
QUANTUM KINETIC THEORY OF TRAPPED
ATOMIC GASES

H.T.C. STOOF

Institute for Theoretical Physics, University of Utrecht
Princetonplein 5, 3584 CC Utrecht, The Netherlands

Abstract. We present a general framework in which we can accurately
describe the non-equilibrium dynamics of trapped atomic gases. This is
achieved by deriving a single Fokker-Planck equation for the gas. In this
way we are able to discuss not only the dynamics of an interacting gas above
and below the critical temperature at which the gas becomes superfluid,
but also during the phase transition itself. The last topic cannot be studied
on the basis of the usual mean-field theory and was the main motivation
for our work. To show, however, that the Fokker-Planck equation is not
only of interest for recent experiments on the dynamics of Bose-Einstein
condensation, we also indicate how it can, for instance, be applied to the
study of the collective modes of a condensed Bose gas.

1. Introduction

The most important reason for the present interest in Bose condensed
atomic gases is the possibility to study in detail the dynamics of a super-
fluid system in this case. In particular, it is possible to compare ab initio
many-body theories for the non-equilibrium dynamics directly to experi-
ment, which is for instance not possible for liquid helium. Two important
issues that are of interest to us here are the dynamics of condensate forma-
tion and the eigenfrequencies of the collective modes of the Bose condensed
gas cloud. In both of these problems it is important to realize that the gas
consists of two components, which, due to the harmonic confinement of
the gas, are roughly speaking also spatially separated. More precisely, the
density profile of the gas can be viewed as a relatively narrow condensate
peak on top of a broad thermal background.
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Theoretically, we anticipate that the noncondensate or thermal cloud
behaves similarly as a gas above the critical temperature for Bose-Einstein
condensation. Its dynamics is therefore accurately described by an appro-
priate kinetic equation. However, the condensate is a macroscopic quantum
object and the dynamics of the condensate must therefore be determined
by an equation for its wavefunction. On the basis of these arguments we
see that to describe the coupled dynamics of the thermal and condensate
clouds, we need a quantum kinetic theory that is capable of simultaneously
treating both the incoherent as well as the coherent processes taking place
in the gas. It is the main purpose of this lecture to explain as simple as
possible how such a quantum kinetic theory can be derived from first prin-
ciples [1]. Moreover, as an application and illustration of the theory, we
also present the first results on the formation of the condensate and the
collective modes that we have recently obtained.

It should be noted that in this lecture we use only physical arguments to
explain and motivate the final structure of our quantum kinetic theory. For
a detailed derivation by means of field-theoretical methods we refer to the
existing literature [2, 3]. In addition, we mainly restrict ourselves here to
a discussion of the so-called weak-coupling limit in which interactions have
only a relatively small, but nevertheless crucial, effect on the behavior of
the gas. This restriction is again made for reasons of clarity only, because in
the weak-coupling limit the theory is most transparent and therefore most
easily understood. Moreover, once this limit is well understood, in principle
it is straightforward to generalize and treat also the strong-coupling limit.
However, before we can start to consider the effect of interactions, we first
need to reformulate the theory of the ideal Bose gas in a somewhat unusual
way, that nevertheless turns out to be very convenient for our purposes.

2. Ideal Bose Gas

Let us therefore consider an ideal Bose gas in an external trapping potential
vtrap (x) with one-particle energy levels ea and corresponding wavefunctions
xa(x) that can be found from the Schrodinger equation

h2r12
v vtrap

(X) } x« (x) = «x« (x)2m (1)

Using the methods of second quantization, in the Heisenberg picture the
non-equilibrium dynamics of the gas is fully determined by the initial den-
sity matrix p(to) and the hamiltonian

fi = EeaAra(t) . E Ec,1"a(t)i^pc,(t) , (2)
a a

ft
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where (t) and lba (t) create and annihilate at time t a particle in the state
x, (x), respectively.

If we would follow the usual treatment of an ideal Bose gas, we would
at this point introduce the basis IINO; t) in which the occupation numbers
of all the one-particle state xa(x) are specified, and proceed to calculate
the probability distribution

P({Na};t) = Tr [15(t0) IINal; t)({NO; . (3)

For an ideal gas the hamiltonian commutes with the number operators
N (t) and the above probability distribution is in fact independent of time.
In particular, this implies that the average occupation numbers (N a(t))

Tr [Mtcs)./Cia(t)] are constant, which physically makes sense because without
any interactions there is no way in which the particles can scatter from one
state to another.

As mentioned in the introduction, we are not only interested in the
occupation numbers of the gas, but also in the condensate wavefunction.
Therefore we do not want to use as a basis the eigenstates of the num-
ber operators N (t), but instead the eigenstates of the annihilation opera-
tors V),,(t). More precisely, we introduce the so-called coherent states 10; t),
which are (properly normalized) eigenstates of the field operator

t) = E xa(X)a(t) (4)

with complex eigenvalue 0(x) [4], and consider the corresponding probabil-
ity distribution

P[0*, 0; = Tr [i)(to) 10; t)(0; ti] (5)

We now need to determine the equation of motion, i.e., the appropri-
ate Fokker-Planck equation, for this probability distribution. This can be
achieved most easily as follows. We know that by definition the annihilation
operators 0,(t) obey the Heisenberg equation

Sa(t) [pc,(t), ft] =zh at
(6)

Since we have used the eigenstates of the annihilation operators to define
the probability distribution P[0*, 0; t], we also know that

(t)) = f d[4']d[4)] (1),J10*, 0; tl (0.)(t) (7)

tI]

E--_

tj

= Eab.(t)

ikx,



494

where f d[e]d[0] denotes the (functional) integral over the complex func-
tions 0(x). Combining the last two equations we thus find that

ihl(C6a)(t) = en(0a)(t) . (8)

Moreover, by considering the Heisenberg equation for the creation operators
01 (t) we also obtain

ih1(94,)(t) = ect(0:)(t) (9)

In this manner we have thus been able to derive the equation of motion
for the first moments of the probability distribution. However, to arrive at
a Fokker-Planck equation for P[0* , 0; t] we also need to consider the higher
moments [5], and in our case in particular (10a12)(t). A priori we expect this
expectation value to be related to the average occupation numbers (Ara (t))
and therefore that

a
ih (10QI2)(t) = 0 . (10)

Although the latter result is all that we need here, we need later on also
the precise relation between (10a12)(t) and the average occupation numbers,
which can be shown to be given by

( l (a. 12) (t) = (Ara (t» +

A derivation of this relation is complicated by the fact that the creation and
annihilation operators do not commute at equal times. It can, however, be
understood physically from the fact that the second moment of P[0* , cb; t]
should contain both classical as well as quantum fluctuations.

From Eqs. (8), (9) and (10) we conclude that the desired Fokker-Planck
equation reads [6]

a a

a
+ E -0-(-1 -, (f.(g) P[0* , 0; t] (12)

It thus contains in the right-hand side only 'streaming' terms and no 'dif-
fusion' term. As a result there is no unique equilibrium and in fact any
function of 1012 is a stationary solution. Again, this makes sense physi-
cally, because without interactions there is no way in which the occupation
numbers can relax to an equilibrium Bose-Einstein distribution. To include

.

.

P[0*
'
0. t] = E (.0.) p[0*, 0; t]at '
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such relaxation into our discussion, we therefore now bring our ideal Bose
gas into contact with a thermal reservoir.

3. Ideal Bose Gas in Contact With a Reservoir

As our reservoir we take an ideal Bose gas in a box with volume V. The
reservoir is assumed to be sufficiently large so that it can be treated in the
thermodynamic limit. Moreover, it is in equilibrium with a temperature
T and a chemical potential it. The states in this box are labeled by the
momentum hk and equal to xk(x) = eik'brV. They have an energy c(k) =
h2k2/2m. Finally, the reservoir is thought to be in contact with the trap
discussed above, by means of the tunnel hamiltonian

ftint 1 EE (t,(k)(0/4(t)+t(k)lbk(t)a(t)) . (13)

Here t(k) are complex tunneling matrix elements that for simplicity are
assumed to be almost constant for momenta hk smaller that a cutoff hk, but
to vanish rapidly for momenta larger than this ultraviolet cutoff. Moreover,
we consider here only the low-temperature regime in which the thermal de
Broglie wavelength A = (27rh2 1 mkBT)1/2 of the particles obeys A > 1/kr,
since this is the most appropriate limit for realistic atomic gases.

Due to this interaction the particles can tunnel back and forth from the
trap to the reservoir, which results both in a shift in the energy as well as
a finite lifetime of the state xa(x). The energies of the states in the trap
therefore become complex and equal to Ea + iRo, where the real and
imaginary contributions to the shift can essentially be found from second-
order perturbation theory. Denoting the Cauchy principle value part of an
integral by P, they obey

and

dk
So =

(2703
t'* (k)

co + S, c(k)
t, (k)

dk
Rc, = r f

(2703
g(s. f(k))1to(k)12

(14)

(15)

respectively.
Introducing the retarded and advanced self-energies hEV) = Sc, iRa,

we conclude from the above that Eqs. (8) and (9) now become

aih
at

(0a)(t) = + hE(c,+) iL) (cba)(t) (16)

and
ath(o*,,)(t) = (6, + hE(c,--) (96:,)(t) , (17)

k

S

f

+ So

(eo,

1-1)

=

,
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where we have also measured our energies relative to the chemical potential.
Next, we need to consider the fluctuations, i.e., the generalization of Eq.

(10). This turns out to be given by

a
(10a12)(t) = 2iRa(I0a12)(t) hE

K
aat

a

(18)

with the so-called Keldysh self-energy equal to

hE!,( = 2iRc, (1 + 2Nr ) (19)

and Nr = 1/(e('4-S'OMBT 1) the equilibrium Bose-Einstein distribu-
tion function. How can this result be understood? The first term in the
right-hand side of Eq. (18) follows simply from the fact that if we neglect
correlations (10a12)(t) is equal to 1(0Q)(t)12. Furthermore, the second term in
the right-hand side of Eq. (18) guarantees that if we make use of the relation
between (1012)(t) and the average occupation numbers N(t) (t)) ,

we recover exactly the Boltzmann equation

N(t) = aNa(t) + FN rat (20)

with the correct transition rates ra = /h expected from Fermi's Golden
Rule.

In a similar manner as for the isolated case, we now conclude from Eqs.
(16), (17) and (18) that the Fokker-Planck equation for our trapped Bose
gas becomes

aihat"le
t

, =

It is interesting to note
the Langevin equation

a
ihtvpQ(t) (cc, + hEV) p) = a (t) , (22)

where the Gaussian noise obeys

a
(E + hE(c,±) p) 0aP[0*, 0; t]

a
(fa + hE(a-) P[0* , 0; t]

a2
aoc,a(4,hEic, P[0* , 0; t] (21)

that this Fokker-Planck equation is equivalent to

(7g (Once (t1)) = ih2hEa,K8a,a,6(t t' )
2

(23)

,
2

0; t]
80.

+
aO'c't

2

p)

-

1

E

.
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and the fluctuation-dissipation theorem reads

hEaK = (1 + 2NV) (nE(:) . (24)

Clearly, due to the fluctuation-dissipation theorem the probability dis-
tribution P[0*, 0; t] for the gas in the trap now relaxes to the correct equi-
librium state

1

P[0*, Cb; °()] IT Ne1 exp { NV + 1/21"2}a a

More important for our purposes, however, is that the Fokker-Planck equa-
tion in Eq. (21) describes simultaneously both the incoherent (kinetic) as
well as the coherent dynamics in the gas, since it incorporates the equa-
tions of motion for both (Na(t)) and (I'PQ(t)), respectively. As mentioned
previously, this is precisely what is needed for an accurate treatment of
non-equilibrium phenomena in Bose condensed atomic gases.

(25)

4. Condensate Formation in an Interacting Bose Gas

We are now in a position to discuss an interacting Bose gas, because in an
interacting Bose gas, the gas is, roughly speaking, its own thermal reservoir.
The Fokker-Planck equation therefore turns out to be quite similar to the
one presented in Eq. (21). To be more precise, however, we should mention
that we aim in this section to describe the formation of a condensate in an
interacting Bose gas under the conditions that have recently been realized
in experiments with atomic 87Rb [7], 7Li [8] and 23Na [9] gases. In these
experiments the gas is cooled by means of evaporative cooling. Numerical
solutions of the Boltzmann equation have shown that during evaporative
cooling the energy distribution function is well described by an equilibrium
distribution with time-dependent temperature T(t) and chemical potential
p(t), that is truncated at high energies due to the evaporation of the highest
energetic atoms from the trap [10]. Moreover, in the experiments of interest
the densities just above the critical temperature are essentially always such
that the gas is in the weak-coupling limit, which implies in this context that
the average interaction energy per atom is always much less than the energy
splitting of the one-particle states in the harmonic trapping potential.

Keeping the above remarks in mind, we find that near the critical tem-
perature the non-equilibrium properties of the gas are, to an excellent ap-
proximation, described by a nonlinear Fokker-Planck equation with time-
dependent selfenergies hE(c,±)'K(t) and effective interaction matrix elements

(t)" for which, in the so-called ladder approximation, explicit ex-
pressions can be derived in terms of the average occupation numbers Arot(t)

1/2 .
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in the gas [3].

aihat p[o* o;

v, a
a0.

In full detail it reads

t] =

a
{

a' AO'

{ (ea + hE(a-) 0*a + E
a' A/3'

p[o*, 0; t]

K(,,-,)0,,o,o7}9,o0 P[o*, o, t]

1 + E p[0*, 0; . (26)
0,0 /3,0'

To understand how this equation describes the formation of the conden-
sate, we make use of the fact that in the weak-coupling limit it is appropriate
to solve the Fokker-Planck equation with the (Hartree-Fock) ansatz

P[0* , 0; t] = Po[0* (kg; t]Pi[r , ¢/;t] , (27)

where the complex function 01(x) = Xa (X) Oa is associated with all
the one-particle states except the groundstate xg(x). Substituting the above
ansatz into the Fokker-Planck equation, we obtain the following results.
First, the dynamics of the noncondensed cloud is determined by the quan-
tum Boltzmann equation

atIV 0(0 = IVN(t) + r(1+ No) , (28)

with a g and the scattering rates rout,in(t) of a similar form as in the
Uehling-Uhlenbeck equation but with a cross-section which is proportional
to 1V(;0)

;a ,0 (t) 12. Second, this kinetic equation is coupled to a Fokker-Planck
equation for the condensate, i.e., to

iha P0[06* 0 =at " 9'
a

(g + hE(g+)

aao;(E9+hEr)

a2

2 89500; hE9KP°[eg' (h; ti

+ Vg?g,glOgI2) gPo[O*9, Og;t]

p + 11;?9,g10g1 2 g g Og;

(29)

Due to the fluctuation-dissipation theorem, the probability distribution
for the condensate relaxes to the equilibrium solution

1 17(+)
Po [b g* g ; 00] OC exp

k BT fg + Sg + 1'9914)912 109 (30)

(ea + riEL+) 11) Oa E 070,, 0,

+ E

a2

a000:,, hEaK 6c' 17.K,thal,filo*000, t)

tj Aaog

+ t]

1

a 14)
)

,te

v,(;;4,,,
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The Landau free energy for the condensate order parameter thus equals

1719,9 10914 (31)

and clearly shows a spontaneous breaking of symmetry if Eg+ Sg p < 0 and
the effective interatomic interaction is repulsive, i.e., 14,-Fg9,9 > 0 [14 In our
formulation of the problem these quantities are a function of time, whose
evolution is essentially determined by the quantum Boltzmann equation in
Eq. (28). In particular, for Bose-Einstein condensation to occur, 9 + Sg p
has to change sign during this evolution. As a first rough calculation of
the condensate formation, we can assume that this change of sign takes
place instantaneously. Introducing for convenience the dimensionless time
T = t('iEK /8)(20,+) ,gREIT)1/2 and the dimensionless condensate numbergg;g

I = lOgI2(214,±9?9,9,11cBT)112, this assumption leads to a typical evolution for
the probability distribution Po[I; T] that is shown in Fig. 1.

Figure 1. Typical evolution of the condensate probability distribution during
Bose-Einstein condensation. The slowest relaxation rate is 1/ro 5.7. The inset shows
the evolution of the average condensate number and its fluctuations.
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At this point we should mention that the solution of the condensate
Fokker-Planck equation in Eq. (29) with a fixed and negative value of
eg Sg p, is equivalent to the theory recently put forward by Gardiner
and coworkers using different methods [12]. It even turns out to agree qual-
itatively with experiment, although quantitatively some important discrep-
ancies exist [13]. In our opinion these discrepancies are probably due to the
fact that we should really solve the Fokker-Planck equation for the conden-
sate together with the quantum Boltzmann equation for the thermal cloud.
Moreover, an additional problem is that the experiments of interest here
are not really in the weak-coupling limit, which substantially complicates
the theory because more states are needed to describe the condensate.

5. Collective Modes

As another illustration of our general nonequilibrium approach we consider
now the collective modes of a Bose condensed gas at such high tempera-
tures that a substantial noncondensate fraction is present in the gas. The
experiments that have been performed at these relatively high tempera-
tures are in the so-called collisionless regime [14]. Physically, this implies
that the oscillation period of the mode of interest is much shorter than the
average time between two collisions of the atoms. Under these conditions,
our Fokker-Planck equation for the gas gives, in the Hartree-Fock approxi-
mation and after a transformation of Eq. (26) to coordinate space, first of
all a collisionless Boltzmann or Vlasov-Landau equation for the long wave-
length Wigner distribution N(x, k; t) of the noncondensed part of the gas.
Explicitly, it reads
a

hk-&N (x,k; t) + t)m ax
a(v,trar.(x) + 20+)n(x, t)) N(x, k; t) = 0 , (32)

where the effective interaction V(+) = 47h2a/m can be expressed in the
two-body s-wave scattering length a and n(x, t) is the total density of the
gas. Furthermore, it leads to a nonlinear Schrödinger equation for the con-
densate wavefunction (0(x))(t), i.e., to

ih (0(x))(t) =at
n2r72

v vtrap(x) + V(±)(2/il(x, t) + no(x, t)) (4)(x)) (t) (33)2m

with the condensate density no(x, t)) = (0(x)) (t) 12 and the noncondensate
density n'(x, t) = f dk N(x, k; 0/(2703 of course adding up to the total
density of the gas.

+

a
at

ak

+
,

I

1 _a
h ax

1
p
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A numerical solution of the above coupled equations turns out to be
surprisingly difficult. Therefore, to gain insight into the collective modes of
the gas, we have recently put forward a variational approach [15], in which
we apply a dynamical scaling ansatz on the ideal gas results for both the
Wigner distribution N(x, k; t) and the condensate wavefunction (0(x))(t).
The outcome of this calculation is presented in Fig. 2, where we also make a
comparison with experiment which turns out to be quite reasonable in view
of the simplicity of our scaling ansatz. The main discrepancies are the two
measurements halfway between the m = 0 in and out-of-phase modes. This
discrepancy is, however, presumably due to the fact that in the experiment
both modes are excited simultaneously [16].

2.0

1.8

3"
1.5

1.2

1.0
0.0

4

0.2 0.4 0.6 0.8 1.0

T/Tc

Figure 2. Collisionless modes in a Bose condensed 87Rb gas. Curves 1 and 2 correspond
to the m = 0 in and out-of-phase modes, respectively. Similarly, curves 3 and 4 give
the frequencies of the m = 2 in and out-of-phase modes. The experimental data is also
shown. Triangles are for an m = 0 mode and circles for an m = 2 mode.

6. Conclusions

In summary, we have presented a general framework in which we can dis-
cuss various non-equilibrium problems in Bose condensed atomic gases. As

-0-
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an example we have presented our first results on the formation of the con-
densate and the collisionless modes at nonzero temperatures. Other topics
that are of interest are, for example, the condensate formation in a Bose
gas with attractive interactions, the dynamics of vortices and spin domain
walls, the collective modes in the hydrodynamic regime, the damping of
collective modes, and last but not least the non-equilibrium dynamics of
trapped atomic Fermi gases. In view of the many topics that remain to be
explored, we hope that the present lecture may motivate some of the par-
ticipants of this summerschool to enter into this, in our view, very exciting
area of physics.
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