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Stochastic dynamics of a trapped Bose-Einstein condensate

R. A. Duine and H. T. C. Stoof
Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands

~Received 20 July 2001; published 11 December 2001!

We present a variational solution of the Langevin field equation describing the nonequilibrium dynamics of
a harmonically trapped Bose-Einstein condensate. If the thermal cloud remains in equilibrium at all times, we
find that the equations of motion for the parameters in our variationalansatzare equivalent to the Langevin
equations describing the motion of a massive Brownian particle in an external potential. Moreover, these
equations are coupled to a stochastic rate equation for the number of atoms in the condensate. As applications
of our approach, we have calculated the collisional damping rates and frequencies of the low-lying collective
excitations of a condensate with repulsive interactions, and have obtained a description of the growth and
subsequent collapse of a condensate with attractive interactions. We have found good agreement with the
available experimental results in both cases.
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I. INTRODUCTION

The experimental realization of Bose-Einstein conden
tion in dilute atomic gases@1–3#, has led to a large increas
in the amount of both experimental and theoretical resea
on these quantum systems. Various theoretical predict
regarding equilibrium and nonequilibrium properties of d
generate Bose gases, may now be directly compared
experimental data. Regarding the zero-temperature beha
of a Bose-Einstein condensate, a great deal of the physi
well described by the Gross-Pitaevskii equation, i.e., a me
field equation for the macroscopic wave function of the co
densate. It has led to very good agreement with experime
results on, for example, the condensate collective mode
quencies and the density profile of the condensate at
temperature@4#. To understand the nonzero temperature
havior of Bose-condensed gases, several proposals have
made to generalize the Gross-Pitaevskii equation and to
clude the effects of the thermal cloud on the condensate
the mean-field level, this is achieved by introducing in t
Gross-Pitaevskii equation real and imaginary terms, wh
describe the coherent and incoherent effects of collisions
tween condensate and thermal atoms, and which in partic
cause evaporation or growth of the condensate@5–9#. How-
ever, at nonzero temperatures, fluctuations also may pla
important role. An example of this is the reversible formati
of a condensate, as was experimentally achieved by Stam
Kurn et al. @10#. Since the system is several times in t
critical region where the average number of condensate
oms is very small, fluctuations of the order parameter aro
its mean-field value are of the utmost importance to desc
this experiment@11#. In addition, both quantum and therm
fluctuations are important to understanding the stochastic
ture of the collapse observed in7Li @12–17# and the phe-
nomenon of phase ‘‘diffusion’’@18#, in which case these fluc
tuations disturb the global phase of the condensate. Fin
from a fundamental point of view, a consistent description
a partially Bose-Einstein condensed gas requires that
fluctuation-dissipation theorem is obeyed, since this ens
relaxation of the system towards its correct physical equi
rium. Therefore, if dissipation is to be included in the gen
1050-2947/2001/65~1!/013603~25!/$20.00 65 0136
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alized Gross-Pitaevskii equation, fluctuations must also
included.

Gardiner and Zoller have included such fluctuations in
description of a Bose-condensed system by deriving w
second-order perturbation theory a master equation for
one-body density matrix@19#, a procedure well-known from
quantum optics. However, in this paper, we will use the no
perturbative formulation developed previously by one of
@7,20#. Using field-theoretical techniques, Stoof derived
Fokker-Planck equation describing the full nonequilibriu
probability distribution of the order parameter. An equivale
formulation of this theory may be given in terms of a dis
pative nonlinear Schro¨dinger equation with noise. Although
in principle we may turn to numerical methods for the so
tion of the Fokker-Planck equation, or its correspondi
Langevin equation@11#, we find it more convenient here t
proceed analytically, by means of a variational meth
Variational approximations have previously provided a u
ful way to make analytical progress, and capture as muc
the physics as possible. In particular, when applied to
zero-temperature Gross-Pitaevskii equation, a Gaus
variational approximation has led to good results on the c
lective modes of the condensate@21–23#, and on the descrip-
tion of the macroscopic tunneling of a condensate with
tractive interactions@13,15,24,25#. It is the aim of this paper
to also apply a similar variational method to the dissipat
nonlinear Schro¨dinger equation with noise appropriate fo
nonzero temperatures. We achieve this by assuming tha
thermal cloud is in equilibrium at all times, and therefo
acts as a ‘‘heat bath’’ on the condensate. The stochastic n
linear Schro¨dinger equation then obeys an equilibrium ve
sion of the fluctuation-dissipation theorem, which ensu
that the condensate relaxes to the physically correct equ
rium. With this assumption, we are then able to der
Langevin equations for the variational parameters in
Gaussianansatz, which turn out to be equivalent to the equ
tions of motion for a Brownian particle in a potential. The
equations are coupled to a stochastic rate equation for
number of atoms in the condensate. Using these equation
motion, we are then able to describe collisional damping
the condensate collective modes at nonzero temperatu
©2001 The American Physical Society03-1
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and the condensate growth and stochastic initiation of
collapse, as recently observed in7Li @16,17#.

The rest of this paper is organized as follows. To ma
this paper self-contained, we review in Sec. II the techniq
of path integrals, and their application to stochastic differ
tial equations. We use the method of functional integrat
throughout this paper. In Sec. III, we review the Fokk
Planck equation describing the nonequilibrium dynamics o
Bose-Einstein condensed gas, and discuss the equilib
solution of this Fokker-Planck equation. The most import
result of this section is the Langevin field equation for t
order parameter, that obeys the fluctuation-dissipation th
rem. This Langevin field equation takes the form of a dis
pative nonlinear Schro¨dinger equation with noise. We als
derive the stochastic equations of motion for the density
phase of the condensate, and a damped wave equatio
scribing the propagation of sound waves in a homogene
Bose gas, at nonzero temperatures. In Sec. IV, we presen
variational approximation to our nonlinear dissipati
Schödinger equation with noise, and also derive stocha
equations of motion for the variational parameters, which
the central result of this paper. To the best of our knowled
a variational method for stochastic field equations, such
the stochastic nonlinear Schro¨dinger equation under consid
eration here, has not been developed previously. In Sec
we apply our equations to calculate the temperature de
dence of the damping and frequencies of the collec
modes of a condensate, and to obtain a description o
growth-collapse curve of a condensate with attractive in
actions. We end in Sec. VI with our conclusions.

II. PATH INTEGRALS AND STOCHASTIC DIFFERENTIAL
EQUATIONS

In this section, we discuss the application of path integr
to stochastic differential equations. To this end, we cons
the Brownian motion of a massive particle with massm, in a
potentialV(q). The equation of motion of the Brownian pa
ticle is given by the Langevin equation@26,27#

q̈~ t !1gq̇~ t !52
1

m

]V

]q
„q~ t !…1h~ t !. ~1!

In this equation,q(t) denotes the position of the particle, an
h(t) is a fluctuating force per unit mass, with a Gauss
probability distribution. The parameterg.0 is a friction
constant. The time-correlation of the noise is given by

^h~ t8!h~ t !&5
2g

mb
d~ t82t !, ~2!

where the average is taken over all possible realization
the Gaussian noise. Here,b51/kBT is the inverse therma
energy. Note that the strength of the fluctuations is relate
the amount of dissipationg through Eq.~2!. This is the
fluctuation-dissipation theorem, which ensures that the pr
ability distribution for the position and velocity of th
01360
e

e
s
-
n
-
a
m
t

o-
i-

d
de-
us
the

ic
e
e,
s

V,
n-
e
a

r-

ls
r

n

of

to

b-

Brownian particle relaxes to the Boltzmann distribution,
we will see in detail later on. We now want to derive th
Fokker-Planck equation associated with this Langevin eq
tion of motion. To do so, we first write it as a set of tw
first-order differential equations

q̇~ t !5v~ t !,

v̇~ t !52gv~ t !2
1

m

]V

]q
„q~ t !…1h~ t !. ~3!

We are interested in the probability distributio
P@q,v,t;q0 ,v0 ,t0#, which is defined as the probability den
sity that a particle with velocityv0 and positionq0 at an
initial time t0, has a velocityv and a positionq at time t.
This probability distribution is thus given by

P@q,v,t;q0 ,v0 ,t0#5^d„q~ t !2q…d„v~ t !2v…&, ~4!

where„q(t),v(t)… is a solution of Eq.~3!, with initial condi-
tions „q(t0),v(t0)…5(q0 ,v0).

We now want to derive a path-integral expression@28,29#
for the probability distribution P@q,v,t;q0 ,v0 ,t0#. To
achieve this, we first divide the time intervalt2t0 into N
pieces, each of lengthD5(t2t0)/N. Using the notation
q(tn)[qn , v(tn)[vn , and h(tn)[hn , we discretize the
set of equations in Eq.~3! as follows:

1

D
~qn112qn!5vn ,

1

D
~vn112vn!52gvn2

1

m

]V

]q
~qn!1hn . ~5!

The time correlation of the noise is given by

^h ih j&5
2g

mbD
d i j , ~6!

which reduces to Eq.~2! in the limit D→0. Making use of
the fact that the noise has a Gaussian distribution, we n
write the probability distribution for a particular realizatio
of the noise as

P~$hn%!5S 4pg

mbD D N/2

expH 2
mbD

4g (
n50

N21

hn
2J . ~7!

Using this probability distribution, we are able to calcula
averages over the noise as Gaussian integrals. The two-p
function of the noise is, for example, given by
3-2
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^h ih j&[E S )
n50

N21

dhnDh ih j P~$hn%!, ~8!

which reproduces the correct correlations, given in Eq.~6!.
We first calculate the probability distributio
P@q1 ,v1 ,t1 ;q0 ,v0 ,t0#, which is the probability distribution
that a solution of the set of equations in Eq.~3! reaches the
value (q1 ,v1) at time t1[t01D. Since we may easily solve
these equations explicitly for one time step, we find from
definition in Eq.~4! that this probability distribution is given
by

P@q1 ,v1 ,t1 ;q0 ,v0 ,t0#

5E dh0S 4pg

mbD D 1/2 1

D
dS v02

1

D
~q12q0! D

3expH 2
mbD

4g
h0

2J
3dS v01DS 2gv02

1

m

]V~q0!

]q
1h0D2v1D . ~9!

Second, we integrate out the noiseh0 to obtain the result

P@q1 ,v1 ,t1 ;q0 ,v0 ,t0#

5
1

D2
dS v02

1

D
~q12q0! DexpH 2

mbD

4g

3S 1

D
~v12v0!1gv01

1

m

]V

]q
~q0! D 2J . ~10!

We use this expression at each time step, and ‘‘tie’’ th
together using

P@qi 11 ,v i 11 ,t i 11 ;qi 21 ,v i 21 ,t i 21#

5E dqi dv i P@qi 11 ,v i 11 ,t i 11 ;qi ,v i ,t i #

3P@qi ,v i ,t i ;qi 21 ,v i 21 ,t i 21#, ~11!

which follows from the fact that the total probability is con
served. The result forP@qN ,vN ,tN ;q0 ,v0 ,t0# then becomes
after a combination of Eqs.~10! and ~11! at each intermedi-
ate time step,

P@qN ,vN ,tN ;q0 ,v0 ,t0#

5D22(N22)E S )
n51

N21

dqn dvnD
3 )

i 51

N21

dS v i2
1

D
~qi 112qi ! D
01360
e

3expH 2
mbD

4g (
j 51

N21 F 1

D
~v j 112v j !

1gv j1
1

m

]V

]q
~qj !G2J . ~12!

Note that this expression explicitly shows that the integrat
is only over intermediate coordinates, and that the bound
values (qN ,vN) and (q0 ,v0) are fixed. We now take the limi
N→` andD→0, while keepingtN2t0 fixed. If we absorb
the prefactor in Eq.~12! in the integral measure, we get, aft
putting qN5q, vN5v, andtN5t, the result

P@q,v,t;q0 ,v0 ,t0#

5E
q(t0)5q0

q(t)5q

d@q#E
v(t0)5v0

v(t)5v
d@v#d@v~ t8!2q̇~ t8!#

3expH 2
mb

4g Et0

t

dt8S v̇~ t8!1gv~ t8!

1
1

m

]V

]q
„q~ t8!…D 2J . ~13!

The integral measure of the functional integral in Eq.~13!
denotes integration over all pathsq(t) andv(t) with bound-
ary conditions q(t0)5q0 , q(t)5q and v(t0)5v0 , v(t)
5v, respectively. Each of these paths gives a weighted c
tribution to the probability distribution. We next represent t
delta functional by a Fourier path integral over an auxilia
coordinatepq . As the notation suggests, this turns out to
the momentum conjugate toq. The path-integral expressio
for P@q,v,t;q0 ,v0 ,t0# then becomes

P@q,v,t;q0 ,v0 ,t0#

5E
q(t0)5q0

q(t)5q

d@q#E d@pq#E
v(t0)5v0

v(t)5v
d@v#

3expH i

\Et0

t

dt8@ pq~ t8!@ q̇~ t8!2v~ t8!#

1
i\mb

4g S v̇~ t8!1gv~ t8!1
1

m

]V

]q
„q~ t8!…D 2

.

~14!

In this expression, we extracted a factor ofi /\ outside the
time integral in the exponent for reasons that will beco
clear shortly, and we again absorbed some normalization
tors in the path-integral measure. We then introduce also
momentum conjugate tov, denoted bypv , by multiplying
the integrant in Eq.~14! by a factor of one, written as the
Gaussian functional integral overpv given by
3-3
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15E d@pv#expH i

\Et0

t

dt8
ig

\mb Fpv~ t8!2
i\mb

2g

3S v̇~ t8!1gv~ t8!1
1

m

]V

]q
„q~ t8!…D G2J . ~15!

This procedure is generally known as a Hubba
Stratonovich transformation@30#. After this procedure, the
result for the probability distributionP@q,v,t;q0 ,v0 ,t0#
reads

P@q,v,t;q0 ,v0 ,t0#

5E
q(t0)5q0

q(t)5q

d@q#E d@pq#E
v(t0)5v0

v(t)5v
d@v#E d@pv#

3expH i

\Et0

t

dt8@pq~ t8!q̇~ t8!1pv~ t8!v̇~ t8!

2H~pq ,q;pv ,v !#J , ~16!

with a Hamiltonian given by

H~pq ,q;pv ,v !5pqv2
ig

\mb
pv

22pvS gv1
1

m

]V

]q D .

~17!

At this point, it might be somewhat confusing that the m
mentum conjugate toq is not simply proportional tov. We
are, however, not quantizing a classical system, but inst
trying to derive a path integral for the probability distributio
generated by a classical stochastic equation of motion.
connection with quantum mechanics lies in the fact that
may identify this probability distribution with a quantum
mechanical amplitude for some quantum system. This d
not mean that the Brownian particle has wavelike propert
Nevertheless, Eq.~16! is precisely the canonical path
integral representation for a matrix element of the evolut
operator. Therefore, the probability distributio
P@q,v,t;q0 ,v0 ,t0# obeys the time-dependent Schro¨dinger
equation with the HamiltonianH(pq ,q;pv ,v) given by Eq.
~17!, in the position representation. It is essential that we
normal ordering, i.e., that we place the momentum opera
left of the position operators when quantizing this Ham
tonian. This is because of the fact that, in the path-integ
formulation of quantum mechanics, one always deals w
normal ordered Hamiltonians. Keeping this in mind, we m
thus quantize this Hamiltonian, by putting@q,pq#5@v,pv#
5 i\, with all other commutators equal to zero. So, we ha
in the position representationpq52 i\]/]q and pv5
2 i\]/]v. The Schro¨dinger equation that results is given b
01360
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]P@q,v;t#

]t
5F2

]

]q
v1

]

]v S gv1
1

m

]V

]q D1
g

mb

]2

]v2G
3P@q,v,t#, ~18!

which is indeed the Fokker-Planck equation associated w
the Brownian motion of a particle with massm in a potential
V(q), and known as the Kramers-Klein equation@31#. Note
that the Fokker-Planck equation has terms linear in the
rivatives with respect tov andq. These terms correspond t
the reversible part of the Langevin equation in Eq.~1!. The
‘‘diffusion’’ term, quadratic in the derivatives, represents t
irreversible stochastic behavior. All Fokker-Planck equatio
that correspond to a Langevin equation with Gaussian n
have this general structure.

It may be shown that the stationary solution of Eq.~18! is
given by the Boltzmann distribution

P@q,v;t→`#}expH 2bS 1

2
mv21V~q! D J , ~19!

which may be checked by insertion. It is important to real
that the fluctuation-dissipation theorem in Eq.~2! is essential
for the probability distribution to relax to the correct equilib
rium distribution. It embodies the fact that dissipation a
thermal fluctuations cooperate to achieve thermal equi
rium.

At this point, we want to make clear that in writing dow
the time-sliced version of the Langevin equation, we ha
made the choice to interpret the noise term as a so-called
process, as opposed to a Stratonovich process. The differ
between Ito and Stratonovich calculus emerges when
deals with multiplicative noise. For example, let us consid
the Langevin equation

q̇~ t !5 f „q~ t !…1g„q~ t !…h~ t !, ~20!

whereh(t) is a Gaussian noise term with correlations giv
by

^h~ t8!h~ t !&5sd~ t82t !. ~21!

If one interprets the noise in Eq.~20! as an Ito process, the
discretization reads

1

D
~qn112qn!5 f ~qn!1g~qn!hn . ~22!

The corresponding Fokker-Planck equation then become

]PI@q,t#

]t
5

]

]q Fs2 ]

]q
g2~q!2 f ~q!GPI@q,t#. ~23!

However, the time-sliced version of Eq.~20! is in the Stra-
tonovich calculus given by@32#
3-4
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1

D
~qn112qn!5

1

2
@ f ~qn!1 f ~qn11!#

1
1

2
@g~qn!1g~qn11!#hn . ~24!

In this case, the Fokker-Planck equation reads

]PS@q;t#

]t
5

]

]q Fs2 g2~q!
]

]q
2 f ~q!GPS@q;t#. ~25!

The Stratonovich interpretation, therefore, leads to an a
tional noise-induced drift term in the equation for the av
age ofq(t), as can be seen from

d^q&S~ t !

dt
5^ f ~q!&S~ t !1s^g~q!g8~q!&S~ t !, ~26!

where g8(q)5]g/]q. This result follows straightforward
from the Fokker-Planck equation in Eq.~25!, with the use of
partial integration. Note that the second term on the rig
hand side of the last equation, which is the so-called spur
or noise-induced drift term, is absent in the case of an
process. In physics, a Stratonovich process arises natu
when the delta function in the time correlation of the noise
the result of a limiting procedure in which the correlatio
time becomes equal to zero.

With these important remarks, we conclude our brief
view of path integrals and stochastic differential equatio
In the next section, we will use these techniques in the tr
ment of the nonequilibrium dynamics of a Bose-Einste
condensate.

III. NONEQUILIBRIUM DYNAMICS

In this section, we present the Fokker-Planck equat
describing the nonequilibrium dynamics of a Bose-Einst
condensed gas, and its corresponding Langevin field e
tion. The so-called hydrodynamic formulation will also b
discussed. Since the Langevin field equation generalizes
Gross-Pitaevskii equation to nonzero temperature, we s
our discussion by recalling this well-known equation.

A. Stochastic nonlinear Schrödinger equation

The dynamics of a trapped Bose-Einstein condensat
very well described at sufficiently low temperatures by t
time-dependent Gross-Pitaevskii equation

i\
]C~x,t !

]t
5H 2

\2¹2

2m
1Vext~x!1T2BuC~x,t !u2J C~x,t !,

~27!

where\ is Planck’s constant,m is the mass of a single atom
Vext(x) is the external trapping potential, andT2B

54pa\2/m is the two-body transition matrix, witha the
s-wave scattering length. The Gross-Pitaevskii equat
01360
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arises as the equation of motion for the superfluid order
rameter, which is the expectation value of the Bose fi
operatorĉ(x,t), which annihilates an atom at positionx and
at timet. The Gross-Pitaevskii equation is also referred to
the nonlinear Schro¨dinger equation for the macroscopic co
densate wave-functionC(x,t), since the condensate densi
is given by

nc~x,t !5uC~x,t !u2. ~28!

The time-dependent Gross-Pitaevskii equation has statio
solutions of the formC(x,t)5C(x)e2 imt/\, where the pa-
rameterm is the chemical potential that fixes the number
atoms in the condensate andC(x) now obeys the time-
independent Gross-Pitaevskii equation,

H 2
\2¹2

2m
1Vext~x!2m1T2BuC~x!u2J C~x!50. ~29!

The time-dependent Gross-Pitaevskii equation is a se
classical mean-field equation, describing the average dyn
ics of the condensate only. It contains no description of
relaxation of the condensate towards equilibrium, and neit
does it contain condensate growth from the thermal cloud
condensate evaporation, at nonzero temperatures. More
it completely neglects fluctuations of the order parame
around its mean value in the description. Therefore,
would like to modify the Gross-Pitaevskii equation such th
it contains fluctuations due to incoherent collisions betwe
condensate and noncondensate atoms, as well as conde
growth and evaporation. In order to do so consistently,
have to consider the full probability distribution for the ord
parameter, which may be found by means of the many-b
T-matrix approximation to a field-theoretic formulation o
the Keldysh theory@7,20#. It is given as a functional integra
by

P@f,f* ;t#

5E
f(x,t)5f(x)

f* (x,t)5f* (x)
d@f* #d@f#expH i

\
Seff@f* ,f#J , ~30!

with an effective action

Seff@f* ,f#5E
t0

t

dt8E dx
2

\SK~x,t8!

3US i\
]

]t8
1

\2¹2

2m
2Vext~x!1 iR~x,t8!

1m~ t8!1T2Buf~x,t8!u2D f~x,t8!U2

. ~31!

In this effective action, the imaginary termiR(x,t) describes
the exchange of atoms between the condensate and the
3-5
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mal cloud. Since, at this point, we also want to be able
describe a thermal cloud that is not in thermal equilibriu
we have to allow for a time-dependent chemical potent
Before we discuss the physical content of the expression
Eqs. ~30! and ~31! further, let us first derive the Fokker
Planck equation determining the time dependence
P@f,f* ;t#. To do so, we note that the expressions in E
~30! and~31! are very similar to the path-integral expressio
we encountered in the preceding section for the probab
distribution generated by a stochastic differential equati
The main difference is that the functional integration is n
over all complex fieldsf* (x,t) andf(x,t), instead of real
functions. Also, note that we did not specify the initial co
ditions at the timet0. This is because we are only interest
in the universal long-time dynamics of the gas, which a
independent of the specific form of the initial condition
Moreover, as we have seen in the previous section, the f
of the Fokker-Planck equation is in fact independent of th
initial conditions. From Eq.~30!, we may derive the Fokker
Planck equation by quantizing the effective action in E
~31!, just as in the previous section. It is ultimately given

i\
]

]t
P@f* ,f;t#

52E dx
d

df~x! S 2
\2¹2

2m
1Vext~x!2m~ t !2 iR~x,t !

1T2Buf~x!u2Df~x!P@f* ,f;t#

1E dx
d

df* ~x!
S 2

\2¹2

2m
1Vext~x!2m~ t !1 iR~x,t !

1T2Buf~x!u2Df* ~x!P@f* ,f;t#

2
1

2E dx
d2

df~x!df* ~x!
\SK~x,t !P@f* ,f;t#. ~32!

This Fokker-Planck equation describes the time evolution
the probability distribution of the condensate wave funct
at nonzero temperatures, in the presence of a thermal cl

The dissipation termR(x,t) describes the exchange o
atoms between the thermal cloud and the condensate, d
elastic collisions. In the Hartree-Fock approximation, wh
is sufficiently accurate for the nonzero temperatures of in
est here, it is given by@20#

R~x,t !52p~T2B!2E dk1

~2p!3E dk2

~2p!3E dk3

~2p!3
~2p!3

3d~k12k22k3!d~e1e12e22e3!

3@N1~11N2!~11N3!2~11N1!N2N3#. ~33!
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In this expression,Ni[N(x,k i ,t) is the Wigner distribution
function of the thermal cloud, which may be determined
solving the corresponding quantum Boltzmann equation.
will not do this explicitly here, since later on we assume th
the noncondensed cloud is in thermal equilibrium. The
ergy of a thermal atom is given by

e i5
\2k i

2

2m
1Vext~x!12T2Bu^f~x!&~ t !u2. ~34!

Note that both in this expression, and in the Fokker-Plan
equation in Eq.~32! we neglected the effect of the mean fie
of the thermal atoms, because it plays a minor role in
dynamics of the condensate. Note also that, for the ave
value of the order parameter calculated with the probabi
distribution in Eq.~30!, we used the notation̂f(x)&(t). The
noisy order-parameter field will be denoted byf(x,t) and
for stochastic averages of this quantity we will use the no
tion ^f(x,t)&. Since the Fokker-Planck equation and its c
responding Langevin equation are equivalent, we have
course that̂ f(x)&(t)5^f(x,t)&. The Keldysh self-energy
\SK(x,t) in the Fokker-Planck equation describes the th
mal fluctuations due to incoherent collisions between c
densate and noncondensate atoms. It is given explicitly
@20#

\SK~x,t !524p i ~T2B!2E dk1

~2p!3E dk2

~2p!3E dk3

~2p!3

3~2p!3d~k12k22k3!d~e1e12e22e3!

3@N1~11N2!~11N3!1~11N1!N2N3#.

~35!

Note that both the dissipationR(x,t) and the Keldysh self-
energy\SK(x,t), depend on the energye to take a conden-
sate atom out of the gas at positionx and timet, which has to
be determined self consistently. This implies thate is actu-
ally an operator in the configuration space of the order
rameter, and given by@20#

e52
\2¹2

2m
1Vext~x!1T2Buf~x!u2. ~36!

The fact thate should be viewed as an operator will turn o
to be crucial for the probability distribution of the order p
rameter to relax to the correct equilibrium distribution fun
tion.

Although our Fokker-Planck equation for the condensa
coupled to the appropriate quantum Boltzmann equation
the Wigner distribution function of the thermal cloud, d
scribes, in principle, the full nonequilibrium dynamics of th
Bose-condensed gas, its solution is very difficult even
merically. This is because of the fact that in the Fokk
Planck equation, the dissipationR(x,t) and the Keldysh self-
energy also depend on the condensate wave funct
3-6
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through their dependence one given in Eq.~36!, and through
the mean-field effect of the condensate on the thermal ato
As a result, writing down the corresponding Langevin eq
tion results in a stochastic equation with multiplicative noi
and with a prefactor of the noise that has a complicated
pendence onf(x,t). We may, however, make progress b
assuming that the thermal cloud is sufficiently close to eq
librium, which is, for example, justified for linear-respon
calculations around equilibrium, and also for condens
growth if the evaporative cooling is performed sufficien
slowly. From now on, we therefore assume that the ther
cloud may be described by a Bose distribution function

N~e i !5@eb(e i2m)21#21, ~37!

with a chemical-potentialm and an inverse temperatur
b51/kBT. The thermal cloud therefore now acts as a ‘‘he
bath’’ on the condensate. Making thee dependence explici
for a moment, we may relate the dissipationR(x;e), and the
Keldysh self-energy\SK(x;e) by means of

iR~x;e!52
1

2
\SK~x;e!@112N~e!#21, ~38!

which follows simply from the form of the Bose distributio
function, together with the energy-conserving delta funct
in Eqs. ~33! and ~35!. This relation between the dissipatio
R(x;e) and the Keldysh self-energy\SK(x;e) determining
the strength of the fluctuations, is in fact the fluctuatio
dissipation theorem. Just as in the case of the Brownian
tion of a particle discussed in the previous section, it cau
the system to relax to the correct equilibrium distribution,
i
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we will see below. Since we are dealing with Bose cond
sation, the occupation numbersN(e) are generally very
large, and we have in a good approximation

@112N~e!#21.
1

2
@b~e2m!#. ~39!

If we combine this result with Eq.~38!, and substitute the
operator in Eq.~36!, we arrive at the approximation

iR~x,t !.2
b

4
\SK~x,t !

3F2
\2¹2

2m
1Vext~x!2m1T2Buf~x!u2G ,

~40!

where\SK(x,t)[\SK(x;^mc(x,t)&), and the local chemica
potential of the condensate^mc(x,t)& is given by

^mc~x,t !&5
d

du^f~x!&~ t !u2
E dx^f* ~x!&~ t !

3S 2
\2¹2

2m
1Vext~x!1

T2B

2
u^f~x!&~ t !u2D

3^f~x!&~ t !. ~41!

We now show that the above ‘‘classical’’ approximation
the fluctuation-dissipation theorem indeed leads to the c
rect equilibrium. Let us therefore substitute Eq.~40! into the
Fokker-Planck equation, which simplifies to
i\
]

]t
P@f* ,f;t#52

b

4E dx \SK~x,t !
d

df~x! S 2
\2¹2

2m
1Vext~x!2m1T2Buf~x!u2Df~x!P@f* ,f;t#

2
b

4E dx \SK~x,t !
d

df* ~x!
S 2

\2¹2

2m
1Vext~x!2m1T2Buf~x!u2Df* ~x!P@f* ,f;t#

2
1

2E dx \SK~x,t !
d2

df~x!df* ~x!
P@f* ,f;t#. ~42!
w

To

he
to
The stationary solution of this Fokker-Planck equation
given by

P@f* ,f;t→`#}expH 2bE dx f* ~x!S 2
\2¹2

2m
1Vext~x!

2m1
T2B

2
uf~x!u2Df~x!J , ~43!

as can be checked by substitution. To see that Eq.~43! is in
sfact the correct equilibrium distribution, we have to sho
that the macroscopic condensate wave-function^f(x)&
obeys the time-independent Gross-Pitaevskii equation.
see this, we first note that

E d@f* #d@f#
d

df* ~x!
P@f* ,f;t#50 ~44!

for a general probability distribution that vanishes at t
boundaries of the domain of integration. If we apply this
3-7
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the equilibrium distributionP@f* ,f;t# we get, by applying
the mean-field approximation ^uf(x)u2f(x)&
.u^f(x)&u2^f(x)&, the desired result

S 2
\2¹2

2m
1Vext~x!2m1T2Bu^f~x!&u2D ^f~x!&50,

~45!

which is precisely the time-independent Gross-Pitaev
equation. Note that Eq.~40!, together with the time-
independent Gross-Pitaevskii equation, implies that in eq
librium ^R(x,t)&50. This means that there is a detailed b
ance between the condensate and the thermal cloud, and
there is, on average, no condensate growth or evapora
when the system has relaxed to equilibrium.

Using the results of the preceding section, we now giv
formulation of the nonequilibrium theory discussed above
terms of a Langevin field equation corresponding to
Fokker-Planck equation in Eq.~42!. This Langevin field
equation takes the form of a dissipative nonlinear Sch¨-
dinger equation with noise, given by

i\
]f~x,t !

]t
5S 11

b

4
\SK~x,t ! D H 2

\2¹2

2m
1Vext~x!

2m1T2Buf~x,t !u2J f~x,t !1h~x,t !.

~46!

This Langevin equation quite generally generalizes
Gross-Pitaevskii equation to nonzero temperatures, and
cludes both dissipation and thermal fluctuations. The co
plex Gaussian noise in the Langevin field equation has
relations@20,11#

^h* ~x,t !h~x8,t8!&5
i\2

2
SK~x,t !d~ t2t8!d~x2x8!,

~47!

where the strength of the noise is determined by a Keld
self energy, given by

\SK~x,t !524p i ~T2B!2E dk1

~2p!3E dk2

~2p!3E dk3

~2p!3
~2p!3

3d~k12k22k3!d~^mc~x,t !&1e12e22e3!

3@N1~11N2!~11N3!1~11N1!N2N3#. ~48!

In this expression,Ni is again the Bose-distribution functio
of the thermal cloud, evaluated at an energy of a ther
particle, which is in the Hartree-Fock approximation giv
by

e i5
\2k i

2

2m
1Vext~x!12T2Bu^f~x,t !&u2. ~49!

The average local chemical potential of the condensate
oms ^mc(x,t)&, is given by Eq.~41!. Note that in the latter
01360
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equation, and in the above expression for the energy o
thermal particle,̂ f(x,t)& has to be determined self-consi
tently, since only then the probability distribution generat
by the Langevin equation in Eq.~46! relaxes to the correc
equilibrium.

The stochastic nonlinear Schro¨dinger equation in Eq.
~46!, together with the expression for the Keldysh self-ene
in Eq. ~48!, gives a nonequilibrium description of the con
densate, that obeys the fluctuation-dissipation theorem
Sec. IV, we use a variationalansatzto solve this equation.
However, we first derive the corresponding noisy hydrod
namic formulation.

B. Stochastic hydrodynamics

The condensate is often described in terms of its den
and its phase, by making the transformationf5Areiu.
When applied to the Gross-Pitaevskii equation, this trans
mation results in the so-called Josephson equation for
phase, and a continuity equation for the density@4,9#. We
now want to derive the generalization of these two equati
to the case of our Langevin equation for the condensate
do this, we first substitute the ‘‘classical’’ approximation
the fluctuation-dissipation theorem into the effective act
Seff@f* ,f#, which now reads

Seff@f* ,f#5E
t0

t

dt8E dx
2

\SK~x,t8!

3US i\
]

]t8
1H 11

b

4
\SK~x,t8!J

3F\2¹2

2m
2Vext~x!1m1T2Buf~x,t8!u2G D

3f~x,t8!U2

. ~50!

The reason for this substitution is that we have defined
fluctuation-dissipation theorem as an operator equation in
configuration space of the order parameter, and not in te
of its density and phase. We may now easily substitutef
5Areiu into this effective action. This substitution results
an effective action in terms of the density and the phase
the order parameter, i.e.,

Seff@r,u#5E
t0

t

dt8E dx
2

\SK~x,t8!

3H r~x,t8!S \
]u~x,t8!

]t8
2

b

4
i\SK~x,t8!

3
\“•@r~x,t8!vs~x,t8!#

2r~x,t8!
1mc~x,t8!2m D 2
3-8
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1
\2

4r~x,t8!
S ]r~x,t8!

]t8
1“•@r~x,t8!vs~x,t8!#

1
b

2
iSK~x,t8!@mc~x,t8!2m#r~x,t8!D 2J , ~51!

where we used thatSK(x,t) only has a negative imaginar
part, as seen from Eq.~48!, and thusiSK(x,t) is a positive
and real quantity. We defined the superfluid velocityvs(x,t),
and the condensate chemical-potentialmc(x,t) by means of
@33#

mc~x,t !52
\2¹2Ar~x,t !

2mAr~x,t !
1Vext~x!1T2Br~x,t !

1
1

2
mvs

2~x,t !;

vs~x,t !5
\

m
“u~x,t !, ~52!

which coincides with the expression in Eq.~41!. The effec-
tive actionSeff@r,u# yields two stochastic equations of mo
tion. The equation for the phase of the condensate takes
form of a stochastic Josephson equation

\
]u~x,t !

]t
2

b

4
i\SK~x,t !

\2
“•@r~x,t !“u~x,t !#

2mr~x,t !

5m2mc~x,t !1
n~x,t !

Ar~x,t !
. ~53!

Here, the real Gaussian noisen(x,t) has correlations given
by

^n~x,t !n~x8,t8!&5
i\2

4
\SK~x,t !d~ t2t8!d~x2x8!.

~54!

The stochastic Josephson equation has two modificat
with respect to the ordinary Josephson equation. First, it
a spatial diffusionlike term proportional toi\SK(x,t). This
term will cause the phase to undergo spatial diffusion due
collisions of thermal atoms with the condensate atoms, no
be confused with the phenomenon of phase ‘‘diffusion
which corresponds to spreading of the global phase du
quantum fluctuations@18#, and therefore relax to a stat
where the phase is position independent. So, in equilibr
we have^vs&[\^“u&/m50, as expected. We will see late
on that this tendency towards equilibrium will give rise to
increase in the sound velocity in the Bose condensate.
ond, the Josephson equation has a noise term inversely
portional to the square root of the density. This noise rep
sents the fluctuations in the phase of the condensate du
incoherent collisions of thermal atoms with condensate
oms, i.e., due to thermal fluctuations.

The equation of motion for the density is a stochas
continuity equation with a source term,
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]r~x,t !

]t
1“•@r~x,t !vs~x,t !#

52
b

2
iSK~x,t !@mc~x,t !2m#r~x,t !12Ar~x,t !j~x,t !,

~55!

with correlations of the Gaussian noisej(x,t) given by

^j~x,t !j~x8,t8!&5
iSK~x,t !

4
d~x2x8!d~ t2t8!. ~56!

In the Appendix, it is explained that we have to interpret th
noise as a Stratonovich process. This gives rise to additio
drift terms in the equation of motion for the average of t
density, because in Eq.~55! we are dealing with multiplica-
tive noise. Note that from Eq.~55!, it is explicitly seen that
there is condensate growth ifm.mc , i.e., if the chemical
potential lies above the chemical potential of the condens
If m,mc , there is condensate evaporation.

We will omit here the Fokker-Planck equation in terms
r andu, but only discuss the equilibrium distribution gene
ated by Eqs.~53! and ~55!. It is simply determined from
P@f* ,f;t→`# in Eq. ~43! by the substitutionf5Areiu,
since the Jacobian of this transformation is equal to one.
we have

P@r,u;t→`#}expH 2bE dx r~x!S 2
\2¹2Ar~x!

2mAr~x!

1Vext~x!1
T2B

2
r~x!1

1

2
mvs

2~x!2m D J .

We see from this probability distribution that^vs&50, which
should be the case in equilibrium. The average density p
file is again determined by the time-independent Gro
Pitaevskii equation, as explained before.

To discuss the physical content of the stochastic conti
ity equation and the stochastic Josephson equation fur
we now derive the wave equation describing the propaga
of sound waves in a Bose-Einstein condensate. For simp
ity, we discuss here the homogeneous case, whereVext(x)
50. A treatment of the trapped case is presented in Sec. V
We linearize the averages of Eqs.~55! and~53! around their
equilibrium solutionŝ r(x,t)&5r0 and^vs(x,t)&50. There-
fore, we write ^r(x,t)&5r01dr(x,t), and ^vs(x,t)&
5dvs(x,t), and substitute this into the average of Eqs.~53!
and ~55!. Linearization results in two coupled equations
motion for the deviations, i.e.,

m
]dvs~x,t !

]t
52T2B

“dr~x,t !1
b i\2SK

8
¹2dvs~x,t !,

]dr~x,t !

]t
1r0“•dvs~x,t !52

b

2
iSK@2T2Br02m#dr~x,t !.

~57!
3-9
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Note that we have made use of the fact that\SK is indepen-
dent of the spatial coordinates for a homogeneous Bose
as can be seen from Eq.~48!. Next, we combine these tw
equations to obtain a single damped wave equation for
propagation of sound waves in a homogeneous Bose ga

S ]2

]t2
2c2¹2D dr~x,t !52

1

t

]dr~x,t !

]t
. ~58!

The relaxation timet is defined to be inversely proportiona
to the damping rate of the waves. Physically, this damp
arises because the excitation of a sound wave slightly
turbs the equilibrium situation where the average growth
evaporation of the condensate is equal to zero. Hence, t
is no longer a detailed balance between the condensate
the thermal cloud, and the collisions between the conden
and thermal atoms drive the condensate back to the equ
rium situation, wheredr(x,t)50, anddvs(x,t)50. The re-
laxation timet is given by

1

t
5

b

2
iSKT2Br0 , ~59!

where we used the time-independent Gross-Pitaevskii e
tion that reduces in this case tom5T2Br0, to eliminate the
chemical potential. The sound velocityc in Eq. ~58! is given
by

c25c0
2F11

1

16
~b i\SK!2G , ~60!

wherec05(T2Br0 /m)1/2 is the well-known zero-temperatur
sound velocity, predicted by the Gross-Pitaevskii equat
and first obtained by Bogoliubov@34#. We see that our non
equilibrium treatment results in increased sound veloc
This increase is a result from the term in the stochastic
sephson equation in Eq.~53! proportional toi\SK. Physi-
cally, this term represents the fact that the phase of the c
densate undergoes spatial diffusion due to collisions betw
condensate and thermal atoms, and therefore relaxes
state wherêvs&50. The spatial diffusion of the phase ther
fore increases the ‘‘stiffness’’ of the condensate, and he
results in an increase of the sound velocity. Since the
crease in the sound velocity is of orderO(ub\SKu2), its
effect is in general small below the critical temperature,
the collisionless limit is determined byub\SKu!1 and ex-
periments are usually in this limit. The damped-wave eq
tion in Eq. ~58! should be compared to the result found
Williams and Griffin @35#. These authors use a dissipati
nonlinear Scho¨dinger equation, with a damping term simila
to Eq. ~33!, to arrive at a damped wave equation describ
the propagation of sound in a trapped Bose-Einstein cond
sate in the presence of a static thermal cloud. Note, howe
that although the microscopic expression used by Willia
and Griffin is of the same form as in Eq.~33!, the chemical
potential of the condensate used by these authors in the
culation of R(x,t) is not the operator given by Eq.~36!.
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Instead, they use, for the condensate energy in the ene
conserving delta function, the expression^mc(x,t)&, which in
principle violates the fluctuation-dissipation theorem. As
consequence, these authors do not find an increase in
sound velocity at nonzero temperatures.

IV. VARIATIONAL APPROXIMATION

Although the stochastic nonlinear Schro¨dinger equation
given in Eq.~46!, or equivalently, the hydrodynamic formu
lation given in Eqs.~53! and~55!, give a full nonequilibrium
description of the condensate that can, in principle, be sol
numerically @11#, we find it more convenient to make ana
lytical progress. Therefore, in the case of a harmonic tr
ping potentialVext(x)5( jmv j xj

2/2, we consider a Gaussia
variationalansatzfor the condensate wave function

f~x,t !5ANc~ t !eiu0(t))
j

S 1

pqj
2~ t !

D 1/4

3expH 2
xj

2

2qj
2~ t !

S 12
im

\
qj~ t !q̇ j~ t ! D J . ~61!

Here, the variational parametersqj (t) denote the Gaussia
widths of the condensate in the three spatial directions.
wave function is normalized to the number of atoms in t
condensateNc(t). Thisansatzis different from the ones use
in previous work, in the sense that it also contains a glo
phaseu0(t). This turns out to be crucial, since the number
particlesNc(t), which is the variable conjugate to the glob
phase, is not constant in our case. Therefore, one must
allow for fluctuations in the global phaseu0(t) of the con-
densate. We expect thisansatzto give correct results when
the number of particles is small, because the mean-field
teraction of the condensate will then be small, and the c
densate density profile will be close to the ideal gas soluti
Moreover, it has also proven to give correct results for
frequencies of the collective modes of the condensate eve
the Thomas-Fermi regime, where the mean-field interact
and thus the number of atoms in the condensate is large@21#.
Therefore, we also expect to obtain physically sensible
sults even in this case.

When the Gaussianansatz is applied to the Gross
Pitaevskii equation we find that the variational paramet
qj (t) obey Newton’s equations of motion@13,21,24#

1

2
mNc~ t !q̈ j~ t !52

]V

]qj
„q~ t !,Nc~ t !…, ~62!

with a potential energy equal to

V~q,Nc!5(
j

S Nc\
2

4mqj
2

1
1

4
mNcv j

2qj
2D 1

a\2Nc
2

A2pmqxqyqz

.

~63!

From the action in Eq.~50!, we want to derive similar equa
tions of motion, extended to the nonequilibrium case. F
3-10
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simplicity, we first consider an ideal gas, i.e., we drop t
mean-field interaction termT2Buf(x,t)u2. The condensate re
mains, however, in contact with the thermal cloud, that a
as a ‘‘heat bath.’’ Second, we assume that the Keldysh s
energy is constant over the size of the condensate. Altho
this assumption is not justified in general, we can alwa
approximately compensate for this, by calculating a posit
independent Keldysh self-energy\SK(t) by means of an
appropriately averaged\SK(x,t) over the size of the con
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densate. We substitute our trial wave function into the eff
tive action in Eq.~50!, to obtain a probability distribution in
terms ofNc ,u0, andq. It is given by

P@Nc ,u0 ,q;t#5E d@Nc#d@u0#d@q#expH i

\
Seff@Nc ,u0 ,q#J ,

~64!

with an effective action that reads
Seff@Nc ,u0 ;q#5E
t0

t

dt8
2

\SK~ t8!
H Nc~ t8!S \

du0~ t8!

dt8
1mc~ t8!2(

j

1

4
mq̇j

2~ t8!1(
j

1

4
mqj~ t8!q̈ j~ t8!2m D 2

1
\2

4Nc~ t8!
S dNc~ t8!

dt8
1

b

2
iSK~ t8!@mc~ t8!2m#Nc~ t8!D 2

1(
j

qj
2~ t8!

2Nc~ t8!

3S 1

2
mNc~ t8!q̈ j~ t8!1

Nc~ t8!b

4
i\2SK~ t8!

q̇ j~ t8!

qj
2~ t8!

1
]V

]qj
@q~ t8!,Nc~ t8!# D 2

1O„~b i\SK!2
…J . ~65!
son
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The potential in this effective action is defined by

V~q,Nc!5(
j

S Nc\
2

4mqj
2

1
1

4
mNcv j

2qj
2D , ~66!

which is precisely the potential given by Eq.~63!, without
the mean-field interaction term. The condensate chemica
tential for the Gaussianansatzis given by

mc~ t !5
]V

]Nc
„q~ t !,Nc~ t !…1(

j

1

4
mq̇j

2~ t !, ~67!

as expected. We now assume the dimensionless param
b i\SK to be small, and thus, restrict ourselves to a tempe
ture regime sufficiently far below the critical temperatu
whereub\SKu!1, i.e., the collisionless regime. We can th
to a good approximation neglect the terms quadratic
b i\SK. The effective action in Eq.~65! thus becomes a sum
of three squares, and we may extract equations of mo
with Gaussian noise terms, exactly as in Sec. II. Since
action is quadratic inu0(t), we may integrate over this glo
bal phase exactly, because it only requires a Gaussian
gral. However, before we perform this integration, we d
cuss the stochastic equation of motion foru0(t). With the
techniques discussed in Sec. II, we easily see that it is g
by

\
du0~ t !

dt
5m2mc~ t !1(

j

1

4
mq̇j

2~ t !2(
j

1

4
mqj~ t !q̈ j~ t !

1
n~ t !

ANc~ t !
, ~68!
o-
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a-
,

n

n
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te-
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n

with time correlation of the noise

^n~ t8!n~ t !&5
i\2SK~ t !

4
d~ t82t !. ~69!

This stochastic equation again has the form of a Joseph
equation with a noise term added, similar to Eq.~53!. Note
that the noise term in Eq.~68! is inversely proportional to the
square root of the number of particles in the condensate
a result, the Fokker-Planck equation for the probability d
tribution of u0(t), associated with the Langevin equation
Eq. ~68!, will have a ‘‘diffusion’’ term inversely proportional
to the number of particles. This means that the global ph
is only well determined if there is an infinite number
atoms in the condensate, otherwise the global phase un
goes phase diffusion, due to thermal fluctuations. T
mechanism for phase diffusion is different than the ph
‘‘diffusion’’ considered by Lewenstein and You@18#, who
considered phase spreading due to quantum fluctuations

Having made these remarks, we perform the integrat
overu0(t), and are left with a probability distribution forNc
andq. It is given by

P@Nc ,q,v;t#5E d@Nc#d@q#d@v#d@v~ t8!2q̇~ t8!#

3expH i

\
Seff@Nc ,q,v#J . ~70!

Here, we introduced the velocityv(t)5q̇(t) by means of a
delta functional. The resulting effective action reads
3-11
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Seff@Nc ,q,v#5E
t0

t

dt8
2

\SK~ t8!
H \2

4Nc~ t8!
S dNc~ t8!

dt8

1
b

2
iSK~ t8!@mc~ t8!2m#Nc~ t8!D 2

1(
j

qj
2~ t8!

2Nc~ t8!
S 1

2
mNc~ t8!v̇ j~ t8!

1
Nc~ t8!b

4
i\2SK~ t8!

v j~ t8!

qj
2~ t8!

1
]V

]qj
„q~ t8!,Nc~ t8!…D 2J . ~71!

Equations~70! and ~71! are similar to the path-integral ex
pressions we encountered in our discussion of the Brown
motion of a particle in a potential in Sec. II. Therefore, w
immediately conclude that the equations of motion for
variational parameters are given by

1

2
mNc~ t !q̈ j~ t !1

Nc~ t !b

4
i\2SK~ t !

q̇ j~ t !

qj
2~ t !

52
]V

]qj
„q~ t !,Nc~ t !…1

A2Nc~ t !

qj~ t !
j j~ t !, ~72!

with the time correlations of the Gaussian noise termsj j (t)
given by

^j j~ t !jk~ t8!&5
i\2SK~ t !

4
d jkd~ t2t8!. ~73!

So, we have found the important result that the variatio
parameters obey the equations of motion of a Brownian p
ticle with massmNc/2 in a potentialV(q,Nc). Physically, the
variational description of the condensate with the Lange
equation in Eq.~72!, as opposed to Eq.~62!, has two impor-
tant extra features. First, there is a damping term present,
a term proportional to the velocityq̇ j (t). This damping term
may, for example, be used to calculate the damping on
collective modes of the condensate. Since the damping t
is proportional to\SK, we conclude that it arises because
incoherent collisions between condensate and thermal at
which drive the condensate back to equilibrium, and let
phase of the condensate relax to a state where the pha
on average, position independent. Second, since the La
vin equation also contains fluctuations, it may, for examp
be used to describe the stochastic initiation of the colla
observed in7Li @14–17#. Our description contains therma
fluctuations, which cause the condensate to overcome
macroscopic energy barrier and start the collapse. In the
section, we will present the result of calculations that
have done on the two above-mentioned phenomena.

Since the potential in the Langevin equation in Eq.~72!
depends on the number of condensate particlesNc , we have
to couple Eq.~72! to a rate equation for the number of co
01360
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densate atoms. This stochastic rate equation also follows
rectly from the effective action in Eq.~71! with the tech-
niques discussed previously and is given by

dNc~ t !

dt
52

b

2
iSK~ t !@mc~ t !2m#Nc~ t !12ANc~ t !h~ t !,

~74!

with correlations of the Gaussian noise given by

^h~ t8!h~ t !&5
iSK~ t !

4
d~ t82t !. ~75!

As explained in the Appendix, we have to treat the multip
cative noise in Eq.~74! again as a Stratonovich process,
achieve the correct equilibrium distribution. Physically, E
~74! describes the growth or evaporation of the condens
The noise term in Eq.~74! represents the fluctuations in th
number of particles.

To see that Eqs.~72! and ~74! generate the correct equ
librium distribution, we now discuss the Fokker-Plan
equation forP@Nc ,q,v;t#. However, let us first discuss th
equilibrium solution we expect on basis of Eq.~43!. A sub-
stitution of the Gaussianansatz in Eq. ~61! into Eq. ~43!
results in

P@Nc ,q,v;t→`#

}expH 2bS (
j

1

4
mNcv j

21V~q,Nc!2mNcD J , ~76!

whereV(q,Nc) is the potential given by Eq.~63!. Although
the Langevin equations forqj (t) and Nc(t) did, in first in-
stance, not include the mean-field interactions, we argue
they also are correct for the interacting case. The reason
this is, that in this manner, we are led to the correct equi
rium distribution as we show now. Let us therefore determ
the Fokker-Planck equation for the probability distribution
Nc , q and v, generated by the stochastic equations in E
~72! and ~74! with the interacting potential in Eq.~63!. It is
given by

]P@Nc ,q,v;t#

]t
5(

j
F2

]

]qj
v j1

]

]v j

3S b i\2SK~ t !

2mqj
2 v j1

2

mNc

]V

]qj
~q,Nc!D

1
i\2SK~ t !

m2Ncqj
2

]2

]v j
2GP@Nc ,q,v;t#

1F ]

]Nc
S b

2
iSK~ t !F ]V

]Nc
~q,Nc!

1(
j

1

4
mv j

22mGNcD
1

iSK~ t !

2

]

]Nc
Nc

]

]Nc
GP@Nc ,q,v;t#,

~77!
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and insertion of the equilibrium distribution shows that it
indeed a stationary solution of this Fokker-Planck equati
Thus, we conclude that the Langevin equations forqj (t) and
Nc(t) give, with the potentialV(q,Nc) given in Eq.~63!, the
correct description of the nonequilibrium dynamics of
Bose-Einstein condensate in the Gaussian approxima
This description includes damping of the collective modes
the condensate, as well as condensate growth and eva
tion. The essence of our method lies in the fluctuatio
dissipation theorem, which ensures the relaxation towa
the correct physical equilibrium distribution.

V. APPLICATIONS

In this section, we first apply the Langevin equations
the variational parameters, derived in the previous section
the calculation of the damping and frequency of the coll
tive modes of the condensate. As a second application
also obtain a description of the initial growth of a conde
sate.

A. Collective modes of the condensate

In this section, we use the Langevin equations in Eq.~72!
for the Gaussian variational parameters, and the stoch
rate equation in Eq.~74! for the number of particles in the
condensate, to obtain a description of the collective mode
the condensate. We calculate the frequency and dampin
both the monopole and quadrupole mode in an isotropic t
and compare those results with the theoretical results fo
by Williams and Griffin @35,36#. Since we are considerin
the case of a static thermal cloud, our results will be corr
only for the modes where the thermal cloud does not play
important role, i.e., for the out-of-phase modes@22,23#. In
the experiments of Jinet al. @37#, this turns out to be the
quadrupole mode. We calculate the frequency of the qua
pole mode for this experiment, by means of a fit to the
perimental data for the damping.

The frequency and damping of the collective modes a
as measured in experiment, averaged quantities. There
we first write down the equations of motion for the averag
of the Gaussian variational parameters and the numbe
particles in the condensate. The equations of motion for
average of the Gaussian widths read

1

2
mNc~ t !q̈ j~ t !1

Nc~ t !b

4
i\2SK

q̇j~ t !

qj
2~ t !

52
]V

]qj
„q~ t !,Nc~ t !….

~78!

For notational convenience, we omit the brackets^•••& de-
noting the noise average of a stochastic quantity, and den
the averages of the Gaussian variational parameters sim
by qj (t), wherej equalsx, y, or z. The average equation i
Eq. ~78! is obtained from the Langevin equation forqj (t) by
simply leaving out the noise term. This may be done beca
the noise in the Langevin equation does not induce a d
term for the average. This follows directly from the Fokke
Planck equation, with the use of partial integration. Since
want to describe a perturbation around a static equilibriu
01360
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the Keldysh self-energy will be time independent to a go
approximation, and we thus drop its explicit dependence
time. For a description of the collective modes, we also h
to consider variations in the average number of particles
the condensate, caused by the excitation of a mode.
means that we also have to consider the rate equation fo
average number of particles

dNc~ t !

dt
52

b

2
iSK@mc~ t !2m#Nc~ t !1

iSK

2
. ~79!

In writing down this equation, we again left out the bracke
^•••&, which denote averaging over different realizations
the noise in the stochastic rate equation in Eq.~74!. The last
term on the right-hand side of Eq.~79! is a so-called noise-
induced, or spurious drift term. It arises because in Eq.~74!,
we are dealing with multiplicative Stratonovich noise. Wit
out this drift term, the equilibrium number of particles pr
dicted by Eq.~79! would not be correct, as we will see late
on. Note that the average of the stochastic rate equatio
Eq. ~79! is very similar to the result obtained by Gardin
et al. @38#. However, their expression for the chemical pote
tial of the condensate is different since they do not consi
a Gaussianansatz, and they also have not made the ‘‘class
cal’’ approximation to the fluctuation-dissipation theorem.

To obtain a description of the collective modes of t
condensate, we have to linearize the equations in Eqs.~78!
and ~79! around their time-independent equilibrium sol
tions. Let us therefore putqj (t)5qj

(0)1dqj (t) and Nc(t)
5N01dN(t) and substitute this in Eqs.~78! and ~79!.
Equating the zeroth-order terms after linearization results
the average rate equation in

FbS ]V~q(0),N0!

]Nc
2m D2

1

N0
GN050. ~80!

From this equation, the equilibrium number of particles m
be calculated. It is, however, much more convenient to
the number of particles in the condensate as experime
input, and calculate the chemical-potentialm such that Eq.
~80! is satisfied. The equilibrium conditions for the Gaussi
variational parameters read

]V~q(0),N0!

]qj
50, ~81!

from which q(0) can be calculated. For the noninteractin
case, wherea50 in the potential, the above equations res
in qj5A\/mv j as expected. In this case,N0 is given by

N05FbS \

2
~vx1vy1vz!2m D G21

, ~82!
3-13
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which is the correct equilibrium ground-state occupat
number of a noninteracting Bose gas, within the ‘‘classic
approximation. Note that without the noise-induced d
term in the rate equation for the average number of partic
the correct equilibrium would not have been obtained.

The linearized equations of motion for the deviations
found by equating the first-order contribution on the left- a
right-hand side of Eqs.~78! and~79! after linearization. The
equation for the deviation in the equilibrium numberN0 of
condensate atoms due to the excitation of a collective m
is given by

dṄ~ t !52G dN~ t !2(
j

a jdqj~ t !. ~83!

Here, the parameterG is given by

G52
b

2
iSKF 1

bN0
1N0

]2V~q(0),N0!

]Nc
2 G , ~84!

where we eliminated the chemical potentialm by using Eq.
~80!. Physically, G describes the lack of detailed balan
between the thermal cloud and the condensate due to an
citation of a collective mode of the condensate. In gene
this lack of detailed balance will cause damping, and w
alter the frequency with respect to the undamped case.
parametersa j are given by

a j5
b

2
iSK

]2V~q(0),N0!

]qj]Nc
, ~85!

and represent the response of the fluctuations in the num
of particles due to a deformation of the condensate in thej th
direction, and vice versa.
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The linearized equations of motion for the deviation
the Gaussian variational parameters take the form of dam
harmonic equations

dq̈ j~ t !1G jdq̇ j~ t !52
a j

a
dN~ t !2V j

2dqj~ t !

2(
kÞ j

V jk
2 dqk~ t !. ~86!

The damping ratesG j are given by

G j5
b

2m~qj
(0)!2

i\2SK, ~87!

and the frequenciesV j andV jk read

V j
25

2

mN0

]2V~q(0),N0!

]qj
2

, V jk
2 5

2

mN0

]2V~q(0),N0!

]qj]qk
.

~88!

In Eq. ~86!, we introduced the parametera5mN0b iSK/4 for
later convenience. Physically, the damping ratesG j arise be-
cause of collisions between thermal atoms and conden
atoms. This causes damping of the collective modes on
condensate, and also alters the frequencies with respect t
results obtained without damping. It should be noted he
that all the parameters mentioned above may be calcul
microscopically, by using the expression for the Keldysh s
energy given in Eq.~48!.

To obtain the eigenmodes of Eqs.~83! and~86!, we have
to consider solutions of the form „dN(t),dq(t)…
5„dN(0),dq(0)…e2 ivt. For such solutions, we may rewrit
these equations as
S a~G2 iv! ax ay az

ax Vx
22 ivGx2v2 Vxy

2 Vxz
2

ay Vxy
2 vy

22 ivGy2v2 Vyz
2

az Vxz
2 Vyz

2 Vz
22 ivGz2v2

D S dN~0!/a

dqx~0!

dqy~0!

dqz~0!

D 50. ~89!
the

d

ne

he
This matrix equation only has nontrivial solutions if the d
terminant of the above matrix is equal to zero. Solving t
condition for v results, in general, in complex frequenci
v5vRe2 iv Im . The real partvRe then gives the frequenc
of a collective mode, whereas the imaginary partv Im gives
the damping of this mode.

1. Isotropic trapping potential

We consider now the case of an isotropic trapping pot
tial Vext(x)5(1/2)mv0

2x2 for a discussion of the frequencie
and damping rate of the low-lying collective modes of t
condensate. Because of the spherical symmetry of the
densate in equilibrium, the number of parameters redu
s

-

n-
es

and the eigenvalue equation simplifies significantly. For
frequencies and damping rates we have

Vx5Vy5Vz[V r ,

Vxy5Vxz5Vyz[V rr , ~90!

Gx5Gy5Gz[G r .

For the parametersa j , we have the same simplification, an
we denote these parameters bya r . With these simplifica-
tions, the eigenmodes may be calculated analytically. O
mode is doubly degenerate, with eigenvectors (0,1,21,0)
and (0,1,0,21), and is thus the quadrupole mode. From t
3-14
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form of the eigenvectors of the quadrupole mode, we are
to the important conclusion that the number of particles
the condensate is constant for this mode. Physically, this
be understood from the fact that the motion of the cond
sate is ‘‘volume preserving’’ in this case: as one directi
shrinks, the other one expands and vice-versa. This mo
does not lead to a change in the chemical potential of
condensate, at least to a linear approximation, and there
does not affect the average number of atoms in the con
sate. The complex frequency of the quadrupole mode
given by

vquad5AV r
22V rr

2 2S G r

2 D 2

2
1

2
iG r . ~91!

Note that from this expression, it is clearly seen that
damping also affects the frequencies of the collective mo
@23#.

The frequency and eigenvector of the monopole mo
may also be calculated analytically for the isotropic ca
However, because of the rather formidable expressions
volved, we omit them here. For the monopole mode,
number of atoms in the condensate is not constant, but o
lates out of phase with the spatial degrees of freedom of
condensate. This may be understood from the fact that
monopole motion leads to a global increase in the densit
the condensate, and therefore affects the detailed balan
the condensate with the thermal cloud. In the case where
ignore the fluctuations of the number of atoms in the c
densate, and takea5a r5G50, the expression for the com
plex frequency of the monopole mode is given by

vmono5AV r
212V rr

2 2S G r

2 D 2

2
1

2
iG r . ~92!

Comparing the results in Eqs.~91! and~92!, we see that the
damping rate of both modes is equal in first order inG r , at
least within our variational approximation.

We now turn to an explicit calculation of the frequenci
and damping rates of the quadrupole and monopole mod
an isotropic trap. We have used the same parameters as
liams and Griffin@35,36#, and thus have taken the trappin
potential frequency equal tov0/2p510 Hz. The calcula-
tions are performed for87Rb, which has a scattering lengt
of a55.7 nm. We take the total number of atoms equal
Ntotal523106. Since the number of atoms in the condens
is large at most temperatures below the critical temperat
we are mainly in the Thomas-Fermi regime, and may neg
the kinetic energy of the condensate atoms with respec
their mean-field interaction. Therefore, we have used
Thomas-Fermi profile for the condensate to calculate the
lision integral in the expression for the Keldysh self ener
in Eq. ~48!. As a result, the Keldysh self-energy turns out n
to be constant over the size of the condensate in this li
contrary to our assumption in the derivation of the stocha
equations for the variational parameters. To compensate
this effect, we have calculated\SK by taking a volume av-
erage of\SK(x) over the size of the condensate. We rep
our results for the number of condensate atoms, the freq
01360
d
n
ay
-

n
e
re
n-
is

e
s

e
.

n-
e
il-
e

he
of

of
e

-

in
il-

o
e
e,
ct
to
a
l-

y
t
it,
ic
or

t
n-

cies, and the damping rates as a function of the redu
temperatureT/TBEC, whereTBEC is the critical temperature
for an ideal Bose gas.

The procedure for calculating the number of atoms in
condensate as a function of temperature is as follows. F
given number of condensate atomsN0, we first calculate the
average condensate density profile and the chemical pote
from the time-independent Gross-Pitaevskii equation. In
Thomas-Fermi limit, the average condensate density pro
is given by

u^f~x!&u25
1

T2B
„m2Vext~x!…, ~93!

with a condensate chemical potential

m5
\v0

2
~15N0a/ l !2/5, ~94!

wherel 5A\/mv0 is the harmonic-oscillator length. Clearly
the condensate density may not be negative, so Eq.~93! is
only valid if the condensate density is positive, otherwise
should be taken equal to zero. Atuxu5 lA2m/\v0[RTF , the
condensate density is equal to zero. Next, we calculate
number of atoms in the thermal cloud with the value of t
chemical potential determined by Eq.~94! using

Nthermal5E dxE dk

~2p!3
N„e~x,k!…, ~95!

with N„e(x,k)… given by Eqs.~37! and~49!. We repeat these
steps for a variable number of condensate atoms untilN0
1Nthermal5Ntotal. The result of the calculation is shown i
Fig. 1, together with the result for an ideal Bose gas in
thermodynamic limit. Using this result forN0 as a function
of the temperatureT, we have calculated the Keldysh sel
energy as a function of temperature using the expressio
Eq. ~48! @39#. In Fig. 2, the functionub\SK(x)u is shown,

FIG. 1. The solid line gives the condensate fraction for a87Rb
gas of 23106 atoms in an isotropic trap withv0/2p510 Hz. The
dashed line corresponds to the ideal Bose gas in the thermodyn
limit.
3-15
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for T50.5TBEC. It is clear from this figure that the Keldys
self-energy is not constant over the size of the condens
and even diverges in the Thomas-Fermi approximation
uxu5RTF . The equilibrium values of the variational param
eters were calculated using Eq.~81!. Subsequently, the vari
ous parameters were calculated from Eqs.~84!, ~85!, ~87!,
and~88!. The complex frequency of the quadrupole was c
culated from Eq.~91!, and the complex frequency of th
monopole mode was calculated from the corresponding a
lytical expression, which we have omitted here.

The results for the frequencies are presented in Fig. 3.
dashed lines are theT50 frequencies obtained by Stringa
@40#, in the Thomas-Fermi limit. Since the calculations are
the collisionless limit, whereub\SKu!1, the results are es

FIG. 2. The dimensionless quantityub\SK(x)u. At uxu5RTF

there is a divergence, when the collision integral in Eq.~48! is
calculated in the Thomas-Fermi limit. This is indicated by t
dashed line. The calculation is performed forT50.5TBEC with the
same parameters as in Fig. 1.

FIG. 3. Frequencies for both the monopole and quadrup
modes as a function of the temperature. The dashed lines ind
the zero-temperature results found by Stringari@40#, i.e., vquad

5A2v0 andvmono5A5v0. The plot starts atT50.8TBEC since for
smaller temperatures the deviation from these values is neglig
The parameters are the same as in Fig. 1.
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sentially T50 results for a variable number of condensa
atoms. In the Thomas-Fermi limit, these frequencies are
dependent of the number of atoms in the condensate,
below N0.104 condensate atoms, where the Thomas-Fe
approximation starts to break down, the frequencies dev
from theT50 results, as is seen in Fig. 3. Although for th
monopole mode the full expression for the frequency a
damping involves the parametersG, a r , anda, which are
related to the fluctuations in the number of condensate at
due to the excitation of a collective mode, this hardly affe
the results for the frequencies and damping of this mode.
therefore conclude that the fluctuations in the number of c
densate atoms during the excitation of a collective mo
hardly affect the damping and frequency of this mode, a
that the expression in Eq.~92! is valid as long asub\SKu
!1.

The results for the damping rate are shown in Fig.
together with the result forub\SKu. Within our variational
approximation, the damping rates for both the quadrup
and the monopole modes are found to be the same in
collisionless regime considered here. As clearly seen fr
Fig. 4, the damping rate increases with increasing temp
ture. This is because the density of the thermal cloud
comes larger with increasing temperature, and there
therefore more collisions between condensate and the
atoms, which cause the damping. Williams and Griffin@35#
have also calculated the damping of the monopole mode
a condensate in a spherical trap in the presence of a s
thermal cloud. These authors have generalized the w
equation derived by Stringari@40# to nonzero temperatures
similar to our result in Eq.~58!, albeit that their work does
not obey the fluctuation-dissipation theorem as mentio
previously. They have calculated the damping of the mo
pole mode in perturbation theory, considering the damping
a perturbation parameter. Our results for the damping of
monopole mode have the same order of magnitude as
results. There are, however, some qualitative differences.

le
te

le.

FIG. 4. The damping rate for both the quadrupole and monop
mode for a condensate in an isotropic trap, which is the same
small damping in our variational approximation. The inset sho
the dimensionless parameterub\SKu. The parameters are the sam
as in Fig. 1.
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find that the damping rate increases very slowly with te
perature for a large temperature regimeT,0.95TBEC, and
then increases dramatically as the temperature approa
the critical temperature. Williams and Griffin find that th
damping rate increases much more gradually with increa
temperature. These differences are probably due to the
that these authors take into account that the collision inte
in Eq. ~48! has a position dependence. In Ref.@36#, Williams
and Griffin improve upon their Thomas-Fermi calculation f
the damping rate by using the Bogoliubov-deGennes eq
tions that follow from linearizing the Gross-Pitaevskii equ
tion with an imaginary term. In this case, their results for t
damping also show a dramatic increase as the tempera
reaches the critical temperature and the Thomas-Fermi
proximation breaks down. In this latter work, it is also fou
that the damping for the quadrupole mode and the mono
mode are slightly different. The fact that we find that t
damping for both the monopole mode and the quadrup
mode are equal to first order inG r is a result of neglecting
the spatial dependence of the Keldysh self energy. Willia
and Griffin also find that there is no first-order correction
the damping to the real part of the frequencies, a conclus
consistent with Eqs.~91! and ~92!.

Summarizing, we have calculated the damping and
quencies for the quadrupole mode and the monopole mod
a condensate in a spherical trap. Our results differ sligh
both qualitatively and quantitatively from the theoretical r
sults found by Williams and Griffin@35,36#. These differ-
ences are probably mostly due to the fact that the calc
tions are performed for a large number of atoms in the tr
which implies that the collision integral involved in the ca
culation has a significant position dependence, which
variational approach does not properly account for. Howe
for a smaller amount of atoms in the trap, we believe that
method should give accurate results, and goes in princ
beyond the perturbation theory considered in Refs.@35,36#.

2. Anisotropic trapping potential

We now calculate the frequency of them52 quadrupole
mode, wherem is the azimuthal quantum number of the a
gular momentum, for the experimental parameters of
et al. @37#. In this experiment, one loads87Rb atoms into an
anisotropic trap, with radial frequencyv r /2p5129 Hz, and
axial frequencyvz/2p5365 Hz. Although the equilibrium
shape of the condensate is now anisotropic, the expres
for the frequency of the quadrupole mode found in the i
tropic case in Eq.~91!, turns out to be also correct for th
m52 quadrupole mode. The parametersV r , V rr , andG r ,
are now given by

V r[Vx5Vy ,

V rr [Vxy5Vyx , ~96!

G r[Vx5Vy ,

which follow from the axial symmetry of the condensate
equilibrium. It follows from the expression for the comple
frequency of the quadrupole mode in Eq.~91! that the com-
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plex frequencies lie on a circle of radiusuvquadu
5AV r

22V rr
2 .A2v r . To test the validity of our expressio

for the frequency of the quadrupole mode, we have plot
the experimental data points taken from Ref.@37# in the com-
plex v plane. In Fig. 5, the result is shown, together with
circle of radiusA2v r . The good quantitative agreement wi
experiment, clearly visible in Fig. 5, implies that the expre
sion in Eq.~91! for the frequency and damping of the qua
rupole mode is correct, even in the hydrodynamic regim
whereub\SKu@1. This may at first come as a surprise, sin
our variational approximation to the stochastic nonline
Schrödinger Eq.~46! was derived in the collisionless regime
whereub\SKu!1. Apparently, the relationuvquadu.A2v r is
also valid in the hydrodynamic regime. This may be und
stood from the fact that this relation for the complex fr
quency is quite general for a damped harmonic oscillator
we expect on general grounds that the quadrupole mod
the condensate may be described in this way, both in
collisionless and in the hydrodynamic regime.

To determineub\SKu as a function of temperature, w
have fitted the imaginary part of Eq.~91! to the experimental
data for the damping presented in Ref.@37#. From this fit, we
have calculated the dimensionless parameterub\SKu, using
Eqs.~87!, ~88!, and~91!. The results of this fit are presente
in Fig. 6. The value forub\SKu found in this manner is then
used to calculate the real part of Eq.~91!, i.e., the frequency
of the collective mode. In both the fitting of the dampin
and the calculation of the frequency, we used the fit p
sented in Ref.@23# to determine the experimental values f
the number of condensate atoms as a function of the t
perature. The result for the frequency is presented in Fig
together with the frequency calculated from Eq.~91!, with
G r50, i.e., the zero-temperature frequency for a varia
number of condensate atoms. The experimental points
also shown. In Fig. 7, a good quantitative agreement with
experimental results is found. Figure 7 also shows clea
that at nonzero temperatures, the damping seriously aff

FIG. 5. The complexv plane. In our expression for the fre
quency and damping rate of them52 quadrupole mode in Eq.~91!,
the complex frequencies lie on a circle of radiusA2v r . The experi-
mental points taken from Ref.@37# are also shown.
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the frequency of the quadrupole mode, as was also foun
Al Khawaja and Stoof@23#. However, a microscopic calcu
lation of \SK in the Thomas-Fermi limit for the experimen
tal conditions of interest, by means of a volume average
Eq. ~48! over the size of the condensate, turns out to g
values forub\SKu that are approximately one order of ma
nitude too small to explain the experimental data for
quadrupole mode. There are several possible reasons fo
discrepancy. One possible reason is that the calculatio
\SK as an average over the size of the condensate
\SK(x) is not a good approximation. Since\S(x) becomes
large compared to\SK(0) at the edges of the condensa
where the depletion of the thermal cloud due to the cond
sate’s mean field is relatively small, the position depende
of \SK(x) is of importance, in particular since the dens
fluctuations occur for the quadrupole mode precisely near

FIG. 6. Fit to the damping rate of the quadrupole mode,
measured by Jinet al. @37#. The solid line shows the fit and th
experimental points are taken from Ref.@37#. The inset shows the
value of ub\SKu, as calculated from this fit with Eqs.~87!, ~88!,
and ~91!.

FIG. 7. The frequency of the quadrupole mode as a function
temperature, calculated with Eq.~91!, by using the fit shown in Fig.
6. The dashed line shows theT50 frequency for a variable numbe
of condensate atoms. The experimental points taken from Jinet al.
@37# are also shown.
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edges of the condensate. This is clearly shown in Fig
which shows that the Keldysh self-energy even diverges
uxu5RTF in the Thomas-Fermi limit. With respect to this re
mark, we refer to future work concerning the full numeric
solution of the average of the Langevin equation in Eq.~46!,
to investigate the importance of the position dependence
\SK(x), and a comparison of this numerically exact a
proach to the variational method developed here. Anot
possible reason for the discrepancy with the experime
results, is the presence of other sources of damping, suc
Landau and Beliaev damping, which have not been inclu
in our calculations.

B. Condensate growth and collapse

Although so far we have focused on repulsive intera
tions, and thus a positive scattering lengtha, we consider in
this section the case where the scattering length is nega
In this case, the condensate energy in the Gaussian app
mation becomes

V~q,Nc!5(
j

S Nc\
2

4mqj
2

1
1

4
mNcv j

2qj
2D 2

uau\2Nc
2

A2pmqxqyqz

.

~97!

From this potential, it is easily seen that there is only a me
stable condensate possible if the number of atoms in
condensate is smaller than a certain critical value. This
illustrated in Fig. 8, where we show the potential in Eq.~97!,
for several values of the number of atoms in an isotro
condensate. For an isotropic trap, the maximum conden
numberNmax turns out to be given by the condition

Nmax

uau
l

,
2A2p

55/4
.0.67. ~98!

s

f

FIG. 8. The condensate energy as a function of the conden
width in the Gaussian approximation for three different values
the condensate atom number. If the number of atoms in the con
sate is larger thanNmax, the condensate is unstable; otherwise
metastable condensate is possible.
3-18



lu

c
th

ul
b
ap

in

e
o
f

e
sti
o
p

on
s
to

t

, w
ie
m

er
es
t i
c-

n

c-
.
n

m
tio
n
n-
nc
h

i
on
u

ex-

tely.

the
th

hese
m

ool-
ather
era-
ose
he
ua-

ms

on-

-
tion

n-
we

ms
en-
e to

stic
sto-

ro. A
ua-

the
the
tri-
nly.
the
c-
he
ly
al

nte-
la-
s
a-

eal-
and
unc-
m-
nder

STOCHASTIC DYNAMICS OF A TRAPPED BOSE- . . . PHYSICAL REVIEW A 65 013603
If the number of atoms in the condensate is above this va
the potential in Eq.~97! has no~meta!stable minima. If the
number of atoms is smaller thanNmax, the potential has a
metastable minimum, and the condensate may start to
lapse by overcoming the metastable energy barrier by ei
macroscopic quantum tunneling or thermal fluctuations@13#.
The stability condition for the condensate, found by a f
numerical solution of the Gross Pitaevskii, turns out to
Nca/ l ,0.58 @41#, and thus, we see that the Gaussian
proximation is only 16% off.

The first experiments on Bose-Einstein condensation
gas with attractive interactions were performed with7Li
@2,14#, which has a negative scattering length ofa.
21.45 nm. In these experiments, the gas is evaporativ
cooled below the critical temperature, which causes the c
densate to undergo several growth and collapse cycles be
relaxing to a metastable equilibrium@15#. Because of the
stochastic initiation of the collapse, one could not mak
sequence of destructive measurements. However, a stati
analysis revealed that during a collapse the number of c
densate atoms is not reduced to zero, but that the colla
stops, presumably because of elastic and inelastic collisi
loss processes, when the number of atoms in the conden
is about 200@16#. In a recent experiment, one was able
make a sequence of destructive measurements by~partially!
dumping the condensate by a two-photon pulse@17#, and
thus observe the subsequent regrowth and collapse of
condensate.

Using the Langevin equations forqj (t), and the stochastic
rate equation for the number of atoms in the condensate
are able to describe this experiment. To do so in the eas
way, we want to model the thermal cloud by an equilibriu
Bose distribution of a noninteracting gas. However, num
cal solutions of the quantum Boltzmann equation for th
experiments have shown that the thermal cloud is no
equilibrium, but may be well modeled by a distribution fun
tion given by@16#

f ~e!5
exp@b~m82m!#

exp@b~e2m!#21
[

A

exp@b~e2m!#21
. ~99!

At high energies,f has the form of a Boltzmann distributio
with chemical-potentialm8 and temperature 1/kBb. At low
energies,f has the formf (e)5A/b(e2m), which is pre-
cisely the low-energy tail of a Bose distribution with effe
tive temperatureA/kBb. Therefore, we conclude that Eq
~40! is to a good approximation still valid for the distributio
function given by Eq.~99!, if we make the replacementb
→b/A in the operator on the right-hand side of Eq.~40!. In
this manner, we obey the fluctuation-dissipation theore
and have also accounted for the fact that the distribu
function of the thermal cloud is a nonequilibrium distributio
function. We expect that this approximation will give qua
titatively correct results for the condensate growth rate, si
it is particularly good for the low-lying energy levels, whic
dominate the condensate growth.

Before comparing it to the experimental data reported
Ref. @17#, we discuss some aspects of the numerical soluti
of the stochastic rate equation coupled to the Langevin eq
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tion, for a condensate that has initially no atoms. In the
periment performed by Gertonet al. this would correspond
to the situation where the condensate is dumped comple
The stochastic rate equation in Eq.~74! is well suited for this
purpose, since it also contains fluctuations, which initiate
growth in this case. Without these fluctuations, the grow
rate of the condensate would never become nonzero. T
initial conditions for condensate growth are different fro
the experiments conducted by Miesneret al. @42#, in which
the condensate growth is observed after evaporatively c
ing the gas. In this case, the ground state already has a r
large nonzero occupation number above the critical temp
ture, which causes a growth process dominated by B
stimulation. Therefore, for a theoretical description of t
condensate growth, it is not so essential to include fluct
tions in this case@43,44#. We perform our simulations for the
experimental conditions reported in Ref.@17#. The trap fre-
quencies are given byv r /2p5151 Hz and vz/2p
5131.5 Hz. We consider a thermal cloud with 70 000 ato
at a temperatureT5170 nK. The parameterA is taken equal
to four. These values correspond to typical experimental c
ditions @45#. The Keldysh self-energy\SK is calculated us-
ing Eq. ~48!, with the nonequilibrium distribution function
f (e) given by Eq.~99!. The mean-field effects of the con
densate on the thermal cloud are neglected, an approxima
that will certainly be valid in the initial stage of the conde
sate growth, when the condensate is small. Moreover,
take the chemical potential of the condensate^mc(x,t)& in
Eq. ~48! equal to zero. Since the density of thermal ato
will be the largest in the center of the trap, and the cond
sate is small in this case, we do not perform an averag
calculate\SK, but simply take\SK5\SK(0).

We solve the Langevin equations coupled to the stocha
rate equation, using standard numerical techniques for
chastic differential equations@46#. Since the initial number
of condensate atoms is equal to zero, we put at timet50 the
values of the Gaussian variational parameters equal toqj

5A\/mv j , which is their equilibrium value in the limit
where the number of condensate atoms approaches ze
slight subtlety arises in the use of the stochastic rate eq
tion. One has to realize that the chemical potential of
thermal cloud in this equation is measured with respect to
energy of the lowest excited level, since we want the dis
bution function to describe the noncondensed atoms o
This means that we should use in the rate equation
chemical potential found in matching the distribution fun
tion in Eq.~99! to the number of thermal atoms, and add t
energy of the lowest excited level to it. This is immediate
clear when we write the number of atoms in the therm
cloud as a sum over occupation numbers, instead of an i
gral over energy. Figure 9 shows the results of our simu
tions. In Fig. 9~a!, we plot the number of condensate atom
as a function of time, for the solutions of the Langevin equ
tions and the stochastic rate equation for three different r
izations of the noise. We assume that during the growth
subsequent collapse of the condensate, the distribution f
tion of the thermal cloud is not affected. The maximum nu
ber of atoms in the condensate is for the parameters u
consideration here equal toNmax.1470 atoms, within the
3-19
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FIG. 9. ~Color! ~a! Growth-collapse curves of a7Li condensate, and~b! their averages. The colored lines in~a! display the number of
condensate atoms for solutions of the Langevin equation forqj (t), coupled to the stochastic rate equation forNc(t), for three different
realizations of the noise. In~b!, the red line corresponds to an average over 5 realizations, the green line to 10, and the blue line to an
over 1000 different realizations of the noise. The simulations are done for a thermal cloud of 70 000 atoms withT5170 nK andA54.
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Gaussian approximation. This means that during one grow
collapse cycle the number of atoms in the thermal cloud
reduced by only approximately 2%, and therefore, this
proximation seems valid for the description of one grow
collapse curve. However, in principle, the parameterA
should gradually approach one during the growth-colla
process due to the relaxation of the thermal cloud to equ
rium. We expect this to affect our simulations at longer tim
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only. Once a collapse is initiated by the noise in Eqs.~72!
and ~74!, we model the collapse by putting the number
condensate atoms instantaneously equal to a Gaussian
dom number with a mean value of 200 and a deviation of
which corresponds to the 20% systematic uncertainty
ported in@16#, and the variational parametersqj (t) equal to
their corresponding equilibrium values, given by Eq.~81!.
The collapse occurs on a time scaleO(1/v) which is much
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STOCHASTIC DYNAMICS OF A TRAPPED BOSE- . . . PHYSICAL REVIEW A 65 013603
faster than the time scale on which the condensate gro
Since we are interested in the growth process here, and n
the loss process that stops the collapse, this appears a
sonable way to model the collapse. Figure 9~a! clearly shows
that when the number of condensate atoms approache
maximum numberNmax, the condensate tends to collaps
We found that the collapse is initiated stochastically by
fluctuations in the number of atoms in the condensate, wh
cause density fluctuations that cause the condensate to
come the macroscopic energy barrier and start the colla
As a result, the number of condensate atoms may be la
thanNmax. Since our description only includes thermal flu
tuations, we may ask if macroscopic quantum tunnel
might be of importance. However, previous work has sho
that decay by thermal fluctuations is the main decay mec
nism for the temperatures of interest@15#. In Fig. 9~b!, we
plot the number of atoms in the condensate as a functio
time, averaged over different realizations of the noise. T
red line is an average over five different realizations of
noise. A growth-collapse signature is still visible in th
curve, although the stochastic growth process and initia
of the collapse has led to a dephasing of the momen
collapse. The green line shows an average over ten rea
tions of the noise. Although the initial growth is clearly vi
ible in this curve, the collapse can hardly be seen from
average, since the noise has led to an almost comp
dephasing, and the collapse is ‘‘averaged out.’’ Finally,
blue curve shows an average over 1000 realizations of
noise. No signature of the collapse is visible in this cur
because the averaging leads to a complete dephasing o
moment of the collapse.

We now discuss the simulation of the experiments p
formed by Gertonet al. @17#. To make a comparison with
experiment, one has to realize that each data point is
tained as an average over five or ten individual runs. Si
the condensate number is probed by means of a destru
measurement, each experimental curve should not be vie
as an average of curves. Instead, each point is an ave
over different experimental runs, and the time correlat
between different experimental points is only caused by
initial conditions, which are approximately the same for ea
experimental run. To simulate this experiment by means
numerical solution of the Langevin equations in Eqs.~72!
and ~74!, we therefore have to let the numerical solutio
evolve up to a certain point in time, and then make a num
cal measurement. We then average over five or ten meas
ments to obtain a data point and its uncertainty, and rep
this procedure at a different measurement time. In this w
we are certain that each individual solution of our stocha
equations, is done for a different realization of the noi
Note that this procedure is very reminiscent of the method
Monte Carlo simulation.

We have done simulations for the three different expe
mental situations presented in Ref.@17#. The results of our
simulations are presented in Fig. 10, as red triangles.
experimental data points are also shown, and denoted
black circles. The Keldysh self-energy was calculated a
the simulations described above, using the averages o
full experimental data on the number of atoms in the therm
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cloud and their temperature@45#. For the parameterA of the
nonequilibrium distribution function in Eq.~99! we use the
average of the fits obtained by Gertonet al. @17#. For Figs.
10~a! and 10~c!, this corresponds to a thermal cloud of a
proximately 65 000 atoms at a temperature ofT5170 nK.
The parameter of the nonequilibrium distribution is equal

FIG. 10. ~Color! Simulations of the experiment performed b
Gertonet al. @17#. The results of the simulations are denoted by r
triangles, the experimental data are shown as black circles. In~a!
and ~b!, each data point of the simulations is an average ove
runs, as in the experiment. For~c!, 10 runs per point were done. Th
error bars in both the experimental data, and the data obtaine
the simulations, denote the uncertainty in the mean.
3-21



e

a
rs

to

is
lu

w
th
ig

n
d,
a
b
a
in
o

r
ua
o
n

m
th
in

de
at
th
a

fo
e
ou
at
n

ri-
n
th
s

ve
no
ou
tu

ke
r

th
t

th
a

th
n

de-
se-
n to
mal
in

er-
the
on-
pre-
his
-
ase.
d a
lyti-
lus,
to

urn
the
ns
ber

tions
tive
the

ter-
ible
ht
and

o a
e-

er-
ces

is,

ria-
this
ken
ting

ure
n-
of
we

ieve
atis-
e-
r, as
p-

eri-

ndy
l

R. A. DUINE AND H. T. C. STOOF PHYSICAL REVIEW A65 013603
A54 for these simulations. For Fig. 10~b!, the thermal cloud
contains approximately 100 000 atoms at a temperatur
T5200 nK. The parameterA52 in this case. For Fig. 10~a!
and 10~b!, the averages are taken over five runs for each d
point, whereas for 10~c! ten runs are used. The error ba
denote the uncertainty in the average. In Figs. 10~a! and
10~b!, the initial number of atoms was taken equal
Nc(0)5100, andNc(0)5438, respectively. For Fig. 10~c!,
we have takenNc(0)50, since the condensate was in th
case dumped completely to within the experimental reso
tion @17#.

The results of our simulations presented in Fig. 10 sho
good agreement with experiment for the initial stage of
growth, where the condensate is small. In particular, F
10~a! shows good agreement in the initial stage whereNc

,400 atoms, whereas Fig. 10~c! shows good agreement i
the regime whereNc,600 atoms. This is to be expecte
since the Gaussianansatzis a very good approximation for
small number of atoms in the condensate, whereas it
comes worse for a larger number of atoms in the condens
The fact that the error bars of the experimental data po
have the same order of magnitude as the error bars on
simulations, indicates that the fluctuations, i.e., the noise
our stochastic equation, have indeed the correct orde
magnitude. As mentioned in the discussion of the individ
solutions of our stochastic equations, we find that the c
lapse is initiated by fluctuations in the number of atoms, a
that these fluctuations thus lead to a dephasing of the
ment of the collapse. In principle, also the fluctuations in
initial number of atoms in the condensate lead to dephas
However, the uncertainty inNc(0) is small compared to the
uncertainty inNc(t) at later times, and we therefore conclu
that fluctuations in the initial conditions for the condens
are presumably less important for an understanding of
dephasing of the moment of the collapse. Moreover, there
also fluctuations in the properties of the thermal cloud
each individual experimental run, which we have not tak
into account. With respect to this point, we also note that
method does not display the saturation in the growth r
observed in numerical solutions of the quantum Boltzma
equation@17#. This effect is also observable in the expe
mental data in Fig. 10~c!, where the growth is exponential i
the first stage, but then turns linear. This saturation in
growth rate is caused by the fact that the condensate mo
grows from the low-lying excited states, which in turn, ha
to be fed by collisions in higher-energy states, which are
Bose enhanced. Since in our simulations, the thermal cl
is taken to be static, our simulations do not display this sa
ration effect. In conclusion, we like to point out that to ma
a sensible quantitative comparison to the experimental
sults in the whole time domain, we have to compare
converged averages of both the experimental runs and
theoretical simulations. This is because of the fact that
fluctuations are so large, each individual growth curve m
differ substantially, as seen from Fig. 9~a!. In turn, this leads
to averages that may differ qualitatively, depending on
number of runs one averages over, as is also clearly see
Fig. 9~b!.
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VI. CONCLUSIONS

We have presented a Fokker-Planck equation that
scribes the nonequilibrium dynamics of an atomic Bo
Einstein condensate. We have discussed an approximatio
this Fokker-Planck equation, which assumes that the ther
cloud is close to equilibrium. Its corresponding Langev
equation has the form of a stochastic nonlinear Schro¨dinger
equation with complex Gaussian noise. Both the Fokk
Planck equation, and the Langevin equation obey
fluctuation-dissipation theorem, which ensures that the c
densate relaxes to the correct equilibrium. We have also
sented the hydrodynamic formulation corresponding to t
stochastic nonlinear Schro¨dinger equation, in which the con
densate is described in terms of its density and its ph
These turn out to obey a stochastic continuity equation an
stochastic Josephson equation, respectively. To make ana
cal progress, we have then extended the variational calcu
commonly applied to the Gross-Pitaevskii equation, also
the case of the stochastic nonlinear Schro¨dinger equation.
The equations of motion for the variational parameters t
out to be identical to the Langevin equations describing
Brownian motion of a particle in a potential. These equatio
are then coupled to a stochastic rate equation for the num
of atoms in the condensate. We have applied these equa
to calculate the damping and frequencies of the collec
modes of the condensate, and to obtain a description of
growth-collapse curve of a condensate with attractive in
actions. However, there are much more applications poss
with the variational method presented here. With a slig
extension, it may also be used to calculate the frequency
damping of the scissor modes of the condensate@47,48#, at
nonzero temperatures. Moreover, applying the method t
Thomas-Fermi density profile, we may obtain a simple d
scription of the growth of a condensate with repulsive int
actions. The treatment of the dissipative dynamics of vorti
and other topological excitations such as skyrmions@49,50#,
is also feasible within this variational method.

The only quantity that characterizes the thermal cloud
in our approach, the Keldysh self-energy\SK(x,t). The pa-
rameter that enters the equations of motions for the va
tional parameters, turns out to be some spatial average of
quantity. In our calculations presented here, we have ta
an average over the size of the condensate, when calcula
the frequency and damping of the collective modes. Fut
work will include a numerical solution of the stochastic no
linear Schro¨dinger equation, to investigate the importance
the spatial dependence of the Keldysh self energy, which
have not taken into account here. Nevertheless, we bel
that the variational method presented here, provides a s
fying picture of the nonequilibrium dynamics of a Bos
Einstein condensate at nonzero temperatures. Moreove
we have shown, calculations done within this variational a
proximation, lead already to a good agreement with exp
ments on collective modes and on condensate growth.
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APPENDIX: AMPLITUDE AND PHASE VARIABLES

The condensate is often described in terms of density
phase variables, by making a canonical transformationf
5Areiu. In this Appendix, we discuss the derivation of th
Langevin equations of motion forr(x,t) and u(x,t). For
simplicity, we first discuss the single-mode version of t
probability distribution in Eq.~30! in the noninteracting case
So we consider a probability distribution for a single-mo
complex order parameter, which reads

P@f* ,f;t#5E
f(t)5f

f* (t)5f*
d@f* #d@f#

3expH i

\ F E
t0

t

dt8
2

\SK

3US i\
]

]t8
1m2mc1 iRD f~ t8!U2G J .

~A1!

Physically, this probability distribution describes the no
equilibrium dynamics of a noninteracting Bose-Einstein co
densate, in contact with a thermal cloud characterized b
Keldysh self-energy\SK, with inverse temperatureb and a
chemical-potentialm. The energy per particle in the single
mode system is equal tomc . The dissipationR is again re-
lated to the Keldysh self energy by the fluctuation-dissipat
theorem in Eq.~40!, which in this simple case reads

iR52
b

4
\SK@mc2m#. ~A2!

From the previous sections, we know that the probabi
distribution P@f* ,f;t# is generated by the Langevin equ
tion

i\
]f~ t !

]t
5~mc2m2 iR!f~ t !1h~ t !, ~A3!

where the complex noise has a time correlation funct
given by

^h* ~ t8!h~ t !&5
i\2

2
SKd~ t82t !. ~A4!

As explained in the first section, the noiseh(t) can be inter-
preted as an Ito process. We can again derive the Fok
Planck equation forP@f* ,f;t# by noting that it is in fact the
Schrödinger equation in the position representation. We w
do this in some detail once more, to make clear the differ
steps of the derivation. The first step is to determine
momenta conjugate to the coordinatesf andf* . Since we
have a Lagrangian equal to
01360
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L@f* ,f#5
2

\SK US i\
]

]t
1m2mc1 iRD f~ t !U2

, ~A5!

we may define the momentum conjugate tof in the usual
way

pf5
]L

]f
5

2i

\SK S 2 i\
]

]t
2mc2 iR1m Df* , ~A6!

with the complex conjugate expression forpf* . The second
step is to derive the Hamiltonian. Although it has in princip
ordering problems, we overcome these by noting that in
path-integral formulation of quantum mechanics we are
ways dealing with a normal-ordered Hamiltonian. T
normal-ordered Hamiltonian, i.e., with the momentum ope
tors positioned left of the coordinate operators, is now giv
by

H@pf ,f;pf* ,f* #5pfḟ1pf* ḟ* 2L@f* ,f#. ~A7!

The last step towards the Fokker-Planck equation is to qu
tize the Hamiltonian, and to write down the Schro¨dinger
equation in the position representation. So, we havepf5
2 i\]/]f, and similarly pf* 52 i\]/]f* . The Fokker-
Planck equation becomes

i\
]

]t
P@f* ,f;t#52

]

]f
~mc2m2 iR!fP@f* ,f;t#

1
]

]f*
~mc2m2 iR!f* P@f* ,f;t#

2
1

2

]2

]f* ]f
\SKP@f* ,f;t#. ~A8!

With the use of the fluctuation-dissipation theorem in E
~A2!, we then show that it has as a stationary solution

P@ ufu;t→`#}exp$2bf* ~mc2m!f%, ~A9!

which only depends on the amplitude off andf* .
We now repeat the above discussion in terms of amplit

and phase variables, defined byANeiu. Let us first discuss
the equilibrium properties we expect in terms of the num
of particlesN and the phaseu. Since the transformation toN
andu has a Jacobian equal to zero, we may just substitu
into Eq. ~A9!, to obtain the equilibrium distribution in term
of the number of particles. It is given by

P@N;t→`#}exp$2b~mc2m!N%. ~A10!

We may easily check that the average number of particle
the single mode is in equilibrium given
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^N&[

E
0

`

dN NP@N;t→`#

E
0

`

dN P@N;t→`#

5@b~mc2m!#21. ~A11!

This is precisely the Bose distribution forb(mc2m)!1. If
we do not apply the ‘‘classical’’ approximation to th
fluctuation-dissipation theorem, as in Eq.~A2!, but use the
exact relation

iR52
1

2
\SK@112N~mc!#

21, ~A12!

instead, we find the Bose distribution as the equilibriu
number of particles, as expected. For the description o
single-mode Bose-Einstein condensate, Eq.~A2! is in gen-
eral a good approximation, sincem is very close tomc below
the critical temperature. Let us now try to derive the Fokk
Planck equation forN andu. We may do this by substitution
of f5ANeiu into the action in the exponent of Eq.~A1!.
Since the Jacobian of the transformation is equal to one
simply have

P@N,u;t#5E
u(t)5u

N(t)5N

d@N#d@u#expH i

\
S@N,u#J ,

~A13!

with an action equal to

S@N,u#5E
t0

t

dt8S 2N~ t8!

\SK
[\u̇~ t8!1mc2mG 2

1
\

2SKN~ t8!
S Ṅ~ t8!1

2R

\
N~ t8! D 2

. ~A14!

Naively, we could derive the Fokker-Planck equation fro
the above path-integral expression by going through
same steps as before. If we again apply normal orderin
the Hamiltonian with respect toN andu and their conjugate
momenta, the Fokker-Planck equation reads

]P@N,u;t#

]t
5S iSK

2

]2

]N2
N1

2R

\

]

]N
ND P@N,u;t#

1S iSK

8N

]2

]u2
1

1

\

]

]u
~mc2m!D P@N,u;t#.

~A15!

This Fokker-Planck equation is however incorrect, since i
easily seen that the equilibrium distribution in Eq.~A10! is
not a solution of this Fokker-Planck equation. The fact t
the Fokker-Planck equation in Eq.~A15! turns out to be in-
01360
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correct has to do with the fact that we have normal orde
the Hamiltonian in terms of the variablesN andu. Although
normal ordering of the HamiltonianH@pf ,f;pf* ,f* # did
give the correct results, this, however, does not imply that
also have to normal order the Hamiltonian in terms ofN and
u. Let us therefore proceed more carefully, and rewrite
Fokker-Planck equation in Eq.~A8! for P@f* ,f;t# in terms
of N andu. With the use of the chain rule for differentiatio
it is easy to show that, for a general functionf

] f

]f*
5ANeiu

] f

]N
1

i

2AN
eiu

] f

]u
, ~A16!

with the complex conjugate expression for] f /]f. Substitu-
tion of this result in the Fokker-Planck equation in Eq.~A8!
yields the Fokker-Planck equation forP@N,u;t#. It is given
by

]P@N,u;t#

]t
5S iSK

2

]

]N
N

]

]N
1

2R

\

]

]N
ND P@N,u;t#

1S iSK

8N

]2

]u2
1

1

\

]

]u
~mc2m!D P@N,u;t#.

~A17!

Comparison of the Fokker-Planck equations in Eqs.~A15!
and ~A17! shows that in Eq.~A15! we have misinterpreted
the noise onN(t) as an Ito process, whereas in the corre
Fokker-Planck equation in Eq.~A17! we are clearly dealing
with a Stratonovich process. Note that the same conclus
may also be reached by determining the equation of mo
of ^N&(t) from a variation of the actionS@N,u#.

From the action in Eq.~A14!, we can read of the Lange
vin equations forN andu. The Langevin equation forN(t) is
given by

Ṅ~ t !52
2R

\
N~ t !12AN~ t !h~ t !,

^h~ t8!h~ t !&5
iSK

4
d~ t82t !, ~A18!

and the Langevin equation foru reads

\u̇~ t !5m2mc1
n~ t !

AN~ t !
,

^n~ t8!n~ t !&5
i\2SK

4
d~ t82t !. ~A19!

From the above discussion, we thus conclude that we hav
interpret the noise in the Langevin equation in Eq.~A18! for
3-24
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the number of particlesN(t) as a Stratonovich process,
achieve the correct equilibrium distribution. This is the ma
conclusion of this Appendix. It is straightforward to sho
that the above discussion generalizes to the case of a m
mode description of the condensate in terms of the comp
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field f(x,t). When we make the transformation to dens
and phase variables by settingf5Areiu, we again have to
be careful, and interpret the multiplicative noise that ent
the equation of motion for the densityr(x,t) as a Stratonov-
ich process.
a

s,

.

tion

Eq.

E.

ys.

s,

s,

.

A

. A

-

v.
@1# M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wiem
and E. A. Cornell, Science269, 198 ~1995!.

@2# C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hul
Phys. Rev. Lett.75, 1687~1995!.

@3# K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Drute
D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett.75,
3969 ~1995!.

@4# S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Ph
71, 463 ~1999!.

@5# T. R. Kirkpatrick and J. R. Dorfmann, J. Low Temp. Phys.58,
301 ~1985!; ibid. 58, 399 ~1985!.

@6# N. P. Proukakis and K. Burnett, J. Res. Natl. Inst. Stand. Te
nol. 101, 457~1996!; N. P. Proukakis, K. Burnett, and H. T. C
Stoof, Phys. Rev. A57, 1230~1998!.

@7# H. T. C. Stoof, Phys. Rev. Lett.78, 768 ~1997!.
@8# R. Walser, J. Williams, J. Cooper, and M. Holland, Phys. R

A 59, 3878~1999!.
@9# E. Zaremba, T. Nikuni, and A. Griffin, J. Low Temp. Phy

116, 277 ~1999!.
@10# D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, S. I

ouye, J. Stenger, and W. Ketterle, Phys. Rev. Lett.81, 2194
~1998!.

@11# H. T. C. Stoof and M. J. Bijlsma, J. Low Temp. Phys.124, 3
~2001!.

@12# E. V. Shuryak, Phys. Rev. A54, 3151~1996!.
@13# H. T. C. Stoof, J. Stat. Phys.87, 1353~1997!.
@14# C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys. Rev. L

78, 985 ~1997!.
@15# C. A. Sackett, H. T. C. Stoof, and R. G. Hulet, Phys. Rev. Le

80, 2031~1998!.
@16# C. A. Sackett, J. M. Gerton, M. Welling, and R. G. Hule

Phys. Rev. Lett.82, 876 ~1999!.
@17# J. M. Gerton, D. Strekalov, I. Prodan, and R. G. Hulet, Nat

~London! 408, 692 ~2000!.
@18# M. Lewenstein and L. You, Phys. Rev. Lett.77, 3489~1996!.
@19# C. W. Gardiner and P. Zoller, Phys. Rev. A55, 2902~1997!.
@20# H. T. C. Stoof, J. Low Temp. Phys.114, 11 ~1999!.
@21# V. M. Perez-Garcia, H. Michinel, J. I. Cirac, M. Lewenstei

and P. Zoller, Phys. Rev. Lett.77, 5320~1996!.
@22# M. J. Bijlsma and H. T. C. Stoof, Phys. Rev. A60, 3973

~1999!.
@23# U. Al Khawaja and H. T. C. Stoof, Phys. Rev. A62, 053602

~2000!.
@24# M. Ueda and A. J. Leggett, Phys. Rev. Lett.80, 1576~1998!.
@25# J. A. Freire and D. P. Arovas, Phys. Rev. A59, 1461~1999!.
@26# N. G. van Kampen,Stochastic Processes in Physics a

Chemistry~North-Holland, Amsterdam, 1981!.
,

,

.

-

.

t.

.

e

@27# H. Risken,The Fokker-Planck Equation~Springer-Verlag, Ber-
lin, 1984!.

@28# J. Zinn-Justin,Quantum Field Theory and Critical Phenomen
~Oxford, New York, 1989!.

@29# H. Kleinert, Path Integrals in Quantum Mechanics, Statistic
and Polymer Physics~World Scientific, London, 1995!.

@30# H. Kleinert, Fortschr. Phys.26, 565 ~1978! and references
therein.

@31# P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys.62,
251 ~1990!.

@32# H. Nakazato, K. Okano, L. Schu¨lke, and Y. Yamanaka, Nucl
Phys. B346, 611 ~1990!.

@33# We have absorbed the termmvs
2/2 into the definition of the

chemical potential of the condensate, opposed to the defini
used by Zaremba, Nikuni, and Griffin@9#, but in agreement
with the usual thermodynamic conventions as shown in
~41!.

@34# N. N. Bogoliubov, J. Phys.~Moscow! 11, 23 ~1947!.
@35# J. E. Williams and A. Griffin, Phys. Rev. A63, 023612~2001!.
@36# J. E. Williams and A. Griffin, Phys. Rev. A64, 013606~2001!.
@37# D. S. Jin, M. R. Matthews, J. R. Ensher, C. E. Wieman, and

A. Cornell, Phys. Rev. Lett.78, 764 ~1997!.
@38# C. W. Gardiner, P. Zoller, R. J. Ballagh, and M. J. Davis, Ph

Rev. Lett.79, 1793~1999!.
@39# See Ref.@43# for an extensive treatment of collision integral

such as in Eq.~48!.
@40# S. Stringari, Phys. Rev. Lett.77, 2360~1996!.
@41# P. A. Ruprecht, M. J. Holland, K. Burnett, and M. Edward

Phys. Rev. A51, 4704~1995!.
@42# H.-J. Miesner, D. M. Stamper-Kurn, M. R. Andrews, D. S

Durfee, S. Inouye, and W. Ketterle, Science279, 1005~1998!.
@43# M. J. Bijlsma, E. Zaremba, and H. T. C. Stoof, Phys. Rev.

62, 063609~2000!.
@44# M. J. Davis, C. W. Gardiner, and R. J. Ballagh, Phys. Rev

62, 063608~2000!.
@45# I. Prodan and R. G. Hulet~private communication!.
@46# P. D. Drummond and I. K. Mortimer, J. Comp. Physiol.93,

144 ~1991!.
@47# O. M. Marago’, S. A. Hopkins, J. Arlt, E. Hodby, G. Hechen

blaikner, and C. J. Foot, Phys. Rev. Lett.84, 2056~2000!.
@48# B. Jackson and E. Zaremba, Phys. Rev. Lett.87, 100404

~2001!.
@49# U. Al Khawaja and H. T. C. Stoof, Nature~London! 411, 918

~2001!.
@50# H. T. C. Stoof, E. Vliegen, and U. Al Khawaja, Phys. Re

Lett. 87, 120407~2001!.
3-25


