism for the temperatures of interddi5]. In Fig. 9b), we
plot the number of atoms in the condensate as a function ¢
time, averaged over different realizations of the noise. The o
red line is an average over five different realizations of the & I .
noise. A growth-collapse signature is still visible in this & * L ¥4
curve, although the stochastic growth process and initiatiol ¢ | Frs= 1% t !
of the collapse has led to a dephasing of the moment o', 50 ~+" T
collapse. The green line shows an average over ten realiz | i |
tions of the noise. Although the initial growth is clearly vis- & 400t . ‘ Pl sl -
ible in this curve, the collapse can hardly be seen from this g | t1]
average, since the noise has led to an almost comple s= zuq |
dephasing, and the collapse is “averaged out.” Finally, the =~
blue curve shows an average over 1000 realizations of th @ . : . . .
noise. No signature of the collapse is visible in this curve, 2 0 02 04 D& 0B 1 12 14 18
because the averaging leads to a complete dephasing of t g 1200 :
moment of the collapse. = ic)

We now discuss the simulation of the experiments per  yqa0 -
formed by Gertonet al. [17]. To make a comparison with
experiment, one has to realize that each data point is ot 800 | .
tained as an average over five or ten individual runs. Sinc . .
the condensate number is probed by means of a destructi s00 |
measurement, each experimental curve should not be viewe s 1
as an average of curves. Instead, each point is an avera s .
over different experimental runs, and the time correlatior #1l] SR
between different experimental points is only caused by tht i | i 1 I It !
initial conditions, which are approximately the same for eact T 1 1 3 I g
experimental run. To simulate this experiment by means of o .
numerical solution of the Langevin equations in E¢&2) 02 04 06 08
and (74), we therefore have to let the numerical solutions time (s)
evolve up to a certain point in time, and then make a numeri-
cal measurement. We then average over five or ten measure- FIG. 10. (Colon Simulations of the experiment performed by
ments to obtain a data point and its uncertainty, and repeé“:ertonet al.[17]. Th_e results of the simulations are denc_)ted by red
this procedure at a different measurement time. In this Wa)},rlangles, the experimental data are shown as black circle&) In

we are certain that each individual solution of our stochasti@d (®). ,eachh data point OLthe f(;m”'ations is an ave;age 0%’? 5
equations, is done for a different realization of the noise"unS: @s in the experiment. Fa, 10 runs per point were done. The
rror bars in both the experimental data, and the data obtained by

Note that this proced_ure is very reminiscent of the method the simulations, denote the uncertainty in the mean.
Monte Carlo simulation.
We have done simulations for the three different experi-

mental situations presented in REE7]. The results of our cloud and their temperatufd5]. For the parameteh of the
simulations are presented in Fig. 10, as red triangles. Thaonequilibrium distribution function in Eq99) we use the
experimental data points are also shown, and denoted kgverage of the fits obtained by Gertenal. [17]. For Figs.
black circles. The Keldysh self-energy was calculated as i10(a) and 1@c), this corresponds to a thermal cloud of ap-
the simulations described above, using the averages of th@oximately 65000 atoms at a temperatureTef 170 nK.
full experimental data on the number of atoms in the thermalThe parameter of the nonequilibrium distribution is equal to
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A=4 for these simulations. For Fig. @, the thermal cloud VI. CONCLUSIONS
contains approximately 100000 atoms at a temperature of

T=200 nK. The parameték=2 in this case. For Fig. 18) scribes the nonequilibrium dynamics of an atomic Bose-
and 1@b), the averages are taken over five runs for each daigjnstein condensate. We have discussed an approximation to
point, whereas for 1@) ten runs are used. The error bars ;g Fokker-Planck equation, which assumes that the thermal
denote the uncertainty in the average. In Figstal@nd ¢joud is close to equilibrium. Its corresponding Langevin
10(b), the initial number of atoms was taken equal toequation has the form of a stochastic nonlinear Stinger
N¢(0)=100, andN.(0)=438, respectively. For Fig. 10,  equation with complex Gaussian noise. Both the Fokker-
we have takerN,(0)=0, since the condensate was in this Planck equation, and the Langevin equation obey the
case dumped completely to within the experimental resolufluctuation-dissipation theorem, which ensures that the con-
tion [17]. densate relaxes to the correct equilibrium. We have also pre-
The results of our simulations presented in Fig. 10 showsented the hydrodynamic formulation corresponding to this
good agreement with experiment for the initial stage of thestochastic nonlinear Schdimger equation, in which the con-
growth, where the condensate is small. In particular, Figdensate is described in terms of its density and its phase.
10(a) shows good agreement in the initial stage whidge These turn out to obey a stochastic continuity equation and a
<400 atoms, whereas Fig. @) shows good agreement in Stochastic Josephson equation, respectively. To make analyti-
the regime whereN.<600 atoms. This is to be expected, cal progress, we have then extended the variational calculus,
since the Gaussiaansatzs a very good approximation for a commonly applied to the Gross-Pitaevskii equation, also to
small number of atoms in the condensate, whereas it bdh€ case of the stochastic nonlinear Scmger equation.
comes worse for a larger number of atoms in the condensat .he equations _Of motion for the yar|at|on_al parameters turn
The fact that the error bars of the experimental data point ut to _be |den_t|ca| o the Langevin equations descrlbmg_ the
have the same order of magnitude as the error bars on ogrownian motion of a particle ina potentlal..These equations
simulations, indicates that the fluctuations, i.e., the noise g then goupled 0 a stochastic rate equation for the num.ber
" : ) ' ' f atoms in the condensate. We have applied these equations
our SFOChaSt'C eq“?""”* have m_deed t_he correc_t o_ro_ler calculate the damping and frequencies of the collective
magnitude. As mentioned in the discussion of the 'nd'v'dualmodes of the condensate, and to obtain a description of the
solutions of our stochastic equations, we find that the col- rowth-collapse curve of a condensate with attractive inter-
lapse is initiated by fluctuations in the number of atoms, and;tions. However, there are much more applications possible
that these fluctuations thus lead to a dephasing of the mQgjth the variational method presented here. With a slight
ment of the collapse. In principle, also the fluctuations in thegxtension, it may also be used to calculate the frequency and
initial number of atoms in the condensate lead to dephasingjamping of the scissor modes of the conden§a?e4d, at
However, the uncertainty iM(0) is small compared to the nonzero temperatures. Moreover, applying the method to a
uncertainty inN(t) at later times, and we therefore conclude Thomas-Fermi density profile, we may obtain a simple de-
that fluctuations in the initial conditions for the condensatescription of the growth of a condensate with repulsive inter-
are presumably less important for an understanding of thections. The treatment of the dissipative dynamics of vortices
dephasing of the moment of the collapse. Moreover, there argnd other topological excitations such as skyrmipt50,
also fluctuations in the properties of the thermal cloud foris glso feasible within this variational method.
each individual experimental run, which we have not taken The only quantity that characterizes the thermal cloud is,
into account. With respect to this point, we also note that ouin our approach, the Keldysh self-enery} “(x,t). The pa-
method does not display the saturation in the growth raterameter that enters the equations of motions for the varia-
observed in numerical solutions of the quantum Boltzmannjonal parameters, turns out to be some spatial average of this
equation[17]. This effect is also observable in the experi- quantity. In our calculations presented here, we have taken
mental data in Fig. 1@), where the growth is exponential in an average over the size of the condensate, when calculating
the first Stage, but then turns linear. This saturation in tthe frequency and damp|ng of the collective modes. Future
growth rate is caused by the fact that the condensate most{york will include a numerical solution of the stochastic non-
grows from the low-lying excited states, which in turn, havejinear Schrdinger equation, to investigate the importance of
to be fed by collisions in higher-energy states, which are nothe spatial dependence of the Keldysh self energy, which we
Bose enhanced. Since in our simulations, the thermal clouflave not taken into account here. Nevertheless, we believe
is taken to be static, our simulations do not display this satuthat the variational method presented here, provides a satis-
ration effect. In conclusion, we like to point out that to makefying picture of the nonequilibrium dynamics of a Bose-
a sensible quantitative comparison to the experimental reginstein condensate at nonzero temperatures. Moreover, as
sults in the whole time domain, we have to compare theye have shown, calculations done within this variational ap-

converged averages of both the experimental runs and thgoximation, lead already to a good agreement with experi-
theoretical simulations. This is because of the fact that thenents on collective modes and on condensate growth.

fluctuations are so large, each individual growth curve may
differ substantially, as seen from Figia®. In turn, this leads
to averages that may differ qualitatively, depending on the
number of runs one averages over, as is also clearly seen in It is a great pleasure to thank lonut Prodan and Randy
Fig. 9b). Hulet for kindly providing us with their raw experimental

We have presented a Fokker-Planck equation that de-

ACKNOWLEDGMENTS

013603-22



STOCHASTIC DYNAMICS OF A TRAPPED BOSE .. PHYSICAL REVIEW A 65 013603

data, and for useful remarks on a first draft of the paper. We P 2
also thank Usama Al Khawaja for useful remarks, and for L[¢* ,p]l=——|| iE—+pu— pcti
providing us with some numerical results.

APPENDIX: AMPLITUDE AND PHASE VARIABLES we may define the momentum conjugatedioin the usual

wa

The condensate is often described in terms of density and Y
phase variables, by making a canonical transformation
_ i0 ; i i ivati dL 2i d

Jpe . In this Append|x, we discuss the derivation of the p——= iRy iR+t |, (A6)
Langevin equations of motion fon(x,t) and 6(x,t). For dp p3K ot

simplicity, we first discuss the single-mode version of the
probability distribution in Eq(30) in the noninteracting case.
So we consider a probability distribution for a single-mode
complex order parameter, which reads

with the complex conjugate expression fos+. The second
step is to derive the Hamiltonian. Although it has in principle
ordering problems, we overcome these by noting that in the
path-integral formulation of quantum mechanics we are al-

Pl¢*,¢;t]= Jd) w=¢ d[ ¢* 1d[ &] ways dealing with a normal-ordered Hamiltonian. The
¢O=¢ normal-ordered Hamiltonian, i.e., with the momentum opera-
i . 5 tors positioned left of the coordinate operators, is now given
xexpl | | dt'—— by
hl )y, #3K
p 2 HIPg . #:Pgr, 6% 1= Py + Pyr * —LL$*, $]. (A7)
X iﬁﬁ-i-,u,—,u,c-l—iR o(t")

The last step towards the Fokker-Planck equation is to quan-
(A1) tize the Hamiltonian, and to write down the Sctimger
) ) N o ) equation in the position representation. So, we hpye
Physically, this probability distribution describes the non-_jz 5/9¢, and similarly pyx=—ifidldg¢*. The Fokker-
equilibrium dynamics of a noninteracting Bose-Einstein con-pjanck equation becomes

densate, in contact with a thermal cloud characterized by a

Keldysh self-energy: =K, with inverse temperaturg and a p p

chemical-potential.. The energy per particle in the single- iz —pre* ¢t1= — — (u.— u—iR) 6Pl &* &t
mode system is equal ta.. The dissipatiorR is again re- ot Lo7.¢:1] f9¢('uc #oIRIGPLET, Sill
lated to the Keldysh self energy by the fluctuation-dissipation

theorem in Eq(40), which in this simple case reads + (pe— p—iR) * P[* , it]
(9¢* C 1 1
. B
iR=— ZﬁEK[Mc_M]- (A2) 1 2 )
- = A2 P[ ¢*,d;t]. A8
2 g g s PLO" 4t (AB)

From the previous sections, we know that the probability

distribution P[ ¢*, ;1] is generated by the Langevin equa- . o )
tion With the use of the fluctuation-dissipation theorem in Eq.

(A2), we then show that it has as a stationary solution

 dp(1) ,
g = e RIS, (A3 PL| ¢lt—ee]ocexpl— Bo* (me—m)gh,  (A9)
W_here the complex noise has a time correlation functionypnich only depends on the amplitude éfand ¢* .
given by We now repeat the above discussion in terms of amplitude
i2 and phase variables, defined kiNe'?. Let us first discuss
(7*(t")7(t))= TEKg(tr —1). (A4)  the equilibrium properties we expect in terms of the number

of particlesN and the phasé. Since the transformation ¢

. . ) . . . and # has a Jacobian equal to zero, we may just substitute it
As explained in the first section, the noigét) can be inter-  jni4 £ (A9), to obtain the equilibrium distribution in terms
preted as an Ito process. We can again derive the Fokkegt ihe number of particles. It is given by

Planck equation foP[ ¢*, ¢;t] by noting that it is in fact the

Schralinger equation in the position representation. We will

do this in some detail once more, to make clear the different PIN;t—oo]orexp{— B(uc— w)N}- (A10)
steps of the derivation. The first step is to determine the

momenta conjugate to the coordinaigsand ¢*. Since we  We may easily check that the average number of particles in
have a Lagrangian equal to the single mode is in equilibrium given
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% correct has to do with the fact that we have normal ordered

J dN NA[N;t—] the Hamiltonian in terms of the variablésand 6. Although

(N)= =[B(uec—p)]" L (A11) normal ordering of the HamiltoniaRi[p,,¢;p4«,¢* ] did
f dN P[N;t—o] give the correct results, this, however, does not imply that we

also have to normal order the Hamiltonian in termdNcdind

0. Let us therefore proceed more carefully, and rewrite the

This is precisely the Bose distribution f@(u.—u)<1. If ~ Fokker-Planck equation in EGA8) for P[ ¢*,¢;t] in terms
we do not apply the “classical” approximation to the of N andé. With the use of the chain rule for differentiation
fluctuation-dissipation theorem, as in Eé&2), but use the it is easy to show that, for a general functibn
exact relation

i &f
— \/— I0 I_ i0 (A].G)
iR=—%h2K[1+2N(,u,C)]‘1, (A12) N ZJ—

with the complex conjugate expression i/ d¢. Substitu-
instead, we find the Bose distribution as the equilibriumtion of this result in the Fokker-Planck equation in E48)
number of particles, as expected. For the description of gields the Fokker-Planck equation f&[N, 6;t]. It is given
single-mode Bose-Einstein condensate, &) is in gen-  py
eral a good approximation, singeis very close tqu. below
the critical temperature. Let us now try to derive the Fokker-

Planck equation foN and 6. We may do this by substitution PN, ;t] iK 9 i 2R iN PIN. 0:t]
of ¢=+/N€e'’ into the action in the exponent of E¢AL). at 2 oN &N i N T
Since the Jacobian of the transformation is equal to one, we K

simply have E ‘9_ E i .

N(t)=N i (A17)
P[N,a;t]zfg d[N]d[e]exp{%S[N,e]],

i (A13)

Comparison of the Fokker-Planck equations in E@sl5)
and (A17) shows that in Eq(A15) we have misinterpreted
the noise orN(t) as an Ito process, whereas in the correct
Fokker-Planck equation in EGA17) we are clearly dealing
with a Stratonovich process. Note that the same conclusion
2 may also be reached by determining the equation of motion
of (N)(t) from a variation of the actio$[N, 6].

From the action in Eq(A14), we can read of the Lange-
vin equations folN and . The Langevin equation fo¥(t) is

2 .
(N(t’)+2ﬁ—RN(t’)>. (Al4) 9ivenby

with an action equal to

SN, 6]= tdt’<2N(t,) o(t’
S h3K a

_l’_—
23 KN(t)

Naively, we could derive the Fokker-Planck equation from N(t)=— 2R (t)+2N(t) 7(1),

the above path-integral expression by going through the

same steps as before. If we again apply normal ordering to

the Hamiltonian with respect td and # and their conjugate isK

momenta, the Fokker-Planck equation reads (n(t") (1)) =——8(t' —1), (A18)

GPIN,0;t] ( iSK 52 and the Langevin equation f@ reads

2R ¢
TNN-F?mN P[N,6;t]

ot
. : (t)
ik 92 19 ha(t)=,u—MC+V—,
mﬁﬁLga—e(Mc—M) P[N,6;t]. VYN(t)
(A15) ok
(v(t") (1)) = st —t). (A19)

This Fokker-Planck equation is however incorrect, since it is
easily seen that the equilibrium distribution in E&10) is

not a solution of this Fokker-Planck equation. The fact that~rom the above discussion, we thus conclude that we have to
the Fokker-Planck equation in EGA15) turns out to be in- interpret the noise in the Langevin equation in E&L8) for
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the number of particledl(t) as a Stratonovich process, to field ¢(x,t). When we make the transformation to density
achieve the correct equilibrium distribution. This is the mainand phase variables by settigig= \/Ee”’, we again have to
conclusion of this Appendix. It is straightforward to show be careful, and interpret the multiplicative noise that enters
that the above discussion generalizes to the case of a multihe equation of motion for the densitfx,t) as a Stratonov-
mode description of the condensate in terms of the compleich process.
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