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Nonlinear coupling between scissors modes of a Bose-Einstein condensate
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We explore the nonlinear coupling of the three scissors modes of an anisotropic Bose-Einstein condensate.
We show that only when the frequency of one of the scissors modes is twice the frequency of another scissors
mode, these two modes can be resonantly coupled and a down-conversion can occur. We perform the calcu-
lation variationally using a gaussian trial wave function. This enables us to obtain simple analytical results that
describe the oscillation and resonance behavior of the two coupled modes.
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[. INTRODUCTION function approach. In Sec. V we end with a discussion of our
results.

Similar to monopole and quadrupole breathing modes of a
gaseous Bose-Einstein condenséle?], scissors modes Il. FREQUENCIES OF THE SCISSORS MODES
were first studied theoreticall{8,9] and subsequently ob-
served experimentally10]. The scissors modes are, how- We start by considering a Bose-Einstein condensate
ever, rather special since they directly manifest the superfluif@Pped by the following harmonic potential
behavior of these atomic gases. Moreover, recent experimen-
tal studies appear to show a resonance behavior between two 1
coupled scissors moddd1]. From a theoretical point of V(r)zim(wfx% wly?+wiz?), (1)
view this is interesting because a linear-response calculation
can account neither for the coupling nor for the resonance
behavior[8,9]. Therefore, a first step towards an explanationWhere y, oy, and w, are the angular frequencies of the
of these experimental observations is to perform a calculallap a_ndm is the atomic mass. A scis_sors m_ode ir_l a Bose-
tion that goes beyond linear response theory and accurate@‘_nSte'n condensate is associated with an |rr0tat|on_al flow
takes into account the mean-field interaction that couples th¥ith & velocity field of the formv(r)=V(xy), if the motion
scissors and breathing modes. In this paper we present S taking place in thecy plane[8]. Similar expressions hold
simple variational method for calculating the frequencies of O the_two other Cartesian planes. Thesel Ign_d of modes can
these various modes and their couplings beyond the Iineape excited by a sudden rotation of the equilibrium axes of the

response. We perform our calculation at zero temperaturgap.' Tc.) such a perturbation thg cpndensate will respond by
oscillating around the new equilibrium axes. For example, to

and therefore do not consider the damping rates of the scis-_ . . :
sors mode$12,13 excite a scissors m_ode in thhg plane, we rotate the andy
e axes of the trap slightly around theaxis. If the angle of

The main idea behind our method is to use a tiMe-station is sufficiently small, the scissors mode can be ap-

dependent Gaussian ansatz for the ground-state wave funGzyimated by a simple oscillation of the condensate around
tion to derive the equations of motion of the breathing modeghe new equilibrium axes. On the other hand, if the axes
and the scissors modes. Then we expand the resulting edUshange through a large angle this method excitesnthe?

i.e., linear response, we recover the expected uncoupled Sgf momentum along the axis of symmetry. The maximum
of equationy8,9]. The second-order calculation produces aangle for which the scissors mode is defined increases with
set of coupled equations that show that we need to considgfeformation of the trap14].

all three scissors modes in order to get a nonzero coupling. To account for all three scissors modes in the three Car-
At higher orders we, however, find that we can restrict ourtesian planes we employ the following trial function for the
selves to two modes to get a nonlinear coupling. Furthercondensate order parameter

more, we actually find under certain conditions a resonance

behavior between these two modes.

The layout of the paper is as follows. First, we rederive in p(r,t)=A(t)exd — be(t)x*— by (t)y*—b,(t)Z°
Sec. Il the frequencies of the scissors modes in the linear- G ()XY — G H)XZ— Coy( D)y Z] @
response limit. In Sec. Il we extend the calculation first to xy(D)XY = Cxz y2A Y2l

second, and then also to higher orders, which ultimately lead
to a resonant coupling. In Sec. IV we solve the equations ovhere b; and c;;, are complex time-dependent variational
motion analytically near the resonance using an envelopparameters and
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This value of the prefactdk(t) guarantees the normalization variational parameters from their equilibrium values, i.e., in
of the square of the wave functiak(r,t) to the total number  8b;(t) =exp(—iwt)(b—b®)=exp(-iwt)db, and ocij (1)

of condensed atonis. Hereb; , andc;; , are the real parts of :exp(—iwt)(cij—ci(jo)):exp(—iwt)écij , Where w is the yet

b andc;; , respectively. The first set of parametes, give  unknown eigenfrequency of the modes, asf and c{’

rise to the well-studied breathing modes which, for axially denote the equilibrium values df; and cij, respectively.
symmetric traps, are called the monopole and quadrupolghese latter values can simply be obtained by setting the
modes depending on the value mfbeing equal to 0 or 2,  tjme derivatives in the equations of motion to zero. For large
respectively. The parametecs, on the other hand, deter- condensates in the so-called Thomas-Fermi regime we can
mine the three scissors modes. The equations of motion fQgnore contributions from the kinetic enerdg5] and the
these variational parameters can be derived from the Laequilibrium variational parameters take the simple form

grangian
\/; 2/5
1 a(r ) ag*(r,t) bP=| —| w?,
*7— * — Ly 8 !

1= gin [ o w0 5 -y o™ y

—E[¢, 9], (4) cP=o. @
where E[ 4, %] is the usual Gross-Pitaevskii energy func- It is required thaty>1 for the last equation to be valid. To
tional given by first order in the deviations, the equations of motion read

simply
ﬁ2
E[w,w*]=f dr[%lelf(r,t)lzw(r)l</f(r,t)|2 M-P=0, ®)

1 where the vectoP=(db,,,dby b, ,6by;,dby;,6b,;,
+ §T28|l//(r,t)|4—ﬂ|l//(r,t)|2 : () 8Cyyy,8Cyzr . 8Cys , OCyy i1 8Cxzi,5Cy,;) cONtains all the
possible fluctuations, and the matiik is given by
Mbreathing 0
( 0 Mscissor; '

Here T2B is the two-bodyT matrix, which for the atomic
Bose-Einstein condensates of interest is related ts tave
scattering lengtta throughT?2=47a% ?/m.

Inserting our trial wave function into the Lagrangian and breathi _ _ o
scaling frequencies withy=(w, oy ©,)¥3 and lengths with where M Preainggnd M s¢Ss9Sgre given explicitly in Appen-

- \/—— . . . dix. It is clear from the last equation that to linear order the
a=Vfi/ma, it takes the dimensionless form breathing modes and scissors modes are uncoupled. The dis-

_ _ _ 1 persion relation of these modes can be obtained by setting
LLb,CI/N=(ayby i+ ayby,i+ azb, )/ Q= 5[ ae(4]byl? the determinant oM to zero. This results in

M= 9)

2 2 2 2 2 2
-Q -Q -Q
el o)+ ay (40, 2+ o+ [eyd?) (7 Byl Bl 0

) ) i 1 , X (0®—3wi0*+8wiw’—2008)=0, (10)
+a’z(4|bz| +|sz| +|Cyz| )]/Q_E[axwx
where

1 _ 2 2 _ 2 2
+aya)§+ a,w?]/IQ— ﬁy\/a, (6) Qyy=Voit oy,  Qn=\o,t+ s,
aa
QO =\/w2+w2, w2=a)2+w2+w2,
where  Q=2mA%N?, a,=4by b, —c7, ,ay=4bb,, vz y Uz a Tx Ty Tz
—C>2<z,r ,aZ:4bX'rby1,—c§yyr, and the dot corresponds to a 0= 0202+ 0202+ 020
time derivative. In additiony=Na/a is the dimensionless Y Y
parameter that represents the strength of the mean-field imnd
teraction. Minimizing the Lagrangian with respect to the 12
variational parameters, we get a set of 12 coupled equations sz(waywz)z.
of motion. The resulting equations of motion are rather

lengthy and complicated. A significant simplification takesThe zeros of the first three factors in the left-hand side of the
place if we expand these equations in the deviation of théast equation give the frequencies of the scissors modes,
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.whereas the zeros of the sixth-order polynomial give the 5
frequencies of the breathing modes. OCyzp + 1y ,0C,  +
So far we have not produced a new result, since these

64

frequencies have been calculated previoy#ly@,16. The ) w0y, 2. .
use of a Gaussian variational approach to calculate the fre- X| = y76Cxy,1 8Cxzr +2 Q, OCxy,r 0Cxz,r | = 0.
guencies of the breathing modes was first presented in Ref. 13

[7] and the scissors modes frequencies were first calculated

using this method in Ref9]. The most important part of this These equations show that if we ignore the second-order

paper is, therefore, contained in the next section, where wierms we recover our previous three uncoupled scissors

consider also the nonlinear effects produced by the mearmodes with frequencieQ,,,(,,, and(},. Itis interesting

field interaction. to observe that the coupling terms couple the three scissors
modes such that if only one mode is initially excited then it
will never couple to the two other modes. We believe that

IIl. BEYOND LINEAR RESPONSE this important result is not an artifact of the Gaussian ap-
proximation, but also holds for an exact calculation using the
In this section we consider the equations of motion for theBogoliubov theory.

variational parameters by taking into account several higher- For higher-order couplings the last conclusion is no

order terms in the deviationsh; and éc;; . We have calcu- longer true. Two modes can then be coupled, even when the

lated these equations analytically up to second order, buhird is not involved in the dynamics. From now on, there-

they turn out to be rather lengthy and contain terms thafore, we assume without loss of generality that only fleg,

couple the breathing modes and the scissors modes. As vad ¢, modes are excited, whiléc,,=0 always. More-

discuss below, in the present experiments with axially symOVer, to investigate the possibility of a resonant coupling

metric traps the coupling of the scissors modes with thdetween these two modes, we have considered coupling

quadrupole mode is always of importance, but we leave théerms_ up to ninth order. S|m|lar to the_ second-order case

treatment of this more complicated situation to future work.&XPlainéd above, the equations of motion can thus be ex-

For simplicity, therefore, we focus here on triaxial traps, inPressed as

which case we can ignore the breathing modes and simply _

put 5b; =0 in the full equations of motion. The neglect of the Cxyr + Q4 8Cy  + 2 ajim(Cxyr)!

breathing modes is then justified for our purposes because Jricrirm=e

for these traps the degeneracy between the quadrupole modes x ( 5¢Xy’r)k( 8Cyxzr) (8Cyz1)™=0, (14)

and the scissors modes is lifted. Consequently, if two scissors

modes are resonantly coupled the quadrupole modes will be..

off resonance. 5sz,r + Q>2<zac><z,r + - k+|2+ =9 ,Bjklm( 5sz,r)j
Up to second order, the remaining six first-order equations : N
for 59xy,r ... 6Cy,; can be reduced to thre_e .sec.ond-order X(5éxz,r)k(6ny,r)|(5éxy,r)m:01 (15)
equations forécy, ., 6Cy,, and écy,, by eliminating the
imaginary parts. We find in detail where j,k,1,m=0,1,2,3 and the sum+k+I1+m does not

excced 9, which is the order up to which we have chosen to
expand the equations of motion. The coefficientg,n,,
) 64\ 15 wow )2 Bjkim are given in terms of the trap parameterg, vy ,,,
SCyy + Q5 3Cxy  + 2’5( X y)

and the interaction parameter A resonance between these
two modes takes place when the frequency of the coupling
terms is equal to the frequency of the zeroth-order term, i.e.,

=0, the first two terms. The frequency of each coupling term in
the above summations is determined by substitutingstey

(117 and 5&:”- their zeroth-order solutions. Therefore, the latter
frequencies will be a certain linear combination of the
zeroth-order scissors-modes frequencies. Imposing the above

64\ /5 2/5( wxwz) 2/5 resonance condition on each coupling term thus results in a

4
z

WyWy

X
szQyz

2
—QF, 3y, 5Cy,  + 2( ) 8CyzOCy 5,

. 2
5sz,r + szgcxz,r +

relation between the two scissors-modes frequereigsand

w§ Q,,. Inspecting all coupling terms up to the ninth order, we
oo |2 found a very small number of terms for which the relation
% _Q)z(z5cxy,r‘scyz,r+2 #) 5éxy,r5éyz,r =0, between(l,, and_QXZ can be sz_msfled by real values ©f ,
xy=fyz oy, and w,. Ultimately, we find only a resonance when
(12) either
Q><y:Q><z (16)
and or
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205y= 0y 17 —(if +2Af)f+ief2=0, (22)

is satisfied. The first resonance condition leads in the experiwhere
mentally relevant axially symmetric case, wheig=w,
=w,/\\, to a value for the anisotropy ratio that is equal 320}, — 48050~ 4905,
to 1. This clearly corresponds to a spherically symmetric &= Rk :
condensate. Since in this case the scissors modes are degen- i
erate with the quadrupole breathing modes, which we havegpis equation has a solution of the form
ignored here, we focus from now on only on the second
resonance condition. f(t)=[C,+C,exp2iAt)]V1e), (24)

It is interesting to mention that the second resonance con-
dition is exactly the same as the one observed experimentallyhere C; and C, are two constants of integration that are
[11]. For a resonance of this kind the resonant coupling termgéetermined by the initial conditions. Note that the relevant
turn out to be of seventh order, and the equations of motioguantity here igf(t)|, which represents the actual envelope
in that case read of the oscillation and is given by

(23

. _ 2 2 —&
8y Q28+ B 81y )3 8y )2 8651 IF(O]=[C1+Ca+2C,Coo002AN HEETIL (29
5, 2_ In first instance we might think that the real part ft) is
77(8Cxy.)7 ()" =0, (18) the relevant quantity. However, in Eq&0) and (21) we
. ) 3 9, o - should in principle have taken the real part of the right-hand
OCyzr T 5;0Cxz, + a(8Cyzr)*(6Cxy,r)“(6Cxy,1)*=0, side. If we do that we automatically are lead to the condition
(19 that|f(t)| is the envelope of the oscillation.
For definiteness sake let us take the initial conditions

if we neglect all nonresonant terms. H , and » are . . .
o g it 7 f(0)=f,(0)=fyandf(0)=f;(0)=f,, wheref (t) andf;(t)

functions ofw,, wy,w,, andy that are given explicitly in

the Appendix. It is important to note here that our neglect of2'® the _real and_ Imaginary parts i), respectively. P.hyS"
the nonresonant terms is justified when we are close enougf!ly: this set of initial conditions corresponds to exciting the
to resonance. This is similar to the rotating-wave approximaSCissors modes in thez and thexy planes simultaneously.

tion known from quantum optics. We see that the couplingThiS should be performed experimentally by initially rotating

terms indeed lead to the above-mentioned resonance condfl€ condensate in thez plane by an anglé, and around the
tion, by inserting in them the zeroth-order solutions, i.e.,Z@Xis by an angleb, and then releasing the condensate. The
OCyy,r* eXP(=iQyt) and ey, exp€yt). For example, initial anglesé, and ¢ are related to the constarftgandf

the coupling terms in Eq(18) have a total frequency of by

20,,—50,,. Separating oubc,, .« exp(—ifd,t) as a pref- ,

actor for the whole equation, the coupIingyterm oscillates fo=2|b"—b{”| cosdy sin by, (26)
thus as A=4Q,,—2Q,,. Therefore, a resonance takes
place whem\ =0, i.e., when the condition in E¢17) is met.
Similarly, the coupling term of Eq(19) is also oscillating
with a frequency of A.

. a?
fo:Q_xy(2| b{—b{%|cosb, sin 6y)%| b — b{?)
XZ

X COSehg SiN . (27)
IV. SOLUTION OF THE EQUATIONS OF MOTION NEAR With these initial conditions the constan®, and C, are
RESONANCE given by
Sufficiently close to resonance we can wrife,, and F e
écy, as a product of two functions. One of them describes C,=fl"*+ ofo"(17¢) (29)
the slow envelope and the other the fast oscillation with the 0 2A ’
uncoupled scissors-mode frequency. In particular, we have _
fofg®(1—¢)
8Cy (1) =g(t)exp(i Qyt) (20) Co=-——51 (29)
and Using these expressions and the experimental parameters
. from Ref.[10], we give in Fig. 1 the real part ofic,,(t).
5C (1) =F(t)exp —iQ,t), (21 This clearly shows how the energy is being exchanged be-

) tween the two modes.
whereg(t) andf(t) are the slowly varying envelope func-  An interesting property of Eq22) is that exactly on reso-
tions. Substituting these expressions into E48) and(19),  nance, i.e.A=0, its solution becomes nonoscillatory. Indeed

ignoring second-order time derivatives fit) andg(t), and e find that in this case the solution is
then eliminatingg(t), we obtain the following equation for

f(t) f(t)=(Cy+Cyt)Y(A=2), (30)
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FIG. 1. Th | part ob howing two ki f illation. .
The c?ne with ?hr:aI\arp aerr fcl)'ectjzesncovgggre\évoonlgs ioothoeS(l:JlnaeKr)tTere FIG. 2. The envelop¢f(t)| that determines the energy trans-
9 9 Y P P %rred between the two coupled scissors modes. This set of curves

scissors-mode oscillation with frequen£),,. The slower oscilla- ) o
tion is due to the mean-field coupling between the scissors mode iﬁhows that when approaching the resonance condiier)2(,

the xz plane and they plane. The frequency of this oscillation is xd =0, the frequency of the curve decreases until it becomes

2A=2|29xy—9xz|. The Bose-Einstein condensate parametersequal to zero on resonance. The inset shows this last behavior for

e il ot o i e T 0 1S For sl sy g e e e
of Ref.[10], A=2.54 andN=10" of /Rb atoms. The initial con- " AN P u P

ditions are 8,=20X 7/180 and¢,=0.03X 77/180. The latter was those mentioned in Fig. 1.
taken small to show that already such a small perturbation inzhe
scissors mode is sufficient to initiate a substantial coupling betwee
this mode and the&y mode.

viations, these are the only two cases of resonance that we
Rave found. Close to resonance the equations of motion have
been solved exactly using an envelope approach. The result-
. . ing dynamics is similar to a beating between two modes with
where agairC; andC, are constants that are determined bya beating frequency 2= |202,,—Q,,]. We notice that the

the |n|t|a_I cond|t|0_ns._Forthe abov_e initial c_ondltlons this is aobserved resonance behavior occurs exactly for the same
decreasing function in time. Physically, this means that, un- o . -~
. AT ¢ -_condition that we have obtained, namelyf)2=Q,, [11].
like the case of an off-resonant oscillation, it takes an infinite

time for the energy that is transferred from the scissors modHowever, the dynamics we find here is different from that
. 9y ; : found by Hodbyet al, presumably because the resonance
in the xz plane to the scissors mode in tkg plane to get

. . . behavior shown in their paper is observed with axially sym-
back to the mode in thaz plane. In Fig. 2 we show this metric traps[11]. The fact that we did not find any other

rAesonarr:ce be_r;lawor. F|r|1al_ly, we can show thatdln the IImItresonance condition up to the ninth order, indicates that the
th:r?o;oesglslg'zo?tocr));lsgtu?gsnor?;vnecr:aInivlfacr(]ZS) E@)uces to coupling terms that lead to this resonance are also respon-
y 9 y : sible for the experimental resonance in the triaxial case.
Furthermore, it is important to note here that, quite gen-
V. SUMMARY AND CONCLUSION erally, the down-conversion process from one excitation

i .. quantum into two excitation quanta with half the ener
We have explored the role of the mean-field interaction mq q 9y

. . : : each, i.e., the so-called Beliaev dampiig], vanishes for
coupling the three scissors modes of a Bose-Einstein Condeﬂie scissors modes. This is so because of the negative parity

sate. A variational approach with a Gaussian trial wave funcbf the scissors modes. In terms of fluctuations of the anihi-

tion, that contains a number of variational parameters de- . N . - -
scribing the scissors modes, provides a relatively simple wa{Rtion operators(r,t) given by o(r,t)=y(r,t) —y(r,t), the
in which we can extract the main features of this coupling.B€liaév damping process is accounted for by an interaction
To first order in the deviations in the variational parameterderm proportional tofdry(r,t)@'(r,t) @' (r,t) ¢(r,t). Here
from their equilibrium values we reproduce the correct fre-y(r,t)=(:(r,t)) is again the condensate wave function. Us-
quencies of the scissors modes. To second order we shawg our variational Gaussian wave function given by B,
that it is not possible to have two modes that are coupled ifve clearly see that with only two scissors modes present this
the third mode is not involved in the dynamics. Instead, allintegral vanishes, since the integrand is an odd function. We
three modes need to be involved for nonlinear dynamics tdelieve that this result is independent of our trial wave func-
occur. tion and also true within an exact approdd®]. In our case

At higher orders we find that it is possible to considerthe seventh-order coupling terms in E¢s8) and (19) cor-
only two modes. In this case we find a resonance behavior ifespond to a quadratic collisional damping process, i.e., a
20yy=0y; or Q,,=Q,,. Up to the ninth order in the de- collisional process for which the amplitude is quadratic in
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a) - s Beliaev dami plish _the doyvn conversiqn. Another point worth recallling_
—— — eliasv camping here is that in the experiments the resonance is studied in
---------------- most detail for an axially symmetric trap with an anisotropy
ratio close tox = /7, when thexy scissors mode is degen-
b) — ., T ) - erate with the quadrupole mode, which we have excluded in
— -e—e—e—s- quadratic collisional  the present calculation. In that case we may argue that one
scissors scissors damplng

---------------- scissors-mode quantum can decay into either another

scissors-mode quantum and a quadrupole-mode quantum or

0 EE— T Beliaev damping into two quadrupole-mode quanta. These are in principle also
— R . . ; )

quadrupole scissors/quadrupole  quadrupole  scissors /quadrupole B_e“aev dampmg processes, WhICh are, hOWGVEI’, agam for—

---------------- bidden for similar reasons as before. Nevertheless, a good

FIG. 3. A schematic figure representing three down-conversionlJnderStandIng of these experiments requires an analysis that

processes(a) Beliaev damping where one excitation decays into'mlu(j(':‘S not only thexy and thexz scissors modes but also
two excitations with half the frequency. It is shown in the text thatf[he quadrupole mode, because of the degenera.\cy that OC‘?WS
for two scissors modes this process vanishibs.Quadratic colli- in this case. How_ever, our_ theory S_hOUId be directly appl_l-
sional damping in which three excitations decay into one excitatiorF@ble to the experiments with a triaxial trap. We hope that in
of the same frequency and four excitations with half the frequencyth€ future more detailed experiments of this kind will also be
According to the present work this is the first nonvanishing down-Performed, to make a direct comparison between our theory
conversion processc) Beliaev damping due to down-conversion and experiment possible.

from one scissors mode into another scissors mode and a degenerate

quadrupole mode, or into two quadrupole modes. This is the situa-

tion that corresponds to the most detailed experiments of[REf. ACKNOWLEDGMENTS

but the matrix elements of these processes again vanish. We would like to thank C. J. Foot and P. Drummond for
useful discussions. This work is supported by the Stichting

the interaction, where three excitation quanta decay into fouvoor Fundamenteel Onderzoek der Mat¢R®M), which is

excitation quanta with half the frequency and one excitatiorfinancially supported by the Nederlandse Organisatie voor

quantum with the same frequency. This is shown schematiWetenschappelijk OnderzoghWO).

cally in Fig. 3. This makes sense physically since this is the

lowest-order nonvanishing process if Beliaev damping is for-

bidden and we are forced to apply the interaction term pro—APPENDIX: COUPLING MATRICES AND COEFFICIENTS

portional tof droT(r,t)T(r,t)o(r,t) o(r,t) twice to accom- The matricegvPeaindgnd MsCissosare given by
|
Mbreathing
25 205, 205 . 25 205, 12/5, 2/5 205, 12/5,  2/5
=370 oy, Y o e, Y 0wy o 0 0
2415, 1/5 24/57Tl/5wy8/5 245,115, BI5
25 1205, 215 — 3925 2205, 215 25, 2215 . 0wt .
24/5771/5wy8/5 24/5771/5wy18/5 24/5771/5wy8/5w28/5 w‘y'
425 wxlzlswy2/5 215, 2215 — 3425 wxzzlswyzls . . iwow?
245,115, 85 24/5,”.1/5wy8/5w28/5 245,115, 18/5 ol
B 24/5 15 8/5
“lo 0 0 T s 25 X2/5 0 0
Y Wy Wy
—iwwt 245715, 18/5
0 4 0 0 T 25 125 205 0
wy Y oy o,
! 4/5_1/5  18/5
—loww 2" Pw
0 0 4 - 0 0 T2 25 >(12/5
w? P00,
(A1)
and
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Mscissors
205, 1215 2/5 L2
iw
A S SR 0 O 0 0
24575, B15 202
. B 50, 1205, 25 . w2 .
245,115, BI5 202
2/5,  22I5 Lo
YWy [OTOM
0 0 Q4515 85, 8/5 0 0 20202
_ Yy z y=—z
—lww? o 0 — Vo, 352+ o2 .
202 2(29250, 125 25)
y y z
. 2 2 2
. iwa? . . — Y50, FB02 4 2 .
202 229250, 250,12
0 0 —iww) o 0 — Y5, 185,24 2
2(1))2,(1)5 2(2,}/2/5(0)/12/50)212/5)
(A2)
[
The coupling coefficientsr, 8, and », appearing first in +o(Two+20l) + 06wy — 0w+ w})]
Egs.(18) and(19), are given by
X (7Pwywi 0y Q%) 1, (A4)
a=2 21512348+ 4w§w§—2w§w§'+ wf(3w§+ 5w?) and
2 4 4 A 2A4 A4\ — 1/5,,12/ 2\ 12/5
+2w5(2 0yt w;)] X(WG/SwayQXyQXZ) 1 (A3) _ 227y 5(Qxy) (A5)
7 65,6020
RROMOM OV
_ 1/5, 12/ 8 2 4 2 6 2 4 4 .
B=—22"y iswx_ 2wxwywz_ 4wywz+ 2wywz respectlvely.
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