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Longitudinal sound mode of a Bose-Einstein condensate in an optical lattice
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We examine the effect of the transverse breathing mode on the longitudinal sound propagation in a Bose-
Einstein condensate in a one-dimensional optical lattice. In particular, we discuss how the coupling with the
transverse breathing mode influences the sound velocity in an optical lattice. Using a variational approach we
calculate the dispersion relations for the longitudinal sound mode and the transverse breathing mode analyti-
cally, and find that the shift in the sound velocity from the uncoupled result can be large enough to be
experimentally relevant. We also find that the effective mass of the transverse breathing mode is affected
considerably by the coupling to longitudinal sound.
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I. INTRODUCTION remain constant as the number of particles in the site is
changed. For example, increasing the number of atoms from

Repulsive contact interactions between atoms in a dilutéts equilibrium value causes the condensate to expand
Bose gas cause a qualitative change in the low-energy exoivhereas a reduction of the number of atoms causes the con-
tations of the system. In particular, the noninteracting singledensate to contract. Therefore, number fluctuations in every
particle dispersion equal th2k?/2m is replaced with the site of the lattice are coupled to collective modes of the con-
sound dispersiogk that is linear in the momentufii]. The  densate in each site.
existence of this sound mode is important as it allows for the As far as we know, the coupling between the sound mode
possibility of superfluid flow[2]. Sound propagation in a and the collective modes is absent in all the existing theories
trapped Bose-Einstein condensate was studied experimesxcept in the recent work by Taylor and Zaremf22],
tally by Andrewset al. [3,4] and Stamper-Kurret al.[5] in  whose formulation in principle contains such a coupling al-
the regime where the condensate can be considered as bei@ugh the effect is neglected in all applications discussed by
homogeneous in one direction. The experimental observahese authors. In a one-dimensional optical lattice where the
tions were in good agreement with theoretical predictions ifattice runs in the longitudinal directiofthe z direction, the
that casg6-8]. coupling predominantly excites the breathing mode in the

Bose-Einstein condensates can also be placed in an optransverse directiofithe xy plang. These transverse modes
cal lattice. The periodic structure of the lattice has enabledvere studied previously in Ref21], in the approximation
studies of Bloch oscillation®], number squeezind0], col-  that the coupling with longitudinal sound can be neglected.
lapses and revivalgll], and a number of superfluid proper- While a coupling definitely exists between the sound mode
ties of Bose gasepl2,13. Importantly, the Bose-Einstein and the transverse breathing mode, a coupling between the
condensates in an optical lattice realize the Bose-Hubbargtansverse quadrupole modes and the sound mode does not
model [14] and can be used to study the quantum phasexist because these modes are orthogonal. Therefore, the re-
transition from the superfluid into a Mott-insulator stitd—  sults in Ref.[21] for the quadrupole modes are not affected
16]. by the coupling with the sound mode.

Apart from these phenomena, sound propagation is also In this paper we go beyond the approximation used in
possible in a Bose-Einstein condensate in an optical latticeRefs.[16—21], by providing a unified theory of longitudinal
There exists several theoretical calculations for the soundound and the transverse breathing mode in a one-
velocity of a Bose-Einstein condensate in a one-dimensionalimensional optical lattice. Using a variational approach we
optical lattice [16—21]. All these theories for the sound obtain the magnitude of the change to the sound velocity
mode are based on the idea that the condensate wawghen the coupling with the transverse breathing mode is
function in siten is, in tight-binding approximation, essen- taken into account. It turns out that the relative shift in the
tially one dimensional and has the fornd,(x,y,t) sound velocity from the uncoupled result approaches a con-
= g(x,y) VN (t)e'"n). This implies that the only dynamical stant/3/4—1~—0.13 as the strength of the interactions is
variables of these theories are the total number of atomicreased, i.e., in the Thomas-Fermi limit. Therefore, the
N,(t) and the global phase,(t) in every site, but there is no  shift is rather large and should be taken into account when
time dependence in the wave function describing the transguantitative results are required. Likewise the shift in the
verse directions. Physically, it is natpriori clear that thisis  effective mass of the transverse breathing mode from the
a valid assumption because in the presence of repulsive imesult in Ref[21] also turns out to be large and should also
teractions between the atoms the profit€x,y) does not be taken into account.

Intriguingly, our approach leads to a very simple theory of
Josephson oscillations coupled to just one transverse degree
*Electronic address: J.P.J.Martikainen@phys.uu.nl of freedom. Such a theory has some analogies with the theo-
"Electronic address: stoof@phys.uu.nl ries describing damped relative phase dynamics of weakly
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coupled condensat¢&3,24. In these theories the damping strengthJ of the Josephson coupling between the conden-
of the relative phase is caused by the coupling into quasipasates in the neighboring sites. In terms of the scattering
ticles. Our minimal theory can be used to study the phaséngtha, the trapping frequency, in every site due to the
dynamics of the Bose-Einstein condensate in a oneeptical lattice, and the characteristic length scdle
dimensional optical lattice and with considerable modifica-=\/A/mw,, the interaction strength is given by
tions even thé€quasiy irreversible damped phase dynamics.

This paper is organized as follows. In Sec. Il, we outline T
the theoretical foundation of our work and explain the varia- Up=4 \/;
tional ansatz we use. In Sec. Il we write down the equations

of motion and solve for the eigenmodes. We then proceed tfjoreover, approximating the lattice potential near its maxi-

the sound and the transverse breathing modes separatelife Josephson coupling

Previous experimental studies of the condensate sound mode

a

I

@

[3,4] tracked the time evolution of a density dip. Therefore in 1 (o \2( N\ 72 ,
Sec. IV, we apply our theory to solve numerically the time J=— —) (I—) 7_1 e~ (MA1D)7 ®)
evolution of such a dip in the condensate density in an opti- 8\ ©r r

cal lattice. In addition, in Sec. IV we also solve the time ) )
evolution of the system that was prepared with a localizedvhe€reé\ is the wavelength of the laser beams creating the

breathing-mode disturbance. We conclude with a brief disOPtical lattice.
cussion of our results in Sec. V. We use a variational approach to study the sound and the

transverse breathing modes of the condensate. For this pur-
pose we use the Gaussian ansatz
II. VARIATIONAL ANSATZ AND LAGRANGIAN

The theory we use is similar to the one presented else- ¢ (x y,t)= \/N[BO+ én(DIL+ (V)]
where[21]. In this paper the only difference with the theory ™

presented in Ref[21] is the use of the grand-canonical [Bot e(t)](x2+y2)
Hamiltonian, i.e., inclusion of the chemical potential term X F<— 0’ *n y +ivy(t)

— uN into the energy functional. Due to the presence of the 2

global phase factors and the atom-number fluctuations in dif- 4
ferent sites, this turns out to be more convenient for our

purposes. for the two-dimensional wave function at site The varia-

We consider a Bose-Einstein condensate trapped by a hdfonal parameters,= e, +ie;, are complex and describe the
monic trap with a radial trapping frequeney . The longi- amplitude of the breathing mode, where&sand v, are the
tudinal trapping frequency,< w, is assumed to be so small relative number fluctuation and the global phase at sjte
as to be irrelevant. The Bose-Einstein condensate also expeespectively. Furthermore is the equilibrium number of
riences a one-dimensional optical lattice in the longitudinalatoms at the site anB, gives the equilibrium size of the
direction and this lattice splits the condensate into a stack dwo-dimensional condensate. The latter is obtained by mini-
weakly coupled two-dimensional condensates. Furthermoréizing the equilibrium energy functional.
we use trap units, i.e., the unit of energykie, , the unit of Using this ansatz we can calculate the energy functional.
time is 1k, , and the unit of length ik = VA/mw,, wherem  We find that in equilibrium the condensate size paramgger
is the atomic mass. The energy functional for the stack ofS given by
two-dimensional condensates is then

1
Bo=—"7—=, )
1 Vv1+2U
E[®*,d]=2 f dzr[ = 5 PR (XY VEDA(x,Y)
" where, for convenience, we defined the strength of the inter-
1 Usp action as
+ §(x2+y2)+7|d>n(x,y)|2—,u
N [a
X|Pn(x,y)[? U= 2\ ©
—J(E) d2r<b:‘n(x,y)<bn(x,y)], (1) In addition, the chemical potential is given by
n,m
3 Bp
. . - u===-——=-21J, (7)
where the lattice sites are labeled byand(n,m) indicates 2B, 2

nearest neighbors. This energy functional is characterized by
two tunable parameters: the strength of the interadtigg =~ because this choice for the chemical potential removes the
in every two-dimensional Bose-Einstein condensate and theerms linear ind,, from the energy functional.
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As we are interested in the collective modes we must lll. EQUATIONS OF MOTION AND THE EIGENMODES
expand the Lagrangiah=T—E up to second order in the
variational parameters. Due to the technical simplicity of th
number and global phase fluctuations we choose, for the ti
being, to treat them exactly and only expandejn It then
turns out that the contribution from the time-derivative term
in the Lagrangian is

e The results obtained in the preceding section enable us to
mderive the linearized Euler-Lagrange equations of motion for
the variational parameters. They read

!
Jdeg

—=2Boej+J D (eh—e€h), (12)
(9t <n'm>

[ b oD
T/N=—Efd2r{<b: a“ D,

2 4 T den 2 P
’ EZ—B—Oen—ZUBgﬁn—J<§n>(en—em), (13)
. €
=> (1+6,)| — +—”(1——”) : 8
2 ( n) Vn ZBO BO ( ) ayn
W:—(l"—SU)Er{'—SBOU(Sn
whereas the energy functional becomes
, , J e —¢€
1+ 6, e\ [e\? By -y {(5n—5m)+ L m” (14)
E/N—HJ+; {( 28, 1—B—O)+(B—O +5 (146 2 (o) Bo
’ n\ 2 ’ and
€n n 2 €n
X 1+B—+ B_ +UBO(1+5n) 1+B—
0 0 0 6, (ep—e€m
—1=23> | (vh—vm)— —= . (15)
ot (n'm> ZBO
—uN(L+6) . 9

These equations of motion can also be written in a more
In Eq. (9) we have explicitly split off the contribution from formal way as
the Josephson coupling,

(96;1—282 JE . (aE) 16
HJ=—J<E> [cog vp— vl = SIN( v — ) 1 0], at "% ger] T aw,)
n,m
(10 dep ,[ 9E
where | ,,=[d?r®F (x,y)®,(x,y) is the overlap integral. 7__280 g_er; ' (17)
Expanding the overlap integral up to second order, now also
Lgi;he number and global phase fluctuations, we readily ob- %2 - E B E 9
at a8, %l o€,
J
Hy=— 2 [(eh—en)?+2(eh—ep)?+A4B3(vy— vpy)? and
8Bg (n.m)
v a9, JE
+B§(8n— 6m) 2= 4Bo(vn— vm) (en—€m) . (11) —=— (19
Jat  Jdv,

From this expression it is clear how the global phase fluc- _ o _
tuations are coupled to the transverse breathing mode. TecMVhile the first form of the equations is eventually needed in
nically this is due to the imaginary part of the overlap inte-the actual calculations, the second way of writing the equa-
gral which has a contribution linear ine{—e€”). Such a tions provides some additional insight. In particular, by in-
contribution does not exist, for example, for the quadrupolesPecting Eqs(16)—(18) it becomes clear how the global
modes which preserve the condensate volume. Thereforgpases influence the behavior of the breathing mode through
quadrupole modes will not be affected by the presence of thi'e termBo(JE/dvy) in Eq. (16), and how the breathing
sound mode. mode influences the dynamics of the global phase through
In the above result for the Josephson energywe ex-  the term—Bo(JE/dey) in Eqg. (18). Without these terms we
panded also in terms of the numb&r and global phase,, could treat the condensate density fluctuations independently
fluctuations. In the problem we are focusing on here thes&0m the transverse breathing mode.
fluctuations are small and the above procedure is justified. In The four first-order differential equations, E¢$2)—(15),
principle, however, number and global phase fluctuations caffr the variational parameters can be cast into two coupled
also be included exactly. By including them exactly we cansecond-order differential equations fef, and 5,. We are
also capture the physics of modulational and dynamical inlooking for solutions of the types,= €, (t)sin(hkn/2) and
stabilities in an optical latticE25—27, but this is outside the §,= d,(t)sin(nk\/2). By inserting these into the equations of
scope of the present paper. motion we obtain
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This agrees with the results of Refd6-21].

However, this result is changed when the transverse
breathing mode is taken into account. Using the unified de-
scription of sound and breathing modes that we have pre-
sented in this paper, we obtain a different sound velocity,

namely,
)\\/J( 3 o 83) L1 [2U(2+3V) 23
1_ . . . . . . T RS TRTTITTRN ,—""‘—‘ﬁ . c= —_ — — — = _—
f : 8\Bp “° °° 2(1+2U)32
T /‘soundmodé ) L ) ) o
oo—" 1 5 3 To obtain this simple expression we ignored contributions

KA/2 proportional toJ? as these are in general very small.
In the noninteracting limit the sound velocity calculated
FIG. 1. Eigenmode frequencies of ER0) and(21) as a func-  from the phase-only theory coincides with the real sound
tion of momentum, whed=0.1, U=100 (solid ling), andU=10  ye|ocity, but the relative shift/c,—1 becomes more pro-
(dashed ling nounced with increasing interaction strength. In particular,
the real sound velocity is smaller than the one predicted by
2 , the phase-only theories. Asymptotically we obtain in the
B_O+2J(k))fk limit of strong interactions lim_...(c/co—1)=3/4—1
~—0.13. While this shift is not enormous, it is still large
+(B§—1)[ZBO+ 23(K)]18, (20) enpugh to pg kept in mind vvhen quantitative results are re-
quired. Intuitively, the reduction of the real sound velocity
and due to the transverse breathing mode is expected, since the
transverse degree of freedom makes the condensate less stiff.
(k)( Rather than all the energy of the density disturbance being
3_

& (2B +23(K))
_ +
dt? 0

2

d5k—4J(k)(B = J(k))é 2 2
dt? ° Bo “

3B; pushed forward in the longitudinal direction, some of the
excess energy is lost in exciting the transverse degree of
2 ) freedom.

0

€, (22) It is interesting to observe that while a “pure” breathing
mode, unaffected by the global phase dynamics, is possible

B , ) when all the sites are breathing in phase, a pure sound mode
where J(k)=J[1—cosk\/2)]. The two eigensolutions of g never possible. The sound mode relies on global phase

these equations correspond to the longitudinal sound modgterences and number fluctuations between sites, and these
and the transverse breathing mode. These equations of M@y jnevitably couple into the transverse breathing mode.
tion and their solutions are the main results of this paper.

In Fig. 1 we show a typical behavior of both the sound
mode and the transverse breathing-mode frequencies as a B. The transverse breathing mode
function of momentunk for two different values of the in- At small values of momenta the transverse breathing
teraction strength. This figure demonstrates how the siall mode in the absence of sound mode has a dispersion relation
behavior of the sound modes is linear whereas that of theyy
breathing mode is quadratic. It also shows that both modes
become stiffer as the strength of the interactions is increased. N2
We devote the following two sections to the discussion of wo=2+ 5=
both modes separately.

B

2
Bot

2
By k<. (24)

However, in line with our previous result for the sound

mode, Eqs(20) and(21) predict a different behavior for the
Theories of bosons in a lattice that reduce the problem teerm proportional td?; namely, we have

that of a global phase and an atom number in each site can be

A. The longitudinal sound mode

used to solve the dispersion relatiasy(k) of the sound IN2 5 2
mode. We refer to these theories as phase-only theories. At wg=2+ ——=| Bot+ ==+ 2 (25)
small values of the momenta, the dispersion relation of the 16 2By 2

sound mode is linear in momentum, i.eg(k) =cgk. By
using the ansated), but removing the breathing modes, we \where we again ignored contributions proportionafo

find the phase-only sound velocity The breathing-mode dispersion relations can be given in
U 12 terms of effective massesj and mj for the transverse
co= N VIBU =\ oo, breathing mode asoy=2+k?*2m§ and wg=2+k?/2m} .
0 ° ( \/1+2u) (22 The relative shift
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FIG. 2. The time evolution ofa) the density disturbancé,(t) FIG. 3. The time evolution ofa) the density disturbancé,(t)

and (b) the transverse breathing-mode amplitupig(t)|>. We  and(b) the transverse breathing-mode amplitlig(t)|?. We used
used J=0.1, U=100, and the number of sites was 101. The J=0.1, U=100, and the number of sites was 101. The initial state
initial state had a Gaussian density disturbanég(t=0) had a Gaussian transverse breathing-mode disturbag(de=0)
=—0.1exp—(n/10)?] and the unit of time is 1, . In the figure  =By/2exf—(n/10)?]. This choice corresponds to the fractional
dark color indicates the disturbance. It can be seen how the initiathange of—25% of the condensate size in the center of the lattice.
density dip splits into two dips propagating into opposite directions,The unit of time is 1, . In (a) dark color indicates a region of low
whereas at this time scale the breathing mode remains well localensity. In(b) it would seem that the breathing-mode amplitude is
ized around the location of the initial density disturbance. initially zero. This is a result of plotting the amplitude squared
|en(t)|? as opposed to plotting just the real paftt). Typically the
imaginary part of the breathing-mode amplitude has a larger mag-
nitude and therefore dominates in the amplitude squared plot.

mi—m§  3+2Bi-B 6UJ1+2U+5{1+2U—1

my 5+2B3+B3 10UV1+2U+7V1+2U+1
(26) spreads out further. This slow spreading of the breathing
mode is hardly visible at the relatively short time scale of the
in the effective mass is always quite large and quickly apigure.
proaches an asymptotic value 3/5 as the strength of the in- In Fig. 3 we demonstrate the “inverse” problem of an
teraction increases. This shift, therefore, must be included iiitial state that has a localized transverse breathing-mode
making quantitative predictions for upcoming experiments. disturbance and a homogeneous density distribution. The
time evolution of the density distribution is then more com-
plicated, but the time evolution of the breathing-mode am-
plitude is similar to that in Fig. 2. In Fig. 3 the fractional
Earlier in this paper we solved the equations of motion forchange of the condensate size wa25% in the center of the
the sound and the transverse breathing modes by assumikajtice and such a deformation is quite large. Despite this
plane-wave solutions. This enabled us to obtain analytic sostrong deformation, the magnitude of the density disturbance
lutions for the dispersion relations, but our theory can bgemains small, below 1%. Therefore, under these conditions
used to solve also more complicated problems. In this sedt would be difficult to image the density disturbance experi-
tion we demonstrate this by solving the coupled dynamics ofnentally.
the density fluctuations and the transverse breathing mode,
when the initial state of the condensate has a density dip.
This problem is interesting since the earlier experiments on a
condensate sound mode first created a density dip and then We have presented a unified theory of the sound propaga-
tracked the evolution of the condensate den@ty]. In this  tion and the transverse breathing mode of a Bose-Einstein
case calculating the time evolution of the coupled system ofondensate in a one-dimensional optical lattice. Using a
the sound mode and the transverse breathing mode is to@riational ansatz we calculated the dispersion relations of
complicated to be attacked analytically, but the problem carboth modes, and found out that the dispersion relations are
be readily tackled numerically. quite strongly modified by the coupling between the sound
In Fig. 2 we show an example of the typical time evolu- and the transverse breathing modes. These changes are large
tion. In this figure we prepare the system with a Gaussiaenough that they should be included when making quantita-
density disturbancé, (t=0)=—0.1ex—(n/10)?] and then tive predictions for experiments. In principle, the sound
let it evolve. The density minimum splits into two parts mode is coupled not only to the transverse breathing mode
propagating into opposite directions. We find that the nu-but also to modes with higher energy that have the same
merically calculated propagation velocity of the density dis-symmetry. In this paper we have ignored such higher-order
turbance is in good agreement with our analytical result foreffects, since the overlap with the transverse breathing mode
the sound velocity in Eq(23) and very different from the is the largest and therefore the coupling to this mode domi-
phase-only result in Eq22). The excess energy of the den- nates.
sity dip excites the transverse breathing mode that remains In principle, the theories studying two weakly coupled
well localized in the center of the lattice and only slowly condensatel28—3(0 would also be influenced by the mecha-

IV. TIME EVOLUTION OF THE COUPLED SYSTEM

V. SUMMARY AND CONCLUSIONS
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nism we have discussed in this paper. This makes the studgdeed in agreement with the experimeffs-5].

of the phase dynamics of the weakly coupled condensates in Our theory can also be used to study how the transverse

the presence of the transverse degrees of freedom an intdsreathing mode excites density modulations of the conden-

esting topic for further research. sate in an optical lattice. In this paper we gave one numerical
When the sound mode in an ordinary elongated Boseexample along these lines, but when the transverse

Einstein condensate is eXCited, by Using, for eXampIe, a bluq:jreathing_mode amplitude is Very |arge or Strong|y modu_

detuned laser beam as in the experiments of Andretved.  |ated, we expect that nonlinearities will play an important

[3.4], the transverse profile of the condensate is modifiedole. Under such conditions instabilities might arise, reveal-

close to the laser beam. After removing the laser beam, thg possibilities for studying nonlinear matter wave dynam-
density dip starts propagating with the sound velocity. How-j¢cs.

ever, we have seen that in principle in addition to this also a
surface disturbance starts propagating in the condensate. This
is analogous to the problem we have studied in this paper. In
contrast with the Bose-Einstein condensate in an optical lat-
tice, in a cigar-shaped three-dimensional Bose-Einstein con- This work was supported by the Stichting voor Funda-
densate the influence of the transverse degrees of freedomnsenteel Onderzoek der MaterieOM) and by the Neder-
expected to be small, and theories ignoring tH&xr8] are  landse Organisatie voor Wetenschaplijk Onderzd¢k/O).
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