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Nonlinear coupling between scissors modes of a Bose-Einstein condensate

U. Al Khawaja and H. T. C. Stoof
Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands

~Received 27 July 2001; published 12 December 2001!

We explore the nonlinear coupling of the three scissors modes of an anisotropic Bose-Einstein condensate.
We show that only when the frequency of one of the scissors modes is twice the frequency of another scissors
mode, these two modes can be resonantly coupled and a down-conversion can occur. We perform the calcu-
lation variationally using a gaussian trial wave function. This enables us to obtain simple analytical results that
describe the oscillation and resonance behavior of the two coupled modes.
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I. INTRODUCTION

Similar to monopole and quadrupole breathing modes
gaseous Bose-Einstein condensate@1–7#, scissors modes
were first studied theoretically@8,9# and subsequently ob
served experimentally@10#. The scissors modes are, how
ever, rather special since they directly manifest the superfl
behavior of these atomic gases. Moreover, recent experim
tal studies appear to show a resonance behavior between
coupled scissors modes@11#. From a theoretical point o
view this is interesting because a linear-response calcula
can account neither for the coupling nor for the resona
behavior@8,9#. Therefore, a first step towards an explanat
of these experimental observations is to perform a calc
tion that goes beyond linear response theory and accura
takes into account the mean-field interaction that couples
scissors and breathing modes. In this paper we prese
simple variational method for calculating the frequencies
these various modes and their couplings beyond the lin
response. We perform our calculation at zero tempera
and therefore do not consider the damping rates of the s
sors modes@12,13#.

The main idea behind our method is to use a tim
dependent Gaussian ansatz for the ground-state wave
tion to derive the equations of motion of the breathing mo
and the scissors modes. Then we expand the resulting e
tions of motion in deviations from equilibrium. In first orde
i.e., linear response, we recover the expected uncoupled
of equations@8,9#. The second-order calculation produces
set of coupled equations that show that we need to cons
all three scissors modes in order to get a nonzero coup
At higher orders we, however, find that we can restrict o
selves to two modes to get a nonlinear coupling. Furth
more, we actually find under certain conditions a resona
behavior between these two modes.

The layout of the paper is as follows. First, we rederive
Sec. II the frequencies of the scissors modes in the lin
response limit. In Sec. III we extend the calculation first
second, and then also to higher orders, which ultimately l
to a resonant coupling. In Sec. IV we solve the equations
motion analytically near the resonance using an envel
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function approach. In Sec. V we end with a discussion of
results.

II. FREQUENCIES OF THE SCISSORS MODES

We start by considering a Bose-Einstein condens
trapped by the following harmonic potential

V~r !5
1

2
m~vx

2x21vy
2y21vz

2z2!, ~1!

where vx , vy , and vz are the angular frequencies of th
trap, andm is the atomic mass. A scissors mode in a Bo
Einstein condensate is associated with an irrotational fl
with a velocity field of the formv(r )}“(xy), if the motion
is taking place in thexy plane@8#. Similar expressions hold
for the two other Cartesian planes. These kind of modes
be excited by a sudden rotation of the equilibrium axes of
trap. To such a perturbation the condensate will respond
oscillating around the new equilibrium axes. For example
excite a scissors mode in thexy plane, we rotate thex andy
axes of the trap slightly around thez axis. If the angle of
rotation is sufficiently small, the scissors mode can be
proximated by a simple oscillation of the condensate aro
the new equilibrium axes. On the other hand, if the ax
change through a large angle this method excites them52
quadrupole mode, wherem labels the projection of the angu
lar momentum along the axis of symmetry. The maximu
angle for which the scissors mode is defined increases
deformation of the trap@14#.

To account for all three scissors modes in the three C
tesian planes we employ the following trial function for th
condensate order parameter

c~r ,t !5A~ t !exp@2bx~ t !x22by~ t !y22bz~ t !z2

2cxy~ t !xy2cxz~ t !xz2cyz~ t !yz#, ~2!

where bi and ci j , are complex time-dependent variation
parameters and
©2001 The American Physical Society05-1
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A5
AN21/4

p3/4
A4 cxy,rcxz,rcyz,r14bx,rby,rbz,r2~bz,rcxy,r

2 1by,rcxz,r
2 1bx,rcyz,r

2 !. ~3!
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This value of the prefactorA(t) guarantees the normalizatio
of the square of the wave functionc(r ,t) to the total number
of condensed atomsN. Herebi ,r andci j ,r are the real parts o
bi andci j , respectively. The first set of parameters,bi , give
rise to the well-studied breathing modes which, for axia
symmetric traps, are called the monopole and quadrup
modes depending on the value ofm being equal to 0 or 2,
respectively. The parametersci j , on the other hand, deter
mine the three scissors modes. The equations of motion
these variational parameters can be derived from the
grangian

L@c,c* #5
1

2
i\E dr S c* ~r ,t !

]c~r ,t !

]t
2c~r ,t !

]c* ~r ,t !

]t D
2E@c,c* #, ~4!

whereE@c,c* # is the usual Gross-Pitaevskii energy fun
tional given by

E@c,c* #5E dr F \2

2m
u“c~r ,t !u21V~r !uc~r ,t !u2

1
1

2
T2Buc~r ,t !u42muc~r ,t !u2G . ~5!

Here T2B is the two-bodyT matrix, which for the atomic
Bose-Einstein condensates of interest is related to thes wave
scattering lengtha throughT2B54pa\2/m.

Inserting our trial wave function into the Lagrangian a
scaling frequencies withv̄5(vxvyvz)

1/3 and lengths with

ā5A\/mv̄, it takes the dimensionless form

L@b,c#/N5~axḃx,i1ayḃy,i1azḃz,i !/Q2
1

2
@ax~4ubxu2

1ucxyu21ucxzu2!1ay~4ubyu21ucxyu21ucyzu2!

1az~4ubzu21ucxzu21ucyzu2!#/Q2
1

2
@axvx

2

1ayvy
21azvz

2#/Q2
1

2Ap
gAQ, ~6!

where Q52p3A4/N2,ax54by,rbz,r2cyz,r
2 ,ay54bx,rbz,r

2cxz,r
2 ,az54bx,rby,r2cxy,r

2 , and the dot corresponds to

time derivative. In additiong5Na/ā is the dimensionless
parameter that represents the strength of the mean-field
teraction. Minimizing the Lagrangian with respect to the
variational parameters, we get a set of 12 coupled equat
of motion. The resulting equations of motion are rath
lengthy and complicated. A significant simplification tak
place if we expand these equations in the deviation of
01360
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variational parameters from their equilibrium values, i.e.,
dbi(t)5exp(2ivt)(bi2bi

(0))5exp(2ivt)dbi and dci j (t)
5exp(2ivt)(cij2cij

(0))5exp(2ivt)dcij , where v is the yet
unknown eigenfrequency of the modes, andbi

(0) and ci j
(0)

denote the equilibrium values ofbi and ci j , respectively.
These latter values can simply be obtained by setting
time derivatives in the equations of motion to zero. For la
condensates in the so-called Thomas-Fermi regime we
ignore contributions from the kinetic energy@15# and the
equilibrium variational parameters take the simple form

bi
(0)5SAp

8g D 2/5

v i
2 ,

ci j
(0)50. ~7!

It is required thatg@1 for the last equation to be valid. T
first order in the deviations, the equations of motion re
simply

M•P50, ~8!

where the vectorP5(dbx,r ,dby,r ,dbz,r ,dbx,i ,dby,i ,dbz,i ,
dcxy,r ,dcxz,r ,dcyz,r ,dcxy,i ,dcxz,i ,dcyz,i) contains all the
possible fluctuations, and the matrixM is given by

M5S Mbreathing 0

0 M scissorsD , ~9!

whereMbreathingand M scissorsare given explicitly in Appen-
dix. It is clear from the last equation that to linear order t
breathing modes and scissors modes are uncoupled. The
persion relation of these modes can be obtained by se
the determinant ofM to zero. This results in

~v22Vxy
2 !~v22Vxz

2 !~v22Vyz
2 !

3~v623va
2v418vb

4v2220vc
6!50, ~10!

where

Vxy5Avx
21vy

2, Vxz5Avx
21vz

2,

Vyz5Avy
21vz

2, va
25vx

21vy
21vz

2 ,

vb
45vx

2vy
21vx

2vz
21vy

2vz
2 ,

and

vc
65~vxvyvz!

2.

The zeros of the first three factors in the left-hand side of
last equation give the frequencies of the scissors mo
5-2
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,whereas the zeros of the sixth-order polynomial give
frequencies of the breathing modes.

So far we have not produced a new result, since th
frequencies have been calculated previously@8,9,16#. The
use of a Gaussian variational approach to calculate the
quencies of the breathing modes was first presented in
@7# and the scissors modes frequencies were first calcul
using this method in Ref.@9#. The most important part of this
paper is, therefore, contained in the next section, where
consider also the nonlinear effects produced by the me
field interaction.

III. BEYOND LINEAR RESPONSE

In this section we consider the equations of motion for
variational parameters by taking into account several high
order terms in the deviationsdbi anddci j . We have calcu-
lated these equations analytically up to second order,
they turn out to be rather lengthy and contain terms t
couple the breathing modes and the scissors modes. A
discuss below, in the present experiments with axially sy
metric traps the coupling of the scissors modes with
quadrupole mode is always of importance, but we leave
treatment of this more complicated situation to future wo
For simplicity, therefore, we focus here on triaxial traps,
which case we can ignore the breathing modes and sim
put dbi50 in the full equations of motion. The neglect of th
breathing modes is then justified for our purposes beca
for these traps the degeneracy between the quadrupole m
and the scissors modes is lifted. Consequently, if two scis
modes are resonantly coupled the quadrupole modes wi
off resonance.

Up to second order, the remaining six first-order equati
for dcxy,r . . . dcyz,i can be reduced to three second-ord
equations fordcxy,r , dcxz,r , and dcyz,r by eliminating the
imaginary parts. We find in detail

d c̈xy,r1Vxy
2 dcxy,r1S 64

p D 1/5

g2/5S vxvy

vz
4 D 2/5

3F2Vxy
2 dcxz,rdcyz,r12S vxvy

VxzVyz
D 2

d ċxz,rd ċyz,r G50,

~11!

d c̈xz,r1Vxz
2 dcxz,r1S 64

p D 1/5

g2/5S vxvz

vy
4 D 2/5

3F2Vxz
2 dcxy,rdcyz,r12S vxvz

VxyVyz
D 2

d ċxy,rd ċyz,r G50,

~12!

and
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d c̈yz,r1Vyz
2 dcyz,r1S 64

p D 1/5

g2/5S vyvz

vx
4 D 2/5

3F2Vyz
2 dcxy,rdcxz,r12S vyvz

VxyVxz
D 2

d ċxy,rd ċxz,r G50.

~13!

These equations show that if we ignore the second-o
terms we recover our previous three uncoupled sciss
modes with frequenciesVxy ,Vxz , andVyz . It is interesting
to observe that the coupling terms couple the three scis
modes such that if only one mode is initially excited then
will never couple to the two other modes. We believe th
this important result is not an artifact of the Gaussian
proximation, but also holds for an exact calculation using
Bogoliubov theory.

For higher-order couplings the last conclusion is
longer true. Two modes can then be coupled, even when
third is not involved in the dynamics. From now on, ther
fore, we assume without loss of generality that only thedcxy
and dcxz modes are excited, whiledcyz50 always. More-
over, to investigate the possibility of a resonant coupli
between these two modes, we have considered coup
terms up to ninth order. Similar to the second-order c
explained above, the equations of motion can thus be
pressed as

d c̈xy,r1Vxy
2 dcxy,r1 (

j 1k1 l 1m<9
a jklm~dcxy,r !

j

3~d ċxy,r !
k~dcxz,r !

l~d ċxz,r !
m50, ~14!

d c̈xz,r1Vxz
2 dcxz,r1 (

j 1k1 l 1m<9
b jklm~dcxz,r !

j

3~d ċxz,r !
k~dcxy,r !

l~d ċxy,r !
m50, ~15!

where j ,k,l ,m50,1,2,3 and the sumj 1k1 l 1m does not
excced 9, which is the order up to which we have chosen
expand the equations of motion. The coefficientsa jklm ,
b jklm are given in terms of the trap parametersvx ,vy ,vz ,
and the interaction parameterg. A resonance between thes
two modes takes place when the frequency of the coup
terms is equal to the frequency of the zeroth-order term,
the first two terms. The frequency of each coupling term
the above summations is determined by substituting fordci j

and d ċi j their zeroth-order solutions. Therefore, the lat
frequencies will be a certain linear combination of t
zeroth-order scissors-modes frequencies. Imposing the a
resonance condition on each coupling term thus results
relation between the two scissors-modes frequenciesVxy and
Vxz . Inspecting all coupling terms up to the ninth order, w
found a very small number of terms for which the relati
betweenVxy andVxz can be satisfied by real values ofvx ,
vy , and vz . Ultimately, we find only a resonance whe
either

Vxy5Vxz ~16!

or
5-3
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2Vxy5Vxz ~17!

is satisfied. The first resonance condition leads in the exp
mentally relevant axially symmetric case, wherevx5vy

5vz /Al, to a value for the anisotropy ratiol that is equal
to 1. This clearly corresponds to a spherically symme
condensate. Since in this case the scissors modes are d
erate with the quadrupole breathing modes, which we h
ignored here, we focus from now on only on the seco
resonance condition.

It is interesting to mention that the second resonance c
dition is exactly the same as the one observed experimen
@11#. For a resonance of this kind the resonant coupling te
turn out to be of seventh order, and the equations of mo
in that case read

d c̈xy,r1Vxz
2 dcxy,r1b~dcxy,r !

3~d ċxy,r !
2~dcxz,r !

2

1h~dcxy,r !
5~d ċxz,r !

250, ~18!

d c̈xz,r1Vxz
2 dcxz,r1a~dcxz,r !

3~dcxy,r !
2~d ċxy,r !

250,
~19!

if we neglect all nonresonant terms. Herea,b, and h are
functions ofvx , vy ,vz , andg that are given explicitly in
the Appendix. It is important to note here that our neglect
the nonresonant terms is justified when we are close eno
to resonance. This is similar to the rotating-wave approxim
tion known from quantum optics. We see that the coupl
terms indeed lead to the above-mentioned resonance co
tion, by inserting in them the zeroth-order solutions, i.
dcxy,r} exp(2iVxyt) and dcxz,r} exp(iVxzt). For example,
the coupling terms in Eq.~18! have a total frequency o
2Vxz25Vxy . Separating outdcxy,r} exp(2iVxyt) as a pref-
actor for the whole equation, the coupling term oscilla
thus as 2D54Vxy22Vxz . Therefore, a resonance tak
place whenD50, i.e., when the condition in Eq.~17! is met.
Similarly, the coupling term of Eq.~19! is also oscillating
with a frequency of 2D.

IV. SOLUTION OF THE EQUATIONS OF MOTION NEAR
RESONANCE

Sufficiently close to resonance we can writedcxy and
dcxz as a product of two functions. One of them describ
the slow envelope and the other the fast oscillation with
uncoupled scissors-mode frequency. In particular, we ha

dcxy~ t !5g~ t !exp~ iVxyt ! ~20!

and

dcxz~ t !5 f ~ t !exp~2 iVxzt !, ~21!

whereg(t) and f (t) are the slowly varying envelope func
tions. Substituting these expressions into Eqs.~18! and~19!,
ignoring second-order time derivatives off (t) andg(t), and
then eliminatingg(t), we obtain the following equation fo
f (t)
01360
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2~ i f̈ 12D ḟ ! f 1 i« ḟ 250, ~22!

where

«5
3aVxy

3 24bVxy
2 Vxz24hVxz

3

aVxy
3

. ~23!

This equation has a solution of the form

f ~ t !5@C11C2 exp~2iDt !#1/(12«), ~24!

whereC1 and C2 are two constants of integration that a
determined by the initial conditions. Note that the releva
quantity here isu f (t)u, which represents the actual envelo
of the oscillation and is given by

u f ~ t !u5@C1
21C2

212C1C2 cos~2Dt !#1/[2(12«)] . ~25!

In first instance we might think that the real part off (t) is
the relevant quantity. However, in Eqs.~20! and ~21! we
should in principle have taken the real part of the right-ha
side. If we do that we automatically are lead to the condit
that u f (t)u is the envelope of the oscillation.

For definiteness sake let us take the initial conditio
f (0)5 f r(0)[ f 0 and ḟ (0)5 ḟ i(0)[ ḟ 0, wheref r(t) and f i(t)
are the real and imaginary parts off (t), respectively. Physi-
cally, this set of initial conditions corresponds to exciting t
scissors modes in thexz and thexy planes simultaneously
This should be performed experimentally by initially rotatin
the condensate in thexz plane by an angleu0 and around the
z axis by an anglef0 and then releasing the condensate. T
initial anglesu0 andf0 are related to the constantsf 0 and ḟ 0
by

f 052ubx
(0)2bz

(0)ucosu0 sinu0 , ~26!

ḟ 05
aVxy

2

Vxz
~2ubx

(0)2bz
(0)ucosu0 sinu0!3ubx

(0)2by
(0)u

3cosf0 sinf0 . ~27!

With these initial conditions the constantsC1 and C2 are
given by

C15 f 0
12«1

ḟ 0f 0
2«~12«!

2D
, ~28!

C252
ḟ 0f 0

2«~12«!

2D
. ~29!

Using these expressions and the experimental param
from Ref. @10#, we give in Fig. 1 the real part ofdcxz(t).
This clearly shows how the energy is being exchanged
tween the two modes.

An interesting property of Eq.~22! is that exactly on reso-
nance, i.e.,D50, its solution becomes nonoscillatory. Inde
we find that in this case the solution is

f ~ t !5~C31C4t !1/(12«), ~30!
5-4
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NONLINEAR COUPLING BETWEEN SCISSORS MODES . . . PHYSICAL REVIEW A 65 013605
where againC3 andC4 are constants that are determined
the initial conditions. For the above initial conditions this is
decreasing function in time. Physically, this means that,
like the case of an off-resonant oscillation, it takes an infin
time for the energy that is transferred from the scissors m
in the xz plane to the scissors mode in thexy plane to get
back to the mode in thexz plane. In Fig. 2 we show this
resonance behavior. Finally, we can show that in the li
D→0 the oscillatory solution given in Eq.~24! reduces to
the nonoscillatory one at resonance given by Eq.~30!.

V. SUMMARY AND CONCLUSION

We have explored the role of the mean-field interaction
coupling the three scissors modes of a Bose-Einstein con
sate. A variational approach with a Gaussian trial wave fu
tion, that contains a number of variational parameters
scribing the scissors modes, provides a relatively simple w
in which we can extract the main features of this couplin
To first order in the deviations in the variational paramet
from their equilibrium values we reproduce the correct f
quencies of the scissors modes. To second order we s
that it is not possible to have two modes that are couple
the third mode is not involved in the dynamics. Instead,
three modes need to be involved for nonlinear dynamics
occur.

At higher orders we find that it is possible to consid
only two modes. In this case we find a resonance behavi
2Vxy5Vxz or Vxy5Vxz . Up to the ninth order in the de

FIG. 1. The real part ofdcxz showing two kinds of oscillation.
The one with the larger frequency corresponds to the unpertu
scissors-mode oscillation with frequencyVxz . The slower oscilla-
tion is due to the mean-field coupling between the scissors mod
the xz plane and thexy plane. The frequency of this oscillation i
2D52u2Vxy2Vxzu. The Bose-Einstein condensate paramet
used to make this plot arevx5vy5vz /Al5128 Hz. As in the case
of Ref. @10#, l52.54 andN5104 of 87Rb atoms. The initial con-
ditions areu05203p/180 andf050.033p/180. The latter was
taken small to show that already such a small perturbation in thxz
scissors mode is sufficient to initiate a substantial coupling betw
this mode and thexy mode.
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viations, these are the only two cases of resonance tha
have found. Close to resonance the equations of motion h
been solved exactly using an envelope approach. The re
ing dynamics is similar to a beating between two modes w
a beating frequency 2D5u2Vxy2Vxzu. We notice that the
observed resonance behavior occurs exactly for the s
condition that we have obtained, namely, 2Vxy5Vxz @11#.
However, the dynamics we find here is different from th
found by Hodbyet al., presumably because the resonan
behavior shown in their paper is observed with axially sy
metric traps@11#. The fact that we did not find any othe
resonance condition up to the ninth order, indicates that
coupling terms that lead to this resonance are also res
sible for the experimental resonance in the triaxial case.

Furthermore, it is important to note here that, quite ge
erally, the down-conversion process from one excitat
quantum into two excitation quanta with half the ener
each, i.e., the so-called Beliaev damping@17#, vanishes for
the scissors modes. This is so because of the negative p
of the scissors modes. In terms of fluctuations of the an
lation operatorĉ(r ,t) given byŵ(r ,t)5ĉ(r ,t)2c(r ,t), the
Beliaev damping process is accounted for by an interac
term proportional to*drc(r ,t)ŵ†(r ,t)ŵ†(r ,t)ŵ(r ,t). Here
c(r ,t)[^ĉ(r ,t)& is again the condensate wave function. U
ing our variational Gaussian wave function given by Eq.~2!,
we clearly see that with only two scissors modes present
integral vanishes, since the integrand is an odd function.
believe that this result is independent of our trial wave fun
tion and also true within an exact approach@18#. In our case
the seventh-order coupling terms in Eqs.~18! and ~19! cor-
respond to a quadratic collisional damping process, i.e
collisional process for which the amplitude is quadratic

ed

in

s

n

FIG. 2. The envelopeu f (t)u that determines the energy tran
ferred between the two coupled scissors modes. This set of cu
shows that when approaching the resonance conditionD5u2Vxy

2Vxzu50, the frequency of the curve decreases until it becom
equal to zero on resonance. The inset shows this last behavio
much larger times. For axially symmetric traps the resonance ta
place atl5A7. The parameters used for these plots are the sam
those mentioned in Fig. 1.
5-5
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the interaction, where three excitation quanta decay into f
excitation quanta with half the frequency and one excitat
quantum with the same frequency. This is shown schem
cally in Fig. 3. This makes sense physically since this is
lowest-order nonvanishing process if Beliaev damping is f
bidden and we are forced to apply the interaction term p
portional to*dr ŵ†(r ,t)ŵ†(r ,t)ŵ(r ,t)ŵ(r ,t) twice to accom-

FIG. 3. A schematic figure representing three down-convers
processes.~a! Beliaev damping where one excitation decays in
two excitations with half the frequency. It is shown in the text th
for two scissors modes this process vanishes.~b! Quadratic colli-
sional damping in which three excitations decay into one excita
of the same frequency and four excitations with half the frequen
According to the present work this is the first nonvanishing dow
conversion process.~c! Beliaev damping due to down-conversio
from one scissors mode into another scissors mode and a degen
quadrupole mode, or into two quadrupole modes. This is the si
tion that corresponds to the most detailed experiments of Ref.@11#,
but the matrix elements of these processes again vanish.
01360
ur
n
ti-
e
r-
-

plish the down conversion. Another point worth recallin
here is that in the experiments the resonance is studie
most detail for an axially symmetric trap with an anisotro
ratio close tol5A7, when thexy scissors mode is degen
erate with the quadrupole mode, which we have exclude
the present calculation. In that case we may argue that
scissors-mode quantum can decay into either ano
scissors-mode quantum and a quadrupole-mode quantu
into two quadrupole-mode quanta. These are in principle a
Beliaev damping processes, which are, however, again
bidden for similar reasons as before. Nevertheless, a g
understanding of these experiments requires an analysis
includes not only thexy and thexz scissors modes but als
the quadrupole mode, because of the degeneracy that oc
in this case. However, our theory should be directly app
cable to the experiments with a triaxial trap. We hope tha
the future more detailed experiments of this kind will also
performed, to make a direct comparison between our the
and experiment possible.
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APPENDIX: COUPLING MATRICES AND COEFFICIENTS

The matricesMbreathingandM scissorsare given by

n

t

n
y.
-

rate
a-
Mbreathing

5

¨

23g2/5vx
2/5vy

2/5vz
2/5

24/5p1/5
2

g2/5vx
12/5vz

2/5

24/5p1/5vy
8/5

2
g2/5vx

12/5vy
2/5

24/5p1/5vz
8/5

iv 0 0

2
g2/5vx

12/5vz
2/5

24/5p1/5vy
8/5

23g2/5vx
22/5vz

2/5

24/5p1/5vy
18/5

2
g2/5vx

22/5

24/5p1/5vy
8/5vz

8/5
0

ivvx
4

vy
4

0

2
g2/5vx

12/5vy
2/5

24/5p1/5vz
8/5

2
g2/5vx

22/5

24/5p1/5vy
8/5vz

8/5

23g2/5vx
22/5vy

2/5

24/5p1/5vz
18/5

0 0
ivvx

4

vz
4

2 iv 0 0 2
24/5p1/5vx

8/5

g2/5vy
2/5vz

2/5
0 0

0
2 ivvx

4

vy
4

0 0 2
24/5p1/5vx

18/5

g2/5vy
12/5vz

2/5
0

0 0
2 ivvx

4

vz
4

0 0 2
24/5p1/5vx

18/5

g2/5vy
2/5vz

12/5

©

~A1!

and
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M scissors

5

¨

2
g2/5vx

12/5vz
2/5

24/5p1/5vy
8/5

0 0
ivvx

2

2vy
2

0 0

0 2
g2/5vx

12/5vy
2/5

24/5p1/5vz
8/5

0 0
ivvx

2

2vz
2

0

0 0 2
g2/5vx

22/5

24/5p1/5vy
8/5vz

8/5
0 0

ivvx
4

2vy
2vz

2

2 ivvx
2

2vy
2

0 0
2 p1/5vx

8/5vx
21vy

2

2~2g2/5vy
12/5vz

2/5!
0 0

0
2 ivvx

2

2vz
2

0 0
2 p1/5vx

8/5vx
21vz

2

2~2g2/5vy
2/5vz

12/5!
0

0 0
2 ivvx

4

2vy
2vz

2
0 0

2 p1/5vx
18/5vy

21vz
2

2~2g2/5vy
12/5vz

12/5!

©

~A2!
The coupling coefficientsa,b, andh, appearing first in
Eqs.~18! and ~19!, are given by

a52 21/5g12/5@3vx
614vy

4vz
222vy

2vz
41vx

4~3vy
215vz

2!

12vx
2~2 vy

41vz
4!#3~p6/5vx

4vy
2Vxy

4 Vxz
4 !21, ~A3!

b522 21/5g12/5@3vx
822vx

2vy
4vz

224vy
6vz

212vy
4vz

4

.A

n,
et

W

nd

01360
1vx
6~7vy

212vz
2!1vx

4~6vy
42vy

2vz
21vz

4!]

3~p6/5vx
4vy

2Vxy
4 Vxz

4 !21, ~A4!

and

h5
2 21/5g12/5~Vxy

2 ! 12/5

p6/5vx
6vy

4Vxz
4

, ~A5!

respectively.
-

t,

t,

v.
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@10# O.M. Maragò, S.A. Hopkins, J. Arlt, E. Hodby, G. Hechen
blaikner, and C.J. Foot, Phys. Rev. Lett.84, 2056~2000!.

@11# E. Hodby, O.M. Marago`, G. Hechenblaikner, and C.J. Foo
Phys. Rev. Lett.86, 2196~2001!.
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